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in the Stick Breaking Representation
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Abstract

Nonparametric Bayesian approaches to cluster-

ing, information retrieval, language modeling

and object recognition have recently shown great

promise as a new paradigm for unsupervised data

analysis. Most contributions have focused on the

Dirichlet process mixture models or extensions

thereof for which efficient Gibbs samplers ex-

ist. In this paper we explore Gibbs samplers for

infinite complexity mixture models in the stick

breaking representation. The advantage of this

representation is improved modeling flexibility.

For instance, one can design the prior distrib-

ution over cluster sizes or couple multiple infi-

nite mixture models (e.g., over time) at the level

of their parameters (i.e., the dependent Dirichlet

process model). However, Gibbs samplers for in-

finite mixture models (as recently introduced in

the statistics literature) seem to mix poorly over

cluster labels. Among others issues, this can have

the adverse effect that labels for the same clus-

ter in coupled mixture models are mixed up. We

introduce additional moves in these samplers to

improve mixing over cluster labels and to bring

clusters into correspondence. An application to

modeling of storm trajectories is used to illustrate

these ideas.

1 INTRODUCTION

Nonparametric Bayesian statistics has provided elegant so-

lutions to certain machine learning problems, in partic-

ular in clustering, text modeling and object recognition.

Importantly, Bayesian nonparametric techniques can han-

dle questions of model selection or averaging in a prin-

cipled manner. Where traditional Bayesian approaches

often assume an unknown but finite number components

in a model, nonparametric Bayesian approaches put their

prior on infinitely complex models, resulting in a num-

ber of components that grows with the number of data-

cases. Moreover, with the increasing computational power

of modern day computers these methods have now become

feasible alternatives in many machine learning domains.

The Dirichlet process (DP) (Ferguson, 1973; Blackwell &

MacQueen, 1973) is one of the most popular tools from

the nonparametric Bayesian toolbox. Its popularity can

be partially explained by the fact that there exist simple

and intuitive Gibbs sampling procedures that work well

in practice (Escobar & West, 1995; Bush & MacEachern,

1996; MacEachern & Müller, 1998; Neal, 2000; Green &

Richardson, 2001). One very attractive property of these

Gibbs samplers is that they sample in the space of equiva-

lence classes over cluster identities, i.e., the probability dis-

tribution is invariant w.r.t. permutations of the class labels.

This is clearly the appropriate space in which to operate,

since class labels are unidentifiable and irrelevant. How-

ever, this convenient property comes with a price, namely

that the distribution over cluster sizes is only partially at

one’s control. For a DP this distribution is exponential

with decay parameter α; for the Pitman-Yor (PYP) process

power-law distributions can also be modeled.

A more general representation exists that subsumes the

DP and the PYP, known as the stick-breaking represen-

tation (Sethuraman, 1994). In this representation, very

general distributions over cluster sizes can be modeled.

Recently several collapsed Gibbs samplers were proposed

which operate in this representation (Ishwaran & James,

2001; Ishwaran & James, 2003; Papaspiliopoulos &

Roberts, 2005). However, such sampling occurs in a very

different space than the DP samplers mentioned above,

namely in the space of cluster labels directly (rather than

the space of equivalence classes). In effect, the size-biased

ordering of the expected prior mixture probabilities means

that a permutation of the cluster labels changes the proba-

bility distribution. A point that seems to have been missed

in the literature is that the collapsed Gibbs samplers de-

scribed in Ishwaran and James (2003); Papaspiliopoulos

and Roberts (2005) can easily become stuck in local modes

corresponding to one particular assignment of cluster la-



bels to clusters. In fact, this mode is rarely the mode with

highest probability. Although the favored clustering asso-

ciated with any of these modes is typically very similar, we

will argue that any sampler should in fact mix over these

modes to remove a clustering bias. Furthermore, we will

show that the addition of some simple Metropolis-Hastings

moves corrects this issue.

A much more dramatic impact of this poor mixing over la-

bels can be observed when we couple infinite mixture mod-

els together at the level of the parameters as in the depen-

dent Dirichlet process (DDPs) (MacEachern, 2000). In this

case, the poor mixing over labels has the effect that corre-

sponding clusters are not assigned to the same cluster label.

Although the probability of such an assignment is very low,

the Gibbs sampler (MacEachern, 2000) is not able to mix

away from it. This issue has not been noted in the litera-

ture mainly because the DDP model that is used in practice

represents a special case (the single-p model) that does not

seem to suffer from this problem (Gelfand et al., 2004).

We propose extra moves for the Gibbs sampler to deal with

this issue. An application of the resulting Gibbs sampler to

tracking of storms illustrates these ideas.

2 GIBBS SAMPLING FOR DP MIXTURE

MODELS

One way to think of DP mixture models is as the limit of a

finite mixture model (of, say, Gaussian components) with

a uniform Dirichlet prior. Let us denote the parameters

(mean and covariance) of K clusters by θ = {µi, Σi} for

i = 1 . . .K , the matrix of observed data by X = x1, ..,xN ,

and let Z = z1, .., zN be the assignment variables. For

a uniform Dirichlet prior with hyperparameters α/K , one

may integrate out the Dirichlet prior (Ishwaran & Zara-

pour, 2002; Neal, 2000) to obtain the joint distribution

P (X, Z) = P (X |Z)P (Z) where

P (X |Z) =

∫

dθ P (X |Z, θ) P (θ) (1)

P (Z) = P (z1)

N
∏

n=2

P (zn|z1, .., zn−1) (2)

with

P (zn = i|z1, .., zn−1) =
α/K + Ni

α + n − 1

where Ni is the number of data previously assigned to clus-

ter i. Taking the limit as K → ∞, one can express this as

P (zn = i|z1, .., zn−1) =

{

Ni

α+n−1 Ni > 0
α

α+n−1 i = 1 + maxj<n zj

(3)

We call the conditional probability over cluster assign-

ments P (zn = i|z1, .., zn−1) a prediction rule and note

that it is exchangeable: the total probability P (Z) does not

depend on the order in which we process the data. Also,

note that in Eqn. (3) we have pooled together all of the (in-

finitely many) remaining clusters, i.e., those clusters which

do not yet have any data assignments.

For the purposes of clustering, we are interested in drawing

samples from the posterior P (Z|X). Following the statis-

tics literature (Escobar & West, 1995; Bush & MacEach-

ern, 1996; MacEachern & Müller, 1998; Neal, 2000), we

use a collapsed Gibbs sampler which samples an assign-

ment for one datum xn at a time from the conditional distri-

bution P (zn|Z(−n), X), where Z(−n) denotes the assign-

ments of all data except xn. The expression for this condi-

tional follows directly from Eqns. (1)–(3) and is given by,

P (zn = i|Z(−n), X) ∝ P (zn = i|Z(−n))×
∫

dθi P (xn|zn = i, θi)P (θi|X(−n), Z(−n)) (4)

where

P (θi|X(−n), Z(−n)) ∝
∏

j|zj=i

N [xj ; µi, Σi] P (Σ−1
i , µi)

If we use a normal-Wishart prior the predictive distrib-

ution can be computed analytically as a student-t distri-

bution (Gelman et al., 2004, p.88). The expression for

P (zn = i|Z(−n)) is analogous to Eqn. (3), replacing N i

by N
(−n)
i , the total number of data assigned to cluster i if

we remove data-case n from the pool, and n by N , the total

number of data. This expression is easily derived using ex-

changeability of the data, since we may always assume that

the datum under consideration is the last one in Eqn. (3).

The Gibbs sampler now simply rotates through reassigning

data to clusters using the conditional distribution, Eqn. (4).

Samplers using additional split and merge moves are de-

fined in Neal (2000) and Green and Richardson (2001).

3 SAMPLING FROM STICK–BREAKING

PRIORS

The Gibbs sampler described in the previous section de-

pends on the prediction rule given by Eqn. (3), that is, the

conditional probability of assigning a particle xn to some

existing cluster or to a new cluster. The main requirement

for such a prediction rule is that it defines an exchangeable

random partition of the integers 1..N . This implies that

the joint probability of an assignment z1, ..., zN as com-

puted by the product in Eqn. (2) is independent of the or-

der in which we process the data. This is in fact a very

strong requirement (Pitman, 2002), and to the best of our

knowledge exchangeable prediction rules over assignment

partitions are only known for the DP and the Pitman-Yor

process (PYP).



3.1 THE STICK–BREAKING REPRESENTATION

There is a more general representation that encompasses

both DPs and PYPs. The “stick-breaking” representation

(Sethuraman, 1994) states that the probability measure un-

derlying a DP can be written as,

P(θ|π, θ∗) =

∞
∑

i=1

πiδ(θi − θ∗i )

where θ∗ are sampled IID from the prior H(θ) and the rel-

ative cluster sizes π follow the stick-breaking construction,

πi = πi(V ) = Vi

i−1
∏

j=1

(1 − Vj)

where the Vi are sampled IID from the beta distribution

B(V ; 1, α). This process can be thought of as repeatedly

breaking a stick of unit length into two pieces where the

breakpoint is randomly sampled from the Beta distribution.

We equate π1 to the length of the left-hand segment of the

stick. We then take the right segment and break it again ran-

domly; the left segment of this remainder is then equated

to π2, and so forth. This process guarantees that the infi-

nite sum of mixture weights
∑

i πi converges to 1 (the total

length of the stick) in probability.

Processes much more general than the DP can be obtained

using this construction by choosing the parameters of the

Beta distribution arbitrarily and making them dependent on

the label i. In other words, after i− 1 breaks, we randomly

break the remainder at a length drawn from B(a i, bi), and

follow the same construction1 to obtain the weights πi. As

an example, the PYP is obtained by choosing a i = 1 − a
and bi = b + i × a for a ∈ [0, 1) and b > −a.

The distribution of the cluster weights is determined by

the setting of the {ai, bi}. For instance for the DP with

ai = 1, bi = α we obtain a exponential distribution

of cluster sizes and for a special case of the PYP with

ai = 1 − β, bi = i × β we find a power law distribu-

tion of the cluster sizes. The stick breaking representation

thus offers a flexible means of designing these cluster size

distributions. In particular, when we have prior informa-

tion about this distribution this framework can offer a way

of expressing that information.

Given N particles assigned to clusters z1, .., zN , the poste-

rior probability of mixture weights given these assignments

can be computed in closed form. For a finite mixture model

of K clusters, it is easy to show that the joint probability is

P (V |Z) ∝
∏

i

B(Vi ; a∗
i , b

∗
i ) (5)

1To make sure that the weights sum to 1 in this more general
setting we must check that

�
∞

i=1
E[log(1−Vi)] = −∞, or alter-

natively, it is also sufficient to check that
�

∞

i=1
log[1 + ai/bi] =

∞ (Ishwaran & James, 2001).

and posterior expected cluster weights2 are given by

E[πi|Z] =
a∗

i

a∗
i + b∗i

i−1
∏

j=1

b∗j
a∗

j + b∗j
(6)

where a∗
i = ai + Ni, b∗i = bi +

∑∞
j=i+1 Nj and Ni is

the total number of particles in cluster i. The proof for the

same result in the infinite case can be found in Ishwaran

and James (2003).

If we choose to set ai = γi and bi =
∑∞

j=i+1 γi, then

ai + bi = bi−1, resulting in the simplified expression

E[πi|Z] =
γi + Ni

γ + N
γ =

∞
∑

i=1

γi (7)

In this single parameter model (Ishwaran & James, 2003),

the γi play the role of pseudo-particles, i.e., a (possibly

fractional) number of data assigned a priori to cluster i.

However, there is an important subtlety to the stick–

breaking formulation which has the potential to cause some

confusion. Applying the values {ai = 1, bi = α} to

Eqn. (5), we do not directly obtain the prediction rule for

a DP given in Eqn. (3). The difference is that the predic-

tion rule given by Eqn. (3) operates in the space of equiv-

alence classes over cluster labels (i.e., z1 = z2 �= z3 =
z4 = z5 . . ., and the actual cluster identities are irrele-

vant), while the stick-breaking representation is defined in

the space of the explicit cluster labels (i.e., z1 = 2, z2 =
2, z3 = 8, z4 = 8, z5 = 8, . . .). Hence, the DP sampler

ignores the actual labels and considers all instances where

z1 = z2 �= z3 = z4 = z5... as a single equivalence class.

To drive this point home, consider sampling two data as-

signments from the same cluster. For a DP we know from

the prediction rule that the total probability of this event is

1/(1 + α). However, in the stick breaking representation

we must sum over all labels to obtain the same result:

P (z1 = z2) =

∞
∑

i=1

P (z2 = i|z1 = i)P (z1 = i)

which after some algebra can be found to be equal to 1/(1+
α) as well. Clearly, the space of equivalence classes is to be

preferred over the space of explicit cluster labels because

nothing observable depends on these labels. At the same

time, it is not easy to see how one could avoid it in the

stick-breaking representation, because not all prior mixture

probabilities can be equal and finite (an infinite number of

them must sum to 1). The important consequence of these

observations is that the sampler needs to mix over cluster

labels. If it does not, clusters with lower labels have an

unfair advantage over clusters with higher labels because

they have higher prior probabilities. As it turns out, the

2The prior expected cluster weights are easily obtained by
evaluating Eqn. (6) with the Ni = 0.



standard Gibbs sampler described in Ishwaran and James

(2003) mixes very poorly over cluster labels. We address

this issue more fully in Section 3.3.

3.2 MONTE-CARLO SAMPLING

We now turn our attention to the infinite mixture model

described in Ishwaran and James (2003). One of the goals

of this paper is to test this algorithm as a general clustering

tool and to suggest improvements where necessary.

The joint distribution of a sample X = x1, ..,xN , pa-

rameters θi, i = 1, ..,∞, assignment variables Z =
z1, .., zN and stick-lengths Vi, i = 1, ..,∞ is given as

P (X, Z, V, θ) = P (X |Z, θ)P (Z|V )P (V )P (θ), where

P (X |Z, θ) =

N
∏

n=1

N [xn; µzn
, Σzn

] (8a)

P (Z|V ) =
N
∏

n=1

πzn
(V ) (8b)

P (V ) =

∞
∏

i=1

B(Vi ; ai, bi) (8c)

P (θ) =

∞
∏

i=1

NW [µi, Σ
−1
i ] (8d)

with NW the normal-Wishart prior for cluster means and

inverse covariances.

The collapsed Gibbs sampler iteratively samples from the

conditional distribution P (zn = i|Z(−n), X) computed as,

P (zn = i|Z(−n), X) ∝
∫

dθi P (xn|zn = i, θi)P (θi|X(−n), Z(−n) = i)×
∫

dV P (zn = i|V )P (V |Z(−n)) i = 1..∞ (9)

where P (θi|X(−n), Z(−n)) and P (V |Z(−n)) are the pos-

terior distribution of the parameters and the stick-lengths

respectively.

If we use the Normal-Wishart conjugate prior, the predic-

tive distribution P (xn|Z, X(−n)) obtained after marginal-

izing out θ is a student-t distribution (Gelman et al., 2004,

p.88). Similarly, the probability P (zn = i|Z(−n)) after

marginalizing out the stick variables is equal to the ex-

pected value E[πi|Z(−n)] and can be found by applying

Eqn. (6), where a∗
i = ai+N

(−n)
i , b∗i = bi+

∑∞
j=i+1 N

(−n)
j

and N
(−n)
i is the number of data associated with cluster i

if we remove xn from the pool. A similar modification to

Eqn. (7) (substituting N
(−n)
i for Ni, etc.) gives the predic-

tion rule for the simplified parameterization {γ i}.

Finally, we need to compute a normalization constant λ(n)
by summing the (infinite number of) terms over the cluster

index i in Eqn. (9). Fortunately, the predictive distributions

P (xn|Z) for empty clusters are identical, allowing them to

be lumped together. Thus if K is the index of the maximum

occupied cluster, λ(n) can be computed by summing over

only K + 1 terms.

Gibbs sampling proceeds by drawing a uniform random

variable u in the range [0, 1], and determining the first clus-

ter label i∗ for which
∑i∗

i=1 P (zn = i|Z(−n), X) exceeds

u. We then set zn = i∗, and iterate. Note that, by finding

each of these probabilities sequentially, one avoids comput-

ing more than the finite number (i∗) of required values.

3.3 MIXING OVER CLUSTERS

Empirically, this sampler will get stuck in a local minimum

where a cluster is always associated with the same label.

This state of affairs has no real impact on the DP sampler

discussed in Section 2, because a relabeling of the clusters

does not change the probability of the data, and sampling is

performed over equivalence classes where the actual label

does not matter. However, in the stick–breaking formula-

tion the label does matter, because each label has a different

prior probability over its size. Hence, swapping the labels

between two clusters i and j does result in a different prob-

ability.

The solution is to make sure the sampler mixes effectively

over cluster labels. To achieve that we have introduced

mixing moves over cluster labels. There are many pos-

sible options for mixing moves, and without exhaustively

searching over possibilities we used the following method

which worked well for us in practice3. Between each sam-

ple of an assignment variable, with probability equal to the

static parameter Mi, mixing move i was proposed. M was

set based on how fast we observed the sampler converging

over cluster labels. If the problem had many local min-

imum and the sampler was converging slowly, as in the

DDP experiment described in Section 6, M was set to a

high probability, such as 1.

The first move “label-swap” randomly chooses two clus-

ter labels according to their prior probabilities p i = γi/γ,

then proposes to swap them and accepts this move by using

the usual Metropolis-Hastings accept/reject rule. Because

the proposal distribution is symmetric and the predictive

distributions P (xn|Z = i, X(−n)) are unchanged under

this swap, the acceptance rule only needs to consider the

change in the probability of cluster assignment variables

P (Znew)/P (Zold). Since the distribution on cluster sizes

depends on the cluster label in the stick-breaking construc-

tion, P (Z) will change if the number of data points as-

signed to a cluster changes. However, due to exchange-

3One reviewer suggested another move operator which we be-
lieve would work well but did not have time to test: select a label
according to its prior probability and propose to swap it with the
kth next largest label.



ability, we only need to consider swapped clusters. Using

Eqn. (7), if clusters i, j are swapped, then after some alge-

bra the acceptance rule is reduced to

Paccept = min

[

1,

∏Nj−1
n=0 (γi + n)

∏Ni−1
n=0 (γj + n)

∏Ni−1
n=0 (γi + n)

∏Nj−1
n=0 (γj + n)

]

where Ni is the number of data points in cluster i before

the swap. Our second move, “label-permute”, randomly

permutes all the cluster labels with an index smaller than or

equal to some index sampled from the prior p i = γi/γ. The

Metropolis-Hastings rule is the same as for “label-swap”,

except now the range of cluster labels that were permuted

must be considered.

Empirically, it was observed that the “label-permute” move

improves convergence most early in the chain, when many

labels may be disordered. On the other hand,“label-swap”

is most beneficial when the clusters labels have mostly con-

verged, but a few remain disordered. As we will see in the

experiments, these moves suffice to mix over cluster labels.

4 ILLUSTRATIVE EXAMPLE

To illustrate the effect of poor mixing between cluster la-

bels, we generated the symmetric dataset in Figure 1(a).

We use a standard normal-Wishart prior centered at zero

and tuned so that most of the time two clusters best explain

the data. The central data-case should be assigned with

probability 0.5 to the left or the right cluster. To test this

we used a prior on cluster sizes with ai = 5 and bi = 0.1.

We then run the sampler for 5000 iterations (discarding the

first 100 for burn-in) with and without the extra mixing

moves. We measure the average association between the

central data-case and all other data-cases, where two data-

cases are associated if they have the same label. The results

are shown in Figures 1(b) and 1(c). Clearly, without mix-

ing the prior favors association with one cluster (right block

of 25 data-cases) over the other, but due to symmetry this

should not be the case. The extra moves clearly undo this

effect.

5 DEPENDENT DIRICHLET

PROCESSES

There is a very natural extension of the infinite mixture

models described in Section 3.2 to multiple, coupled mod-

els called a dependent Dirichlet process (DDP) (MacEach-

ern, 2000). We consider a finite number of such models, in-

dexed by t (representing time in our application), and cou-

ple the models at the level of the parameters θ. In our setup,

at each time point we have a number of observations that

we wish to cluster. However, there is no correspondence

between these observations; for instance there may be very

many observations at one time slice and very few (or none

at all) at another. The model draws statistical strength from

neighboring time slices by imposing smoothness between

the means and possibly the covariances and cluster sizes of

neighboring clusters. As an example we will look at radar

images of weather patterns, where the color index deter-

mines the number of fictitious observations at a certain spa-

tial location. We begin by describing the model and Gibbs

sampler as proposed in MacEachern (2000), then identify

some problems with this sampler and address them by in-

troducing additional moves.

Let us consider a family of T joint distributions as in Sec-

tion 3.2, one for each time slice. Each of these T distrib-

utions is coupled through a joint prior distribution on the

parameters P (θ),

P (X, Z, V, θ) = P (θ)
∏

t

P (Xt|Zt, θt)P (Zt|Vt)P (Vt)

where each individual term P (Xt|Zt, θt), P (Zt|Vt), and

P (Vt) are modeled as in Eqns. (8a)–(8c) respectively. Note

that one could also use a joint distribution over stick-

lengths V , but for the sake of simplicity we will consider

them to be independent. This allows us to integrate out V ,

resulting in a prediction rule4 P (znt
= i|Z−nt

) similar to

the expected value in Eqn. (7) but replacing N by N t and

N
(−n)
i by N−nt

t,i . We also assume the prior weights are the

same at all time slices.

The Gibbs sampler alternates sampling assignment vari-

ables from P (znt
|Xt, Z−nt

, θt) and parameters from

P (θt|θ−t, Xt, Zt). The equation for the first conditional

is similar to Eqn. (9), but without integrating out θ,

P (znt
= i|Xt, Z−nt

, θt) ∝ (10)

N [xnt
; µznt

, Σznt
] P (znt

= i|Z−nt
) i ≤ Kmax

where Kmax = maxt maxnt
znt

is the largest occupied

cluster label over all time slices. As in Section 3.2, to

sample from Eqn. (10) we must compute a data-dependent

normalization term. We can again lump together all clus-

ters which are unoccupied in any time slice, i.e., clus-

ters i > Kmax, ensuring that the required summation is

again finite. Note, however, that empty clusters with labels

smaller than Kmax are sampled and not marginalized out.

If analytic marginalization is not possible for i > Kmax,

an alternative sampling-based method is described in Pa-

paspiliopoulos and Roberts (2005).

The distributions at each time slice are coupled through the

parameters’ conditional distribution,

P (θi,t|θi,−t, Xt, Zt) ∝ (11)
∏

nt|znt
=i

N [xnt
; µznt

, Σznt
] W(Σ−1

i,t ) N (µi,t|µi,−t)

4We have slightly abused notation to avoid additional clutter:
for instance when we write xnt , we mean x

t

nt
, i.e. the coordinates

at time t of the n’th particle.
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Figure 1: (a) The symmetric data-set to illustrate clustering bias in the absence of mixing moves. (b) Average association of center
point to all other data-cases for a sampler without mixing moves. Note the cluster bias. (c) Average association of center point to all
other data-cases for a sampler with mixing moves.

Many interesting choices for the joint distribution over pa-

rameters are conceivable. For instance, a state–space dy-

namical model can be chosen for the cluster means (and

computation made efficient via a Kalman filter). In our ex-

periments we model the cluster covariances using indepen-

dent inverse Wishart distributions, while smoothness over

the cluster means is enforced through a joint Gaussian dis-

tribution P (µ) = N [µ;m, Γ] with m set to the sample

mean of the data and Γ given by,

Γt,t′ = a exp(−β||t − t′||δ)Id; Γt = bId (12)

with Id the identity matrix in d dimensions5.

The poor mixing over labels reported in Sections 3.3 and

4 turns out to be even more problematic for the DDP. The

reason is that the DPs at each time slices are often initial-

ized to have different labels for corresponding clusters. If

the DPs were uncoupled the samplers may converge, but

when coupled these configurations represent local modes

in the probability distribution from which the naive Gibbs

sampler has difficulty escaping (see Figure 3). However,

the problem can be fixed by introducing additional moves,

which explicitly propose label re-orderings and accept or

reject them with the standard Metropolis-Hastings rule. In

the coupled case we need to propose moves that will im-

prove mixing over labels within each DP, but we also need

to propose moves which will bring separate DPs into align-

ment with each other. The basic extra move we use is a

variation on “label-swap”, where the labels of two clus-

ters i and j are swapped for all time slices in an interval

t ∈ [t1, t2]. The boundaries are picked in three ways, 1)

t1 = t2, 2) uniformly at random between [1, T ] or 3) t1 = 1
and t2 = T (T is the last time slice). The Metropolis-

Hastings acceptance rule is similar to the non coupled case,

5This choice slightly complicates computing the normaliza-
tion constant because the prior P (θt) = W(Σ−1

t ) N (µ
t
) in the

predictive distribution P (xn|Z) =
�

dθP (xnt |θt)P (θt) is no
longer conjugate to the likelihood term. We resolve this issue by
pre-computing this quantity through Monte Carlo integration.

but it now must consider the change in the coupled vari-

ables P (µ
new

)/P (µ
old

) in addition to the uncoupled as-

signment variables P (Znew)/P (Zold). These moves were

found to improve the mixing behavior considerably.

Additionally, in the stick-breaking construction the ex-

pected prior probabilities for a cluster (γ i/γ) are size or-

dered. This induces dependencies between the sizes of

clusters across all times slices that may be uncalled for or at

least hard to control. In Griffin and Steel (2006) the order-

ing in which the sticks are combined into the prior probabil-

ities are themselves subject to a random process, resulting

in some level of control of these dependencies. We view

this as an inherent shortcoming of the DDP in the stick-

breaking representation that needs further investigation.

6 MODELING STORMS

For illustrative purposes we chose to apply Gibbs sampling

over coupled infinite mixture models in the stick breaking

representation to the problem of tracking storms. Specif-

ically, ten doppler radar images separated by 30 minutes

each were converted to data which was then clustered as

described in Section 5. Results were compared between

DDP with and without “label-swap” mixing moves. The

results demonstrate that DDP without mixing moves do not

mix well over labels, and consequently have trouble clus-

tering across time slices. Note that “label-permute” is not

used because it results in swap proposals that are rarely ac-

cepted for the storm data set.

The experimental data consists of 896 data points, split be-

tween ten time slices. The data points were created by us-

ing pixel location, normalized to [0, 1], to determine the

coordinates, and pixel intensity to determine the number

of data points generated per pixel. The parameters for the

DDP described in Section 5 were set as follows in all ex-

periments. In Eqn. (12) a and δ are set to 1 and β to .005.
The scale matrix for the inverse Wishart was set to .01Id
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Figure 2: Log joint probability for the DDP sampler with extra
mixing moves (solid) and without extra mixing moves (dashed).
Curve averaged over 5 runs. The DDP with mixing moves ends
up in a region of higher probability.

Figure 3: Cluster assignment with highest joint probability for
DDP sampler without mixing moves. Points with different mark-
ers have different cluster labels. Clusters are not in correspon-
dence.

with d + 1 degrees of freedom.

Because our goal was to find the distribution over clus-

ter assignments, we would like to compare convergence of

Gibbs samplers with and without mixing moves in terms

of the cluster assignment variables. However, because the

mixing moves frequently reassign cluster labels it can ap-

pear that the Gibbs sampler with swapping converges more

quickly than it actually does. To more accurately gauge

mixing behavior, we examine three quantities. First, we

compare the log probability of the samplers with and with-

out mixing moves. Second, we qualitatively compare the

clustering results. Finally, we compare the variance over

the association between each pair of points over several

Gibbs runs; as we discuss, this measures the convergence

of the cluster assignment variables while being invariant to

the actual cluster labeling.

Figure 4: Same as in figure 3 but for DDP sampler with mix-
ing moves. Almost all clusters have been brought into correspon-
dence.
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Figure 5: Histogram of the variance of association matrices com-
puted across different sampling runs. The smaller variance of the
DDP with mixing moves indicates that it consistently finds a good
clustering and does not get stuck in local modes.

First, Figure 2 illustrates how the DDP without mixing

moves gets stuck in local modes of the joint distribution.

Both Gibbs samplers move quickly toward regions with

higher probability than their initial, random starting point,

but at the end of the experiment, the Gibbs sampler with-

out additional mixing moves has failed to find the same

(much more probable) mode(s) as the Gibbs sampler with

additional moves, as indicated by the gap between their re-

spective joint log-probabilities.

Next, Figure 3 shows the cluster assignment with high-

est joint probability found by DDP without mixing. Clus-

ters appear reasonable within each time slice but lack co-

herency across time slices. This is in contrast to Figure 4

for DPP with mixing, in which associated clusters have

been brought into correspondence (except for the first time

slice). In each experiment, Gibbs sampling was performed



for 100 iterations, half of which were used for burn-in and

half for estimating posterior quantities. Each iteration of

the Gibbs sampling consisted of sampling all assignment

variables, interleaved with sampling class parameters, as

described in Section 5.

Because cluster labels are unidentifiable, we can not use

them to evaluate clustering performance between Gibbs

sampling with and without mixing moves. Instead, we use

an association matrix to infer the clustering behavior. An

association matrix is a N × N matrix in which each ele-

ment (i, j) is set to 1 if the assignment variables xi and xj

are equal (i.e. zi = zj), where N is the total number of

data points. This representation is clearly invariant to a re-

ordering of the cluster labels. By averaging the association

matrices we observe during Gibbs sampling (again, over 50

samples), we can estimate the posterior probability that x i

and xj came from the same cluster.

To assess convergence of each sampling procedure, we use

the (element-wise) variance of the mean association matrix

over several (10) runs of Gibbs sampling. If the sampling

method is mixing rapidly, these runs should each be consis-

tent with one another (low variance), as they approach the

true probabilities of association. If, however, the sampling

mixes slowly, they are more likely to be inconsistent (high

variance). Figure 5 shows a histogram of the element-wise

variances observed across runs for each method. The addi-

tional moves show much lower variance, indicating faster

mixing and a more consistent clustering.

7 CONCLUSION

In this paper we have explored Gibbs sampling of (po-

tentially coupled) infinite mixture models in the Stick-

breaking representation. This study is important because

the stick-breaking representation allows more flexible mod-

eling of one’s prior beliefs, for instance the distribution

over cluster sizes. The DDP formalism in particular, where

models can be coupled at the level of their parameters, is

very general and we expect many future applications that

require efficient Gibbs sampling.

Our main finding is that the Gibbs samplers proposed in

various manuscripts suffer from poor mixing over cluster

labels. Although the impact of this observation is mild on a

single infinite mixture model, its effect in the DDP is much

more pronounced because labels of corresponding clusters

at different values of the covariate (e.g. time) can be mixed

up. We show that with the inclusion of a few extra moves

in the sampler this problem can be resolved. A disadvan-

tage of the DDP formalism seems to be that dependencies

are introduced by the fact that the prior weights on clusters

are size ordered. These dependencies do not decay with

distance, and seem difficult to control (see however Griffin

and Steel (2006)).

Acknowledgments

This material is based upon work supported by the Na-

tional Science Foundation under grants No. IIS-0535278,

IIS-0431085, ATM-0530926, and SCI-0225642. The au-

thors would like to thank both Professor H. Ishwaran and

the anonymous reviewers for their feedback and insights.

References

Blackwell, D., & MacQueen, J. (1973). Ferguson distributions
via Polya urn schemes. The Annals of Statistics, 1, 353–285.

Bush, C., & MacEachern, S. (1996). A semiparametric Bayesian
model for randomised block designs. Biometrika, 83, 275–285.

Escobar, M., & West, M. (1995). Bayesian density estimation and
inference using mixtures. Journal of the American Statistical
Association, 90, 577–588.

Ferguson, T. (1973). A Bayesian analysis of some nonparametric
problems. The Annals of Statistics, 1, 209–230.

Gelfand, A., Kottas, A., & MacEachern, S. (2004). Bayesian non-
parametric spatial modeling with Dirichlet processes mixing
(Technical Report ams2004-05). U.C. Santa Cruz.

Gelman, A., Carlin, J., Stern, H., & Rubin, D. (2004). Bayesian
Data Analysis. Chapman&Hall/CRC. Second edition.

Green, P., & Richardson, S. (2001). Modelling heterogeneity with
and without the Dirichlet process. Scandinavian Journal of
Statistics, 28, 355377.

Griffin, J., & Steel, M. (2006). Order-based dependent Dirich-
let processes. Journal of the American Statistical Association,
101, 179–194.

Ishwaran, H., & James, L. (2001). Gibbs sampling methods for
stick-breaking priors. Journal of the American Statistical As-

sociation, 96, 161–173.

Ishwaran, H., & James, L. (2003). Some further developments for
stick-breaking priors: finite and infinite clustering and classifi-
cation. Sankhya Series A, 65, 577–592.

Ishwaran, H., & Zarapour, M. (2002). Exact and approximate
sum-representations for the Dirichlet process. Can. J. Statist.,
30, 269–283.

MacEachern, S. (2000). Dependent Dirichlet processes (Techni-
cal Report). Dept. of Statistics, Ohio State University. Unpub-
lished manuscript.

MacEachern, S., & Müller, P. (1998). Estimating mixture of
Dirichlet process models. Communications in Statistics, 7,
223–238.

Neal, R. (2000). Markov chain sampling methods for Dirichlet
process mixture models. Journal of Computational and Graph-
ical Statistics, 9, 283–297.

Papaspiliopoulos, O., & Roberts, G. (2005). Retrospective
markov chain monte carlo methods for Dirichlet process hier-
archical models (Technical Report). University of Cambridge.

Pitman, J. (2002). Combinatorial stochastic processes (Technical
Report). Dept. Statistics, U.C. Berkeley. Lecture notes for St.
Flour course, Technical Report no.621.

Sethuraman, J. (1994). A constructive definition of dirichlet pri-
ors. Statistica Sinica, 4, 639–650.


