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Abstract

Gibbs-ringing is a well known artifact which mani-

fests itself as spurious oscillations in the vicinity of

sharp image transients, e.g. at tissue boundaries.

The origin can be seen in the truncation of k-space

during MRI data-acquisition. Consequently, cor-

rection techniques like Gegenbauer reconstruction

or extrapolation methods aim at recovering these

missing data. Here, we present a simple and robust

method which exploits a different view on the Gibbs-

phenomena. The truncation in k-space can be inter-

preted as a convolution with a sinc-function in image

space. Hence, the severity of the artifacts depends on

how the sinc-function is sampled. We propose to re-

interpolate the image based on local, subvoxel shifts

to sample the ringing pattern at the zero-crossings

of the oscillating sinc-function. With this, the arti-

fact can effectively and robustly be removed with a

minimal amount of smoothing.

Key words: Gibbs-Ringing — Ringing-Artifact —

Truncation-Artifact

Introduction

In MRI, images are not gained directly, but with a re-

construction from acquisitions of corresponding Fourier

expansion coefficients in k-space,

I(x) =
1

N

N−1
∑

k=0

c(k) · e
−i2πkx

N , (1)

where I(x) denotes the image value at voxel index x
and c(k) are the N expansion coefficients. In practice,

only a finite number of expansion coefficients can be

acquired. This truncation of Fourier space introduces

artifacts if the expansion coefficients do not decay fast

enough with increasing k (1). This is the case for sharp

image transitions, where all higher frequency compo-

nents are required to properly reconstruct the edge. The

artifact can nicely be illustrated when reconstructing

the image on a fine grid using zero-filling by setting

the missing high frequency components for k > N to

zero. This operation corresponds to a multiplication of

the ‘true’ k-space with a rectangular window, which is

equivalent to a convolution with a sinc function in the

image domain. The side lobes of the sinc result in oscil-

lations (‘ringing’) in the neighborhood of sharp edges.

The issue is illustrated in Fig. 1 for the image of a single

edge.

Several approaches have been proposed to reduce

ringing artifacts. Most straightforwardly, image filters,

e.g. the Lanczos σ-approximation (2, 3) or a median fil-

ter can be used to smooth the oscillations. However, as

filtering implies global blurring, the spatial resolution

is effectively reduced, leading to a loss of fine image

details. More advanced methods have been developed

based on piecewise re-reconstruction of smooth regions

using Gegenbauer-Polynomials (2, 4). A drawback of

these methods is the requirement of an edge detection

and potential instabilities in some applications (5) due

to the involved choice of parameters. Another modern

approach consists of combined de-noising and ringing

removal using using total variation constrained data ex-

ploration (6).
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Figure 1: An image with a single discontinuity (black edge) is recon-
structed from truncated k-space data. The resulting image (blue dots)
is discrete and exhibits ringing artifacts. The amplitude of the ringing
depends on whether the underlying sinc pattern arising from the win-
dowing in k-space (red curve) is sampled at its extrema (A), or at the
zero-crossings (B).

The method we propose in this work is based on a

different view on the effect: In fact, due to the finite

number of expansion coefficients, the image is not re-

constructed on a continuous domain, but on a discrete

grid. Obviously, the strength of the ringing in the re-

constructed image depends on the precise location of

the edge relative to the sampling grid, i.e. how the sinc-

function is sampled. If the side lobes of the sinc-pattern

are sampled at its extrema, the ringing amplitude be-

comes maximal, whereas it disappears when sampled

at the zero crossings (see Fig. 1). This feature has been

demonstrated in experimental data in the context of the

dark rim artifact in cardiovascular imaging (7). Finding

the optimal subvoxel-shift for pixels in the neighbor-

hood of sharp edges in the image can therefore min-

imize the oscillations. However, as there are multi-

ple edges present in an image, the correction cannot

be achieved by a single, global shift, but must be per-

formed on a local basis. In the next section, we describe

a non-iterative method which conducts this task.

Methods

One-dimensional Case Let I0(x) be the original, dis-

crete image, and c0(k) its Fourier expansion coeffi-

cients. From this, a set of 2M images Is(x), where

s = −M . . .M − 1, with subsequent subvoxel-shifts is

created by multiplication with phase-ramps in Fourier-

space:

Is(x) =
1

N

N−1
∑

k=0

c0(k) · e
−i2π
N

k(x+ s
2M ) (2)

From this dataset, for each pixel x, the optimal shift

which minimizes potential oscillations in the neighbor-

hood is found. The corresponding measure can be cal-

culated with any oscillation-sensitive kernel, e.g. the

absolute differences in the neighborhood. It seems ad-

visable to measure the ringing to both sides of the pixel

individually, and select the smaller value. This way, in

the neighborhood of an edge, the ringing is always mea-

sured in the direction opposite to the edge (see Fig. 2.

Thus, the step itself does not contribute, and interfer-

ences from closely located edges are minimized. We

decided to use a simple absolute differences approach

to measure the oscillations.

TV +
s (x) =

k2
∑

n=k1

|Is(x+ n)− Is(x+ (n− 1))|

TV −

s (x) =

k2
∑

n=k1

|Is(x− n)− Is(x− (n− 1))|

where K = [k1, k2] defines the window size which is

used for measuring the amount of oscillations. There

are reasons to exclude the central point itself, using a

window of the form K = [1, k2]. This leads to more

stability for points directly on the edge, and minimizes

increase in noise correlation, as the oscillation measure-

ment itself is not correlated with the actual point we are

interested in. The choice of the window K constitutes

the only parameters of the method. The results will in-

dicate that the proposed algorithm is relatively robust

against this choice.

Now, for each point x the optimal shift is determined

by finding the shift s such that the total variation TV is

minimal. First, independently for the right (+) and left

(-) side:

r+(x) = argmin
s

TV +
s (x) (3)

r−(x) = argmin
s

TV −

s (x) (4)

Finally, we decide whether the overall minimum

min(TV +
r+(x)(x), TV

−

r−(x)(x)) comes from left or right

and this shift is determined to be the optimal shift r(x).
Now, we know the optimal shift at each image loca-

tion, which minimizes TV and hence also the ringing

artifact. But, finally we have to go back to original

grid, i.e. evaluating Ir(x)(x
′) at the non-integer posi-

tion x′ = x − r(x)/(2M). In order to do so we can

use any kind of alternative interpolation which is not a

sinc-interpolation. Formally, we have

Iunring(x) := Ir(x)(x− r(x)/(2M))

We decided to do this final ’back interpolation’ by a

simple linear interpolation. In fact, one could also use
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alternative high-order interpolation schemes (like poly-

nomial interpolation), but they usually lead to ringing

artifacts again.

Two-dimensional Case The extension to the two di-

mensional case is not straightforward as diagonal edges

produce checkerboard-like ringing patterns, as can be

observed in the phantom image in Fig. 4). Hence, it

is not possible to find the optimal shift in both dimen-

sions simultaneously. As a solution, we correct the im-

age in both dimensions separately resulting in two one-

dimensionally corrected images Jx and Jy . These are

then combined in Fourier space to the final image J via

J = FT−1
{

FT {Jx} ·Gx + FT {Jy} ·Gy

}

(5)

where FT{·} denotes the Fourier transform. We pro-

pose to use the ‘weighting functions’ Gx and Gy with a

saddle-like structure in Fourier Space of the form

Gx =
1+cos ky

(1+cos ky)+(1+cos kx)

Gy = 1+cos kx

(1+cos ky)+(1+cos kx)

(6)

This way, the high frequency components along the di-

rection of the correction are enhanced, while they are

dampened along the non-corrected direction. Due to

the normalization Gx + Gy = 1, artifact-free images,

where Jx = Jy , are left unchanged by Eq. 6. This en-

sures that minimal smoothing is introduced.

Figure 3: Weighting functions Gx (left) and Gy (right) for multiplication
with the 1D-corrected images in Fourier Space. High frequencies are
enhanced along the direction of the correction and suppressed along
the other direction.

Reference methods We compare the proposed

method against other, non-iterative filtering methods.

In order to minimize unwanted smoothing, low-pass fil-

ter with a high cutoff-frequency seem preferable. This

can be achieved with the Lanczos sigma-approximation

(2, 3), where the filtered image is given by

I(x) =
1

N

N−1
∑

k=0

(

sinc
k

N

)p

· c(k) · e
−i2πkx

N , (7)

where the parameter p controls the filter strength. In

this study, we use two different settings for p. On one

hand, we apply the standard choice of p = 1. This in-

duces, however, a rather strong smoothing of the im-

age. Hence, for a sound comparison with the pro-

posed method, we further set p such that the increase

in the correlation of the noise are the same for both,

the proposed method and the filtering approach. The

corresponding reference noise correlation was mea-

sured in a pure-noise region on the mean-free image

Ĩ(x) = I(x)− Ī via

r =

∑

x Ĩ(x)Ĩ(x− 1)
∑

x Ĩ
2(x)

(8)

Another popular, non-linear filtering approach which

preserves edges is given by the median filter. For com-

parison, we also applied a median filter, where the

‘width’ of the filter was fixed to a 2x2 neighborhood.

Numerical Phantoms The method was applied to

two numerical phantoms (Fig. 4). For the first phantom,

a polygonal shape with some stripes and small struc-

tures was simulated. Starting with a high-resolution

image, the artifact was simulated by reconstructing the

image from a truncated k-space with a reduction fac-

tor of 20. Second, for a more realistic brain phantom,

data from a T1-weighted post-contrast MRI measure-

ment of the brain was used. The artifact was artifi-

cially enhanced by re-reconstructing the image from a

smaller k-space with a reduction factor of 4. In both

cases, a ‘ground truth’ image without artifact, but with

the same decreased spatial resolution was generated

by convolving the high-resolution image with a boxcar

function, and sampling the result on the corresponding

low-resolution grid. Gaussian noise with a signal-to-

noise ratio of 100 was added.

MRI Measurements The method was applied to

diffusion-weighted-images (DWI) with 70 directions,

b = 1000 s/mm2, using a gradient echo EPI sequence

with TE = 107ms, matrix size 104x104, resolution

2mm3, performed on a 3T scanner (Siemens TIM

TRIO, Siemens, Erlangen, Germany). No distortion
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A)   ∆ = 0 pixels B)   ∆ = 0.25 pixels C)   ∆ = 0.5 pixels D)   ∆ = 0.75 pixels

Figure 2: 1-D image with two edges. A set of images with increasing subvoxel-shifts is created. The optimal shift is different for the two edges.
For the right edge, image A) is optimal whereas it is C) for the left edge. Consequently, the optimization must be performed on a local basis,
i.e. for each pixel individually. The optimization criteria is given by the amount of ringing, which can be characterized by calculating the absolute
differences in a certain range for each pixel. In C), this is exemplary illustrated for the red pixel. The total variation is calculated separately to both,
the left and right side of the center pixel. This ensures that the ringing is measured away from the edge, and the edge itself is not contributing.
Further, the center pixel itself is excluded in order to minimize the introduced correlations between neighboring pixels. Finally, the pixel value is
recalculated by interpolating the shifted image D) at the original pixel position, which in this example is 0.5 pixels to the left side (see red dot at
bottom). Mathematical details are given in the text.

correction was applied, as the involved correction meth-

ods already lead to significant filtering of the artifact,

especially in phase direction. Due to the different image

contrast for different b-values, the artifact might even

be amplified during post-processing of the diffusion

parameters. Therefore, we also calculated diffusion

maps, without and with artifact correction. We further

applied the method to a T2-weighted image acquired

with a turbo-spin-echo sequence, TE = 109 s, resolu-

tion 1x1x5mm2 on a 1.5T scanner (Siemens SONATA,

Siemens, Erlangen, Germany). Both dataset were ac-

quired in the context of clinical routine, written consent

was obtained to use the data for scientific use.

Results

Numerical Phantoms The results of the phantom

simulations are shown in Fig. 4. We show results us-

ing the median filter, the Lanczos approximation with

p = 1, results obtained with the proposed method using

different parameters, and results using the Lanczos ap-

proximation with filter parameters p adapted to yield an

equal noise correlation as the proposed method.

Obviously, the median filter preserves the edges bet-

ter than the Lanczos-approximation with p = 1, at a

smaller increase in the average smoothing, indicated by

the smaller increase in noise correlation. However, it

shows a stronger residual of the artifact, and fine image

details like small, peak-like structures are destroyed.

With the proposed method, on the other hand, the ar-

tifact can effectively be removed with minimal smooth-

ing of edges. The method is rather robust against the

choice of the kernel parameter. A larger neighbor-

hood results in less smoothing, but comes at the price

of slightly reduced artifact removal. A kernel size of

K = [1 , 3] seems to be a appropriate compromise be-

tween artifact removal and noise correlation. This set-

ting is used for the application to the MRI images.

These findings are basically the same for the phan-

tom constructed from the T1-weighted image in Fig. 5.

Also here, the artifact can most effectively be removed

using the proposed method, while preserving fine image

details.

MRI images The results for DWI measurements are

shown for one slice in Fig. 6. Apparently, the b0-images

exhibit strong ringing artifacts, which is even more em-

phasized after diffusion calculation. The artifact can be

reduced with both, the median filter and the Lanczos ap-

proximation with p = 1, however, at the cost of strong

smoothing. With the proposed method on the other

hand, the artifact can virtually completely be removed

with minimal filtering. Results from the T2-weighted

image given in Fig. 7. The findings are basically the

same as for the DWI measurement.

Discussion

Even though the Gibbs-ringing artifact is omnipresent

in MRI, most vendors do not include removal tech-

niques in the standard image reconstructing pipeline to

date. One reason for this might be that standard filtering

approaches inevitably reduce the effective image reso-

lution, and more advanced methods like Gegenbauer re-

reconstruction (4, 2, 8, 9) or data extrapolation methods

(10, 11) are practically difficult to handle due to their

complexity and, the requirement of an edge detection,
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Figure 4: Phantom image with multiple edges and noise. Inserts correspond to a scaled area with pure noise, correlation. The amount of noise
correlation (given by r) reflects the strength of the smoothing introduced by the methods and their parameters. Both, median filter and Lanczos
approximation with p = 1 lead to rather strong filtering. The median filter additionally introduces artifacts on point-like structures (see e.g. the
black dots in the images). Results using the proposed method are given in the second row, the Lanczos approximation with corresponding equal
noise correlation in the bottom row. With the proposed method, the artifact can virtually completely be removed with preservation of the edges and
without destroying fine image details, whereas the Lanczos approximation with equal noise correlation still suffers from significant artifacts.

and potential instabilities induced by the dependency on

the choice of the parameters.

Another approach consists of optimizations based

on total variation (6). These methods have proven

to effectively remove the artifact, however, they treat

noise and artifact equally, in contrast to the proposed

method, which explicitly aims at separating both con-

tributions. Further, the outcome of total variation ap-

plications strongly depends on the strength of the filter,

which must be adapted to the respective application.

The proposed method is rather robust to the choice

of its parameter, the kernel width K. Further, this pa-

rameter is independent of the image size, as oscillation

pattern of the ringing occurs always in the distance of

one voxel, and hence scales with the matrix size. The

method can therefore applied to any image with a uni-

versal value for K. We found that K = [1, 3] consti-

tutes a good compromise between artifact removal and

smoothing.

Conclusions

In this work, we presented a non-iterative method for re-

moval of ringing artifacts based on re-sampling the im-

age such that the source of the ringing pattern, the sinc-

function, is sampled at its zero crossings. We demon-

strated that the method effectively removes the artifact

while introducing minimal smoothing. The method has

a low computational cost, consists of a rather simple
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Figure 5: T1 weighted post-contrast MRI images with artificially enhanced artifact. Here, the same characteristics as in Fig. 4 can be observed.
Both, median filter and Lanczos approximation with p = 1 lead to blurring of image details (compare e.g. areas at red arrows in ground truth).
Again, in the Lanczos approximation with adapted parameters, there is still residual ringing visible (see e.g. blue arrows), even though the difference
to the proposed method is here less pronounced compared to the phantom in Fig. 4.

mathematical framework and is very stable against the

choice of its few parameters. This robustness suggests

it as a suitable candidate for a robust implementation in

the standard image processing pipeline in clinical rou-

tine. Even though designed in the context of MRI, the

method might also prove its applicability in other areas

such as Fourier-based data compression algorithms.
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approximation shows residual artifacts (see e.g. blue arrow).
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