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Chapter 1

Introduction

A stochastic process is a collection of random variables {Xi : i ∈ V }. For our
purposes, a stochastic process on a graph G is a collection of random variables
indexed by the vertices of the graph, whose distribution is ‘structured’ according
to the the graph itself.

This is of course vague, but we shall provide a more precise definition below.
We shall start with the simplest possible example, the Curie-Weiss model and use
it to illustrate the point of view we will take on stochastic processes on graphs.
Then we shall move on to a list of more interesting (and motivating) examples.

1.1 The Curie-Weiss model

The Curie-Weiss model is deceivingly simple, but is a good pretext for explaining
what are we talking about.

1.1.1 A story about opinion formation

At time 0, each of N individuals takes one of two opinions xi ∈ {+1,−1} in-
dependently and uniformly at random for i ∈ {1, . . . , N}. At each subsequent
time, one individual i chosen uniformly at random considers whether changing
its opinion. If the majority of the other individuals disagree with her, then she
changes her opinion. This is just conformism.

In the other case, she takes an anti-conformist behavior with probability that
becomes larger when the aggregate opinion is close to neutral. To be definite,
she computes the opinion imbalance

M ≡
N∑

j=1

xj . (1.1)

and M (i) ≡M − xi. Then she changes her opinion with probability

pflip(x) = exp
{
−2β|M (i)|/N

}
. (1.2)
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Her choice depends on the history so far only through the current value of M (i).
Let M(t) be the opinion imbalance after t steps. Despite its simplicity, this

model raises several interesting questions.

(a) How long does is take for the process to become approximately stationary?

(b) How often do individuals change opinion in stationary state?

(c) Is the typical opinion pattern strongly polarized (herding)?

(d) If this is the case, how often does the popular opinion change?

These lectures are not concerned with question 1, but with (some version of)
questions 2 to 4.

To be more precise, notice that the above dynamics is an aperiodic irreducible
Markov chain whose (unique) stationary state is

µN,β(x) =
1

ZN(β)
exp




β

N

∑

(i,j)

xixj



 . (1.3)

To prove this it is sufficient to check that the above dynamics is reversible with
respect to the measure µN,β, i.e. that µN,β(x)P(x → x′) = µN,β(x

′)P(x′ → x)
for any two configurations x, x′ (where P(x → x′) is the one-step transition
probability).

In writing µN,β, we emphasized the dependence of this distribution on N
(population size) and β (interaction strength). We will be particularly interested
in the large-N behavior, and its dependence on β.

Then we can ask the following ‘static’ version of the above questions

2’. What is the distribution of pflip(x) when x has distribution µN,β( · ).

3’. What is the distribution of the opinion imbalance M . Is it concentrated
near 0 (evenly spread opinions), or far from 0 (herding)?

4’. In the herding case: how unlikely are balanced (M ≈ 0) configurations?

Exercise 1: Which measures replaces µN,β( · ) of (1.3) if the flipping proba-
bility is a general function of M (i) and possibly xi but nothing else?

[You are not required to solve all the exercises in these notes. Some of them
are pretty difficult and represent suggestions for those students who are interested
in a deeper understanding of the material.]
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1.1.2 Stochastic processes on graphs

Recall that a graph G = (V,E) is defined by a set of vertices V and of edges E
(an edge being an unordered pair of vertices.) We shall always assume G to be
finite with |V | = N and often make the identification V = [N ].

In these lectures a stochastic process on graph G is a process, i.e. a
collection of random variables, indexed by the vertices of G, X = {Xi : i ∈ V }.
We shall further assume that the joint distribution µ(x) = P{X = x} of such
variables factorizes according toG. By this we mean that there exist non-negative
weights ψij such that

µ(x) =
1

Z

∏

(i,j)∈E
ψij(xi, xj) . (1.4)

Finally we shall restrict our attention to the case of variables Xi taking value in
a finite alphabet X . It is not hard to see that the distribution (1.3) takes this
form (with G being the complete graph over N vertices.)

Rather than studying stochastic processes on graphs in this generality, we
shall mostly focus on a few concepts/tools that have been object of recent research
effort.

Coexistence. Roughly speaking, we will say that a odel shows chexistence if
the measure µ decomposes into the convex combination of well separated lumps.
In order to formalize this notion, we consider sequences of measures µN on graphs
GN = ([N ], EN ), and say that a coexistence occurs if, for each N , there exists
a partition of the configuration space into subsets Ω1,N , . . . ,Ωr,N such that the
following happens

(a) The measure of any of the subsets in the partition is bounded away from 1:

max{µN(Ω1,N), . . . , µN(Ωr,N)} ≤ 1 − δ . (1.5)

(b) The subsets are separated by ‘bottlenecks.’ More precisely, for Ω ⊆ XN ,
define its ǫ-boundary as

∂ǫΩ ≡ {x ∈ XN : 1 ≤ d(x,Ω) ≤ Nǫ} . (1.6)

where d is the Hamming distance1. Then we require

µN(∂ǫΩs,N)

µN(Ωs,N)(1 − µN(Ωs,N))
→ 0 , (1.7)

1The Hamming distance d(x, x′) between configurations x and x′ is the number of positions
in which the two configurations differ. Given Ω ⊆ XN , d(x, Ω) ≡ min{d(x, x′) : x′ ∈ Ω}.
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for some ǫ > 0 and all s ∈ {1, . . . , r}. The normalization by µN(Ωs,N)
is introduced to avoid false bottlenecks due to small Ωs,N . The term 1 −
µN(Ωs,N) is there just for the sake of symmetry.

Depending on the circumstances, one can require the above limit to be
approached at some specific rate.

Often we shall consider phamilies of models indexed by one (or more) continuous
parameters, such as the inverse temperature β in the Curie-Weiss model. A phase
transition will generically be a sharp threshold in some property of the measure
µ( · ) as one of these parameters changes. In particular a phase transitio can
separate values of the parameter such that coexistence does occur from values
such that it does not.

Mean field models. Again roughly speaking, mean field models are models
that lack any (finite-dimensional) geometrical structure. For instance, models on
the complete graphs or on standard random graphs are mean field. On the other
hand, models on (finite portions) of finite dimensional grids are not.

A particular class of mean field models is defined by the requirement that
µ(x1, . . . , xN ) is exchangeable.

A wider class is obtained by considering random distributions2 µ. Given µ,
consider k iid configurations X(1), . . . , X(k) each having distribution µ. These
are called ‘replicas’ in statistical physics. The unconditional, joint distribution of
these k-copies is

µ(k)(x(1), . . . , x(k)) = E
{
µ(x(1)) · · ·µ(x(k))

}
, (1.8)

which we view as a distribution over (X k)N . For the model to be mean field
we require µ(k) to be exchangeable with respect to permutations of the vertices
indexes in [N ].

While such requirement is sufficient in ‘natural’ examples, there are examples
of models that intuitively are not mean-field and yet meet the requirement. For
instance, given a non-random measure µ, and a uniformly random permutation
π, define µπ(x1, . . . , xN) ≡ µπ(xπ(1), . . . , xπ(N)). Then µπ meets the requirement.
A satisfactory formalization of the intuitive notion of ‘mean field model,’ is an
open problem.

Mean field models are a pretty restrictive class, but a rich array of phenomena
can be studied in detail.

Mean field equations. The problem with the model (1.4) is that distinct
variables can be correlated in very subtle ways. Nevertheless, mean field models

2A random distribution over XN is just a random variable taking values on the (|X |N − 1)-
dimensional standard simplex.
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are often tractable because an effective ‘reduction’ to local marginals3 takes place
asymptotically for large sizes (i.e. as N → ∞).

Thanks to this reduction it is often possible to write a close system of equations
for the local marginals that hold in the large size limit. Such equations allow to
determine the local marginals up to (eventually) a finite multiplicity. Finding a
good formalization of this notion is an open problem. We shall instead provide
specific examples throughout the course.

1.1.3 The Curie-Weiss model: Phase transition

The model (1.3) appeared for the first time in the physics literature as a model
for ferromagnets4. In this context, the variables xi are called spins and their
value represents the direction in which a localized magnetic moment (think of a
tiny compass needle) is pointing. In some materials different magnetic moments
like to point in the same direction (as people like to have similar opinions). Phy-
sicists want to understand whether this interaction might lead to a macroscopic
magnetization (imbalance), or not.

In order to study the model, it is convenient to generalize it slightly by intro-
ducing a linear term in the exponent (‘magnetic field’)

µN,β(x) =
1

ZN(β)
exp




β

N

∑

(i,j)

xixj + h

N∑

i=1

xi



 . (1.9)

In this context 1/β is referred to as the ‘temperature.’ We shall always assume
β ≥ 0 (positive interaction) and (without loss of generality) h ≥ 0.

The good question to ask for understanding the Curie-Weiss model (1.9) is:
what is the distribution of the magnetization?

Lemma 1.1.1. For m ∈ [−1,+1], define

ψβ(m) = hm+
1

2
βm2 +H

(
1 +m

2

)
, (1.10)

where H(x) = −x log x− (1 − x) log(1 − x) is the binary entropy function.
Let M ∈ {−N,−N + 2, . . . , N − 2, N}, and X = (X1, . . . , XN) be a random

configuration from the Curie-Weiss model. Then,

e−β/2

N + 1

1

ZN(β)
eNψβ(M/N) ≤ P

{
N∑

i=1

Xi = M

}
≤ 1

ZN(β)
eNψβ(M/N) . (1.11)

3In particular, single variable marginals, or joint distributions of two variables connected by
an edge.

4A ferromagnet is a material that acquires a macroscopic spontaneous magnetization at low
temperature.
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Proof. It is immediate to see that

P

{
N∑

i=1

Xi = M

}
=

1

ZN(β)

(
N

(N +M)/2

)
exp

{
hM +

βM2

2N
− 1

2
β

}
. (1.12)

Our thesis then follows by Stirling approximation of thre binomial coefficient, cf.
[1], Theorem 12.1.3. �

A major role in this course is played by the free-entropy density (the term
‘density’ refers here to the fact that we are dividing by the number of variables),

φN(β) =
1

N
logZN(β) . (1.13)

Lemma 1.1.2. Let

φ∗(β) ≡ sup {ψβ(m) : m ∈ [−1, 1]} , (1.14)

and φN(β) be the free entropy density of the Curie-Weiss model. Then, for all N
large enough

φ∗(β) − β

2N
− 1

N
log{N(N + 1)} ≤ φN(β) ≤ φ∗(β) +

1

N
log(N + 1) . (1.15)

Proof. The upper bound follows upon summing the upper bound in Eq. (1.11)
over M . From the lower bound in the same equation, we get

φN(β) ≥ max
{
ψβ(m) : m ∈ SN

}
− β

2N
− 1

N
log(N + 1) . (1.16)

where SN ≡ {−1,−1 + 2/N, . . . , 1 − 2/N, 1}. A little calculus shows that maxi-
mum of ψβ(m) over the finite set SN is not smaller that the maximum over the
interval [−1,+1] minus (logN)/N , for all N large enough. �

Consider the optimization problem in Eq. (1.14). Since ψβ(m) is continuous
in the interval [−1, 1] and differentiable in its interior, with ψ′

β(m) → ±∞ as
m → ∓1, the maximum is achieved at points m ∈ (−1, 1) such that ψ′

β(m) = 0.
A direct calculation shows that this condition is equivalent to

m = tanh(βm+ h) . (1.17)

It is not hard to study the solutions of this equation. Here we limit ourself to
presenting the results.

For β ≤ 1, the equation admits a unique solution m∗(β, h) increasing in h
with m∗(β, h) ↓ 0 as h ↓ 0. Obviously m∗(β, h) maximizes ψβ(m).

For β ≥ 1 there exists h∗(β) > 0 continuously increasing in β with limβ→1 h∗(β) =
0 such that the following happens. For 0 ≤ h < h∗(β), Eq. (1.17) admits three
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distinct solutions m−(β, h) < m0(β, h) ≤ 0 ≤ m+(β, h). For h = h∗(β) two of
these solutions coincide m−(β, h) = m0(β, h) and for h > h∗(β) only the positive
one m+(β, h) survives.

Further, for any h > 0, m±(β, h) correspond to local maxima of ψβ(m), while
m0(β, h) is a local minimum. The global maximum coincides with m+(β, h), that
we shall henceforth denote as m∗(β, h).

At h = 0 (and always β > 1), ψβ(m) is an even function of m. As a con-
sequence m0(β, 0) = 0 and m±(β, 0) = ±m∗(β, 0).

The theorem below answers question 3’ in Section 1.1.1 of these notes.

Theorem 1.1.3. Let m∗(β, h) be defined as above, X be a random configuration
of the Curie-Weiss model and X ≡ N−1

∑N
i=1Xi. For h > 0 or h = 0 and β ≤ 1,

and for any ε > 0, there exists C(ε) > 0 such that, for all N large enough

P
{∣∣X −m∗(β, h)

∣∣ ≤ ε
}
≥ 1 − e−NC(ε) . (1.18)

For h = 0 and β > 1, and for any ε > 0, there exists C(ε) > 0 such that, for all
N large enough

P
{∣∣X −m∗(β, 0)

∣∣ ≤ ε
}

= P
{∣∣X +m∗(β, 0)

∣∣ ≤ ε
}
≥ 1

2
− e−NC(ε) . (1.19)

Proof. Consider first the case β ≤ 1 or h > 0. Under this assumption, ψβ(m) has
a non-degenerate maximum at m = m∗(β, h). Then, by Lemma 1.1.1

P
{
|X −m∗(β, h)| ≥ ε

}
≤ 1

ZN(β)
(N+1) exp

{
N max[ψβ(m) : |m−m∗(β, h)| ≥ ε]

}
.

Using Lemma 1.1.2 we get

P
{
|X −m∗(β, h)| ≥ ε

}
≤ (N+1)3e−β/2 exp

{
N max[ψβ(m)−φ∗(β) : |m−m∗(β, h)| ≥ ε]

}
.

whence Eq. (1.18) follows.
Equation (1.19) is proved analogously, using the symmetry of the model for

h = 0. �

We just encountered our first example of phase transition.

Theorem 1.1.4. The Curie-Weiss model shows coexistence if and only if h = 0
and β > 1.

Proof. We will limit ourselves to the ‘if’ part of this statement: for h = 0,
β > 1, the Curie-Weiss model shows coexistence. Consider the partition of the
configuration space given by {+1,−1}V = Ω+ ∪Ω−, whereby Ω+ ≡ {x :

∑
i xi ≥

0} and Ω− ≡ {x :
∑

i xi < 0}. We have to check that such partition satisfies the
conditions in Section 1.1.2.

9



It follows immediately from Eq. (1.19) that, choosing ǫ < m∗(β, 0)/2, we have

µβ,N(Ω±) ≥ 1

2
− e−CN , µβ,N(∂ǫΩ±) ≤ e−CN , (1.20)

for some C > 0 and all N large enough, which is the thesis. �

1.1.4 The Curie-Weiss model: Mean field equations

We have just encountered the first example of a mean field model, the first
example of phase transition, and also the first example of mean field equation,
namely Eq. (1.17). In the present Section, we will rederive this equation, using a
somewhat more general type of argument.

Before doing this, it is worth trying to ‘interpret’ Eq. (1.17) and verify that
indeed it matches the general definition of a mean field equation in Section 1.1.2.
Throughout this section we will assume not to be on the coexistence line h = 0,
β > 1. It then follows from Theorem 1.1.3 that EXi = EX ≈ m∗(β, h) (we will
use ≈ whenever we do not want to get into a precise mathematical definition.)
Therefore, Eq. (1.17) can be rewritten as

EXi ≈ tanh

{
h+

β

N

∑

j∈V
EXj

}
. (1.21)

In agreement with our general description of mean field equations, this is a closed
form relation between the local marginals under the measure µ.

In fact, (1.21) follows just from the fact that X concentrated in probability,
and does not require such a fine control as in Theorem 1.1.3. This is interesting
because in more complicate models, some bound on fluctuations of X might
be available without the analogous of Theorem 1.1.3. We start by proving an
auxiliary result.

Lemma 1.1.5. Denote by EN,β expectation with respect to the Curie-Weiss model
with N variables at inverse temperature β (and magnetic field h). Let X =
N−1

∑N
i=1Xi and β ′ = β(1 + 1/N). Then, for any i ∈ [N ]:

|EN+1,β′Xi − EN,βXi| ≤ β sinh(β + h)VarN,β(X) (1.22)

Proof. By direct computation, for any function F : {+1,−1}N → R,

EN+1,β′{F (X)} =
EN,β{F (X) cosh(h+ βX)}

EN,β{cosh(h+ βX)} . (1.23)

Therefore

|EN+1,β′{F (X)} − EN,β{F (X)}| ≤ ||F ||∞
√

Var(cosh(h+ βX))

≤ ||F ||∞β sinh(h + β)

√
Var(X) .
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Here the first inequality follows from cosh a ≥ 1 and Cauchy-Schwarz, and the
second from the Lipschitz behavior of x 7→ cosh(h + βx) together with |X| ≤ 1.
�

The following Theorem implies (a formal version of) Eq. (1.21) for β ≤ 1 or
h > 0.

Theorem 1.1.6. There exists a constant C(β, h) such that

∣∣∣∣∣EXi − tanh

{
h +

β

N

∑

j∈V
EXj

}∣∣∣∣∣ ≤ C(β, h)

√
Var(X) . (1.24)

Proof. Let EN,β, and EN+1,β′ be defined as in Lemma 5 and X = N−1
∑N

i=1Xi.
By direct computation

EN+1,β′{XN+1} =
EN,β sinh(h+ βX)

EN,β cosh(h+ βX)
. (1.25)

Notice that (by Lipschitz property of cosh(h + βx) and sinh(h + βx) together
with |X| ≤ 1)

|EN,β cosh(h+ βX) − cosh(h+ βEN,βX)| ≤ sinh(β + h)

√
Var(X) , (1.26)

|EN,β sinh(h + βX) − sinh(h+ βEN,βX)| ≤ cosh(β + h)

√
Var(X) . (1.27)

Using the inequality |a1/b1−a2/b2| ≤ |a1−a2|/b1+a2|b1−b2|/b1b2 (for ai, bi ≥ 0),
the bound |X| ≤ 1, and the fact that EN+1,β′Xi is independent of i, this implies

∣∣∣∣∣EN+1,β′{Xi} − tanh

{
h +

β

N

∑

j∈V
EN,β Xj

}∣∣∣∣∣ ≤ C(β, h)

√
Var(X) . (1.28)

The thesis then follows by applying Lemma 1.1.5. �

Exercise 2: Repeat the derivations in this lecture for the model

µ(x) =
1

Z
exp





β

Np−1

∑

(i1...ip)

xi(1) · · ·xi(p) + h
N∑

i=1

xi



 , (1.29)

where p ≥ 2 is a fixed integer and the first sum runs over all the p-uples of distinct
indices (we solved the case p = 2).
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Exercise 3: Consider the model

µz(x) =
1

Z
exp




β

N

∑

(i,j)

xixj + h
N∑

i=1

zixi



 , (1.30)

where zi’s are iid standard gaussian random variables. What is the value of Z
for a ‘typical’ realization of the zi’s? What about the the expectations E{xi} for
a typical realization of the zi’s?

1.2 Models

In this Section we’ll list a number of examples of stochastic processes on graphs,
coming from different domains. In all of these examples G = (V,E) is a graph.

1.2.1 Statistical physics

Ferromagnetic Ising model. The ferromagnetic Ising model is arguably the
most studied model in statistical physics. It is defined by xi ∈ {+1,−1} and

µN,β(x) =
1

ZN(β)
exp



β

∑

(i,j)∈E
xixj + h

∑

i∈V
xi



 , (1.31)

with β ≥ 0. Interaction between vertices i, j connected by an edge pushes the
variable xi, xj towards taking the same value. It is expected that this leads to
a global alignment the variables (spins) at low temperature, for a large family of
graphs. This transition should be analogous to the one of the Curie-Weiss model,
but remarkably little is known about Ising models on general graphs. In the next
chapter we’ll consider the case of random sparse graphs.

Antiferromagnetic Ising model. The model takes the same form (1.31),
but with β < 0 (although normaly one introduces explicitly a minus sign to keep β
positive). If the graph is bipartite, and h = 0, the model is completely equivalent
to the ferromagnetic one. On non-bipartite graphs the antiferromagnetic model is
much more complicate than the ferromagnetic one, and indeed even determining
the most likely (lowest energy) configuration is a difficult matter. For h = 0, the
latter is indeed the celebrated max-cut problem.

Spin glasses. An instance of the Ising spin glass is defined by a graph G,
together with edge weights Jij ∈ R, for (i, j) ∈ E. Again variables are binary
xi ∈ {+1,−1}, and

µN,β(x) =
1

ZN(β)
exp



β

∑

(i,j)∈E
Jijxixj + h

∑

i∈V
xi



 . (1.32)
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Figure 1.1: Factor graph representation of the satisfiability formula (x̄1 ∨ x̄2 ∨
x̄4)∧(x1∨ x̄2)∧(x2∨x4∨x5)∧(x1∨x2∨x5)∧(x1∨ x̄2∨x5). Edges are continuous
or dashed depending whether the corresponding variable is directed or negated
in the clause.

In a spin glass model the ‘coupling constants’ Jij are random with even distri-
bution (the canonical examples being Jij ∈ {+1,−1} uniformly and Jij centered
Gaussian variables). One is interested in determining the asymptotic properties
as N → ∞ of µβ,N( · ) for typical realizations of the couplings.

1.2.2 Random constraint satisfaction problems

A constraint satisfaction problem (CSP) is defined by a finite variable domain X ,
and by a class C of constraints over variables in X . An instance of this problem
is defined by an integer N (number of variables) and a set of M constraints from
the class C over variables x1, . . . , xN ∈ X . A solution of this instances is an
assignment of the variables that satisfies all constraints.

Several questions are of interest within computer science:

(a) Decision problem. Does the system have a solution?

(b) Optimization problem. Maximize the number of satisfied constraints?

(c) Counting problem. Count the number of solutions.

There are many ways of associating a stochastic process on a graph to an
instance of constraint satisfaction problem. If the instance admits a solution, a
very simple idea is to consider the uniform measure over all such solutions. Let
us see how does this work in specific examples.

Coloring. A proper q-coloring of a graph G is an assignment of colors in
{1, . . . , q} to the vertices of G in such a way that no edges has both endpoints of
the same color. This defines a CSP, where the variable domain is X = {1, . . . , q}
and the possible constraints are indexed by pair of indices (i, j) ∈ V × V and
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include the two variables xi and xj . The constraint (i, j) isv satisfied if and only
if xi 6= xj .

Assuming that graph G admits a proper coloring, the uniform measure reads

µG(x) =
1

ZG

∏

(i,j)∈E
I(xi 6= xj) . (1.33)

Notice that ZG is the number of proper colorings of G.

k-Satisfiability. In this case variables are binary xi ∈ {0, 1}, and possi-
ble constraints are indexed by k-uples of indices in {1, . . . , N}, (i(1), . . . , i(k)).
Each constraint takes the form (xi(1), . . . , xi(k)) 6= (x∗i(1), . . . , x

∗
i(k)) for some k-uple

(x∗i(1), . . . , x
∗
i(k)). In this context constraints are often referred to as ‘clauses’ and

can be written as the disjuncton (logical OR) of k variables or their negations.
The uniform measure over solutions is

µ(x) =
1

Z

M∏

a=1

I

(
(xia(1), . . . , xia(k)) 6= (xaia(1), . . . , x

a
ia(k))

)
. (1.34)

An instance can be associated to a factor graph, cf. Fig. 1.1. This is a bipartite
graph including two types of nodes: variable nodes V ≡ {1, . . . , N} for variables
and function (or factor) nodes F ≡ {1, . . . ,M} for constraints. Variable node i
and function node a are connected by an edge if and only if variable xi appears
in the a-th clause.

It is not hard to realize that the last construction can be generalized to arbi-
trary CSPs: one can represent an arbitrary CSP instance using a factor graph.

1.2.3 Communications, estimation, detection

A number of problems from mathematical engineering can be phrased in terms
models on graphs. We will describe a canonical model for these systems: several
specific applications can in fact be phrased in terms of this model.

Let X1, . . . , Xn be a collection of ‘hidden’ random variables that we shall as-
sume iid with a common distribution p0( · ) over a finite alphabet X . We are inte-
rested in estimating these variables from a collection of observations Y1, . . . , YM .
The a-th observation (for a ∈ {1, . . . ,M}) is a random function of the Xi’s with
i ∈ ∂a = {ia(1), . . . , ia(k)}. By this we mean that Ya is conditionally independent
of all the other variables given {Xi : i ∈ ∂a}. We’ll write

P {Ya ∈ A|X∂a = x∂a} = Qa(A|x∂a) . (1.35)

for some probability kernel Qa( · | · ).
The a posteriori distribution of the hidden variables given the observations

reads

µ(x|y) =
1

Z(y)

M∏

a=1

Qa(ya|x∂a)
N∏

i=1

p0(xi) . (1.36)
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Exercise 4: Describe the (factor) graph associated with the distribution
(1.36).

Exercise 5: Write the explicit form of the distribution (1.36) when the a
priori distribution p0 of Xi is uniform in {+1,−1} and the observatios are defined
by

Y = AX +W , (1.37)

with A a sparse N ×M matrix (i.e. with few non-vanishing entries) and W =
(W1, . . . ,WN) a vector of N iid centered Gaussian variables.

1.2.4 Graph and graph ensembles

The properties of the models introduced so far depend on the strcture of the
underlying graph G = (V,E). Let us first summarize a few general notations.
We shall denote vertices as i, j, k, · · · ∈ V , and edges as (i, j) with i, j ∈ V . Given
a vertex i ∈ V , we let ∂i = {j ∈ V : (i, j) ∈ E} be the set of its neighbors.

These lectures focus on (random) graph models without euclidean structure.
Here are a few ensemble of such graphs.

1. Random-regular graphs of degree k. This is the ensemble of graph over N
vertices with homogeneous degree k. The ensemble is endowed with the
uniform measure.

2. Random graphs. This is the ensemble of graph with N vertices and Nγ
edges, again endowed with the uniform measure. A slightly modified en-
semble is he one in which each edge (i, j) is present independently with
probability Nγ/

(
N
2

)
.

3. Radom graphs with given degree distribution. Given N ∈ N and a distri-
bution over the non-negative integers {Pl}l≥0, one considers graphs with N
vertices of which NP0 have degree 0, NP1 degree 1, NP2 have degree 2, etc
(assuming NPl to be an integer for each l). A graph from this ensemble is
again drawn uniformly at random.

Exercise 6: What is expected fraction of vertices of degree k in the random
graph model? How does it behave for large k? What can you say about the
actual fraction of vertices of degree k? Is it close to its expectation?

Among the important properties of these graphs, is that they converge locally
to trees. Namely, for any integer ℓ, let B(i, ℓ) denote the depth-ℓ neighborhood of
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a uniformly random vertex i. Then B(i, ℓ) converges in distribution to a random
tree of depth ℓ.
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Chapter 2

Ising models on locally tree-like

graphs

In this Chapter we study ferromagnetic Ising models on graph sequences that
converge locally to trees. The last section is a technical appendix. It contains a
brief exposition of Griffiths inequalities which are an important tool in the study
of ferromagnetic Ising models.

2.1 Introduction

An Ising model on the finite graph G (with vertex set V , and edge set E) has the
Boltzmann distribution

µ(x) =
1

Z(β,B)
exp

{
β
∑

(i,j)∈E
xixj +B

∑

i∈V
xi

}
, (2.1)

over x = {xi : i ∈ V }, with xi ∈ {+1,−1}, parametrized by the ‘magnetic field’
B and ‘inverse temperature’ β ≥ 0, where the partition function Z(β,B) is fixed
by the normalization condition

∑
x µ(x) = 1.

For sequences of graphs Gn = (Vn, En) of diverging size n, non-rigorous sta-
tistical mechanics techniques, such as the ‘replica’ and ‘cavity methods,’ make
a number of predictions on this model when the graph G ‘lacks any finite-
dimensional structure.’ The most basic quantity in this context is the asymptotic
free entropy density (also called free energy or pressure)

φ(β,B) ≡ lim
n→∞

1

n
logZn(β,B) . (2.2)

It is characterized in great detail [3] for the complete graph Gn = Kn (scaling β by
1/n to get a non-trivial limit). Predictions exist for a much wider class of graphs.
Most notably, sparse random graphs with bounded average degree that arise
in a number of problems from combinatorics and theoretical computer science

17



Examples include random satisfiability, coloring of random graphs, and graph
partitioning [2], where the uniform measure over solutions can be regarded as
the Boltzmann distribution for multi-spin interactions. Such problems have been
successfully attacked using non rigorous statistical mechanics techniques whose
mathematical foundation is still lacking and of much interest. In sparse graphs,
with the distance between vertices as the length of shortest path connecting them,
one also has a new characterization of the measure (2.1) in terms of correlation
decay, related to Gibbs measures on infinite trees [59].

The asymptotic free entropy density (2.2) was determined rigorously only in
a few cases of sparse graphs. In [17], this was accomplished for random regular
graphs and in [66] for random graphs with independent edges, but only at high
or zero temperature (and with vanishing magnetic field). We generalize these
results by considering generic graph sequences that converge locally to trees and
control the free entropy density by proving that the Boltzmann measure (2.1)
converges locally to the Boltzmann measure of a model on the appropriate in-
finite random tree (a philosophy related to that of [49]). Our results also have
algorithmic interpretations, providing an efficient procedure for approximating
the local marginals of the Boltzmann measure. The essence of this procedure
consists in solving by iteration certain mean field (cavity) equations. Such an
algorithm is known in artificial intelligence and computer science under the name
of belief propagation.

Our emphasis is on the low-temperature regime where although uniform decor-
relation does not hold, we show that belief propagation converges exponentially
fast on any graph, and that the resulting estimates are asymptotically exact for
large locally tree-like graphs. The main idea is to introduce a magnetic field to
break explicitly the +/− symmetry, and to carefully exploit the monotonicity
properties of the model.

2.2 Locally tree-like graphs and free entropy

Let P = {Pk : k ≥ 0} be a probability distribution over the non-negative inte-
gers, with finite, positive first moment P , and set ρk = (k + 1)Pk+1/P of mean
ρ. We use Pρ{ · } for the law of the random rooted Galton-Watson tree T(ρ, t) of
t ≥ 0 generations where independently of each other each node has offspring dist-
ribution {ρk} and denote by T(P, ρ, t) the modified ensemble where the offspring
distribution at the root is changed to P .

Definition 2.2.1. Let Pn denote the law of the ball Bi(t) (i.e. the subgraph
induced by vertices of Gn whose distance from i is at most t), centered at a
uniformly chosen random vertex i ∈ Vn. We say that {Gn} converges locally to
the random tree T(P, ρ,∞) if, for any t, and any rooted tree T with t generations

lim
n→∞

Pn{Bi(t) ≃ T} = Pρ{T(t) ≃ T} (2.3)
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(where T1 ≃ T2 if two trees T1 and T2 of same fize are identical upon labeling their
vertices in a breadth first fashion following lexicographic order among siblings).
We also say that {Gn} is uniformly sparse if

lim
l→∞

sup
n

1

|Vn|
∑

i∈Vn

|∂i| I(|∂i| ≥ l) = 0 , (2.4)

where ∂i denotes the set neighbors of i ∈ Vn and |∂i| its size (i.e. the degree of
i).

The model (2.1) has a line of first order phase transitions forB = 0 and β > βc

(that is, where the continuous function B 7→ φ(β,B) exhibits a discontinuous
derivative). The critical temperature is determined by the condition ρ (tanh βc) =
1. The asymptotic free-entropy density is given in terms of the following fixed
point distribution.

Lemma 2.2.2. Consider the random variables {h(t)} where h(0) ≡ 0 and for
t ≥ 0,

h(t+1) d
= B +

K∑

i=1

atanh[tanh(β) tanh(h
(t)
i )] , (2.5)

with h
(t)
i i.i.d. copies of h(t) that are independent of the variable K of distribution

ρ. If B > 0 and ρ < ∞ then t 7→ h(t) is stochastically monotone and converges
in law to the unique fixed point h∗ of (2.5) that is supported on [0,∞).

Our main result confirms the statistical physics prediction for the free entropy
density.

Theorem 2.2.3. If ρ is finite then for any B ∈ R, β ≥ 0 and sequence {Gn}n∈N
of uniformly sparse graphs that converges locally to T(P, ρ,∞),

lim
n→∞

1

n
logZn(β,B) = φ(β,B) , (2.6)

where taking L of distribution P independently of the ‘cavity fields’ hi that are
i.i.d. copies of the fixed point h∗ of Lemma 2.2.2, φ(β,B) = φ(β,−B) is given
for B > 0 by

φ(β,B) ≡ P

2
log cosh(β) − P

2
E log[1 + tanh(β) tanh(h1) tanh(h2)] (2.7)

+E log
{
eB

L∏

i=1

[1 + tanh(β) tanh(hi)] + e−B
L∏

i=1

[1 − tanh(β) tanh(hi)]
}
,

and φ(β, 0) is the limit of φ(β,B) as B → 0.

The proof of Theorem 2.2.3 is based on two steps
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(a) Reduce the computation of φn(β,B) = 1
n

logZn(β,B) to computing expecta-
tions of local (in Gn) quantities with respect to the Boltzmann measure
(2.1). This is achieved by noticing that the derivative of φn(β,B) with
respect to β is a sum of such expectations.

(b) Show that expectations of local quantities on Gn are well approximated by
the same expectations with respect to an Ising model on the associated tree
T(P, ρ, t) (for t and n large.) This is proved by showing that, on such a tree,
local expectations are insensitive to boundary conditions that dominate
stochastically free boundaries. The thesis then follows by monotonicity
arguments.

The key step is of course the last one with the challenge to carry it out above βc,
when we no longer have uniqueness of the Gibbs measure on T(P, ρ,∞). Indeed,
insensitivity to positive boundary conditions is proved for a large family of ‘con-
ditionally independent’ trees. Beyond the random tree T(P, ρ,∞), these include
deterministic trees with bounded degrees and multi-type branching processes (so
it allows for generalizing Theorem 2.2.3 to other graph sequences, that converge
locally to random trees different from T(P, ρ,∞)).

2.3 Algorithmic implications

The free entropy density is not the only quantity that can be characterized for
Ising models on locally tree-like graphs. Indeed, local marginals can be efficiently
computed with good accuracy. The basic idea is to solve a set of mean field
equations iteratively. These are known as Bethe-Peierls or cavity equations and
the corresponding algorithm is referred to as ‘belief propagation’ (BP).

More precisely, associate to each directed edge in the graph i → j, with
(i, j) ∈ G, a distribution (or ‘message’) νi→j(xi) over xi ∈ {+1,−1}, using then
the following update rule

ν
(t+1)
i→j (xi) =

1

z
(t)
i→j

eBxi

∏

l∈∂i\j

∑

xl

eβxixlν
(t)
l→i(xl) (2.8)

starting at a positive initial condition, namely where ν
(0)
i→j(+1) ≥ ν

(0)
i→j(−1) at

each directed edge.
We establish uniform exponential convergence of the BP iteration to the same

fixed point of (2.8), irrespective of its positive initial condition.

Theorem 2.3.1. Assume β ≥ 0, B > 0 and G is a graph of finite maximal
degree ∆. Then, there exists A = A(β,B,∆) and c = c(β,B,∆) finite, λ =
λ(β,B,∆) > 0 and a fixed point {ν∗i→j} of the BP iteration (2.8) such that for
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any positive initial condition {ν(0)
l→k} and all t ≥ 0,

sup
(i,j)∈E

‖ν(t)
i→j − ν∗i→j‖TV ≤ A exp(−λt) . (2.9)

Further, for any i∗ ∈ V , if Bi∗(t) is a tree then for U ≡ Bi∗(r)

||µU − νU ||TV ≤ exp
{
cr+1 − λ(t− r)

}
, (2.10)

where µU( · ) is the law of xU ≡ {xi : i ∈ U} under the Ising model (2.1) and νU
the probability distribution

νU (xU) =
1

zU
exp

{
β
∑

(i,j)∈EU

xixj +B
∑

i∈U\∂U
xi

} ∏

i∈∂U
ν∗i→j(i)(xi) , (2.11)

with EU the edge set of U whose border is ∂U (i.e. the set of its vertices at
distance r from i∗), and j(i) is any fixed neighbor in U of i.

2.3.1 Examples

Many common random graph ensembles naturally fit our framework.
Random regular graphs. Let Gn be a uniformly random graph with degree

k. As n → ∞, the sequence {Gn} is obviously uniformly sparse, and converges
locally almost surely to the random rooted Cayley tree of degree k. Therefore, in
this case Theorem 2.2.3 applies with Pk = 1. The distributional recursion (2.5)
then evolves with a deterministic sequence h(t) recovering the result of [17].

Erdös-Renyi graphs. Let Gn be a uniformly random graph with m = nγ edges
over n vertices. The sequence {Gn} converges locally almost surely to a Galton-
Watson tree with Poisson offspring distribution of mean 2γ. This corresponds
to taking Pk = (2γ)ke−2γ/k!. The same happens to classical variants of this
ensemble. For instance, one can add an edge independently for each pair (i, j)
with probability 2γ/n, or consider a multi-graph with Poisson(2γ/n) edges be-
tween each pair (i, j). In all these cases {Gn} is almost surely uniformly sparse.
In particular, Theorem 2.2.3 extends the results of [66] to arbitrary non-zero
temperature and magnetic field.

Arbitrary degree distribution. Let P be a distribution with finite second mo-
ment and Gn a uniformly random graph with degree distribution P (the number
of vertices of degree k is obtained by rounding nPk). Then {Gn} is almost surely
uniformly sparse and converges locally to T(P, ρ,∞). The same happens if Gn is
drawn according to the so-called configuration model.
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2.4 Ising models on trees

We extend (2.1) by allowing for vertex-dependent magnetic fields Bi, namely, we
consider

µ(x) =
1

Z(β,B)
exp

{
β
∑

(i,j)∈E
xixj +

∑

i∈V
Bixi

}
(2.12)

and derive correlation decay results for Ising models on trees, which are of in-
dependent interest. More precisely, let T denote a conditionally independent
infinite tree rooted at the vertex ø. That is, for each integer k ≥ 0, conditional
on the subtree T(k) of the first k generations of T, the number of offspring ∆j

for j ∈ ∂T(k) are independent of each other, where ∂T(k) denotes the set of
vertices at generation k. We further assume that the (conditional on T(k)) first
moments of ∆j are uniformly bounded by a given non-random finite constant ∆.
In addition to T = T(P, ρ,∞) this flexible framework accommodates for example
random bipartite trees, deterministic trees of bounded degree and percolation
clusters on them.

For each ℓ ≥ 1, we denote by µℓ,0 the Ising model (2.12) on T(ℓ) with magnetic
fields {Bi} (also called free boundary conditions), and by µℓ,+ the modified Ising
model corresponding to the limit Bi ↑ +∞ for all i ∈ ∂T(ℓ) (also called plus
boudary conditions), using µℓ for statements that apply to both free and plus
boundary conditions.

Theorem 2.4.1. Suppose T is a conditionally independent infinite tree of average
offspring numbers bounded by ∆. Let 〈 · 〉(r)i denote the expectation with respect
to the Ising distribution on the subtree of i and all its descendants in T(r) and
〈x; y〉 ≡ 〈xy〉− 〈x〉〈y〉 denotes the centered two point correlation function. There
exist A finite and λ positive, depending only on 0 < Bmin ≤ Bmax, βmax and ∆
finite, such that if Bi ≤ Bmax for all i ∈ T(r− 1) and Bi ≥ Bmin for all i ∈ T(ℓ),
then for any r ≤ ℓ and β ≤ βmax,

E

{ ∑

i∈∂T(r)

〈xø; xi〉(ℓ)ø

}
≤ Ae−λr . (2.13)

If in addition Bi ≤ Bmax for all i ∈ T(ℓ − 1) then for some C = C(βmax, Bmax)
finite

E ||µℓ,+
T(r) − µℓ,0

T(r)||TV ≤ Ae−λ(ℓ−r)
E{C |T(r)|} . (2.14)

In deriving this theorem we rely on monotonicity properties of the Ising me-
asure, such as Griffiths inequality (see [41, Theorem IV.1.21]), and the GHS
inequality (see [18]) about the effect of the magnetic field B on the local mag-
netizations at various vertices. We also extend Simon’s inequality about the
(centered) two point correlation functions in ferromagnetic Ising models with
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zero magnetic field (see [67, Theorem 2.1]), to arbitrary magnetic field, in the
case of Ising models on trees. That is, we show that if edge (i, j) is on the unique
path from ø to k ∈ T(ℓ), with j a descendant of i ∈ ∂T(t), t ≥ 0, then

〈xø; xk〉(ℓ)ø ≤ cosh2(2β +Bi) 〈xø; xi〉(t)ø 〈xj ; xk〉(ℓ)j . (2.15)

2.5 From trees to graphs: proof of Theorem

2.2.3.

We have the following consequence of the local convergence of the graph sequence
{Gn}.

Lemma 2.5.1. Suppose a uniformly sparse graph sequence {Gn} converges locally
to the random tree T(P, ρ,∞). Fixing a non-negative integer t, for each (i, j) ∈
En denote the subgraph of Gn induced by vertices at distance at most t from (i, j)
by Bij(t). Let F (·) be a fixed, bounded function on the collection of all possible
subgraphs that may occur as Bij(t), such that F (T1) = F (T2) whenever T1 ≃ T2.
Then,

lim
n→∞

1

n

∑

(i,j)∈En

F (Bij(t)) =
P

2
E{F (T(ρ, t))} , (2.16)

for the random tree T(ρ, t) obtained by ‘gluing’ two independent copies of T(ρ, t)
through an extra edge e between their roots which we match to the center (i, j) of
Bij(t).

Let h 7→ ϕh denotes the functional that, given a random variable h, evaluates
the right side of (2.7). Since φn(β,B) ≡ 1

n
logZn(β,B) is invariant under B →

−B and is uniformly (in n) Lipschitz continuous in B with Lipschitz constant
one, it suffices to fix B > 0 and show that φn(β,B) converges as n → ∞ to the
predicted ϕh∗(β,B) of (2.7), whereby h∗ = h∗β is the unique fixed point of the
recursion (2.5) that is supported on [0,∞) (see Lemma 2.2.2).

This is obviously true for β = 0 since φn(0, B) = log(2 coshB) = ϕh(0, B).
Next, denoting by 〈 · 〉n the expectation with respect to the Ising measure on Gn

(at parameters β and B), it is easy to see that

∂βφn(β,B) =
1

n

∑

(i,j)∈En

〈xixj〉n . (2.17)

As |∂βφn(β,B)| ≤ |En|/n is bounded by the assumed uniform sparsity, it is
enough to show that the expression in (2.17) converges to the partial derivative
of ϕh∗

β
(β,B) with respect to β. Turning to compute the latter derivative, a bit

of real analysis shows that we can ignore the dependence of h∗β on β. That
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is, we simply compute the partial derivative in β of the expression (2.7) while
considering the law of hi to be fixed. Indeed, by the exchangeability of tanh(hi)
whose law has the fixed point property for (2.5), a direct computation leads to

∂β ϕ(β,B) =
P

2
E

[
〈xixj〉T

]
, (2.18)

where 〈·〉
T

denotes the expectation with respect to the Ising model

µ
T
(xi, xj) =

1

zij
exp

{
βxixj +Hixi +Hjxj

}
,

on one edge (ij) and random magnetic fields Hi and Hj that are independent
copies of h∗β.

In comparison, fixing a positive integer t, by Griffiths inequality the correla-
tion 〈xixj〉n lies between the correlations F0(Bij(t)) ≡ 〈xixj〉0Bij(t)

and F+(Bij(t)) ≡
〈xixj〉+Bij(t)

for the Ising model on the subgraph Bij(t) with free and plus, respec-

tively, boundary conditions at ∂Bij(t). Thus, in view of (2.17)

1

n

∑

(i,j)∈En

F0(Bij(t)) ≤ ∂β φn(β,B) ≤ 1

n

∑

(i,j)∈En

F+(Bij(t)) ,

and taking n→ ∞ we get by Lemma 2.5.1 that

P

2
E[F0(T(ρ, t))] ≤ lim inf

n→∞
∂β φn(β,B) ≤ lim sup

n→∞
∂β φn(β,B) ≤ P

2
E[F+(T(ρ, t))] .

To compute F0/+(T(ρ, t)) we first sum over the values of xk for k ∈ T(ρ, t)\{i, j}.
This has the effect of reducing F0/+(T(ρ, t)) to a form of 〈xixj〉T. Further, as in

the proof of Lemma 2.2.2, we get F0/+(T(ρ, t)) by setting for Hi and Hj two

independent copies of the variables h(t) and h
(t)
+ , respectively, which converge in

law to h∗β when t→ ∞. Since E[〈xixj〉T] is continuous with respect to convergence
in law of Hi, by (2.18)

lim
t→∞

P

2
E[F0/+(T(ρ, t))] = ∂β ϕ(β,B) ,

which completes the proof of the theorem.

Appendix: Griffiths inequalities and the case of

regular trees

Griffiths inequalities allow us to compare certain marginals of ferromagnetic Ising
measures for one graph G and non-negative parameters β, h with certain other
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choices for G, β and h. To this end, we consider the extended ferromagnetic Ising
measure

µJ(x) =
1

Z(J)
exp

{
ĤJ(x)

}
=

1

Z(J)
exp

{∑

R⊆V
JRxR

}
, (2.19)

for a finite set V and parameters JR ≥ 0, where hereafter xR =
∏

u∈R xu and
x = (xu, u ∈ V ) for spin variables xu ∈ X = {−1, 1}. We note in passing that the
Ising measure µG,β,h of (2.1) is merely µJ in case J{i} = h for all i ∈ V , J{i,j} = β
for all (i, j) ∈ E and JR = 0 for all other subsets of V .

In this context Griffiths inequalities are 1

Proposition 2.5.2 (Griffiths inequalities). For A,B ⊆ V and any J = (JR, R ⊆
V ) with JR ≥ 0,

EJ [xA] =
1

Z(J)

∑

x

xA exp
{
ĤJ(x)

}
≥ 0 , (2.20)

d

dJB
EJ [xA] = CovJ(xA, xB) ≥ 0 . (2.21)

Proof. Fixing A ⊆ V we start with (2.20), where for V finite,

∑

x

xA exp
{
ĤJ(x)

}
=

∑

x

xA

∞∑

n=0

1

n!
ĤJ(x)

n =

∞∑

n=0

1

n!

∑

x

xA(
∑

R

JRxR)n

=

∞∑

n=0

1

n!

∑

R1,...,Rn

n∏

ℓ=1

JRℓ

∑

x

xA

n∏

ℓ=1

xRℓ
.

Since x2
u = 1 for all u we have that xA

∏n
ℓ=1 xRℓ

= xC for C = {u ∈ V : u in an
odd number of sets among A,R1, . . . , Rn}. Further, with

∑
x xu = 0 it follows

that
∑

x xC = 0 if C is non-empty (and
∑

x xC = 2|V | > 0 for C = ∅). Thus∑
x xA

∏n
ℓ=1 xRℓ

≥ 0 for all A,R1, . . . , Rn, and with JR ≥ 0 for all R, we have
established (2.20). Turning to deal with (2.21) we fix A,B ⊆ V and check that

d

dJB
EJ [xA] =

d

dJB

∑
x xA exp{∑R JRxR}∑
x exp{∑R JRxR}

= Z(J)−2
∑

x,y

(xAxB − xAyB) exp{
∑

R

JR(xR + yR)} ,

which is precisely the covariance of xA and xB under µJ(x). We shall use (2.20)
to verify that this quantity is non-negative. To this end, let zu = xuyu ∈ X

1Our source for both statement and proof is [41, Theorem IV.1.21], see also [47] for more
general results in this direction.
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noting that yR = xRzR for any R ⊆ V (as x2
R = 1), and as before xAxB = xC for

the symmetric difference C between A and B. Consequently,
∑

x,y

(xAxB − xAyB) exp{
∑

R

JR(xR + yR)} =
∑

z

(1 − zB)
∑

x

xC exp{
∑

R

JR(z)xR}

where JR(z) = JR(1 + zR) ≥ 0. From (2.20) we thus have that
∑

x

xC exp{
∑

R

JR(z)xR} ≥ 0

for each z ∈ X V , and with 1 − zB ≥ 0 we complete the proof of (2.21). �

Fixing β > 0 and h ≥ 0, for any finite graph G let mv(G) = µG,β,h(xv = 1) −
µG,β,h(xv = −1) denote the magnetization at v ∈ V induced by the corresponding
(ferromagnetic) Ising measure. For S ⊆ V we similarly define mv(S; b) as the
magnetization at v induced by the same Ising measure subject to fixed boundary
conditions xu = bu for u /∈ S. Of particular interest to us are mv(S; +) and
mv(S; f) corresponding to bu = 1, respectively bu = 0, for all u /∈ S. The
latter are called free boundary conditions since subject to bu = 0, u /∈ S, the
restriction of the Ising measure µG,β,h to (xu, u ∈ S) coincides with the Ising
measure µG|S ,β,h for the restriction G |S of G to S (i.e. with S as its vertices and
{(i, j) ∈ E : i ∈ S, j ∈ S} as its edges). We then get by Griffiths inequalities the
following comparison results

Lemma 2.5.3. If v ∈ S ⊆ V then mv(S; f) ≤ mv(G) ≤ mv(S; +). Further,
S 7→ mv(S; f) is monotone non-decreasing and S 7→ mv(S; +) is monotone non-
increasing, both with respect to set inclusion (among sets S that contain v).

Proof. From Griffiths inequalities we know that J 7→ EJ [xv] is monotone non-
decreasing (where J ≥ Ĵ if and only if JR ≥ ĴR for all R ⊆ V ).

Recall further thatmv(G) = EJ0 [xv] where J0
{i} = h, J0

{i,j} = β when (i, j) ∈ E

and all other values of J0 are zero. Considering

Jη,SR = J0
R + η1R⊆Sc,|R|=1 ,

with η 7→ Jη,S non-decreasing, so is η 7→ EJη,S [xv]. In addition, µJη,S (xi =
−1) ≤ ce−2η when i /∈ S, hence as η ↑ ∞ the measure µJη,S converges to µJ
subject to the fixed boundary conditions xu = 1 for u /∈ S. Consequently,
mv(G) ≤ EJη,S [xv] ↑ mv(S; +).

Similarly, let JSR = J0
R1R⊆S noting that under µJS the random vector (xu, u ∈

S) is distributed according to the Ising measure µG|S ,β,h. With v ∈ S we thus
deduce that mv(S; f) = EJS [xv] ≤ EJ0[xv] = mv(G).

Finally, the stated monotonicity of S 7→ mv(S; f) and S 7→ mv(S; +) are in
view of Griffiths inequalities the direct consequence of the monotonicity (with
respect to set inclusions) of S 7→ JS and S 7→ Jη,S , respectively. �

26



Chapter 3

XORSAT on random regular

graphs

XORSAT is arguably the simplest constraint satisfaction problem. It was intro-
duced by Nadia Creignou and Herve Daude in 1999, and studied in a number of
papers since then.

3.0.1 k-XORSAT

A k-XORSAT instance is described by a factor graph G = (V, F, E) where |V | =
N , |F | = M and the factor nodes have degree k. We will denote the set of
variable nodes adjacent to factor node a as ∂a = {i1(a), . . . , ik(a)}. Further, for
any a ∈ F , we need to specify Ja ∈ {+1,−1}.

We will consider the following distribution over x ∈ {+1,−1}N

µG(x) =
1

ZN(β)
exp

{
β
∑

a∈F
Jaxi1(a) · · ·xik(a)

}
. (3.1)

In the following we shall be mostly interested in the case in which there exists at
least one solution x∗ with Jax

∗
i1(a) · · ·x∗ik(a) = 1 for all a ∈ F . In this case, it can

be shows that (under a change of variable) the above distribution is ‘essentially
equivalent’ to

µG(x) =
1

ZN(β)
exp

{
β
∑

a∈F
xi1(a) · · ·xik(a)

}
. (3.2)

When it will be necessary to specify, we will refer to this as to the unfrustrated
XORSAT model.

Exercise: What does it mean ‘essentially equivalent’ the above statement?
Describe the change of variables we are referring to.
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Basic information on XORSAT, focusing on the zero-temperature case is pro-
vided by the Chapter 17 of the book with Marc Mézard, posted online.

In this note we shall focus on ensembles of random (l, k)-regular graphs. Such
an ensemble is defined whenever Nl = Mk as follows. Attach l half-edges to
each variable node i ∈ V , and k half-edges to each function node a ∈ F . Draw a
uniformly random permutation over Nl elements, and connect edges on the two
sides accordingly.

Throughout, the adjacency matrix H of G will be the binary matrix whose
rows correspond to function nodes in F and columns to variable nodes in V . Its
entry Hai, a ∈ F , i ∈ V is just the parity of the multiplicity of edge (a, i) in G.

3.0.2 Free energy

Theorem 3.0.4. Let G be a random regular (l, k) factor graph, with k > l ≥ 2.
Then, with high probability

ZN(β) = 2N(cosh β)lN/k . (3.3)

In particular, the number of solutions is, with high probability 2N(1−l/k).

For proving this Theorem, it is convenient to first derive an exact expression
for the free energy. In order to do this, we introduce the notion of hyperloop.
Given a factor graph G = (V, F, E), an hyperloop is a subset F ′ of the factor
node, such that the induced subgraph G′ has even degree.

Lemma 3.0.5. Let G = (V, F, E) be a factor graph, ZN(β) the partition function
of the associated unfrustrated XORSAT model, and nG(ℓ) denote the number of
hyperloops of size ℓ in G. Then, for any β,

ZN(β) = 2N(cosh β)M
M∑

ℓ=0

nG(ℓ) (tanhβ)ℓ . (3.4)

Proof. By high-temperature expansion. �

We also need a result on the solutions of of random regular linear systems.

Theorem 3.0.6. Let G be a random regular (l, k) factor graph, with l > k ≥ 2,
and H denote the corresponding adjacency matrix. Then the linear system Hx =
0, mod 2 has, with high probability, the unique solution x = 0.

Proof. Let ZH(w) denote the number of solutions of Hx = 0 with w non-zero
entries. Compute EZH(w) and show that

lim
N→∞

N∑

w=1

EZH(w) = 0 . (3.5)

Some details of the computation are in Chapter 11 of the book online. �
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Theorem 3.0.4. In view of the previous lemma, it is sufficient to show that, with
high probability, nG(ℓ) = 0 for all ℓ ≥ 1, since nG(0) = 1. Let H be the adjacency
matrix of G (with rows corresponding to nodes in F and columns to nodes in
V ). Then our claim is equivalent to the following: The linear system HTx = 0
mod 2 admits the unique solution x = 0. This follows from Theorem 3.0.6 once
we notice that HT is the adjacency matrix of a (k, l) regular factor graph. �
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Chapter 4

Bethe-Peierls approximation

Bethe-Peierls approximation reduces the problem of computing partition func-
tions and expectation values to the one of solving a set of non-linear equations.
In general, this ‘reduction’ involves an uncontrolled error. We are interested here
in mean-field models, for which Bethe-Peierls is expected to be asymptotically
exact in the large system limit. In fact we already saw an example of this type,
namely the ferromagnetic Ising model on random regular graphs.

In the context of mean field spin glasses, the method was further refined
by Mézard, Parisi and Virasoro to include ‘replica symmetry breaking’ effects.
In such applications, this is referred to as the ‘cavity method.’ A closely re-
lated approach is provided by the so-called TAP (Thouless-Anderson-Palmer)
equations [6].

Section 4.1 provides a syntethic non-rigorous presentation of the basic ideas.
A formalization of these ideas is developed in Section 4.2.

4.1 An informal introduction

4.1.1 Bethe equations

Consider a general model on the graph G = (V,E) with variables xi ∈ X , and a
distribution

µ(x) =
1

Z

∏

(ij)∈E
ψij(xi, xj) . (4.1)

Given (i, j) ∈ E, define µ(ij)( · ) to be the modified distribution whereby the
contribution of edge (i, j) has been ‘taken out.’ Explicitly

µ(ij)(x) ≡ 1

Z(ij)

∏

(kl)∈E\(ij)
ψkl(xk, xl) . (4.2)
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Further, for i ∈ V we let µ(i)( · ) be the modified measure in which all the edges
incident on i have been removed:

µ(i)(x) ≡ 1

Z(i)

∏

(kl)∈E, i6∈(kl)

ψkl(xk, xl) . (4.3)

Given U ⊆ V , I shall denote by µU (respectively, by µ
(ij)
U , µ

(i)
U ) the marginal dist-

ribution of xU ≡ {xi : i ∈ U} when x is distributed according to µ (respectively
µ(ij), µ(i)).

The first step consists in deriving a set of exact equations relating the margi-
nals of µ(i) to the ones of µ(ij). In order to write such equations, it is convenient
to adopt the following notation. Whenever f and g are two non-negative func-
tions on the same domain, we shall write f(x) ∼= g(x) if they differ by an overall
normalization. We then have

µ
(ij)
ij (xi, xj) ∼=

∑

x∂i\i,j

µ
(i)
∂i (x∂i)

∏

l∈∂i\j
ψil(xi, xl) . (4.4)

Of course this does not solve the problem because we have more variables
than unknowns. The Bethe-Peierls method consists in writing a set of mean field
equations for the ‘modified marginals’

νi→j(xi) ≡ µ
(ij)
i (xi) . (4.5)

The crucial approximation consists in assuming that

µ
(ij)
ij (xi, xj) = νi→j(xi)νj→i(xj) + ERR , (4.6)

µ(i)(x∂i) =
∏

l∈∂i
νl→i(xl) + ERR . (4.7)

where ERR is an error term that is assumed to be small.
Bethe-Peierls equations are obtained by plugging the last expressions in Eq. (4.4)

and neglecting the error term. If νj→i(xj) > 0, we get

νi→j(xi) ∼=
∏

l∈∂i\j

∑

xl∈X
ψil(xi, xl)νl→i(xl) . (4.8)

Bethe-Peierls method consists in solving these equations for the ‘messages’ (or
‘cavity fields’) {νi→j} and then using them for estimating the marginals of µ. For
instance

µi(xi) ∼=
∏

j∈∂i

∑

xj

ψij(xi, xj)νj→i(xj) . (4.9)

Exercise 1: Assume G to be a tree. Prove that the error terms in Eqs. (4.6),
(4.7) vanish in this case, and that Bethe-Peierls equations have a unique solution
corresponding to the actual marginals of µ.
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4.1.2 Bethe free entropy

Since within Bethe approximation all marginals can be expressed in terms of the
messages {νi→j} that solve Bethe equations (4.8), it is perhaps not surprising
that the free entropy can be expressed in terms of the same messages as well. It
is more surprising that a simple expression exists

Φ{ν} = −
∑

(ij)∈G
log
{∑

xi,xj

ψij(xi, xj)νi→j(xi)νj→i(xj)
}

+
∑

i∈V
log
{∑

xi

∏

j∈∂i

∑

xj

ψij(xi, xj)νj→i(xj)
}
. (4.10)

In general we shall regard this as a function from the set of possible messages to
reals Φ : {νi→j} 7→ φ{νi→j} ∈ R. This function is called the Bethe free entropy.

It is easy to prove that this expression is exact if G is a tree. More precisely,
if G is a tree and ν∗ is the unique solution of the Bethe equations (4.8), then
logZ = Φ{ν∗}. There are many ways of proving this fact. A simple one consists
in progressively disconnecting G in a recursive fashion.

We start form a simple remark. If fa(x) ∼= p(x), for a ∈ {1, 2, 3} and some
probability distribution p, then

log

{
∑

x

f1(x)f2(x)

f3(x)

}
= log

{
∑

x

f1(x)

}
+ log

{
∑

x

f2(x)

}
− log

{
∑

x

f3(x)

}
.(4.11)

Let us then describe the first step of the recursion. Let (ij) ∈ E be an edge in
G. Denote by Zi→j(xi) the constrained partition function for the subtree rooted
at i and not including j, whereby we force xi to take the value in argument. Then
we obviously have

Z =
∑

xi,xj

Zi→j(xi)ψij(xi, xj)Zj→i(xj) (4.12)

=
∑

xi,xj

{
Zi→j(xi)ψij(xi, xj)νj→i(xj)

}{
νi→j(xi)ψij(xi, xj)Zj→i(xj)

}

νi→j(xi)ψij(xi, xj)νj→i(xj)
.(4.13)

It is easy to see that, if G is a tree, Zi→j(xi)ψij(xi, xj)νj→i(xj) ∼= µij(xi, xj),
νi→j(xi)ψij(xi, xj)Zj→i(xj) ∼= µij(xi, xj), νi→j(xi)ψij(xi, xj)νj→i(xj) ∼= µij(xi, xj).
By the remark (4.11)

logZ = log
{∑

xi,xj

Zi→j(xi)ψij(xi, xj)νj→i(xj)
}

+ log
{∑

xi,xj

νi→j(xi)ψij(xi, xj)Zj→i(xj)
}

− log
{∑

xi,xj

νi→j(xi)ψij(xi, xj)νj→i(xj)
}
. (4.14)
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At this point we can interpret the first two terms as log partition functions for
models of reduced size. The associated graphs are subtrees rooted at i and j.

If we repeat recursively this operation, we end up with a term of the form
− log{∑xi,xj

νi→j(xi)ψij(xi, xj)νj→i(xj)} for each edge. The residual system is
composed of disconnected ‘stars’ centered at the vertices of G. The corresponding
log-partition function is given by the second sum in Eq. (4.10).

One important property of the Bethe free entropy is that its stationary points
are solutions of the Bethe equations (4.8). This is proved by simple calculus

∂Φ{ν}
∂νj→i(xj)

= −
∑

xi
νi→j(xi)ψij(xi, xj)∑

x′i,x
′
j
νi→j(x′i)νj→i(x′j)ψij(x

′
i, x

′
j)

+

∑
xi

Tνi→j(xi)ψij(xi, xj)∑
x′i,x

′
j
Tνi→j(x′i)νj→i(x′j)ψij(x

′
i, x

′
j)

where we defined

Tνi→j(xi) ≡
1

zi→j

∏

l∈∂i\j

∑

xl

ψil(xi, xl)νl→i(xl) . (4.15)

Exercise 2: Prove that this implies that Bethe equations have at least one
solution.

4.1.3 Example: Ising models

As an illustration, we consider again the Ising model, that gives a distribution
over x ∈ {+1,−1}V , of the form

µ(x) =
1

Z
exp

{
β
∑

(ij)∈E
Jijxixj

}
. (4.16)

Here we don’t assume any more ferromagnetic interactions. The ‘couplings’ {Jij}
are generic real numbers. The messages νi→j can then be encoded effectively
through the following log-likelihood ratios (‘cavity fields’)

hi→j =
1

2
log

νi→j(+1)

νi→j(−1)
. (4.17)

The Bethe equations then reduce to the ones below

hi→j =
∑

l∈∂i\j
atanh {tanhβJil tanhhl→i} . (4.18)

In terms of the cavity fields {hi→j}, we can compute the local magnetizations
mi = E{xi} using Eq. (4.9):

mi = tanh

{
∑

l∈∂i
atanh {tanh βJil tanhhl→i}

}
. (4.19)
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As a particular case, let us reconsider a regular graph with Jij = +1 for each
edge (ij) ∈ E. Then these equations admit a solution of the form hi→j = h,
where h solves

h = (k − 1)atanh {tanhβ tanhh} . (4.20)

For the ferromagnetic Ising model on a random regular graph, we indeed proved
that the marginals can be computed by solving this equation.

Exercise 3: Write the Bethe free entropy (4.10) in the case of Ising models.
Show that, in the case of regular graphs, under the assumption hi→j = h, it
reduces to the form we proved a in Chapter 2.
[Indeed this is true for general graph sequences that converge locally to trees.]

Exercise 4: Exhibit an example of regular graph G, with degree k ≥ 2, such
that the associated ferromagnetic Ising model does not have phase transitions.
What happens within Bethe-Peierls approximation?

4.1.4 Fully connected limit

WhenG is the complete graph, Bethe equations can often be simplified. Here we’ll
consider two such examples: the Curie-Weiss model (that we already considered
at the beginning of the course) and the Sherrington-Kirkpatrick model.

Curie-Weiss model

We already encountered the Curie-Weiss model. This is defined by the general
form (4.16) whereby G is the complete graph and Jij = 1/N for all (i, j). It
follows from Eq. (4.18) that

hi→j =
β

N

∑

l∈V \i,j
tanhhl→i +O(1/N) . (4.21)

Therefore hi→j = h+O(1/N) where h solves

h = β tanhh . (4.22)

By Eq. (4.9), the local magnetization is given by m = tanhh and thus solves the
equation

m = tanhβm , (4.23)

which we proved at the beginning of the course.
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Sherrington-Kirkpatrick model

In the Sherrington-Kirkpatrick model, G is the complete graph and the couplings
are Jij = J ′

ij/
√
N with J ′

ij iid normal random variables of mean 0 and variance
1. Hereafter I’ll drop the prime.

By expanding again Eq. (4.18), we get

hi→j =
∑

l∈V \i,j

βJil√
N

tanhhl→i +O(N−1/2) . (4.24)

The relation to local magnetizations is not as simple as for the Curie-Weiss model.
Expanding Eq. (4.9), we get

atanhmi =
∑

l∈V \i,j

βJil√
N

tanhhl→i +O(N−1/2) = (4.25)

= hi→j +
βJij√
N
mj +O(N−1/2) . (4.26)

Substituting in (both sides of!) Eq. (4.24), and neglecting terms of order N−1/2,
we get the so-called TAP equations

atanhmi =
β√
N

∑

l∈V \i
Jilml −mi

∑

l∈V \i

β2J2
il

N
(1 −m2

l ) . (4.27)

4.2 Bethe-Peierls approximation: a formal tre-

atment

This is a first attempt at formalizing the ideas of the previous section in a general
setting. We define Bethe states as distributions that are well approximated within
Bethe-Peierls scheme. These play the same role as pure Gibbs states on infinite
lattices [16]. It is conjectured by physicists that a large class of models, including
for instance the examples in Chapter 1, decompose into convex combinations
of Bethe states. As a running example it is convenent to keep in mind the
independent set model, whose configurations are of the form x = (x1, . . . , xN)
with xi ∈ {0, 1}. The model is defined by the joint distribution

µG(x) =
1

ZG
λ|x|

∏

(i,j)∈E
I(xi 6= xj) , (4.28)

where |x| denotes the number of non-zero entries in the vector x.
We shall further define a notion of correlation decay (weaker than uniqueness)

that generalizes extremality in trees, and show that it implies Bethe property. A
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slightly stronger condition allows us to validate the Bethe-Peierls approximation
for the log partition function.

While in general extremality on the graph G does not coincide with extrema-
lity on the associated tree model, in Chapter 6 provides a sufficient condition for
this to happen.

4.2.1 Notations

We consider models defined on simple finite graphs G ≡ (V,E), without double

edges or self loops, and denote by ~E ≡ {i → j : (i, j) ∈ E} the induced set of
directed edges. The distance d(i, j) between two vertices i, j ∈ V is the number of
edges traversed in the shortest path on G from i to j with d(A,B) = min{d(i, j) :
i ∈ A, j ∈ B} the corresponding distance between A ⊆ V and B ⊆ V . The set
of neighbors of i ∈ V is denoted by ∂i (so ∂i = {j ∈ V : (i, j) ∈ E}), with
∆ = maxi |∂i| the maximal degree of G (which we assume hereafter to be at
least two). To each subset U ⊆ V of vertices corresponds a diameter diam(U) =
max{d(i, j) : i, j ∈ U}, the ‘internal’ boundary ∂U = {i ∈ U : ∂i 6⊆ U} and
induced subgraph GU = (U,EU) such that EU = {(i, j) ∈ E : i, j ∈ U}. Given
a vertex i ∈ V and a non-negative integer r, the ball of radius r centered at i,
B(i, r) is the subgraph induced by the vertices j ∈ V such that d(i, j) ≤ r and for

i → j ∈ ~E the directed neighborhood (or ball) B(i → j, r) of radius r around i is
the ball of radius r centered at i in GV \{j} (so in particular, B(i→ j, r) ⊆ B(i, r)).

Definition 4.2.1. Given an integer R ≥ 0 we say that G is R-tree like if its
girth exceeds 2R+ 1, i.e. B(i, R) is a tree for every i ∈ V .

With X a finite set, we associate to each vertex i ∈ V a variable xi ∈ X ,
denoting by x ∈ X V the complete assignment of these variables and by xU =
{xi : i ∈ U} its restriction to U ⊆ V .

Definition 4.2.2. A bounded specification ψ ≡ {ψij : (ij) ∈ E} for G is a
family of functionals ψij : X ×X → [0, ψmax] indexed by the edges of G with ψmax

a given finite, positive constant (where for consistency ψij(x, x
′) = ψji(x

′, x) for
all x, x′ ∈ X and (ij) ∈ E). A specification for G is permissive if there exists a
positive constant κ and a ‘permitted state’ xp

i ∈ X for each i ∈ V , such that

min
(ij)∈E,x′∈X

ψij(x
p
i , x

′) = min
(ij)∈E,x′∈X

ψij(x
′, xp

j ) ≥ κψmax ≡ ψmin .

It is not hard to realize that the example (4.28) of independent sets is indeed
of this type with xp

i = 0 where one defines the specification in this case by letting

ψij(xi, xj) = I
(
(xi, xj) 6= (1, 1)

)
λ

xi
|∂i|

+
xj
|∂j| .

Error terms and correlation properties will be often phrased in terms of valid
rate functions, namely,
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Definition 4.2.3. A valid rate function is a monotonically non-increasing func-
tion δ : N → [0, 1] that decay to zero as r → ∞. By (eventually) increasing δ(r),
we can and will assume, without loss of generality, that δ(r + 1) ≥ δ∗δ(r) for
some positive δ∗ and all r ∈ N.

Whenever we mention ‘constants’ we refer in fact to quantities that might
depend on |X |, ∆, κ and δ∗, but neither on the graph G nor on the permissive
bounded specification ψ. We shall generically denote such constants as γ, C (and,
if necessary, C1, C2, . . .), and agree that redefinitions are not explicitly mentioned.

4.2.2 Measures, messages and correlation decay

Let M(X ) denote the space of probability measures over X . The canonical pro-
bability measure associated to the graph-specification pair (G,ψ) is

µ(x) =
1

Z

∏

(ij)∈E
ψij(xi, xj) . (4.29)

Given a probability measure ρ( · ) on X V , we denote by ρU( · ) the marginal distri-
bution of xU under ρ. The Bethe-Peierls approximation as defined below provides
a way to express local marginals in terms of a set of messages.

Definition 4.2.4. A set of messages is a collection {νi→j( · ) : i → j ∈ ~E} of
probability distributions over X , indexed by the directed edges in G such that if
∂i = {j} then νi→j( · ) is the uniform measure on X .

Let U denote the collection of U ⊆ V for which GU = (U,EU) is a tree and
for any i ∈ U , either ∂i ⊆ U or |∂i ∩ U | = 1, so each vertex i ∈ ∂U is a leaf of
GU (i.e. i ∈ U and |∂i∩U | = 1). The probability measure on X U induced by the
messages {νi→j} on each U ∈ U is then

νU(xU) =
1

ZU

∏

i∈∂U
νi→u(i)(xi)

∏

(ij)∈EU

ψij(xi, xj) , (4.30)

where {u(i)} = ∂i ∩ U for i a leaf of GU .
We say that a probability measure ρ(x) on X V is (ε, r) Bethe approximated

by a set of messages {νi→j} if

sup
U∈U ,diam(U)≤2r

||ρU − νU ||TV ≤ ε , (4.31)

and call such ρ(·) an (ε, r) Bethe state for the graph-specification pair (G,ψ).

Remark 4.2.5. Note that if i /∈ ∂U is a leaf of an induced tree GU then ∂i =
{u(i)} and νi→u(i) must be the uniform measure on X . Consequently, in (4.30)
we may and shall not distinguish between ∂U and the collection of all leaves of
GU .
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We shall prove that Bethe approximation holds under the following correlation
decay hypotheses on µ.

Definition 4.2.6. A probability measure ρ on X V is strongly extremal for G
with valid rate function δ( · ) if for any A,B,C ⊆ V
∑

xC

ρC(xC)||ρA,B|C( · , · |xC) − ρA|C( · |xC)ρB|C( · |xC)||TV ≤ δ(d(A,B)) . (4.32)

It is extremal for G with valid rate function δ(·) as soon as the preceding applies
for C = ∅, namely, for any A,B ⊆ V ,

||ρA,B( · , · ) − ρA( · )ρB( · )||TV ≤ δ(d(A,B)) . (4.33)

The standard message set which we define next, is the natural candidate for
Bethe approximation of a canonical probability measure.

Definition 4.2.7. The standard message set for the canonical measure µ as-
sociated to a graph-specification pair (G,ψ) is νi→j(xi) ≡ µ

(ij)
i (xi), that is, the

marginal on i of the probability measure on X V

µ(ij)(x) =
1

Zij

∏

(kl)∈E\(ij)
ψkl(xk, xl) , (4.34)

obtained from Eq. (4.29) upon omitting the factor ψij(·, ·). Indeed, note that the
marginal on i of µ(ij)(·) is a uniform measure on X whenever ∂i = {j}.

A special role is played in our analysis by the Bethe free energy and the Bethe
(or belief propagation) equations. Both are functions on the space of possible

messages sets M(X )
~E, where M(X ) denotes the space of probability measures

over X .

Definition 4.2.8. Given a graph-specification pair (G,ψ), the Bethe free energy
of a message set ν = {νi→j} is

Φ(ν) = −
∑

(ij)∈E
log
{∑

xi,xj

ψij(xi, xj)νi→j(xi)νj→i(xj)
}

+
∑

i∈V
log
{∑

xi

∏

j∈∂i

∑

xj

ψij(xi, xj)νj→i(xj)
}
,

and the value at ν of the Bethe (or belief propagation, BP) mapping T of M(X )
~E

to itself is

(Tν)i→j(xi) ≡
1

zi→j

∏

l∈∂i\j

[ ∑

xl∈X
ψil(xi, xl)νl→i(xl)

]
, (4.35)

where zi→j is determined by the normalization condition
∑

x∈X (Tν)i→j(x) = 1.
It is easy to check that T is well defined for any permissive specification ψ. That
is, in this case there exists for each i → j ∈ ~E a positive constant zi→j ≥ ψ

|∂i|−1
min

for which (Tν)i→j ∈ M(X ).
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4.2.3 Main results

We defined the notions of Bethe measure and extremality for general probability
distributions over X V , and not only for the canonical measure µ( · ). The key
(unproven) assumption of statistical physics approaches is that the canonical
measure (which is ultimately, the object of interest), can be decomposed into a
unique convex combination of extremal measure, up to small error terms. This
motivates the name ‘extremal.’ Further, each element of this decomposition can
be treated accurately within Bethe approximation.

Here we can prove the simplest case of this broad conjecture, namely when
the canonical measure µ( · ) is itself extremal.

Theorem 4.2.9. Let G be an R-tree like graph, ψ a permissive bounded specifi-
cation, and δ( · ) a valid rate function. Suppose that the corresponding canonical
measure µ( · ) is extremal with rate δ( · ).

Then, µ( · ) is (ε, r) Bethe approximated by its standard message set for ε =
exp(Cr

0)δ(R − r) and all r < R − 1. In particular, any such µ( · ) is an (ε, r)
Bethe state for (G,ψ).

Further in this case we get a sharp approximation of the log partition function.

Theorem 4.2.10. If ν is the standard message set corresponding to a canonical
measure µ( · ) for a graph-specification pair (G,ψ) that is strongly extremal for
R-tree like graph G with valid rate function δ( · ), then |V |−1| logZ − Φ(ν)| → 0
as R→ ∞.

4.2.4 Groundwork

Lemma 4.2.11. For any probability measures ρa on a discrete set Z and positive
constants βa, a = 1, 2,

||β1ρ1 − β2ρ2||TV ≥ 1

2
min(β1, β2)||ρ1 − ρ2||TV . (4.36)

Given a bounded function f : Z 7→ [0, fmax] such that 〈ρa, f〉 ≡
∑

z∈Z ρa(z)f(z) is
positive for a = 1, 2 consider the probability measures ρ̂a(z) ≡ ρa(z)f(z)/〈ρa, f〉
on Z. Then,

||ρ̂1 − ρ̂2||TV ≤ 3fmax

2〈ρ1, f〉
||ρ1 − ρ2||TV (4.37)

so if f(·) is also bounded below by fmin > 0, then ||ρ̂1−ρ̂2||TV ≤ (3fmax/(2fmin))||ρ1−
ρ2||TV.

Similarly, if f(·) is bounded below by fmin > 0, then

||ρ1 − ρ2||TV ≤ 3〈ρ1, f〉
2fmin

||ρ̂1 − ρ̂2||TV (4.38)
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and if it is also bounded above by fmax, then ||ρ1 − ρ2||TV ≤ (3fmax/(2fmin))||ρ̂1 −
ρ̂2||TV.

Finally, in case ρa are two product measures on Z = X × Y we further have
that for all y ∈ Y,

∣∣∣∣
ρ̂1(y)

ρ1(y)
− ρ̂2(y)

ρ2(y)

∣∣∣∣ ≤
2f 2

max

〈ρ1, f〉〈ρ2, f〉
||ρ1 − ρ2||TV . (4.39)

Proof. Starting with (4.36) we can assume that λ = β2/β1 > 1. Setting A =
Aλ = {z ∈ Z : ρ1(z) ≥ λρ2(z)} note that

||β1ρ1 − β2ρ2||TV =
β1

2
[ρ1(A) − λρ2(A) + ρ1(A) − ρ2(A) + (λ− 1)(1 − ρ2(A))] .

Since A1 is the disjoint union of A = Aλ and B = {z ∈ Z : λρ2(z) > ρ1(z) ≥
ρ2(z)}, we further have

β1

2
||ρ1 − ρ2||TV =

β1

2
[ρ1(A) − ρ2(A) + ρ1(B) − ρ2(B)] .

The difference between the right side of these two identities is

β1

2
[ρ1(A) − λρ2(A) + (λ− 1)(1 − ρ2(A) − ρ2(B)) + λρ2(B) − ρ1(B)] .

We thus get (4.36) upon noting that the preceding expression is non-negative
(since λ ≥ 1 and ρ2(A)+ρ2(B) = ρ2(A1) ≤ 1, while by definition ρ1(A) ≥ λρ2(A)
and λρ2(B) ≥ ρ1(B)).

The bound (4.37) is proved in [19, Lemma 3.3]. The inequality (4.38) follows
upon noting that ρa(z) = ρ̂a(z)g(z)/〈ρ̂a, g〉 for g(z) = 1/f(z) bounded above
by gmax = 1/fmin and that 〈ρ̂1, g〉 = 1/〈ρ1, f〉. Finally note that for ρa(x, y) =
ρa(x)ρa(y) the left side of (4.39) is merely

∣∣∣∣
∑

x ρ1(x)f(x, y)

〈ρ1, f〉
−
∑

x ρ2(x)f(x, y)

〈ρ2, f〉

∣∣∣∣

≤ |〈ρ1, f〉 − 〈ρ2, f〉|
〈ρ1, f〉〈ρ2, f〉

∑

x

ρ2(x)f(x, y) +
1

〈ρ1, f〉

∣∣∣∣∣
∑

x

ρ1(x)f(x, y) −
∑

x

ρ2(x)f(x, y)

∣∣∣∣∣

≤ f 2
max||ρ1 − ρ2||TV

〈ρ1, f〉〈ρ2, f〉
+
fmax||ρ1 − ρ2||TV

〈ρ1, f〉

and we arrive at (4.39) upon noting that fmax/〈ρ2, f〉 ≥ 1. �

Here are some useful consequences of having a permissive bounded specifica-
tion.
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Lemma 4.2.12. Suppose µ is the canonical measure associated with a permissive
bounded specification ψ for G. Then, for any partial assignment xU , any i /∈ U
and (i, j) ∈ E,

µi|U(xp
i |xU) ≥ |X |−1κ∆ , (4.40)

µ
(ij)
i|U (xp

i |xU) ≥ |X |−1κ∆−1 . (4.41)

Further, for any message set {νi→j} and any i→ j ∈ ~E

(Tν)i→j(x
p
i ) ≥ |X |−1κ∆−1 . (4.42)

Proof. Let µ(i)( · ) denote the canonical measure for the graph G without the
vertex i, that is, the measure obtained upon removing the factors ψik( · , · ) for
k ∈ ∂i. Since i /∈ U we have that

µi|U(xi|xU) =

∑
x∂i

∏
k∈∂i ψik(xi, xk)µ

(i)(x∂i|xU)
∑

x′,x∂i

∏
k∈∂i ψik(x

′, xk)µ(i)(x∂i|xU)
.

With ψ bounded and permissive, the inequality (4.40) follows upon using the up-
per bound ψik(x

′, xk) ≤ ψmax in the denominator and the lower bound ψik(x
p
i , xk) ≥

κψmax in the numerator. Further, with j removed from ∂i the same representation
applies for µ

(ij)
i|U (xi|xU) and from (4.35) we deduce that such representation app-

lies also for (Tν)i→j(xi) apart from replacing µ(i)(x∂i|xU) with
∏

k∈∂i\j νk→i(xk).

Consequently, we get both (4.41) and (4.42) by the preceding argument. �

The bound (4.39) allows us to control the partial derivatives of the Bethe free
energy for a permissive bounded specification in terms of the difference between
the message set and its image under the Bethe mapping T.

Proposition 4.2.13. Suppose ψ is a permissive bounded specification for G and
recall the mapping ν → Φ(ν) of a set of messages to its Bethe free energy. If
max[νi→j(x

p
i ), νj→i(x

p
j )] ≥ K > 0, then for the constant C = 2|X |κ−(∆+1) and

any y ∈ X ,
∣∣∣∣
∂Φ(ν)

∂νj→i(y)

∣∣∣∣ ≤
C

K
||(Tν)i→j − νi→j||TV . (4.43)

Proof. By direct computation we find that

∂Φ(ν)

∂νj→i(y)
= −

∑
x νi→j(x)ψij(x, y)∑

x′,y′ νi→j(x′)νj→i(y′)ψij(x′, y′)
+

∑
x(Tν)i→j(x)ψij(x, y)∑

x′,y′(Tν)i→j(x′)νj→i(y′)ψij(x′, y′)

which is precisely the term in the left side of (4.39) for Y = X , the function
f(x, y) = ψij(x, y) and the product measures ρ1(x, y) = (Tν)i→j(x)νj→i(y) and
ρ2(x, y) = νi→j(x)νj→i(y).
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With ψ permissive and bounded we have that fmax ≤ ψmax and by (4.42) also

〈ρ1, f〉 ≥ (Tν)i→j(x
p
i )
∑

y

ψij(x
p
i , y)νj→i(y) ≥ κψmax(Tν)i→j(x

p
i ) ≥ ψmaxκ

∆|X |−1 .

Similarly, 〈ρ2, f〉 ≥ ψminνi→j(x
p
i ) and further

〈ρ2, f〉 ≥
∑

x

νi→j(x)ψij(x, x
p
j )νj→i(x

p
j ) ≥ ψminνj→i(x

p
j ) ,

so by our assumption 〈ρ2, f〉 ≥ ψminK. Plugging these bounds in the right side
of (4.39) results with our thesis (since ||ρ1 − ρ2||TV = ||(Tν)i→j − νi→j||TV). �

Our next lemma provides a uniform bound on the total variation between
the message set at a directed edge i → j and its corresponding image under the
Bethe mapping T.

Lemma 4.2.14. Suppose a message set {νi→j} is an (ε, 2) Bethe approximation
of some probability measure ρ( · ) for a permissive bounded specification ψ and a

2-tree like graph G. Then, for any directed edge i→ j ∈ ~E,

||(Tν)i→j − νi→j||TV
≤ 3|X |κ−∆ ε . (4.44)

Proof. Fixing i→ j ∈ ~E it is easy to check that if ∂i = {j} then (Tν)i→j = νi→j

(is the uniform measure on X ). Thus, we assume hereafter that |∂i| > 1 and
note that since G has girth exceeding five, GU ′ is a subtree of the tree GU for
U ′ = B(j, 1) and U = ∂i ∪ ∂j of diameter at most three with leaves ∂U ′ = ∂j
and ∂U = U \ {i, j} (in case |∂j| = 1 we ignore the leaf j of GU and GU ′ since
νj→i is then the uniform measure on X ). Since the message set ν is a (ε, 2) Bethe
approximation of ρ( · ) we have by (4.31) that

||ρU ′ − νU ′||TV + ||ρU − νU ||TV ≤ 2ε .

Further, since i ∈ U ′ and ρU ′, ρU are marginals of same probability measure, it
follows that ||(νU)i − (νU ′)i||TV ≤ 2ε for the marginals (νU)i and (νU ′)i on i of νU
and νU ′, respectively. Recall (4.30) that here

νU(xU) =
1

ZU
ψij(xi, xj)

∏

l∈∂i\j
ψil(xi, xl)νl→i(xl)

∏

k∈∂j\i
ψjk(xj , xk)νk→j(xk) ,

νU ′(xU ′) =
1

ZU ′

ψij(xi, xj)νi→j(xi)
∏

k∈∂j\i
ψjk(xj , xk)νk→j(xk) .

Summing the first expression over {xl : l ∈ U, l 6= i} and the second over {xl :
l ∈ U ′, l 6= i} we get in terms of the Bethe mapping T of (4.35) that

(νU)i(xi) = (Tν)i→j(xi)f(xi)/〈(Tν)i→j, f〉 ,
(νU ′)i(xi) = νi→j(xi)f(xi)/〈νi→j, f〉 ,
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for the function f(x) =
∑

y ψij(xi, y)(Tν)j→i(y) on X . With ψ bounded and
permissive, f(x) is bounded above by fmax = ψmax and bounded below by
ψmin(Tν)j→i(x

p
j ) which by (4.42) is further bounded below by fmin = ψmaxκ

∆/|X | >
0. Thus, by (4.38) the bound ||(νU)i − (νU ′)i||TV ≤ 2ε translates to

||(Tν)i→j − νi→j ||TV ≤ 3εfmax/fmin

which is precisely the thesis of the lemma. �

Combining Proposition 4.2.13 and Lemma 4.2.14 we obtain the following.

Corollary 4.2.15. Suppose a message set {νi→j} is an (ε, 2) Bethe approxima-
tion of some probability measure for a permissive bounded specification ψ, a 2-tree
like graph G and ε ≤ 1/c (where c = 18|X |3κ−3∆ is a finite constant). Then, for

any directed edge i→ j ∈ ~E and y ∈ X ,

∣∣∣ ∂Φ(ν)

∂νj→i(y)

∣∣∣ ≤ cε .

Proof. Recall (4.42) that (Tν)i→j(x
p
i ) ≥ c1 for the positive constant c1 = |X |−1κ∆−1

so in view of (4.44) we have that νi→j(x
p
i ) ≥ (Tν)i→j(x

p
i ) − 2c2ε ≥ c1 − 2c2ε for

the finite constant c2 = 3|X |κ−∆. Thus, with C of Proposition 4.2.13 bounded
below by one, if ε ≤ 1/c ≡ c1/(3c2C) then νi→j(x

p
i ) ≥ K = c1/3 in which case

combining the bounds of Proposition 4.2.13 and Lemma 4.2.14 we deduce that

∣∣∣ ∂Φ(ν)

∂νj→i(y)

∣∣∣ ≤ C

K
||(Tν)i→j − νi→j ||TV ≤ cε ,

as stated. �

Lemma 4.2.16. Suppose µ is the canonical measure for a permissive bounded
specification. If i, j 6∈ ∂U ′ and the edge (i, j) is in the tree GU ′, then for any
configurations x1, x2 ∈ X V

||µ(ij)

i|∂U ′( · |x1
∂U ′) − µ

(ij)

i|∂U ′( · |x2
∂U ′)||TV ≤ 2|X |κ−∆ ||µij|∂U′( · |x1

∂U ′) − µij|∂U ′( · |x2
∂U ′)||TV .

Proof. Since GU ′ is a tree, it is the disjoint union of the edge (i, j) and the
two disjoint subtrees formed when removing this edge from GU ′. Denoting the
intersections of ∂U ′ with these two subtrees by ∂U (i) and ∂U (j) the structure of
µ(·) is such that for a = 1, 2,

µij|∂U′(x, y|xa∂U ′) =
1

za
ψij(x, y)µ

(ij)
i|∂U(i)(x|xa∂U(i))µ

(ij)
j|∂U(j)(y|xa∂U(j)) ,

with normalizing constants za =
∑

x,y ψij(x, y)µ
(ij)
i|∂U(i)(x|xa∂U(i))µ

(ij)
j|∂U(j)(y|xa∂U(j)).

Since ψ is a permissive specification, it follows that

||µij|∂U′( · |x1
∂U ′)−µij|∂U ′( · |x2

∂U ′)||TV ≥ κψmax||β1µ
(ij)
i|∂U(i)( · |x1

∂U(i))−β2µ
(ij)
i|∂U(i)( · |x2

∂U(i))||TV ,
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where βa = µ
(ij)
j|∂U(j)(x

p
j |xa∂U(j))/za for a = 1, 2. Clearly za is bounded above by

ψmax and as j /∈ ∂U(j) we get from (4.41) that βa ≥ ψ−1
max|X |−1κ∆−1. The thesis

thus follows by applying the bound (4.36). �

Lemma 4.2.17. Suppose the canonical measure µ for 2-tree like graph and a
permissive bounded specification is extremal of valid rate function δ(·). Then,
some finite constant K and any A ⊆ V

||µ(ij)
A − µA||TV ≤ Kδ

(
d({i, j}, A)

)
.

Proof. Let B = ∂i ∪ ∂j \ {i, j}, and assume, without loss of generality, that
A ∩ B = ∅. Then

||µ(ij)
A − µA||TV =

∑

xA

∣∣∣
∑

xB

µ
(ij)
B (xB)µA|B(xA|xB) −

∑

xB

µB(xB)µA|B(xA|xB)
∣∣∣

≤ sup
xB ,x

′
B

||µA|B( · |xB) − µA|B( · |x′B)||TV .

We claim that there exists a constant C such that µB(xB) ≥ C for any xB. This
implies the thesis since

||µA|B( · |xB) − µA|B( · |x′B)||TV ≤ 1

C2
E||µA|B( · |xB) − µA|B( · |x′B)||TV ≤ 1

C2
δ
(
d(A,B)

)
.

In order to prove our claim notice that the vertices in B are not joined by any
edge (the induced subgraph has empty vertex set). Let C be the set of vertices
k such that d(k,B) = 1. Then

µB(xB) =
∑

xC

µB|C(xB|xC)µC(xC) ≥ µC(xp
C)µB|C(xB|xp

C) (4.45)

≥ µC(xp
C)
∏

l∈B

( ∏
k∈∂l ψlk(xl, x

p
k)∑

x′
l

∏
k∈∂l ψlk(xl, x

p
k)

)
≥ µC(xp

C) κ∆2

.

Finally µC(xp
C) ≥ κ∆|C| by the same argument as in the proof of Lemma 4.2.12.

�

4.2.5 Proof of Theorem 4.2.9

Proof. Fixing r < R− 1, the permissive bounded graph-specification pair (G,ψ)
that is extremal for R-tree like graph G with valid rate function δ( · ) and U ∈ U
with diam(U) ≤ 2r, let UR′ = {k ∈ V : d(k, U) ≥ R′} for R′ = R − r > 1. Note
that

||µU(·) − νU(·)||TV ≤ E||µU( · ) − µU |UR′
( · |x∗

UR′
)||TV

+ E||µU |UR′
( · |x∗

UR′
) − νU( · )||TV , (4.46)
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where νU corresponds to the standard message set and the expectation is with
respect to the random configuration x∗ of distribution µ. The first term on the
right side is precisely ||µU,UR′

( · , · )−µU( · )µUR′
( · )||TV which for µ(·) extremal of

valid rate function δ(·) is bounded by δ(d(U,UR′)) = δ(R− r). Turning to bound

the second term, for each directed edge i→ j ∈ ~E let

ν∗i→j(xi) = µ
(ij)

i|B(i,R′)
(xi|x∗B(i,R′)

) ,

where B(i, R′) is the collection of vertices of distance R′ from i and µ(ij)(x) is the
measure of (4.34). Since diam(U) ≤ 2r there exists io ∈ V such that U ⊆ B(io, r)
and as B(io, R) is a tree, the canonical measure for B(io, R) \ GU is the product
of the corresponding measures for the subtrees rooted at i ∈ ∂U . Consequently,
it is not hard to verify that we have the representation

µU |UR′
(xU |x∗UR′

) =
1

Z ′
U

∏

(ij)∈EU

ψij(xi, xj)
∏

i∈∂U
ν∗i→u(i)(xi) , (4.47)

where u(i) = ∂i ∩ U for each i ∈ ∂U . The expression on the right side of (4.47)
is of the same form as νU except for using ν∗i→u(i) in the former and νi→u(i) =

µ
(ij)
i in the latter. With this in mind, we apply the bound of (4.37) for the

function f(xU) =
∏

(ij)∈EU
ψij(xi, xj) that is bounded above by fmax = ψ

|U |−1
max

and measures ρa that are uniform on X U\∂U with ρ1(x∂U ) =
∏

i∈∂U νi→u(i)(xi)
and ρ2(x∂U) =

∏
i∈∂U ν

∗
i→u(i)(xi). In doing so, recall that since ψ is a permissive

specification, by (4.41),

〈ρ1, f〉 ≥ |X |−|U |
∏

(ij)∈EU

ψij(x
p
i , x

p
j )
∏

i∈∂U

[
|X | νi→u(i)(x

p
i )
]
≥ fmaxc

−|U | ,

for the finite constant c = |X |κ−∆, so we get from (4.37) that

||µU |UR
( · |x∗

UR
) − νU( · )||TV = ||ρ̂1 − ρ̂2||TV ≤ 2c|U |||ρ1 − ρ2||TV

≤ 2c|U |
∑

i∈∂U
||νi→u(i) − ν∗i→u(i)||TV . (4.48)

Let ν ′i→j = µ
(ij)

i|B(i,R′)
(·|x′

B(i,R′)
) and x′ of distribution µ(ij), independent of x∗. Then,

E||νi→u(i) − ν∗i→u(i)||TV = E||Eν ′i→u(i) − ν∗i→u(i)||TV ≤ E||ν ′i→u(i) − ν∗i→u(i)||TV .(4.49)

Now, by Lemma 4.2.16 and the fact that G is R-tree like, we have that

||ν ′i→j − ν∗i→j ||TV = ||µ(ij)

i|∂U′( · |x′∂U ′) − µ
(ij)

i|∂U ′( · |x∗∂U ′)||TV

≤ 2|X |κ−∆ ||µij|∂U′( · |x′∂U ′) − µij|∂U′( · |x∗∂U ′)||TV . (4.50)
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for j = u(i), i ∈ ∂U , U ′ = B(i, R′) and ∂U ′ = B(i, R′). Further, taking the
expectation with respect to the independent random configurations x′ and x∗

leads to

E||µij( · |x′B(i,R′)
)−µij( · |x∗B(i,R′)

)||TV ≤ 2||µ{ij},B(i,R′)−µ{ij}µB(i,R′)||TV+||µ(ij)

B(i,R′)
−µ

B(i,R′)||TV ,

which for µ extremal of valid rate function δ(·) is, due to Lemma 4.2.17, bounded
by (2+K)δ(R′−1) ≤ c1δ(R−r) with c1 = (2+K)/δ∗ a finite constant. Combining
this with (4.49) and (4.50) we have that for any i ∈ ∂U ,

E||νi→u(i) − ν∗i→u(i)||TV ≤ 2c1|X |κ−∆δ(R− r) ,

and consequently, by (4.48) also

E||µU |UR
( · |xUR

) − νU( · )||TV ≤ 4c1|X |κ−∆|∂U |c|U |δ(R − r) .

Since |∂U | ≤ |U | ≤ |B(io, r)| ≤ ∆r+1 we have that 4c1|X |κ−∆|∂U |c|U | ≤ exp(Cr
0)−

1 for some constant C0 = C0(|X |,∆, κ, δ∗) and all U such that diam(U) ≤ 2r,
which by (4.46) thus yields the bound

||µU − νU ||TV ≤ exp(Cr
0) δ(R− r) ,

for every U ∈ U of diam(U) ≤ 2r and r < R− 1, as claimed. �
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Chapter 5

q-Colorings of Random Graphs

In this chapter we shall consider the uniform measure µG( · ) over proper q-
colorings of a graph G = (V,E), with q ≥ 3. Deciding whether a graph is
q-colorable is a classical NP-complete constraint satisfaction problem. Here we
study µG( · ) when G is sparse and random. Despite many efforts, and some fas-
cinating conjectures from statistical physics, very little is known rigorously on
the behavior of this random measure.

5.0.6 Definitions and broad picture

Given a graph G = (V,E), recall that a proper q-coloring of G is an assignment
of colors to the vertices of G such that no edge has both end-points of the same
color. We shall consider the uniform distribution over proper q-colorings. If
x = {xi : in ∈ V } denotes a q-coloring (here xi ∈ {1, . . . , q}), this takes the form

µG(x) =
1

ZG

∏

(ij)∈E
I(xi 6= xj) . (5.1)

The graph will be random over the vertex set V = [N ]. We have two examples
in mind (and will switch between them):

(a) G is uniformly random with M = Nα edges (and therefore has average
degree 2α).

(b) G is a random regular graph with degree (k + 1).

Heuristic statistical mechanics studies suggest a rich phase transition structure
for the measure µG( · ). For any1 q ≥ 4, different regimes are separated by three
distinct critical values of the average degree: 0 < αd(q) < αc(q) < αs(q). Such
regimes can be characterized as follows (all the statements below are understood
to hold with high probability with respect to the graph choice):

1The case q = 3 is special in that αd(q) = αc(q). The reader is invited to discuss the case
q = 2.
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I. α < αd(q). The model does not undergo a phase transition. Roughly spe-
aking, the set of proper q colorings forms a unique compact lump.

II. αd(q) < α < αc(q). The model is undergoes a phase transition. More
precisely, there exists a partition of the space of configurations {1, . . . , q}V
into N sets {Ωα}, such that for any α

µ(∂ǫΩα)

µ(Ωα)[1 − µ(Ωα)]
≤ e−C N . (5.2)

Further N .
= eNΣ.

III. αc(q) < α < αs(q). The situation is analogous to the previous one, but
N is sub-exponential. More precisely, for any δ > 0, a fraction 1 − δ of
the measure µ is comprised in N (δ) ‘lumps’, whereby N (δ) converges to a
finite random variable.

IV. αs(q) < α. A random graph is, with high probability, uncolorable.

Statistical mechanics methods provide semi-explicit expressions for the values
αd(q), αc(q), αs(q). Such expressions involve solving an equation for a probability
distribution over the (q−1)-dimensional simplex. The thresholds values are given
in terms of the solution of this an equation.

5.0.7 The COL-UNCOL transition: A few simple results

Although the existence of a colorable-uncolorable transition is not established,
Friedgut theory allows to make a first step in this direction.

Theorem 5.0.18. Denote by GN,α a uniformly random graph with N vertices
and Nα edges. For any q ≥ 3 there exists αs(q;N) such that

lim
N→∞

P{GN,αs(q;N)(1−δ) is q-colorable} = 1 , (5.3)

lim
N→∞

P{GN,αs(q;N)(1+δ) is q-colorable} = 0 , (5.4)

In the following we shall drop the N dependence from αs(q;N).

Proposition 5.0.19. The COL-UNCOL threshold is upper bounded as

αs(q) ≤ αs(q) ≡
log q

log(1 − 1/q)
. (5.5)

Proof. The expected number of proper q-colorings is

E{ZG} = qN
(

1 − 1

q

)M
, (5.6)

48



and E{ZG} → 0 for α > αs(q). The thesis follows from Markov inequality. �

Notice that αs(q) = q log q[1 + o(1)] as q → ∞. This asymptotic behavior is
known to be tight.

Recall that the k-core of a graph G is the maximal induced subgraph with
minimal degree not smaller than k. A simple ‘algorithmic’ lower bound follows
from the next remark.

Proposition 5.0.20. If G does not contain a q-core, then it is q-colorable.

Proof. Given a graph G and a vertex i, denote by G \ {i} the graph obtained by
removing vertex i and all of the adjacent edges. If G does not contain a q-core,
then there exists an ordering i(1), i(2), . . . , i(N) of the vertices, such the following
is true. If we define Gt by G0 = G and Gt = Gt−1 \ i(t), then, for any t ≤ N , i(t)
has degree smaller than q in Gt−1.

The thesis follows from the observation that if G \ {i} is q-colorable, and i
has degree smaller than q, then G is q-colorable as well. �

The ordinary differential equations method can be used to establish a thres-
hold for the appearance of a q-core in a random graph G.

Proposition 5.0.21. Let F (ρ;α) = P{Poisson(2αρ) ≥ q − 1}, and define (for
q ≥ 3)

αcore(q) = sup{α : F (ρ;α) ≤ ρ ∀ρ ∈ [0, 1]} . (5.7)

Then, with high probability, a uniformly random graph G with M = Nα edges
over N vertices has a q-core if α > αcore(q), and does not have one if α < αcore(q).

We omit the proof of this statement (due to Wormald, Spencer and Pittel)
since it loosely follows the one we explained for the 2-core of a random hypergraph.
The value of αcore(q) can be derived by a simple heuristic argument. For a vertex
i ∈ V we call ‘q-core induced by i’ the largest induced subgraph that has minimum
degree not smaller than q except (possibly) at i. Given a random edge (i, j), we
denote by ρ the probability that i belongs to the q-core induced by j. It is then
natural to write the following equation for ρ:

ρ = P{Poisson(2αρ) ≥ q − 1} . (5.8)

The threshold αcore(q) corresponds to the appearance of a positive solution of
this equation.

5.0.8 The clustering transition: The conjecture

The conjectured value for αd(q) has a particularly elegant interpretation in terms
of phase transition on a tree. Let T be a Galton-Watson tree with Poisson
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offspring distribution of mean 2α. With an abuse of notation, let µ denote the
free boundary measure over proper colorings of T. More explicitly, a proper
coloring x = {xi : i ∈ V } is sampled from µ as follows. First sample the root
color uniformly are random. Then recursively, for each colored node i, sample
the colors of its direct descendants uniformly at random among the ones different
from xi.

We denote by r the root of T, and by B(r, t) the set of vertices of T whose
distance form the root is at least t. finally for any subset of vertices U , we let
µU( · ) be the marginal distribution of the corresponding color assignments.

At small α the color at the root decorrelates from the far away ones in B(r, t).
At large α they remain correlated at any distance t. The ‘reconstruction thres-
hold’ separates these two regimes.

Definition 5.0.22. The reconstruction threshold αr(q) is the supremum value of
α such that

lim
t→∞

E||µr,B(r,t)( · , · ) − µr( · )µB(r,t)( · )||TV = 0 . (5.9)

It is conjectured that αd(q) (the clustering threshold on random graphs) and
αr(q) (the reconstruction threshold on random trees), do indeed coincide. We
shall try to argue in favor of this conjecture in the following.

5.0.9 The clustering transition: A physicist’s approach

We now present a statistical physics argument to derive the location of the clus-
tering threshold. There are various versions of this argument and not all of them
are necessarily equivalent. However, they all predict the same location for the
threshold.

In trying to identify the existence of ‘lumps,’ the major difficulty is that we
do not know, a priori, where the lumps are. However if x∗ is a configuration
sampled from µ( · ), it will fall inside one such lumps. The idea is to study how
a second configuration x behaves when tilted towards the first one.

In practice we fix x∗ = {x∗i : i ∈ V } and study the tilted measure µ( · ) =
µG,x∗,ǫ( · ) defined by

µ∗(x) =
1

Z

∏

(i,j)∈E
I(xi 6= xj)

∏

i∈V
ψǫ(x

∗
i , xi) . (5.10)

Here ψǫ is a tilting function depending on the continuous parameter ǫ. We assume
ψ0(x, y) = 1 identically (therefore µ reduces to the uniform measure over colorings
in this case) and ǫ > 0 to favor x = y. For instance we might take

ψǫ(x, y) = exp
{
ǫ I(x = y)

}
. (5.11)
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Studying the above distribution is not an easy task, but we can hope Bethe
approximation to work in this case. Messages will depend on the graph but also
on x∗ and ǫ. Bethe equations read

νi→j(xi) ∼= ψǫ(x
∗
i , xi)

∏

l∈∂i\j

∑

xl 6=xi

νl→i(xl) . (5.12)

Introducing a shorthand for the right-hand side, we will write this equation as

νi→j = Fǫ{νl→i : l ∈ ∂i \ j} . (5.13)

Let us now assume that G is a regular graph of degree k+1 and x∗ a uniformly
random proper coloring of G. Then the message νi→j is itself a random variable,
taking values in the (q−1)-dimensional simplex. For x ∈ {1, . . . , q}, let us denote
by Qx the conditional distribution of νi→j given that x∗i = x. In formulae, for a
subset A of the simplex, we have

Qx(A) ≡ P
{
νi→j( · ) ∈ A

∣∣x∗i = x
}
. (5.14)

It is then easy to write a recursion for Q, namely

Qx(A) =
∑

x1...xk

µ(x1, . . . , xk|x)
∫

I(Fǫ(ν1, . . . , νk) ∈ A)

k∏

i=1

Qxi
(dνi) . (5.15)

If w no consider a random regular graph, we might hope that µ(x1, . . . , xk|x)
converge to the analogous conditional distribution on a tree. If this is the case
we obtain a fixed point equation for Q

Qx(A) =
1

(q − 1)k

∑

x1...xk 6=x

∫
I(Fǫ(ν1, . . . , νk) ∈ A)

k∏

i=1

Qxi
(dνi) . (5.16)

It is generally believed (at least by physicists!) that the measure µ undergoes a
phase transition if and only if this equation admits a non-degenerate solution.

5.0.10 Complexity

We will now introduce the statistical physics formula for the complexity of the
uniform measure over clusters. We will finish discussing the relation between
tree reconstruction and phase transitions in q-colorings of random graphs. Sub-
sequently we show that proper colorings on a random regular graph with k ≪ q
does not undergo a phase transition.

For the sake of simplicity we shall restrict ourselves to regular graphs of degree
(k + 1).
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Recall that, within Bethe-Peierls approximation, the free entropy of proper
colorings is given by

Φ{νi→j} = −
∑

(i,j)∈E
log




∑

xi 6=xj

νi→j(xi)νj→i(xj)



+

∑

i∈V
log




∑

x

∏

j∈∂i

∑

xj 6=x
νj→i(xj)



 ,

where the messages {νi→j} must solve (within some accuracy) the Bethe-Peierls
equations. Let ν is the uniform distribution over {1, . . . , q}.

Consider the ǫ-tilted model in the limit ǫ ↓ 0. One solution of the BP equations
is given by νi→j = ν. This corresponds the system being completely uncorrelated
with the reference configuration. The corresponding free-entropy on a regular
graph of degree (k + 1) is

Φ(ν) = N



−k + 1

2
log

{
∑

x1 6=x2

ν(x1)ν(x2)

}
+ log




∑

x

k+1∏

j=1

∑

xj 6=x
ν(xj)









= N log

{
q

[
1 − 1

q

](k+1)/2
}
.

However there is another ‘non-trivial’ solution that corresponds to the free
entropy of a single partition Ωα. The exponential growth rate of the number of
pure states Σ is obtained by taking the difference of these two free entropies and
dividing by the number of nodes

Σ = lim
N→∞

N−1 {Φ(ν) − Φ{νi→j}} . (5.17)

When the reference configuration is random, the messages appearing in each
term of Φ{νi→j} are themselves random, with distribution that can be expressed
in terms of Qx. By taking expectation of the above, we get

Σ = −k + 1

2

1

q(q − 1)

∑

x1 6=x2

∫
We(ν1, ν2)Qx1(dν1)Qx2(dν2) + (5.18)

+
1

q(q − 1)k+1

∑

x

∑

x1,...,xk 6=x

∫
Wv(ν1, . . . , νk+1)

k+1∏

i=1

Qxi
(dνi) ,

where

We(ν1, ν2) = log

{∑
x1 6=x2

ν1(x1)ν2(x2)∑
x1 6=x2

ν(x1)ν(x2)

}
, (5.19)

Wv(ν1, . . . , νk+1) = log

{∑
x

∏k+1
j=1

∑
xj 6=x νj(xj)∑

x

∏k+1
j=1

∑
xj 6=x ν(xj)

}
. (5.20)
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5.0.11 Reconstruction on trees and clustering threshold

Consider a random regular graph of degree (k+ 1). We argued heuristically that
a phase transition occurs if there exists a family of non-degenerate distributions
{Qx} over the (q − 1)-dimensional simplex that satisfy the equation

Qx(A) =
1

(q − 1)k

∑

x1,...,xk 6=x

∫
I(F(ν1, . . . , νk) ∈ A)

k∏

i=1

Qxi
(dνi) . (5.21)

The relation with the reconstruction problem on regular trees is shown in the
following Proposition.

Proposition 5.0.23. The reconstruction problem is solvable on k-regular trees
if and only if Eq. (5.21) admits a non-degenerate solution.

Proof. Consider a random (according to the free boundary Gibbs measure) proper
coloring of the regular tree. Let ν(t) be the marginal distribution of the root color
given the colors at generation t. In formulae, for x ∈ {1, . . . , q}, we define

ν(t)(x) = µr,B(r,t)(x|XB(r,t)) = P{Xr = x|X
B(r,t)} . (5.22)

Denote byQ
(t)
x the distribution of ν(t) given the root valueXr = x. It is immediate

to show that this sequence of distributions satisfies the recursion

Q(t+1)
x (A) =

1

(q − 1)k

∑

x1,...,xk 6=x

∫
I(F(ν1, . . . , νk) ∈ A)

k∏

i=1

Q(t)(dνi) . (5.23)

The initial condition is Q
(0)
x = δνx , where νx is the singleton over the color x.

The sequence of distributions {Q(t)} converges weakly to a limit Q(∞) because
{ν(t)} is a backward martingale. Further we have

||µr,B(r,t)( · , · ) − µr( · )µB(r,t)( · )||TV =
1

q

q∑

x=1

∫
||ν − ν||TV Qx(dν) . (5.24)

Finally, it follows from Bayes theorem that Q
(t)
x (dν) = qν(x)Q(t)(dν), where Q(t)

is the unconditional distribution of ν(t). As a consequence of these remarks,
the reconstruction problem is solvable if and only if the distributions Q

(∞)
x are

non-degenerate.
Therefore solvability implies the existence of a non-trivial solution of Eq. (5.21),

namely Q
(∞)
x .

To prove the converse, first notice that a sufficient condition of reconstructi-
bility is that

||µr,Y (t)( · , · ) − µr( · )µY (t)( · )||TV 6→ 0 (5.25)

for some random variable Y (t) that is conditionally independent of Xr given
X

B(r,t). We then take Y (t) = . . . . �
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Chapter 6

Reconstruction and extremality

Extremality was introduced in Chapter 4 as a sufficient condition (together with
a large girth condition) for the Bethe-Peierls approximation to be accurate. Un-
happily it s a difficult conditon to check. In the present Chapter we discuss a
relation between extremality on random graphs and extremality on associated
models trees. This is a first step towards understanding extremality on random
graphs.

This paper is largely based on [17] which we refer to for further details.

6.1 Introduction and outline

Let G = (V,E) be a graph, and X = {Xi : i ∈ V } a proper coloring of its vertices
sampled uniformly at random. The reconstruction problem amounts to estimating
the color of a distinguished (root) vertex r ∈ V , when the colors {Xj = xj :
j ∈ U} of subset of vertices are revealed. In particular, we want to understand
whether the revealed values induce a substantial bias on the distribution of Xi.

As in the previous chapters, we shall consider the more general setting of
graphical models. Such a model is defined by a graph G = (V,E), and a set of
weights ψ = {ψij : (ij) ∈ E}, ψij : X × X → R+. Given a graph-weights pair
(G,ψ), we let

P
{
X = x

∣∣(G,ψ)
}
≡ µ(x) ≡ 1

Z

∏

(ij)∈E
ψij(xi, xj) , (6.1)

where we assume ψij(x, y) = ψij(y, x). The example of proper colorings is reco-
vered by letting X = {1, . . . , q} (q being the number of colors) and ψij(x, y) = 1
if x 6= y and = 0 otherwise. Ising models from statistical mechanics provide
another interesting class, whereby X = {+1,−1}. In the ‘ferromagnetic’ case
the weights are ψij(+,+) = ψij(−,−) = 1 − ǫ and ψij(+,−) = ψij(−,+) = ǫ for
some ǫ ∈ [0, 1/2].
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For economy of notation, we shall often write P{ · |G} as a shorthand for
P{ · |(G,ψ)}, and ‘the graph G’ for ‘the graph-weights pair (G,ψ).’ It is unders-
tood that, whenever G is given, the weights ψ are given as well. Further, for
U ⊆ VN , we let XU = {Xj : j ∈ U} and PU{xU |G} = P{XU = xU |G} be its
marginal distribution that can be obtained by marginalizing Eq. (6.1).

For i, j ∈ V , let d(i, j) be their graph theoretic distance. Further for any
t ≥ 0, we let B(i, t) be the set of vertices j such that d(i, j) ≥ t, (and, by abuse
of notation, the induced subgraph). The reconstructibility question asks whether
the ‘far away’ variables X

B(r,t) provide significant information about Xr. This is
captured by the following definition (recall that, given two distributions p, q on
the same space S, their total variation distance is ||p− q||TV ≡ (1/2)

∑
x∈S |px −

qx|).

Definition 6.1.1. The reconstruction problem is (t, ε)-solvable ( reconstructible)
for the graphical model (G,ψ) rooted at r ∈ V if

‖Pr,B(r,t){ · , · |G} −Pr{ · |G}PB(r,t){ · |G}‖TV ≥ ε .

In the following we will consider graphs G that are themselves random. By
this we mean that we will specify a joint distribution of the graph GN = (VN =
[N ], EN ), of the weights {ψij}, and of the root vertex r whose variable we are
interested in reconstructing. Equation (6.1) then specifies the conditional distri-
bution of X, given the random structure (GN , ψ) (again, we’ll drop reference to
ψ).

Definition 6.1.2. The reconstruction problem is solvable ( reconstructible) for
the sequence of random graphical models {GN} if there exists ε > 0 such that, for
all t ≥ 0 it is (t, ε)-solvable with positive probability, i.e. if

‖Pr,B(r,t){ · , · |GN} − Pr{ · |GN}PB(r,t){ · |GN}‖TV ≥ ε . (6.2)

with positive probability1.

To be specific, we shall assume GN to be a sparse random graph. In this case,
any finite neighborhood of r converges in distribution to a tree [49]. Further,
imagine to mark the boundary vertices of such a neighborhood, and then take
the neighborhood out of GN (thus obtaining the subgraph denoted above as
B(r, t)). The marked vertices will be (with high probability) ‘far apart’ from each
other in B(r, t). This suggests that the corresponding random variables {Xj}
will be approximately independent when the tree-like neighborhood is taken out.

1Here and below, we say that the sequence of events {AN} holds with positive probability
(wpp) if there exists δ > 0 and an infinite sequence N ⊆ N, such that P{AN} ≥ δ for any
N ∈ N . Notice that, in a random graph, r might be in a small connected component. Therefore
Eq. (6.2) cannot be required to hold with high probability.
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Hence, approximating GN by its local tree structure might be a good way to
determine correlations between Xr and the boundary variables {Xj : d(r, j) = t}.
In other words, one would expect reconstructibility on GN to be determined by
reconstructibility on the associated random tree.

Of course the above conclusion does not hold in general, as it is based on a
circular argument. We assumed that ‘far apart’ variables (with respect to the
residual graph B(r, t)) are weakly correlated, to understand whether ‘far apart’
variable (in GN) are. In fact, we will prove that tree and graph reconstruc-
tion do not coincide in the simplest example one can think of, namely the Ising
ferromagnet (binary variables with attractive interactions).

On the positive side, we prove a general sufficient condition for the tree and
graph behaviors to coincide. The condition has a suggestive geometrical inter-
pretation, as it requires two independent random configurations X(1) and X(2) to
be, with high probability, at an approximately fixed ‘distance’ from each other.
In the example of coloring, we require two uniformly random independent co-
lorings of the same graph to take the same value on about 1/q of the vertices.
The set of ‘typical configurations’ looks like a sphere when regarded from any
typical configuration. Under such a condition, the above argument can be put
on firmer basis. We show that, once the the neighborhood of the root r is taken
out, boundary variables become roughly independent. This in turns implies that
graph and tree reconstruction do coincide.

We apply this sufficient condition to the Ising spin glass (where the condition
can be shown to hold as a consequence of a recent result by Guerra and Toni-
nelli [50]), and to antiferromagnetic colorings of random graphs (building on the
work of Achlioptas and Naor [51]). In both cases we will introduce a family of
graphical models parametrized by their average degree. It is natural to expect
reconstructibility to hold at large degrees (as the graph is ‘more connected’) and
not to hold at small average degrees (since the graph ‘falls’ apart into discon-
nected components). In the spin glass case we are indeed able to estabilish a
threshold behavior (i.e. a critical degree value above which reconstruction is sol-
vable). While we didn’t achieve the same for colorings, we essentially reduced
the problem to establishing a threshold for the tree model.

6.1.1 Applications and related work

Let us discuss a selection of related problems that are relevant to our work.

Markov Chain Monte Carlo (MCMC) algorithms provide a well estab-
lished way of approximating marginals of the distribution (6.1). If the chain is
reversible and has local updates, the mixing time is known to be related to the
correlation decay properties of the stationary distribution P{ · |GN} [52, 53]. In
this context, correlations between Xr and X

B(r,t) are usually characterized by
measures of the type ∆(t) ≡ supx ‖Pr|B(r,t){ · |xB(r,t), GN} − Pr{ · |GN}‖TV. The
‘uniqueness ’ condition requires ∆(t) to decay at large t, and is easily shown to
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imply non-reconstructibility. On graphs with sub-exponential growth, a fast eno-
ugh decay is a necessary and sufficient condition for fast mixing. On the other
hand, in more general cases this is too strong a criterion, and one might want to
replace it with the non-reconstructibility one.

In [54] it was proved that non-reconstructibility is equivalent to polynomial
spectral gap for a class of models on trees. The equivalence was sharpened in
[55], showing that non-reconstructibility is equivalent to fast mixing in the same
models. Further, [54] proved that non-reconstructibility is a necessary condition
for fast mixing on general graphs. While a converse does not hold in general, non-
reconstructibility is sufficient for rapid decay of the variance of local functions
(which is often regarded as the criterion for fast dynamics in physics) [56].

Random constraint satisfaction problems. Given an instance of a const-
raint satisfaction problem (CSP), consider the uniform distribution over its so-
lutions. This takes the form (6.1), where ψij is the indicator function over the
constraint involving variables xi, xj being satisfied (Eq. (6.1) is trivially gene-
ralized to k-variables constraints). For instance, in coloring it is the indicator
function on xi 6= xj .

Computing the marginal Pr{ · |GN} can be useful both for finding and for
counting the solutions of such a CSP. Assume to be able to generate one uniformly
random solution X. In general, this is not sufficient to approximate the marginal
of Xi in any meaningful way. However one can try the following: fix all the
variables ‘far from r’ to take the same value as in the sampled configuration,
namely X

B(r,t), and compute the conditional distribution at the root. If the graph
is locally tree-like, the conditional distribution of Xr can be computed through an
efficient dynamic programming procedure. The result of this computation needs
not to be near the actual marginal. However, non-reconstructibility implies the
result to be with high probability within ε (in total variation distance) from the
marginal.

As a consequence, a single sample (a single random solution x) is sufficient
to approximate the marginal Pr{ · |GN}. The situation is even simpler under the
sufficient condition in our main theorem (Theorem 6.1.4). In fact this implies
that the boundary condition x

B(r,t) can be replaced by an iid uniform boundary.
For random CSP’s, GN becomes a sparse random graph. Statistical mechanics

studies [8] suggest that, for typical instances the set of solutions decomposes
into ‘clusters’ at sufficiently large constraint density [57, 58]. This leads to the
speculation that sampling from the uniform measure P{ · |GN} becomes harder
in this regime.

The decomposition in clusters is related to reconstructibility, as per the follo-
wing heuristic argument. Assume the set of solutions to be splitted into clusters,
and that two solutions whose Hamming distance is smaller than Nε belong to the
same cluster. Then knowing the far away variables x

B(r,t) (i.e. all but a bounded
number of variables) does determine the cluster. This in turns provides some
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information on Xr.
In fact, it was conjectured in [2] that tree and graph reconstruction thresholds

should coincide for ‘frustrated’ models on random graphs. Both should coincide
with the clustering phase transition in the set of solutions [59].

Statistical inference and message passing. Graphical models of the
form (6.1) are used in a number of contexts, from image processing to artificial
intelligence, etc. Statistical inference requires to compute marginals of such a
distribution and message passing algorithms (in particular, belief propagation,
BP) are the methods of choice for accomplishing this task.

The (unproven) assumption in such algorithms is that, if a tree neighborhood
of vertex i is cut away from GN , then the variables {Xj} on the boundary of this
tree are approximately independent. Assuming the marginals of the boundary
variables to be known, the marginal of Xi can be computed through dynamic
programming. Of course the marginals to start from are unknown. However,
the dynamic programming procedure defines an mapping on the marginals them-
selves. In BP this mapping is iterated recursively over all the nodes, without
convergence guarantees.

Lemma 6.3.2 shows that, under the stated conditions, the required indepen-
dence condition does indeed hold. As stressed above, this is instrumental in
proving equivalence of graph and tree reconstructibility in Theorem 6.1.4.

Reconstruction problems also emerge in a variety of other contexts: (i) Phy-
logeny [39] (given some evolved genomes, one aims at reconstructing the genome
of their common ancestor); (ii) Network tomography [40] (given end-to-end de-
lays in a computer network, infer the link delays in its interior); (iii) Statistical
mechanics [16, 60] (reconstruction being related to the extremality of Gibbs me-
asures).

6.1.2 Previous results

If the graph GN is a tree, the reconstruction problem is relatively well understood
[11]. The fundamental reason is that the distribution P{X = x|GN} admits a
simple description. First sample the root variable Xr from its marginal P{Xr =
xr|GN}. Then recursively for each node j, sample its children {Xl} independently
conditional on their parent value.

Because of this Markov structure, one can prove a recursive distributional
equation for the conditional marginal at the root Pr|B(r,t){ · |XB(r,t), GN} ≡ ηt( · )
given the variable values at generation t. Notice that this is a random quantity
even for a deterministic graph GN , because X

B(r,t) is itself drawn randomly from
the distribution P{ · |GN}. Further, it contains all the information (it is a ‘suffi-
cient statistic’) in the boundary about the root variable Xr. In fact asymptotic
behavior of ηt( · ) as t→ ∞ then determines the solvability of the reconstruction
problem. Studying the asymptotic behavior of the sequence ηt( · ) (which satisfies
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a recursive distributional equation) is the standard approach to tree reconstruc-
tion.

Among the other results, reconstructibility has been thoroughly characterized
for Ising models on generic trees [60, 61, 62]. For an infinite tree T the reconst-
ruction problem is solvable if and only if br(T)(1 − 2ǫ)2 > 1, whereby (for the
cases treated below) br(T) coincides with the mean descendant number of any
vertex. This result establishes a sharp threshold in the tree average degree (or in
the parameter ǫ), that we shall generalize to random graphs below. However, as
we will see, the behavior is richer than in the tree case.

Reconstruction on general graphs poses new challenges, since the above re-
cursive description of the measure P{ · |GN} is lacking. The result of [54] allows
to deduce non-reconstructibility from fast mixing of reversible MCMC with local
updates. However, proving fast mixing is far from an easy task. Further, the con-
verse does not usually hold (one can have slow mixing and non-reconstructibility).

An exception is provided by the recent paper by Mossel, Weitz and Wormald
[63] that establishes a threshold for fast mixing for weighted independent sets
on random bipartite graphs (the threshold being in the weight parameter λ).
Arguing as in Section [17], it can be shown that this is also the graph reconst-
ruction threshold. This result is analogous to ours for the ferromagnetic Ising
model: it provides an example in which the graph reconstruction threshold does
not coincide with the tree reconstruction threshold. In both cases the graph re-
construction threshold coincides instead with the tree ‘uniqueness threshold’ (i.e.
the critical parameter for the uniqueness condition mentioned above to hold).

6.1.3 Basic definitions

We consider two families of random graphical models: regular and Poisson mo-
dels. In both cases the root r ∈ V is uniformly random and independent of GN .
A regular ensemble is specified by assigning an alphabet X (the variable range),
a degree (k+1) and and edge weight ψ : X ×X → R+. For any N > 0, a random
model is defined by letting GN be a uniformly random regular graph of degree
(k+1) over vertex set V = [N ]. The joint distribution of (X1, . . . , XN) is given by
Eq. (6.1), with ψij( · , · ) = ψ( · , · ). A variation of this ensemble is obtained by
letting G be a random regular multi-graph according to the configuration model
[64] (notice that our definitions make sense for multigraphs as well). Indeed in
the following we assume this model when working with regular graphs.

As an example, the random regular Ising ferromagnet is obtained by letting
X = {+1,−1} and, for some ǫ ≤ 1/2, ψ(x1, x2) = 1−ǫ if x1 = x2 and ψ(x1, x2) =
ǫ otherwise.

Specifying a Poisson ensemble requires an alphabet X , a density γ ∈ R+,
a finite collection of weights {ψa( · , · ) : a ∈ C}, and a probability distribution
{p(a) : a ∈ C} over the weights. In this case G is a multigraph where the number
edges among any pair of vertices i and j is an independent Poisson random
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variable of parameter 2γ/n. Each loop (i, i) is present with multiplicity which
is Poisson of mean2 γ/n. Finally, for each edge in the multi-graph, we draw
an independent random variable a with distribution p( · ) and set ψij( · , · ) =
ψa( · , · ).

Two examples of Poisson ensembles to be treated below are the Ising spin
glass, and antiferromagnetic colorings (aka ‘antiferromagnetic Potts model’). In
the first case X = {+1,−1} and two type of weights appear with equal probability
(i.e. C = {+,−} and p(+) = p(−) = 1/2): ψ+(x1, x2) = 1 − ǫ for x1 = x2,
ψ+(x1, x2) = ǫ for x1 6= x2, while ψ−(x1, x2) = ǫ for x1 = x2, ψ−(x1, x2) = 1 − ǫ
for x1 6= x2. For proper colorings X = {1, . . . , q}, and |C| = 1 with ψ(x1, x2) = 1
if x1 6= x2, and ψ(x1, x2) = ǫ < 1 otherwise (for ǫ = 0 one recovers the uniform
measure over proper colorings of G).

Both graphical model ensembles defined above converge locally to trees. In
the case of regular models, the corresponding tree model is an infinite rooted tree
of uniform degree (k + 1), each edge being associated the same weight ψ( · , · ).
For Poisson models, the relevant tree is a rooted Galton-Watson tree with Poisson
distributed degrees of mean 2γ. Each edge carries the weight ψa( · , · ) indepen-
dently with probability p(a).

Given such infinite weighted trees, let Tℓ, ℓ ≥ 0 be the weighted subgraph
obtained by truncating it at depth ℓ. One can introduce random variables X =
{Xj : j ∈ Tℓ}, by defining P{X = x|Tℓ} as in Eq. (6.1) (with G replaced by
Tℓ). With an abuse of notation we shall call r the root of Tℓ. It is natural to ask
whether reconstruction on the original graphical models and on the corresponding
trees are related.

Definition 6.1.3. Consider a sequence of random graphical models {GN} (dist-
ributed according either to the regular or to the Poisson ensemble), and let {Tℓ}
be the corresponding sequence of tree graphical models. We say that the reconst-
ruction problem is tree-solvable for the sequence {GN} if there exists ε > 0 such
that, for any t ≥ 0

‖Pr,B(r,t){ · , · |Tℓ} − Pr{ · |Tℓ}PB(r,t){ · |Tℓ}‖TV > ε , (6.3)

with positive probability (as ℓ→ ∞)

Notice that tree-reconstruction is actually a question on the sequence of tree
graphical models {Tℓ} indexed by ℓ. The only role of the original random graphs
sequence {GN} is to determine the distribution of Tℓ.

Despite the similarity of Eqs. (6.3) and (6.2), passing from the original graph
to the tree is a huge simplification because P{ · |Tℓ} has a simple description as
mentioned above. For instance, in the case of a ferromagnetic Ising model, one
can sample the variables Xj on the tree through a ‘broadcast’ process. First,

2Notice that in a typical realization there will be only a few loops and non-simple edges.
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generate the root value Xr uniformly at random in {+1,−1}. Then recursively,
for each node j, generate the values of its children {l} conditional on Xj = xj by
letting Xl = xj independently with probability 1 − ǫ, and Xl = −xj otherwise.
Analogous descriptions exist for the spin-glass and colorings models.

6.1.4 Main results

Our first result is a sufficient condition for graph-reconstruction to be equiva-
lent to tree reconstruction. In order to phrase it, we need to define the ‘two-
replicas type.’ Consider a graphical model GN and two two iid assignments of
the variables X(1), X(2) with common distribution P{ · |GN} (we will call them
replicas following the spin glass terminology). The two replica type is a matrix
{ν(x, y) : x, y ∈ X} where ν(x, y) counts the fraction of vertices j such that

X
(1)
j = x and X

(2)
j = y. (Conversely, the set of distributions ν on X × X such

that Nν(x, y) ∈ N will be called the set of valid two-replicas types RN . When
we drop the constraint Nν(x, y) ∈ N, we shall use R.)

The matrix ν is random. If P{ · |GN} were the uniform distribution, then ν
would concentrate around ν(x, y) ≡ 1/|X |2. Our sufficient condition requires this
to be approximately true.

Theorem 6.1.4. Consider a sequence of random Poisson graphical models {GN},
and let ν( · , · ) be the type of two iid replicas X(1), X(2), and ∆ν(x, y) ≡ ν(x, y)−
ν(x, y). Assume that, for any x ∈ X ,

E





[
∆ν(x, x) − 2|X |−1

∑

x′

∆ν(x, x′)

]2




N→ 0 . (6.4)

Then the reconstruction problem for {GN} is solvable if and only if it is tree-
solvable.

Remark 1: Notice that the expectation in Eq. (6.4) is both over the two
replicas X(1), X(2) (which the type ν( · , · ) is a function of) conditional on GN ,
and over GN . Explicitly E{· · · } = E{E[· · · |GN ]}. Remark 2: In fact, as is hinted
by the proof, the condition (6.4) can be weakened, e.g. ν( · · ) can be chosen more
generally than the uniform matrix. This will be treated in a longer publication.

The condition (6.4) emerges naturally in a variety of contexts, a notable one
being second moment method applied to random constraint satisfaction problems
[65]. As an example, consider proper colorings of random graphs. In bounding
on the colorability threshold, one computes the second moment of the number of
colorings, and, as an intermediate step, an upper bound on the large deviations
of the type ν. Oversimplifying, one might interpret Theorem 6.1.4 by saying
that, when second moment method works, then tree and graph reconstruction
are equivalent. Building on [51] we can thus establish the following.
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Theorem 6.1.5. Consider antiferromagnetic q-colorings of a Poisson random
graph and let γq ≡ (q − 1) log(q − 1). If γ ∈ [0, γq) and ǫ ∈ [0, 1], then the
reconstruction problem is solvable if and only if it is tree solvable.

A proof for ǫ > 0 and γ ∈ [0, γq] \ Γ with Γ countable was provided in [17].
The complete proof was obtained only recently (A. M., R. Restrepo and P. Tetali,
in preparation).

The above theorems might suggests that graph and tree reconstruction do
generally coincide. This expectation is falsified by the simplest possible example:
the Ising model. This has been studied in depth for trees [60, 61, 62]. If the tree
is regular with degree (k+1), the problem is solvable if and only if k(1−2ǫ)2 > 1.
The situation changes dramatically for graphs.

Theorem 6.1.6. Reconstruction is solvable for random regular Ising ferromag-
nets if and only if k(1 − 2ǫ) > 1.

This result possibly generalizes to Ising ferromagnets on other graphs that
converge locally to trees. The proof of reconstructibility for k(1 − 2ǫ) > 1 essen-
tially amounts to finding a bottleneck in Glauber dynamics. As a consequence
it immediately implies that the mixing time is exponential in this regime. We
expect this to be a tight estimate of the threshold for fast mixing.

On the other hand, for an Ising spin-glass, the tree and graph thresholds do
coincide. In fact, for an Ising model on a Galton-Watson tree with Poisson(2γ)
offspring distribution, reconstruction is solvable if and only if 2γ(1 − 2ǫ)2 > 1
[61]. The corresponding graph result is established below.

Theorem 6.1.7. Reconstruction is solvable for Poisson Ising spin-glasses if
2γ(1 − 2ǫ)2 > 1, and it is unsolvable if 2γ(1 − 2ǫ)2 < 1.

6.2 Random graph preliminaries

Let us start with a few more notations. Given i ∈ V , and t ∈ N, B(i, t) is the
set of vertices j such that d(i, j) ≤ t (as well as the subgraph formed by those
vertices and by edges that are not in B(i, t)). Further we introduce the set of
vertices D(i, t) ≡ B(i, t) ∩ B(i, t).

The proof of Theorem 6.1.4 relies on two remarkable properties of Poisson
graphical models: the local convergence of B(r, t) to the corresponding Galton-
Watson tree of depth t (whose straightforward proof we omit), and a form of
independence of B(r, t) relatively to B(r, t). Notice that, because of the symmetry
of the graph distribution under permutation of the vertices, we can fix r to be a
deterministic vertex (say, r = 1).

Proposition 6.2.1. Let B(r, t) be the depth-t neighborhood of the root in a Pois-
son random graph GN , and Tt a Galton-Watson tree of depth t and offspring
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distribution Poisson(2γ). Given any (labeled) tree T∗, we write B(r, t) ≃ T∗ if
T∗ is obtained by the depth-first relabeling of B(r, t) following a pre-established
convention3. Then P{B(r, t) ≃ T∗} converges to P{Tt ≃ T∗} as N → ∞.

Proposition 6.2.2. Let B(r, t) be the depth-t neighborhood of the root in a Pois-
son random graph GN . Then, for any λ > 0 there exists C(λ, t) such that, for
any N , M ≥ 0

P{|B(r, t)| ≥M} ≤ C(λ, t)λ−M . (6.5)

Proof. Imagine to explore B(r, t) in breadth-first fashion. For each t, |B(r, t +
1)| − |B(r, t)| is upper bounded by the sum of |D(r, t)| iid binomial random va-
riables with parameters N − |B(r, t)| and 1 − e−2γ/N ≤ 2γ/N (the number of
neighbors of each node in D(r, t)). Therefore |B(r, t)| is stochastically domi-
nated by

∑t
s=0ZN(s), where {ZN(t)} is a Galton-Watson process with offsp-

ring distribution Binom(N, 2γ/N). By Markov inequality P{|B(r, t)| ≥ M} ≤
E{λ

Pt
s=0 ZN (s)} λ−M . By elementary branching processes theory gNt (λ) ≡ E{λ

Pt
s=0 ZN (s)}

satisfies the recursion gNt+1(λ) = λξN(gNt (λ)), gN0 (λ) = λ, with ξN(λ) = λ(1 +
2γ(λ − 1)/N)N . The thesis follows by gNt (λ) ≤ gt(λ), the latter being obtained
by replacing ξN(λ) with ξ(λ) = e2γ(λ−1) ≥ ξN(λ). �

Proposition 6.2.3. Let GN be a Poisson random graph on vertex set [N ] and
edge probability p = 2γ/N . Then, conditional on B(r, t), B(r, t) is a Poisson
random graph on vertex set [N ] \ B(r, t− 1) and same edge probability.

Proof. Condition on B(r, t) = G(t), and let G(t−1) = B(r, t−1) (notice that this
is uniquely determined from G(t)). This is equivalent to conditioning on a given
edge realization for any two vertices k, l such that k ∈ G(t− 1) and l ∈ G(t) (or
viceversa).

On the other hand, B(r, t) is the graph with vertices set [N ] \ G(t) and edge
set (k, l) ∈ GN such that k, l 6∈ G(t − 1). Since this set of vertices couples is
disjoint from the one we are conditioning upon, and by independence of edges in
GN , the claim follows. �

6.3 Proof of Theorem 6.1.4

We start from a simple technical result.

Lemma 6.3.1. Let p, q be probability distribution over a finite set S, and denote
by q0(x) = 1/|S| the uniform distribution over the same set. Define p̂(x) ≡
p(x)q(x)/z, where z ≡∑x p(x)q(x). Then ||p̂− p||TV ≤ 3|S|2 ||q − q0||TV.

3For instance one might agree to preserve the original lexicographic order among siblings
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Proof. Since ||p̂ − p||TV ≤ 1 we can assume, without loss of generality, that
||q − q0||TV ≤ (2|S|)−1. If we write p(x) = p(x)q0(x)/z0, with z0 = 1/|S|, then
|z − z0| ≤ |∑x[p(x)q(x) − p(x)q0(x)]| ≤ ||q − q0||TV and in particular z ≥ z0/2.
From triangular inequality we have on the other hand

||p̂− p||TV ≤ 1

2

∣∣z−1 − z−1
0

∣∣ + 1

2z0

∑

x

p(x)|q(x) − q0(x)| .

Using |x−1−y−1| ≤ |x−y|/min(x, y)2, the first term is bounded by 2|z−z0|/z2
0 ≤

2|S|2||q− q0||TV. The second is at most |S| ||q− q0||TV which proves the thesis. �

In order to prove Theorem 6.1.4 we first establish that, under the condition
(6.4), any (fixed) subset of the variables {X1, . . . , XN} is (approximately) uni-
formly distributed.

Proposition 6.3.2. Let i(1), . . . , i(k) ⊆ [N ] be any (fixed) set of vertices, and
ξ1, . . . , ξk ∈ X . Then, under the hypotheses of Theorem 6.1.4, for any ε > 0

∣∣∣∣Pi(1),...,i(k){ξ1, . . . , ξk|GN} −
1

|X |k
∣∣∣∣ ≤ ε , (6.6)

with high probability.

Proof. Given two replicas X(1), X(2), define, for ξ ∈ X (with I··· the indicator
function)

Q(ξ) =
1

N

N∑

i=1

{
I
X

(1)
i =ξ

− 1

|X |

}{
I
X

(2)
i =ξ

− 1

|X |

}
.

Notice that Q(ξ) = ∆ν(ξ, ξ) − (2/|X |)∑x ∆ν(ξ, x) is the quantity in Eq. (6.4).

Therefore, under the hypothesis of Theorem 6.1.4, E{Q(ξ)2} N→ 0. Further, since
|Q(ξ)| ≤ 1 and using Cauchy-Schwarz, for any ξ1, . . . , ξk ∈ X

|E {Q(ξ1) · · ·Q(ξk)}| ≤ E|Q(ξ1)| N→ 0 .

If we denote by Qi(ξ) the quantity on the right hand side of the sum in
Eq. (6.7) then Q(ξ) is the uniform average of Qi(ξ) over a uniformly random
i ∈ [N ]. By symmetry of the graph distribution with respect to permutation of
the vertices in [N ], and since |Q(ξ)| ≤ 1 we get

E {Q(ξ1) · · ·Q(ξk)} = E
{
Qi(1)(ξ1) · · ·Qi(k)(ξk)

}
+ εk,N

= E{E{
k∏

a=1

(IXi(a)=ξa − |X |−1)|GN}2} + εk,N ,
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where |εk,N | is upper bounded by the probability that k random variable uniform
in [N ] are not distinct (which is O(1/N)). Therefore the expectation on right
hand side vanishes as N → ∞ as well, which implies (since the quantity below
is, again, bounded by 1)

∣∣∣∣∣E
{

k∏

a=1

(IXi(a)=ξa − |X |−1)

∣∣∣∣∣GN

}∣∣∣∣∣ ≤ ε (6.7)

with high probability for any ε > 0. The proof is completed by noting that the
left hand side of Eq. (6.6) can be written as

∣∣∣∣∣∣

∑

∅6=U⊆[k]

E

{
∏

a∈U
(IXi(a)=ξi(a)

− |X |−1)

∣∣∣∣∣GN

}∣∣∣∣∣∣
≤ 2kε ,

where the last bound holds whp thanks to Eq. (6.7) and ε can eventually be
rescaled. �

In order to write the proof Theorem 6.1.4 we need to introduce a few short-
hands. Given a graphical modelGN , and U ⊆ [N ], we let µU(xU) ≡ P {XU = xU |GN}
(omitting subscripts if U = V ). If r is its root, ℓ ∈ N and U ⊆ B(r, ℓ),
we define µ<U(xU) ≡ P {XU = xU |B(r, ℓ)} (i.e. µ< is the distribution obtai-
ned by restricting the product in (6.1) to edges (i, j) ∈ B(r, ℓ)). Analogously
µ>U(xU) ≡ P

{
XU = xU |B(r, ℓ)

}
. Finally for U ⊆ [N ], we let ρU (xU) = 1/|X ||U |

be the uniform distribution on X U .

Lemma 6.3.3. Let GN be a graphical model rooted at r, and ℓ ∈ N. Then for
any t ≤ ℓ,

∣∣∣||µr,B(r,t)−µrµB(r,t)||TV − ||µ<
r,B(r,t)

− µ<r µ
<
B(r,t)

||TV

∣∣∣ ≤
≤ 9|X |2|B(r,ℓ)| ||µ>

D(r,ℓ) − ρD(r,ℓ)||TV . (6.8)

Proof. First notice that, by elementary properties of the total variation distance,
||µU − µ<U ||TV ≤ ||µ

B(r,ℓ) − µ<
B(r,ℓ)||TV for any U ⊆ B(r, ℓ). Applying this remark

and triangular inequality, the left hand side of Eq. (6.8) can be upper bounded
by 3 ||µ

B(r,ℓ) − µ<
B(r,ℓ)||TV. Next notice that, as a consequence of Eq. (6.1) and of

the fact that B(r, ℓ) and B(r, ℓ) are edge disjoint (and using the shorthands B(ℓ)
and D(ℓ) for B(r, ℓ) and D(r, ℓ))

µB(ℓ)(xB(ℓ)) =
µ<

B(ℓ)(xB(ℓ))µ
>
D(ℓ)(xD(ℓ))∑

x′
B(ℓ)

µ<
B(ℓ)(x

′
B(ℓ))µ

>
D(ℓ)(x

′
D(ℓ))

.

We can therefore apply Lemma 6.3.1 whereby p is µ<
B(ℓ), p̂ is µB(ℓ), q is µ>

D(ℓ), and

S = X B(ℓ). This proves the thesis. �
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Proof of Theorem 6.1.4. Let ∆N denote the left hand side of Eq. (6.8). We claim
that its expectation (with respect to a random graph GN) vanishes as N → ∞.
Since the probability that B(r, ℓ) ≥ M can be made arbitrarily small by letting
M large enough, cf. Lemma 6.2.2, and using the fact that the left hand side of
Eq. (6.8) is bounded by 1, it is sufficient to prove that

∑

|G|≤M
P{B(r, ℓ) = G}E{∆N |B(r, ℓ) = G} ≤

≤ KM+1
∑

|G|≤M
E{||µ>

D(r,ℓ) − ρD(r,ℓ)||TV|B(r, ℓ) = G} ,

vanishes as N → ∞. Each term in the sum is the expectation, with respect to a
random graph over N − |G| ≥ N −M vertices of the total variation distance be-
tween the joint distribution of a fixed set of vertices, and the uniform distribution
(for D = D(r, ℓ)):

||µ>
D
− ρD||TV =

1

2

∑

x
D

∣∣PD{xD|B(i, ℓ)} − |X |−|D|∣∣ .

This vanishes by Lemma 6.3.2, thus proving the above claim.
This implies that there exists ε > 0 such that ||µr,B(r,t) − µrµB(r,t)||TV ≥ ε

with positive probability, if and only if there exists ε′ > 0 such that ||µ<
r,B(r,t)

−
µ<r µ

<
B(r,t)

||TV ≥ ε′ with positive probability. In other words, since µ( · ) ≡ P{ · · · |GN},
reconstruction is solvable if and only if ||µ<

r,B(r,t)
− µ<r µ

<
B(r,t)

||TV ≥ ε′ with positive

probability.
Finally, recall that µ<( · ) ≡ P{ · |B(r, ℓ)} and that B(r, ℓ) converges in distri-

bution to T(ℓ), by Lemma 6.2.1. Since ||µ<
r,B(i,t)

−µ<r µ
<
B(r,t)

||TV is a bounded func-

tion of B(r, t) (and using as above Lemma 6.2.2 to reduce to a finite set of graphs),
it converges in distribution to ‖Pr,B(r,t){ · , · |Tℓ}−Pr{ · |Tℓ}PB(r,t){ · |Tℓ}‖TV. We
conclude that ||µ<

r,B(i,t)
− µ<r µ

<
B(r,t)

||TV ≥ ε′ with positive probability if and only if

reconstruction is tree solvable, thus proving the thesis. �
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Chapter 7

Peeling algorithms and finite-size

scaling

7.1 Random hypergraphs, their core and a pe-

eling algorithm

A hyper-graph G, with n hyper-edges, each of whom is a collection of vertices, is
identified with a bipartite, factor graph, having two types of nodes: v-nodes, cor-
responding to hyper-edges, and c-nodes to vertices. For example, a hyper-graph
in the ensemble Gl(n,m) consists of a set V ≡ [n] of v-nodes, each corresponding
to an l-tuple of vertices from the set C ≡ [m] of c-nodes, and an ordered list of
edges, i.e. couples (i, a) with i ∈ V and a ∈ C

E = [(1, a1), (1, a2), . . . , (1, al); (2, al+1), . . . ; (n, a(n−1)l+1), . . . , (n, anl)] ,

where a couple (i, a) appears before (j, b) whenever i < j and each v-node i
appears exactly l times in the list, with l ≥ 3 a fixed integer parameter. In this
configuration model the degree of a v-node i (or c-node a), refers to the number
of edges (i, b) (respectively (j, a)) in E to which it belongs (which corresponds to
counting hyper-edges and vertices with their multiplicity).

Definition 7.1.1. The k-core of a non-directed graph G is the unique subgraph
obtained by recursively removing all vertices of degree less than k. In particular,
the 2-core, hereafter called the core of G, is the maximal collection of edges having
no vertex appearing in only one of them (and we use the same term for the induced
subgraph). Similarly, the core of an hyper-graph is the maximal collection of
hyper-edges (i.e. v-nodes) within which no vertex (i.e. c-node) appears only once
(when counting their multiplicities).

The core of a hyper-graph plays an important role in the analysis of many
combinatorial problems.
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For example, Karp and Sipser [36] consider the problem of finding the largest
possible matching (i.e. vertex disjoint set of edges) in a graph G. They propose a
simple peeling algorithm that recursively selects an edge e = (i, j) ∈ G for which
the vertex i has degree one, as long as such an edge exists, and upon including e in
the matching, the algorithm removes it from G together with all edges incident
on j (that can no longer belong to the matching). Whenever the algorithm
successfully matches all vertices, the resulting matching can be shown to have
maximal size. Note that this happens if an only if the core of the hyper-graph
G̃ is empty, where G̃ has a c-node ẽ per edge e of G and a v-node ĩ per vertex i
of degree two or more in G that is incident on ẽ in G̃ if and only if e is incident
on i in G. Consequently, the performance of the Karp-Sipser algorithm for a
randomly selected graph has to do with the probability of non-empty core in the
corresponding graph ensemble. For example, [36] analyze the asymptotics of this
probability for a uniformly chosen random graph of N vertices and M = ⌊Nc/2⌋
edges, as N → ∞ (c.f. [21, 27] for recent contributions).

A second example deals with the decoding of a noisy message when commu-
nicating over the binary erasure channel with a low-density parity-check code
ensemble. This amounts to finding the unique solution of a linear system over
GF[2] (the solution exists by construction, but is not necessarily unique, in which
case decoding fails). If the linear system includes an equation with only one va-
riable, we thus determine the value of this variable, and substitute it throughout
the system. Repeated recursively, this procedure either determines all the variab-
les, thus yielding the unique solution of the system, or halt on a linear sub-system
each of whose equations involves at least two variables. While such an algorithm
is not optimal (when it halts, the resulting linear sub-system might still have a
unique solution), it is the simplest instance of the widely used belief propagation
decoding strategy, that has proved extremely successful. For example, on pro-
perly optimized code ensembles, this algorithm has been shown to achieve the
theoretical limits for reliable communication, i.e., Shannon’s channel capacity
(see [38]). Here a hyper-edge of G is associated to each variable and a vertex to
each equation, so the successful decoding finds the unique solution if and only if
the core of G is empty.

The ’dual’ problem is XOR-SAT, where given a linear system over m binary
variables, composed of n equations modulo 2, each involving exactly l ≥ 3 va-
riables, the ‘leaf removal’ algorithm of [26, 44] recursively selects a variable that
appears in a single equation, and eliminates the corresponding equation from the
system (since this equation can always be satisfied by properly setting the selec-
ted variable). If all the equations are removed by this procedure, a solution can
be constructed by running the process backward and fixing along the way the
selected variables. Associate a hyper-graph G of m vertices and n hyper-edges
to the linear system, where hyper-edge e is incident on vertex i if and only if
the corresponding equation involves the i-th variable with a non-zero coefficient,
noting that the leaf removal algorithm is successful if and only if the core of the
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corresponding hyper-graph G is empty.
We focus hereafter on the relevant ensemble G = Gl(n,m) and uniformly select

a hyper-graph G from among the mnl hyper-graphs in G. Indeed, one samples
from this distribution by considering the v-nodes in order, i = 1, . . . , n, choosing
for each v-node and j = 1, . . . , l, independently and uniformly at random a c-
node a = a(i−1)l+j ∈ C and adding the couple (i, a) to the list E. Alternatively, to
sample from this distribution first attribute sockets (i− 1)l+ 1, . . . , il to the i-th
v-node, i = 1, . . . , n, then attribute ka sockets to each c-node a, where ka’s are
mutually independent Poisson(ζ) random variables, conditioned upon their sum
being nl (these sockets are ordered using any pre-established convention). Finally,
connect the v-node sockets to the c-node sockets according to a permutation σ of
{1, . . . , nl} that is chosen uniformly at random and independently of the choice
of ka’s.

In this context, setting m = ⌊nρ⌋ for ρ = l/γ > 0 fixed, we are thus interested
in the large n asymptotics of the probability Pl(n, ρ) that a hyper-graph G of this
distribution has a non-empty core.

7.2 Smooth Markov kernel on a reduced state

space

Reducing the state space to Z
2
+. Consider the inhomogeneous Markov chain

of graphs {G(τ), τ ≥ 0}, where G(0) is a uniformly random element of Gl(n,m)
and for each τ = 0, 1, . . . , if there is a non-empty set of c-nodes of degree 1,
choose one of them (let’s say a) uniformly at random, deleting the corresponding
edge (i, a) together with all the edges incident to the v-node i. The graph thus
obtained is G(τ + 1). In the opposite case, where there are no c-nodes of degree
1 in G(τ), we set G(τ + 1) = G(τ).

We define furthermore the process {~z(τ) = (z1(τ), z2(τ)), τ ≥ 0} on Z
2
+,

where z1(τ) and z2(τ) are, respectively, the number of c-nodes in G(τ), having
degree one or larger than one. Necessarily, (n− τ̂ )l ≥ z1(τ)+2z2(τ), with equality
if z2(τ) = 0, where τ̂ ≡ min(τ, inf{τ ′ ≥ 0 : z1(τ

′) = 0}), i.e. τ̂ = τ till the first τ ′

such that z1(τ
′) = 0, after which τ̂ is frozen (as the algorithm stops).

Fixing l ≥ 3, m and n, set ~z ≡ (z1, z2) ∈ Z
2
+ and G(~z, τ) denote the ensemble

of possible bipartite graphs with z1 c-nodes of degree one and z2 c-nodes of
degree at least two, after exactly τ removal steps of this process. Then, G(~z, τ)
is non-empty only if z1 + 2z2 ≤ (n− τ)l with equality whenever z2 = 0. Indeed,
each element of G(~z, τ) is a bipartite graph G = (U, V ;R, S, T ;E) where U, V are
disjoint subsets of [n] with U∪V = [n] and R, S, T are disjoint subsets of [m] with
R∪ S∪T = [m], having the cardinalities |U | = τ , |V | = n−τ , |R| = m−z1 −z2,
|S| = z1, |T | = z2 and the ordered list E of (n− τ)l edges (i, a) with i a v-node
and a a c-node such that each i ∈ V appears as the first coordinate of exactly
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l edges in E, while each j ∈ U does not appear in any of the couples in E.
Similarly, each c ∈ R does not appear in E, each b ∈ S appears as the second
coordinate of exactly one edge in E, and each a ∈ T appears in some ka ≥ 2 such
edges.

The following observation allows us to focus on the much simpler process ~z(τ)
on Z

2
+ instead of the graph process G(τ) ∈ G(~z, τ̂).

Lemma 7.2.1. Conditional on {~z(τ ′), 0 ≤ τ ′ ≤ τ}, the graph G(τ) is uniformly
distributed over G(~z, τ̂). Consequently, the process {~z(τ) τ ≥ 0} is an inhomoge-
neous Markov process.

Proof. Fixing τ , ~z = ~z(τ) such that z1 > 0, ~z′ = ~z(τ + 1) and G′ ∈ G(~z′, τ + 1),
let N(G′|~z, τ) count the pairs of graphs G ∈ G(~z, τ) and choices of the deleted c-
node from S that result with G′ upon applying a single step of our algorithm. We
start at τ = 0 with a uniform distribution of G(0) within each possible ensemble
G(~z(0), 0). If N(G′|~ω, τ) depends on G′ only via ~ω′ it follows by induction on
τ = 1, 2, . . . that conditional on {~z(τ ′), 0 ≤ τ ′ ≤ τ}, the graph G(τ) is uniformly
distributed over G(~z, τ̂) as long as τ̂ = τ , since if z1(τ) > 0, then with h(~z, τ)
denoting the number of graphs in G(~z, τ),P {G(τ + 1) = G′|{~z(τ ′), 0 ≤ τ ′ ≤ τ}} =

1

z1

N(G′|~z(τ), τ)
h(~z(τ), τ)

,

is the same for all G′ ∈ G(~z′, τ + 1) and moreover noting that G(τ) = G(τ̂)
and ~z(τ) = ~z(τ̂) we deduce that this property extends to the case of τ̂ < τ (i.e.
z1(τ) = 0).

Obviously, G and G′ must be such that R ⊂ R′, S ⊆ R′ ∪ S ′ and T ′ ⊆ T . So,
let q0 ≥ 0 denote the size of R′ ∩ S, p0 ≥ 0 the size of R′ ∩ T , and q1 ≥ 0 the size
of S ′ ∩ T . We have q0 + p0 ≤ m− z′1 − z′2, q1 ≤ z′1 and





z0 = z′0 − q0 − p0 ,
z1 = z′1 + q0 − q1 ,
z2 = z′2 + p0 + q1 ,

(7.1)

where z0 = m− z1 − z2 and z′0 = m− z′1 − z′2. Let T ∗ denote the set of c-nodes
a ∈ T ′ for which ka > k′a, and denote the size of T ∗ by q2 ≤ z′2. Observe that of
the l edges of the v-node i deleted by the algorithm in the move from G to G′,
exactly one edge hits each of the nodes in R′ ∩ S, at least one edge hits each of
the nodes in S ′ ∩ T , and each of the nodes in T ∗, while at least two edges hit
each of the notes in R′ ∩ T . Consequently, 2p0 + q0 + q1 + q2 ≤ l. Since z1 > 0
we know that τ̂ = τ and further, (n− τ − 1)l ≥ z′1 + 2z′2, which in view of (7.1)
is equivalent to (n− τ)l − (z1 + 2z2) ≥ l − (2p0 + q0 + q1) ≥ q2.

To recap, we see that (p0, q0, q1, q2) belongs to the subset D of Z4
+ for which

both the relations (7.1) and the inequalities (n − τ)l − (z1 + 2z2) ≥ l − (2p0 +
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q0 + q1) ≥ q2, q0 + p0 ≤ z′0, q1 ≤ z′1 (equivalently, q0 ≤ z1), q2 ≤ z′2 (equivalently,
p0 + q1 + q2 ≤ z2) hold (and in particular |D| ≤ (l + 1)4).

To count N(G′|~z, τ) we first select the v-node i to add to G′ from among the
τ + 1 elements of U ′, and the order (permutation) of the l sockets of i that we
use when connecting it to the c-nodes for creating G ∈ G(~z, τ). Summing over
the set D of allowed values of p0, q0, q1, q2, for each such value we have

(
m−z′1−z′2
q0,p0,·

)

ways to subdivide the nodes of R′ among S, T and R, then
(
z′1
q1

)
ways to select

the nodes of S ′ that are assigned to T and
(
z′2
q2

)
ways to select those of T ′ that

are assigned to T ∗. We further have coeff[(ex − 1− x)p0(ex − 1)q1+q2 ,xl−q0] ways
to select the precise number of edges (≥ 2) from i that we are to connect to each
of the p0 nodes in R′ ∩ T , and the precise number of edges (≥ 1) from i that we
are to connect to each of the q1 nodes in S ′ ∩ T and to each of the q2 nodes in
T ∗, while allocating in this manner exactly l− q0 edges out of i (the remaining q0
are then used to connect to nodes in R′ ∩ S). Noting that for each of the graphs
G thus created we have exactly q0 ways to choose the deleted node from S while
still resulting with the graph G′, we conclude that

N(G′|~z, τ) = (7.2)

(τ + 1) l!
∑

D

(
m− z′1 − z′2
q0, p0, ·

)(
z′1
q1

)(
z′2
q2

)
q0coeff[(ex − 1 − x)p0(ex − 1)q1+q2,xl−q0] ,

depends on G′ only via ~z′, as claimed.
Finally, since there are exactly h(~z′, τ +1) graphs in the ensemble G(~z′, τ +1)

the preceding implies that {~z(τ), τ ≥ 0} is an inhomogeneous Markov process
whose transition probabilities

W+
τ (∆~z|~z) ≡ P{~z(τ + 1) = ~z + ∆~z | ~z(τ) = ~z } ,

for ∆~z ≡ (∆z1,∆z2) and z′1 = z1 +∆z1, z
′
2 = z2 +∆z2 are such that W+

τ (∆~z|~z) =I(∆~z = 0) in case z1 = 0, whereas W+
τ (∆~z|~z) = h(~z′, τ +1)N(G′|~z, τ)/(z1h(~z, τ))

when z1 > 0. �

To sample from the uniform distribution on G(~z, τ) first partition [n] into U
and V uniformly at random under the constraints |U | = τ and |V | = (n − τ)
(there are

(
n
τ

)
ways of doing this), and independently partition [m] to R ∪ S ∪ T

uniformly at random under the constraints |R| = m−z1−z2, |S| = z1 and |T | = z2
(of which there are

(
m

z1,z2,·
)

possibilities). Then, attribute l v-sockets to each i ∈ V

and number them from 1 to (n−τ)l according to some pre-established convention.
Attribute one c-socket to each a ∈ S and ka c-sockets to each a ∈ T , where ka
are mutually independent Poisson(ζ) random variables conditioned upon ka ≥ 2,
and further conditioned upon

∑
a∈T ka being (n − τ)l − z1. Finally, connect the

v-sockets and c-sockets according to a uniformly random permutation on (n−τ)l
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objects, chosen independently of the ka’s. Consequently,

h(~z, τ) =

(
m

z1, z2, ·

)(
n

τ

)
coeff[(ex − 1 − x)z2 ,x(n−τ)l−z1 ]((n− τ)l)! . (7.3)

Approximation by a smooth Markov transition kernel. Though the tran-
sition kernel W+

τ (·|~z) of the process ~z(·) is given explicitly via (7.2) and (7.3), it
is hard to get any insight from these formulas, or to use them directly for finding
the probability of this process hitting the line z1(τ) = 0 at some τ < n (i.e. of the
graph G(0) having a non-empty core). Instead, we analyze the simpler transition
probability kernel

Ŵθ(∆~z|~x) ≡
(

l − 1

q0 − 1, q1, q2

)
p
q0−1
0 p

q1
1 p

q2
2 , (7.4)

with q0 = −∆z1 −∆z2 ≥ 1, q1 = −∆z2 ≥ 0 and q2 = l + ∆z1 + 2∆z2 ≥ 0, where

p0 =
x1

l(1 − θ)
, p1 =

x2λ
2e−λ

l(1 − θ)(1 − e−λ − λe−λ)
, p2 = 1 − p0 − p1 , (7.5)

for each θ ∈ [0, 1) and ~x ∈ R
2
+ such that x1 + 2x2 ≤ l(1 − θ). In case x2 > 0 we

set λ = λ(~x, θ) as the unique positive solution of

λ(1 − e−λ)

1 − e−λ − λe−λ)
=
l(1 − θ) − x1

x2
(7.6)

while for x2 = 0 we set by continuity p1 = 0 (corresponding to λ→ ∞).
Intuitively, (p0, p1, p2) are the probabilities that each of the remaining l − 1

edges emanating from the v-node to be deleted at the τ = nθ step of the algorithm
is connected to a c-node of degree 1, 2 and at least 3, respectively. Indeed, of
the nl(1 − θ) v-sockets at that time, precisely z1 = nx1 are connected to c-
nodes of degree one, hence the formula for p0. Our formula for p1 corresponds
to postulating that the z2 = nx2 c-nodes of degree at least two in the collection
T follow a Poisson(λ) degree distribution, conditioned on having degree at least
two, setting λ > 0 to match the expected number of c-sockets per c-node in T
which is given by the right side of (7.6). To justify this assumption, note that

coeff[(ex − 1 − x)t,xs]λs(eλ − 1 − λ)−t = P(

t∑

i=1

Ni = s) ,

for i.i.d. random variablesNi, each having the law of a Poisson(λ) random variable
conditioned to be at least two. We thus get from (7.2) and (7.3), upon applying
the local CLT for such partial sums, that the tight approximation

∣∣∣W+
τ (∆~z|~z) − Ŵτ/n(∆~z|n−1~z)

∣∣∣ ≤ C(l, ǫ)

n
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applies for (~z, τ) ∈ Q+(ǫ), ∆z1 ∈ {−l, . . . , l − 2}, ∆z2 ∈ {−(l − 1), . . . , 0}, with

Q+(ǫ) ≡ {(~z, τ) : 1 ≤ z1 ; nǫ ≤ z2 ; 0 ≤ τ ≤ n(1 − ǫ) ; nǫ ≤ (n− τ)l − z1 − 2z2} ,

approaching (as ǫ ↓ 0) the set Q+(0) ⊂ Z
3 in which the trajectory (~z(τ), τ)

evolves till hitting one of its absorbing states {(~z, τ) : z1(τ) = 0, τ ≤ n} (c.f.
[30, Lemma 4.5] for the proof, where the restriction to Q+(ǫ) guarantees that the
relevant values of t are of order n).
The initial distribution. Considering m = ⌊nρ⌋, for ρ = l/γ ∈ [ǫ, 1/ǫ] and
large n, recall thatP(~z(0) = ~z) =

h(~z, 0)

mnl
=

Pγ {~Sm = (z1, z2, nl)
}Pγ {S(3)

m = nl
}

where ~Sm =
∑m

i=1
~Xi for ~Xi = (INi=1, INi≥2, Ni) ∈ Z

3
+ and Ni that are i.i.d.

Poisson(γ) random variables (so ES(3)
m = nl up to the quantization error of at

most γ). Hence, using sharp local CLT estimates for ~Sm we find that the law
of ~z(0) is well approximated by the multivariate Gaussian law G2(·|n~y(0);nQ(0))

whose mean n~y(0) ≡ n~y(θ; ρ) consists of the first two coordinates of nρE ~X1, that
is,

~y(0; ρ) = ρ(γe−γ , 1 − e−γ − γe−γ) , (7.7)

and its positive definite covariance matrix nQ(0; ρ) equals nρ times the conditional

covariance of the first two coordinates of ~X1 given its third coordinates. That is,




Q11(0) = l
γ
γ e−2γ(eγ − 1 + γ − γ2) ,

Q12(0) = − l
γ
γ e−2γ(eγ − 1 − γ2) ,

Q22(0) = l
γ
e−2γ [(eγ − 1) + γ(eγ − 2) − γ2(1 + γ)] .

(7.8)

More precisely, as shown for example in [30, Lemma 4.4], for all n, r and ρ ∈
[ǫ, 1/ǫ],

sup
~u∈R2

sup
x∈R

|P{~u · ~z ≤ x} − G2(~u · ~z ≤ x|n~y(0);nQ(0))| ≤ κ(ǫ)n−1/2 . (7.9)

Absence of small cores. A considerable simplification comes from the obser-
vation that a typical large random hyper-graph does not have a non-empty core
of size below a certain threshold. Indeed, adapting a result of [45] (and its proof)
to the context of our graph ensemble, one finds that

Lemma 7.2.2. For l ≥ 3 and any ǫ > 0 there exist κ(l, ǫ) > 0 and C(l, ǫ) finite
such that for any m ≥ ǫn the probability that a random hyper-graph from the
ensemble Gl(n,m) has a non-empty core of less than mκ(l, ǫ) v-nodes is at most
C(l, ǫ)m1−l/2 (alternatively, the probability of having a non-empty core with less
than nκ v-nodes is at most C n1−l/2).
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Proof. A subset of v-nodes of a hyper-graph is called a stopping set if the restric-
tion of the hyper-graph to this subset has no c-node of degree one. Since the core
is the stopping set including the maximal number of v-nodes, it suffices to bound
well the number N(s, r) of stopping sets in our random hyper-graph which involve
exactly s v-nodes and r c-nodes. To this end, note that necessarily r ≤ ⌊ls/2⌋
and EN(s, r) =

(
n

s

)(
m

r

)
1

msl
coeff[(ex − 1 − x)r,xsl](sl)!

(multiply the number of sets of s v-nodes and r c-nodes by the probability that
such a set forms a stopping set, with coeff[(ex − 1 − x)r,xsl](sl)! counting the
number of ways of connecting the s v-nodes to these r c-nodes so as to form a
stopping set, while msl is the total number of ways of connecting the s v-nodes
in our graph ensemble). It is easy to see that for any integers r, t ≥ 1,

coeff[(ex − 1 − x)r,xt] ≤ (ex − 1 − x)r |
x=1≤ 1 .

Hence, for some ζ = ζ(l, ǫ) finite, any m ≥ ǫn, sl ≤ m and r ≤ ⌊ls/2⌋,EN(s, r) ≤
(
n

s

)(
m

r

)
(sl)!

msl
≤ ns

s!

m⌊sl/2⌋

⌊sl/2⌋!
(sl)!

msl
≤ ns

s!

(
sl

m

)⌈sl/2⌉
≤
[
ζ
( s
m

)l/2−1
]s
.

Thus, fixing 0 < κ < 1/l (so sl ≤ m whenever s ≤ κm), for l ≥ 3, the probability
that a random hyper-graph from the ensemble Gl(n,m) has a stopping set of size
at most mκ is bounded above byE [ mκ∑

s=1

⌊ls/2⌋∑

r=1

N(s, r)
]
≤ ζm1−l/2

∞∑

s=1

sl(ζκl/2−1)s−1 ≤ 4ζlm1−l/2 ,

provided ζκl/2−1 ≤ 1/2. �

7.3 The ODE method and the critical value

In view of the approximations of Section 7.2 the asymptotics of Pl(n, ρ) reduces

to determining the probability P̂n,ρ(z1(τ) = 0 for some τ < n) that the inhomo-

geneous Markov chain on Z
2
+ with the transition kernel Ŵτ/n(∆~z|n−1~z) of (7.4)

and the initial distribution G2(·|n~y(0);nQ(0)), hits the line z1(τ) = 0 for some
τ < n.

The functions (~x, θ) 7→ pa(~x, θ), a = 0, 1, 2 are of Lipschitz continuous partial
derivatives on each of the compact subsets

q̂+(ǫ) ≡ {(~x, θ) : 0 ≤ x1 ; 0 ≤ x2 ; θ ∈ [0, 1 − ǫ] ; 0 ≤ (1 − θ)l − x1 − 2x2} ,
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of R2 × R+ where the rescaled (macroscopic) state and time variables ~x ≡ n−1~z
and θ ≡ τ/n are whenever (~z, τ) ∈ Q+(ǫ). As a result, the transition kernels of
(7.4) can be extended to any ~x ∈ R

2 such that for some L = L(l, ǫ) finite, any
θ, θ′ ∈ [0, 1 − ǫ] and ~x, ~x ′ ∈ R

2

∣∣∣
∣∣∣Ŵθ′( · |~x ′) − Ŵθ( · |~x)

∣∣∣
∣∣∣
TV

≤ L (||~x ′ − ~x|| + |θ′ − θ|)

(with || · ||TV denoting the total variation norm and || · || the Euclidean norm in
R

2).

So, with the approximating chain of kernel Ŵθ(∆~z|~x) having bounded incre-
ments (= ∆~z), and its transition probabilities depending smoothly on (~x, θ), the
scaled process n−1~z(θn) concentrates around the solution of the ODE

d~y

dθ
(θ) = ~F (~y(θ), θ) , (7.10)

starting at ~y(0) of (7.7), where ~F (~x, θ) = (−1 + (l − 1)(p1 − p0),−(l − 1)p1) is
the mean of ∆~z under the transitions of (7.4). This is shown for instance in
[38, 44, 26].

We note in passing that this approach of using a deterministic ODE as an
asymptotic approximation for slowly varying random processes goes back at least
to [37], and such degenerate (or zero-one) fluid-limits have been established for
many other problems. For example, this was done in [36] for the largest possible
matching and in [46] for the size of k-core of random graphs (c.f. [43] for a general
approach for deriving such results without recourse to ODE approximations).

Setting hρ(u) ≡ u − 1 + exp(−γul−1), with a bit of real analysis one verifies
that for γ = l/ρ finite, the ODE (7.10) admits a unique solution ~y(θ; ρ) subject
to the initial condition (7.7) such that y1(θ; ρ) = lul−1hρ(u) for u(θ) ≡ (1− θ)1/l,
as long as hρ(u(θ)) ≥ 0. Thus, if ρ exceeds the finite and positive critical density

ρc ≡ inf{ρ > 0 : hρ(u) > 0 ∀u ∈ (0, 1]} ,

then y1(θ; ρ) is strictly positive for all θ ∈ [0, 1), while for any ρ ≤ ρc the solution
~y(θ; ρ) first hits the line y1 = 0 at some θ∗(ρ) < 1.

Returning to the XOR-SAT problem, [26, 44] prove that for a uniformly chosen
linear system with n equations and m = ρn variables the leaf removal algorithm is
successful with high probability if ρ > ρc and fails with high probability if ρ < ρc.
See Fig. 7.1 for an illustration of this phenomenon. Similarly, in the context of
decoding of a noisy message over the binary erasure channel (i.e. uniqueness
of the solution for a given linear system over GF[2]), [38] show that with high
probability this algorithm successfully decimates the whole hyper-graph without
ever running out of degree one vertices if ρ > ρc. Vice versa, for ρ < ρc, the
solution ~y(θ; ρ) crosses the y1 = 0 plane near which point the algorithm stops
with high probability and returns a core of size O(n). The value of ρ translates
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Figure 7.1: Probability that a random l = 3-hyper-graph with m vertices and
n = m/ρ hyper-edges has a non-empty 2-core estimated numerically for m = 100,
. . . , 600. The vertical line corresponds to the asymptotic threshold ρc ≈ 1.2218.

into noise level in this communication application, so [38] in essence explicitly
characterize the critical noise value, for a variety of codes (i.e. random hyper-
graph ensembles). Though this result has been successfully used for code design,
it is often a poor approximation for the moderate code block-length (say, n = 102

to 105) that are relevant in practice.
The first order phase transition in the size of the core at ρ = ρc where it

abruptly changes from an empty core for ρ > ρc to a core whose size is a positive
fraction of n for ρ < ρc, has other important implications. For example, as
shown in [26, 44] the structure of the set of solutions of the linear system changes
dramatically at ρc, exhibiting a ‘clustering effect’ when ρ < ρc. More precisely, a
typical instance of our ensemble has a core that corresponds to n(1−θ∗(ρ))+o(n)
equations in ny2(θ∗(ρ)) + o(n) variables. The approximately 2m−n solutions of
the original linear system partition to about 2nξ(ρ) clusters according to their
projection on the core, such that the distance between each pair of clusters is
O(n). As long as ξ(ρ) = y2(θ∗(ρ))−(1−θ∗(ρ)) is positive, with high probability the
original system is solvable (i.e the problem is satisfiable), whereas when ξ(ρ) < 0
it is non-solvable with high probability.

Such ‘solution clustering’ phenomenon has been conjectured for a variety of
random combinatorial decision problems, on the basis of non-rigorous statistical
mechanics calculations. The most studied among these problems is the random
K-satisfiability, for which some indication of clustering is rigorously proved in [42,
23]. Several authors suggest that the solution clustering phenomenon is related
to the poor performance of search algorithms on properly chosen ensembles of
random instances. Still within randomK-satisfiability, the performance of certain
standard solution heuristics (such as the ‘pure-literal’ rule), is also related to the
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appearance of properly defined cores (see [43]).
We conclude this subsection with a ‘cavity type’ direct prediction of the value

of ρc without reference to a peeling algorithm (or any other stochastic dynamic).
To this end, we set u to denote the probability that a typical c-node of Gl(n,m),
say a, is part of the core. If this is the case, then an hyper-edge i incident to a is
also part of the core iff all other l−1 sockets of i are connected to c-nodes from the
core. Using the Bethe ansatz we consider the latter to be the intersection of l−1
independent events, each of probability u. So, with probability ul−1 an hyper-
edge i incident to a from the core, is also in the core. As already seen, a typical
c-node in our graph ensemble has Poisson(γ) hyper-edges incident to it, hence
Poisson(γul−1) of them shall be from the core. Recall that a c-node belongs to
the core iff at least one hyper-edge incident to it is in the core. By self-consistency,
this yields the identity u = 1 − exp(−γul−1), or alternatively, hρ(u) = 0. As we
have already seen, the existence of u ∈ (0, 1] for which hρ(u) = 0 is equivalent to
ρ ≤ ρc.

7.4 Diffusion approximation and scaling window

size

As mentioned before, the ODE asymptotics as in [38] is of limited value for
decoding with code block-length that are relevant in practice. For this reason, [22]
go one step further and using a diffusion approximation, provide the probability of
successful decoding in the double limit of large size n and noise level approaching
the critical value (i.e. taking ρn → ρc).

Indeed, fixing ρ > 0 the fluctuations of ~z(nθ) around n~y(θ) are accumulated
in nθ stochastic steps, hence are of order

√
n. Further, applying the classical

Stroock-Varadhan martingale characterization technique, one finds that the res-
caled variable (~z(nθ) − n~y(θ))/

√
n converges in law as n → ∞ to a Gaussian

random variable whose covariance matrix Q(θ; ρ) = {Qab(θ; ρ); 1 ≤ a, b ≤ 2} is
the symmetric positive definite solution of the ODE:

dQ(θ)

dθ
= G(~y(θ), θ) + A(~y(θ), θ)Q(θ) + Q(θ)A(~y(θ), θ)† (7.11)

(c.f. [22]). Here A(~x, θ) ≡ {Aab(~x, θ) = ∂xb
Fa(~x, θ) ; 1 ≤ a, b ≤ 2} is the matrix of

derivatives of the drift term for the mean ODE (7.10) and G(~x, θ) = {Gab(~x, θ) :
a, b ∈ {1, 2}} is the covariance of ∆~z at (~x, θ) under the transition kernel (7.4).
That is, the non-negative definite symmetric matrix with entries





G11(~x, θ) = (l − 1)[p0 + p1 − (p0 − p1)
2] ,

G12(~x, θ) = −(l − 1)[p0p1 + p1(1 − p1)] ,
G22(~x, θ) = (l − 1)p1(1 − p1)

(7.12)

77



The dependence of Q(θ) ≡ Q(θ; ρ) on ρ is via the positive definite initial conditionQ(0; ρ) of (7.8) for the ODE (7.11) as well as the terms ~y(θ) = ~y(θ; ρ) that appear
in its right side.

Focusing hereafter on the critical case ρ = ρc, there exists then a unique
critical time θc ≡ θ∗(ρc) in (0, 1) with y1(θc) = y′1(θc) = 0 and y′′1(θc) > 0, while
the smooth solution θ 7→ y1(θ; ρc) is positive when θ 6= θc and θ 6= 1 (for more on
~y(·; ·) see [30, Proposition 4.2]).

For ρn = ρc + rn−1/2 the leading contribution to Pl(n, ρn) is the probabilityP̂n,ρn(z1(nθc) ≤ 0) for the inhomogeneous Markov chain ~z(τ) on Z
2
+ with transi-

tion kernel Ŵτ/n(∆~z|n−1~z) of (7.4) and the initial distribution G2(·|n~y(0);nQ(0))
at ρ = ρn. To estimate this contribution, note that y1(θc; ρc) = 0, hence

y1(θc; ρn) = rn−1/2[
∂y1

∂ρ
(θc; ρc) + o(1)] .

Thus, setting αl ≡ √
Q11/

∂y1
∂ρ

, both evaluated at θ = θc and ρ = ρc, by the
preceding Gaussian approximation

Pl(n, ρn) = P̂n,ρn(z1(nθc) ≤ 0) + o(1) = G1(−r/αl) + o(1) , (7.13)

as shown in [22]. In particular, the phase transition scaling window around ρ = ρc

is of size Θ(n−1/2).
In a related work, [29] determine the asymptotic core size for a random hyper-

graph from an ensemble which is the ‘dual’ of Gl(n,m). In their model the hyper-
edges (i.e. v-nodes) are of random, Poisson distributed sizes, which allows for
a particularly simple Markovian description of the peeling algorithm that const-
ructs the core. Dealing with random hyper-graphs at the critical point, where
the asymptotic core size exhibits a discontinuity, they describe the fluctuations
around the deterministic limit via a certain linear SDE. In doing so, they heavily
rely on the powerful theory of weak convergence, in particular in the context of
convergence of Markov processes. For further results that are derived along this
line of reasoning, see [28, 32, 33].

7.5 Finite size scaling: corrections to ρc

Finite size scaling has been the object of several investigations in statistical phy-
sics and in combinatorics. Most of these studies estimate the size of the cor-
responding scaling window. That is, fixing a small value of ε > 0, they find
the amount of change in some control parameter which moves the probability
of a relevant event from ε to 1 − ε. A remarkably general result in this direc-
tion is the rigorous formulation of a ‘Harris criterion’ in [25, 48]. Under mild
assumptions, this implies that the scaling window has to be at least Ω(n−1/2) for
a properly defined control parameter (for instance, the ratio ρ of the number of
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Figure 7.2: The numerical estimates for the core probabilities in Fig. 7.1, plotted
versus scaling variables r̃1, r̃2. On the left: r̃1 =

√
n(ρ − ρc)/αl. On the right:

r̃2 =
√
n(ρ − ρc − δln

−2/3)/αl where δl = αlβlΩ. According to Theorem 7.5.3,
corrections to the asymptotic curve G1(−r̃) (dashed) are Θ(n−1/6) on the left,
and O(n−5/26+ǫ) on the right.

nodes to hyper-edges in our problem). A more precise result has recently been
obtained for the satisfiable-unsatisfiable phase transition for the random 2-SAT
problem, yielding a window of size Θ(n−1/3) [24]. Note however that statistical
physics arguments suggest that the phase transition we consider here is not from
the same universality class as the satisfiable-unsatisfiable transition for random
2-SAT problem.

In contrast with the preceding and closer in level of precision to that for the
scaling behavior in the emergence of the giant component in Erdös-Rényi random
graphs (see [35] and references therein), for Gl(n,m) and ρn = ρc + rn−1/2 inside
the scaling window, it is conjectured in [22] and proved in [30] that the leading
correction to the diffusion approximation for Pl(n, ρn) is of order Θ(n−1/6) (and
admits a sharp characterization in terms of the distribution of a Brownian motion
with quadratic shift, from which it inherits the scaling with n). Comparing this
finite size scaling expression with numerical simulations, as illustrated in Figure
7.2, we see that it is very accurate even at n ≈ 100.

Such finite size scaling result is beyond the scope of weak convergence theory,
and while its proof involve delicate coupling arguments, expanding and keeping
track of the rate of decay of approximation errors (in terms of n), similar results
are expected for other phase transitions within the same class, such as k-core
percolation on random graphs (with k ≥ 3), or the pure literal rule threshold in
random k-SAT (with k ≥ 3, c.f. [31]). In a different direction, the same approach
provides rates of convergence (in the sup-norm) as n grows, for distributions of
many inhomogeneous Markov chains on R

d whose transition kernels Wt,n(xt+1 −
xt = y|xt = x) are approximately (in n) linear in x, and “strongly-elliptic” of
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uniformly bounded support with respect to y.
As a first step in proving the finite size scaling, the following refinement of

the left-side of (7.13) is provided in [30, Section 5].

Proposition 7.5.1. Let β ∈ (3/4, 1), Jn = [nθc−nβ, nθc+nβ] and |ρ−ρc| ≤ nβ
′−1

with β ′ < 2β − 1. Then, for εn = A logn and δn = Dn−1/2(log n)2,P̂n,ρ{ inf
τ∈Jn

z1(τ) ≤ −εn
}
− δn ≤ Pl(n, ρ) ≤ P̂n,ρ{ inf

τ∈Jn

z1(τ) ≤ εn

}
+ δn . (7.14)

At the critical point (i.e. for ρ = ρc and θ = θc) the solution of the ODE
(7.10) is tangent to the y1 = 0 plane and fluctuations in the y1 direction de-
termine whether a non-empty (hence, large), core exists or not. Further, in a

neighborhood of θc we have y1(θ) ≃ 1
2
F̃ (θ − θc)

2, for the positive constant

F̃ ≡ d2y1

dθ2
(θc; ρc) =

dF1

dθ
(~y(θc; ρc), θc) =

∂F1

∂θ
+
∂F1

∂y2

F2 (7.15)

(omitting hereafter arguments that refer to the critical point). In the same neigh-
borhood, the contribution of fluctuations to z1(nθ) − z1(nθc) is approximately√
G̃n|θ − θc|, with G̃ = G11(~y(θc; ρc), θc) > 0. Comparing these two contribu-

tions we see that the relevant scaling is Xn(t) = n−1/3[z1(nθc + n2/3t) − z1(nθc)],
which as shown in [30, Section 6] converges for large n, by strong approximation,

to X(t) = 1
2
F̃ t2 +

√
G̃W (t), for a standard two-sided Brownian motion W (t)

(with W (0) = 0). That is,

Proposition 7.5.2. Let ξ(r) be a normal random variable of mean
(
∂y1
∂ρ

)
r and

variance Q11 (both evaluated at θ = θc and ρ = ρc), which is independent of W (t).
For some β ∈ (3/4, 1), any η < 5/26, all A > 0, r ∈ R and n large enough, if

ρn = ρc + r n−1/2 and εn = A logn, then

∣∣∣P̂n,ρn

{
inf
τ∈Jn

z1(τ) ≤ ±εn
}
− P{n1/6ξ + inf

t
X(t) ≤ 0

}∣∣∣ ≤ n−η . (7.16)

We note in passing that within the scope of weak convergence [20] pioneered
the use of Brownian motion with quadratic drift (alaX(t) of Proposition 7.5.2), to
examine the near-critical behavior of the giant component in Erdös-Rényi random
graphs, and his method was extended in [33] to the giant set of identifiable vertices
in Poisson random hyper-graph models.

Combining Propositions 7.5.1 and 7.5.2 we estimate Pl(n, ρn) in terms of the
distribution of the global minimum of the process {X(t)}. The latter has been
determined already in [34], yielding the following conclusion.
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Theorem 7.5.3. For l ≥ 3 set αl =
√
Q11/

∂y1
∂ρ

, βl = 1√
Q11

G̃2/3 F̃−1/3 and ρn =

ρc + r n−1/2. Then, for any η < 5/26

Pl(n, ρn) = G1(−r/αl) + βlΩ G
′
1(−r/αl) n−1/6 +O(n−η) , (7.17)

for Ω ≡
∫∞
0
[1−K(z)2] dz and an explicit function K(·) (see [30, equation (2.17)]).

Remark 7.5.4. The simulations in Figure 7.2 suggest that the approximation
of Pl(n, ρn) we provide in (7.17) is more accurate than the O(n−5/26+ǫ) cor-
rection term suggests. Our proof shows that one cannot hope for a better er-
ror estimate than Θ(n−1/3) as we neglect the second order term in expanding
Φ(−r/αl + Cn−1/6), see (7.18). We believe this is indeed the order of the next
term in the expansion (7.17). Determining its form is an open problem.

Proof. Putting together Propositions 7.5.1 and 7.5.2, we get that

Pl(n, ρn) = P{n1/6ξ + inf
t
X(t) ≤ 0

}
+O(n−η) .

By Brownian scaling, X(t) = F̃−1/3G̃2/3X̃(F̃ 2/3G̃−1/3t), where X̃(t) = 1
2
t2 +W̃ (t)

and W̃ (t) is also a two sided standard Brownian motion. With Z = inft X̃(t), and

Y a standard normal random variable which is independent of X̃(t), we clearly
have that

Pl(n, ρn) = P{n1/6

(
∂y1

∂ρ

)
r + n1/6

√
Q11Y + F̃−1/3G̃2/3Z ≤ 0

}
+O(n−η)

= E{G1

(
− r

αl
− βln

−1/6Z
)}

+O(n−η) . (7.18)

The proof of the theorem is thus completed by a first order Taylor expansion of
G1( · ) around −r/αl, as soon as we show that EZ = −Ω, and E|Z|2 is finite.
To this end, from [34, Theorem 3.1], we easily deduce that Z has the continuous
distribution function FZ(z) = 1 −K(−z)2, for z < 0, while FZ(z) = 1 for z ≥ 0,
resulting after integration by parts with the explicit formula (2.16) of [30] for Ω.
We note in passing that taking c = 1/2 and s = 0 in [34, (5.2)] provides the
explicit expression of [30, formula (2.17)] for K(x), en-route to which [34] also
proves the the finiteness of the relevant integral. Further, [34, Corollary 3.4] shows

that the probability that the minimum of X̃(t) is achieved as some t 6∈ [−T, T ]

is at most A−1
0 exp(−A0T

3) for a positive constant A0. With X̃(t) ≥ W̃ (t) we
therefore have that

FZ(z) ≡ P{Z ≤ z} ≤ P{ inf
t∈[−T,T ]

X̃(t) ≤ z

}
+ A−1

0 e−A0T 3 ≤ e−z
2/2T + A−1

0 e−A0T 3

,

Taking T =
√
z we deduce that if z < 0, then FZ(z) < C−1 exp(−C|z|3/2) for

some C > 0, which yields the stated finiteness of each moment of Z (and in
particular, of E|Z|2 and Ω). �
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Consider the (time) evolution of the core for the hyper-graph process in which
one hyper-edge is added uniformly at random at each time step. In other words,
n increases with time, while the number of vertices m is kept fixed. Let S(n)
be the corresponding (random) number of hyper-edges in the core of the hyper-
graph at time n and nc ≡ min{n : S(n) ≥ 1} the onset of a non-empty core.
From Lemma 7.2.2 we have that for any ρ > 0 there exist κ > 0 and C <∞ such
that {S(n) : 0 ≤ n ≤ m/ρ} intersects [1, mκ] with probability at most Cm1−l/2.
Further, fixing ρ < ρc, the probability of an empty core, i.e. S(m/ρ) = 0, decays
(exponentially) in m. We thus deduce that for large m most of the trajectories
{S(n)} jump from having no core to a linear (at least mκ) core size at the well
defined (random) critical edge number nc. By the monotonicity of S(n) we also
know that Pm{nc ≤ m/ρ} = Pl(ρ,m/ρ). Therefore, Theorem 7.5.3 allows us to
determine the asymptotic distribution of nc. Indeed, expressing n in terms of m
in Eq. (7.17) we get that for each fixed x ∈ R,P{nc ≤ mρ−1

c +m1/2ρ−3/2
c αl x

}
= Φ(x) + βlΩρ

1/6
c Φ′(x)m−1/6 +O(m−η) ,

whence we read off that n̂c ≡ (nc −m/ρc)/(
√
mρ

−3/2
c αl)+βlΩρ

1/6
c m−1/6 converge

in distribution to the standard normal law (and the corresponding distribution
functions converge point-wise faster than m−η for any η < 5/26).

Remark 7.5.5. Our techniques are applicable to many other properties of the
core in the ‘scaling regime’ ρn = ρc + r n−1/2. For example, the distribution of
the number of hyper-edges S in the core can be derived from the approximation of
the trajectory of the decimation algorithm. Namely, as shown in [30, Section 6]
for such ρn, near the critical time z1(t) ≃

√
nξ(r) +Xn(t) for ξ(r) and Xn(t) ≡

n1/3X(n−2/3(t − nθc)) as in Proposition 7.5.2. With EXn(t) =
eF

2n
(t − nθc)

2,
upon noting that n − S = min{t : z1(t) = 0}, we obtain that, conditional to the
existence of a non-empty core, (S − n(1 − θc))/n

3/4 converges in distribution to

(4Q11/F̃
2)1/4 Z with Z a non-degenerate random variable. Indeed, at the relevant

time window nθc ±O(n3/4) the contribution of Xn(·)−EXn(·) to the fluctuations
of S is negligible in comparison with that of

√
nξ(r). So, more precisely, based

on the explicit distribution of ξ(r) we have that Z
d
=

√
U − rb for b ≡ Q

−1/2
11

∂y1
∂ρ

and U a standard normal random variable conditioned to U ≥ rb. In formulae,
Z is supported on R+ and admits there the probability density

pZ(z) =
2z e−

1
2
(rb+z2)2

√
2π [1 − Φ(rb)]

.

Naively one expects the core size to have Θ(n1/2) fluctuations. This is indeed
the asymptotic behavior for a fixed ρ < ρc, but as usual in phase transitions,
fluctuations are enhanced near the critical point.
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Appendix A

A combinatorial calculation

The objective of this lecture is to spell out a single calculation from the course in
all of its painful details. The choice of which calculation was made on the basis
of its level of complication (moderate) rather than on it intrinsic interest.

We shall deal with the ferromagnetic Ising model on random regular graphs,
which we treated a couple of weeks ago. Recall that this is a model over variables
xi ∈ {+1,−1}, i ∈ {1, . . . , N} with distribution

µ(x) =
1

ZG
exp



β

∑

(i,j)∈E
xixj



 . (A.1)

Here E is the edge set of a random graph G = (V = [N ], E) that we shall take
to be a random graph with degree k. More precisely G is generated as follows
(configuration model). Associate to each vertex i ∈ V k ‘half edges,’ sample a
uniformly random pairing over kN objects, and pair all the half-edges accordingly.
Two distinct pairings are considered as distinct graphs.

We will be interested in the restricted partition function defined by constrai-
ning the usual sum to configurations of vanishing magnetization:

Z∗
G ≡

∑

x:
P

i xi=0

exp



β

∑

(i,j)∈E
xixj



 . (A.2)

A few lectures ago, we made the following claim, that we will now prove.

Lemma A.0.6. Assume N to be even. Then the expectation of the restricted
partition function Z∗

G is, to the leading exponential order,E{Z∗
G}

.
= 2N(cosh β)kN/2 . (A.3)

Proof. Throughout the proof M = Nk/2 will denote the number of edges in G,
and GN,k the graph ensemble. Finally, for a set S, we shall denote by |S| its
cardinality.
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Let ∆G(x) denote the number of edges (i, j) ∈ E such that xi 6= xj , and
Z∗
G(∆) be the number of configurations x such that ∆G(x) = ∆. Then we clearly

have
∑

(i,j)∈E xixj = M − 2∆G(x). As a consequence

Z∗
G = eβM

M∑

∆=0

Z∗
G(∆) e−2β∆ . (A.4)

By linearity of expectation, and since the graph distribution is invariant under
vertices permutations, we haveEZ∗

G(∆) =
∑

P

i xi=0

P{∆G(x) = ∆} =

(
N

N/2

)P{∆G(x∗) = ∆} = (A.5)

=

(
N

N/2

) |{G ∈ GN,k st ∆G(x∗) = ∆}|
|GN,k| . (A.6)

Here x∗ denote the configuration consisting in N/2 +1’s followed by N/2 −1’s.
The number of graph in the ensembles is just the number of pairings of Nk

objects

|GN,k| = P(Nk) ≡ (Nk)!

(Nk/2)!2Nk/2
. (A.7)

On the other hand it is not too hard to compute the number of such pairings for
which the number edges with unequal end-points is ∆:

|{G ∈ GN,k st ∆G(x∗) = ∆}| =

(
M

∆

)2

∆! P(M − ∆)2 (A.8)

Putting everything together we getE{Z∗
G} = eβM

(
N

N/2

)
1

P(2M)

M∑

∆=0

(
M

∆

)2

∆! P(M − ∆)2e−2β∆ (A.9)

.
= eβM

(
N

N/2

)
1

P(2M)
sup

∆∈{0,...,M}

(
M

∆

)2

∆! P(M − ∆)2e−2β∆ .(A.10)

Let us recall the exponential behaviors (for q ∈ [0, 1])

(
N

Nq

)
.
= eNH(q) , P(N)

.
=

(
N

e

)N/2
, (A.11)

where H(x) ≡ −x log x− (1 − x) log(1 − x) is the binary entropy function.
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Substituting in the expression for E{Z∗
G} we getE{Z∗

G}
.
= eβM2N

(
2M

e

)−M
sup
δ∈[0,1]

{
e2MH(δ)

(
Mδ

e

)Mδ (
M(1 − δ)

e

)M(1−δ)
e−2Mβδ

}

= 2N eβM 2−M exp

{
M sup

δ∈[0,1]

[H(δ) − 2βδ]

}

The sup is achieved when H ′(δ) = 2β, which implies δ = δ∗(β) ≡ (1 + e2β)−1. At
this point we have H(δ∗) − 2βδ∗ = log(1 + e−2β), which yieldsE{Z∗

G}
.
= 2N eβM 2−M exp

{
M log(1 + e−2β)

}
= 2N(cosh β)M . (A.12)

�
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