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Abstra.et _ 

This pa¡wr discusses tlJe convergence of the Gibbs sampIing algorithm when it is applied to 
the problem of outli<'r detection in regression 1l1odels. Given any vector of initial conditions, 
theoretically, tll<' algorit 11m COIlVNg<'S f.o t.\H' true posterior distribution. However, tlw speed 
of convergellce milY sInw dowll in a. high dimensional parameter space where the parameters 
are higIJIy correlated. w(~ sllow that tIJe effect of the leverage in regression models makes very 
difficuIt the convergence of the Gibbs sampling aIgorithm in sets of data with strong masking. 
The problem is illustrated in severaI examples. 
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1 INTRODUCTION� 

The intensive attention that Gibbs sampling (Geman and Geman, 1984 and Gelfand 

and Smith, 1990) has received in applied work is due to its mild implementation require

ments together with its programming simplicity. In a Bayesian parametric model this 

algorithm provides an accurate estimation oí the marginal posterior densities, or sum

maries oí these distributions, by sampling írom the conditional parameter distributions. 

Furthermore, the algorithm converges independentIy oí the initial condition and, in many 

applications, in a íew iterations. However, several authors have indicated problems oí con

vergence with Gibbs sampling. Gelman and Rubin (1992) showed the importance oí the 

initial conditions in the speed oí convergence oí the algorithm in a high dimensional pa

rameter problem. Matthews (1993) gave an example in which the Gibbs sampler seemed 

to converge when in íact it had noto Hills and Smith (1992) stressed that the number oí 

iterations to achieve convergence is a íunetion oí the starting values and the correlation 

structure oí the stochastic process generated by the Gibbs sampling. They concluded 

that the higher the correlation the more serious the convergency problem. PoIson (1994) 

analysed a convergence rate bound that can be used to choose the number oí iterations to 

guarantee desired sampling accuracy. The running times depends on the effects oí correla

tion and dimensiono Smith and Roberts (1993) and Mengersen and Robert (1994) pointed 

out that when the parameter distribution is bimodal, the Gibbs sampling iterations may 

be trapped in one oí the modes, reducing the probability oí reaching convergence. 

In this paper we show that in the linear regression set up outliers can make very 

unlikely the convergence when there is a strong masking. If there are outliers which 

mask or swamp other observations, the parameter structure will be highly correlated and 

convergence will usually not be reached in a reasonable amount oí iterations. In addit~on, 

the algorithm may provide a íalse idea oí the posterior probabilities. In summary, in data 

set with masked high leverage outliers, the Gibbs sampling iterations are stable around 

wrong limit values íor thousands oí iterations. 

This paper is organized as íollows. Section 2 presents the Gibbs sampling application 
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to deteet outliers in linear regression problems by using the scale contaminated regression 

model and examines the algorithm convergence in sorne examples. Seetion 3 analyses the 

reasons oí the slow convergence oí the algorithm in data set with masked high leverage 

outliers and justifies that this problem does not depend on the particular model used to 

generate the outliers. Sorne final comments appear in section 4. 

2 GIBBS SAMPLING IN THE SCALE CONTAMINATED MODEL 

2.1 Implementation of the Gibbs Sampler 

The lack oí homogeneity in the sample is írequently modeled with a mixture oí distri

butions. In this paper, we shal1 focus on identiíying outliers in the scale contaminated 

normal model introduced by Tukey (1960), which has·been studied among others by Box 

and Tiao (1968). In this model, it is assumed that the data may come írom a central 

distribution with high probability, (1 - a), and írom a contaminated distribution with 

low probability, a, and that the observations y = (Yl"'" Yn)' are generated by 

i=1, ... ,n, (2.1 ) 

where Zi = (1, XiI, ... , Xip)' are non-random variables; n is the sample size; /3 E RP+l 

is a vector oí unknown parameters, and Ui is a random variable with a normal mixture 

distribution, 

Z=z, ... ,n. (2.2) 

Thus, a is the prior probability that each observation has a N(zi/3, k2 ( 2) distribution. 

We assume that the contamination a and the scale parameter k are known, and also that 

X = (ZI" .. , zn)' is a íul1 rank matrix. 

The procedure to apply the Gibbs sampling to outlier problems, íol1owing Verdinelli 

and Wasserman (1991), is to introduce a set oí dummy variables and compute their 

posterior probabilities. Let 6 = (61, ••• , 6n )' be a vector oí c1assification variables, defined 
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by 

k2� 21 if V(y¡) = a
6¡� = 

{� 2O if V(y¡) = a • 

The marginal posterior probability for the c1assification variables can be obtained from 

the expression 
1 1 

P(6¡ = 11y) = L'" L P(61 =j¡, ... ,6¡ = 1, ... ,6n =jnly)· (2.3) 
it=o in=O 

The computation of the i marginal probability requires knowing the probabilities of aH 

the possible configurations where 6¡ = 1. This means, for example, that for a sample size 

n = 40 we shou;fd compute 240 (approximately 1012 probabilities) in order to obtain the 

exact marginal probabilities (2.3). The Gibbs sampling computational advantages seem 

to be very useful to detect multiple outliers in this problem. 

The basic requirement for the Gibbs sampler is to be able to draw samples from the 

conditional distributions. It is easy to show that the conditional distributions for the 

parameters in the model (2.1) and (2.2) with non informative priors p({3, a) oc a-t, are 

as follows. 

1.� For each i, 6¡ Iy, {3, a 2 has a Bernoulli distribution with success probability 

(2.4) 

where iN is the standard normal density function. Conditional to the parameters 

of the model, the 6's are independent variables. 

2. The distribution of the vector {31 y,6,a2is Np+I (.a,a2(X'VXt1), where 

.a = (X'vxt1x'Vy 

and V is a diagonal matrix with elements V¡¡ = k-2 if 6¡ = 1 and V¡¡ = 1 otherwise. 

3.� The distribution of a 2 
1 y, 6, {3 is 1nverted - X2

• Therefore, defining the standarized 

errors ui = (y¡ - z~{3)/a(l +6¡(k - 1)), it foHows that 
n

L ui 2 
1 y, 6, {3 f'J X~. 

¡=1 
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The Gibbs sampling iterations usual1y start from an arbitrary vector of initial values 

(0'(0), J(O), ~(O)). In the first iteration, the samples are generated as fol1ows: 

draw uF) from "" f( o' Iy, J(O), ~(O)) 

draw J(l) from "" f(Jly,u(1),~(O)) 

draw ~(1) from "" f(~ly,U(l),J(1)). 

Replicating the same scheme s times, we obtain the sequence (0'(1), J(1), ~(1)), ... , 

(u(s),J(s),~(s)). Geman and Geman (1984) have proved that, under regularity conditions, 

this sequence converges in distribution to (0', J, ~). After s iterations and replicating the 

same scheme r times, it may be possible to make inference for the mean, variance or any 

other characteristic of the parameter posterior distribution by using the independent and 

identical1y distributed samples 
(s) (s)

0'1 , ,0', 

J~s) , ,J~s) 

~~s), .•. ,~~s). 

Gelfand and Smith (1990) recommended to use the sample estimate of 

Pi = E{3,(f2 [P(bi = 1Iy,~,(2)], that is, 

, l' a fN((Yi - aJ~~~s))lku~s)) 

Pir 
,. = ~ f; a fN((Yi - aJi~~B))lku?)) +k(1 - a) fN((Yi _ aJi~~s))lu~B))' (2.5) 

This estimate incorporates the information from an equivalent sample of the other param

eters and it is more efficient than the sample mean. This result is proved by Gelfand and 

Smith (1990) for independent samples, and by Liu et al. (1994) in the general case. Al

ternatively, it is possible to estimate Pi with the last r iterations from an unique sequence 

as long as we desire. Although running the algorithm only once may save computational 

time, it has the disadvantage that the samples are identical1y distributed but not inde

pendents. As a result of this, and considering that the space parameter dimension (the 

sample size plus the parameters in the model) are moderated, in the next examples we 

always run the Gibbs sampling in paral1el sequences and use (2.5) to estimate Pi. In 

addition, we will see in section 3 that in this problem the Gibbs sampling convergence is 
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very sensible to the initial conditions. By running sequences in paral1el we may avoid that 

the conclusions depend on the selection of only one initial parameter vector. For a most 

detailed description of the Gibbs sampling performance we refer the reader to Gelfand 

and Smith (1990) and Casella and George (1992). 

2.2 Examples 

We analyze the performance of the outlier detection procedure 6ased on the Gibbs sam

pling in four examples. In the first one it is applied to a much analyzed real data set where 

the convergence is very fast and the outliers are immediately identified. However, as it 

is revealed in the next examples, based on real and simulated data, if there are outliers 

which mask or swamp other observations, the algorithm convergence may not be achieved 

in a reasonable amount of iterations. In addition, the 9ibbs sampling may provide a false 

idea of the probabilities since the series may be stable around wrong limit values. 

The algorithm is always run 1,000 times (in paral1el) with different initial values. The 

last iteration of each performance is used to compute the outlier posterior probability 

estimates Pi r given by equation (2.5). These probabilities will be represented in the 

graphs by a bar for each data point. Among the possibilities for selecting the initial 

values, the designed criterion is to select 8!O) = 1 with Q probability. Then j3(O) is the 

generalized least square estimate (GLS), j3(O) = (X'y(O)xt1X'y(O)y, in which y(O) is 

a diagonal matrix with diagonal elements 1/k2(J2 if 8!O) = 1, and 1/(J2 otherwise. It is 

not necessary to specify the initial value for the variance because it is the first parameter 

computed in the iterations. 

Example 1 The "Stack Loss Data" is a group of real data from a plant for the oxidation of 

ammonia to nitric acid; 21 diary observations are col1ected for three explanatory variables 

and one response variable. This data has been studied with different methods for outlier 

detection and data 1, 3, 4 and 21 are found to be outliers (see for instance, Daniel and 

Wood, 1980 or Rousseeuw and Zomeren, 1990). Moreover, sorne authors add observation 
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Figure 1: Results of the Gibbs sampler with the Stack Loss data: (a) posterior probabilities for each 

data point to be outlier after 500 iterations; (b) posterior probabilities as a function of the iteration 

number. 

2 to this listo The data may be íound in Daniel and Wood (1980), as weH as a description 

oí the experimento 

The outlier posterior probabilities aíter 500 iterations oí the algorithm are represented 

in Figure 1(a). The results confirm that data 1,3,4 and 21 are outliers, with probabilities 

greater than 0.5. Moreover, the Figure 1(b) shows the series oí posterior probabilities íor 

each data as a íunction oí the iteration number. It can be seen that convergence is reached 

in a íew iterations (less than 200). 

Example 2 The set oí data generated by Hawkins, Bradu and Kass (1984) is a typical 

example oí masking. It ineludes 75 observations oí íour variables. Figure 2 shows aH 

the two-dimensional scatter plots that can be obtained by taking pairs oí variables. The 

first íourteen points are high leverage data and oí those the first ten are outliers which 

mask each other and swamp the íour non outliers. The outliers will not be easily detected 

because oí the masking and swamping. 

Aíter 2,000 iterations oí the Gibbs sampling Figure 3(a) shows elearly that the ten 

outliers are not identified and that it exists a large swamping efi'ect íor observations 11 

to 14, whose probabilities oí being outliers are almost one. The series seems to have 
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Figure 2: Matrix plot for the Hawkins-Bradu-Kass data. 
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Figure 3: Results of the Gibbs sampler with Hawkins-Bradu-Kass data: (a) posterior probabilíties for 

each data point to be outlier after 2,000 iterations; (b) posterior probabilities as a function of the iteration 

number. 

converged in a few iterations and this wrong result is not modified after 30,000 iterations 

(see Figure 3(b)). 

Example 3 The third set of data is built following Rousseeuw (1984). These are 50 ob

servations with 30 good data points generated from a linear model given by the equation 

Yi = 2 + Xi + Ui, where Xi is a random variable with uniform distribution on (1,4) and the 

errors are normally distributed with standard deviation 0.2. The 20 outliers are generated 

from an independently normally distribution with mean vector ¡.t = (7,2)' and standard 

deviations 0.5. The scatter plot of these points is shown in Figure 4, where it can be seen 

two groups of points. The group on the right correspond to the bad data, observations 1 

to 20, that are 40 per cent of the sample. 

The final probabilities and the series are shown in Figure 5(a) and Figure 5(b), re

spectively. After 30,000 iterations, it can be seen that the first 20 observations -the 

outliers- are not identified when the series seem to converge. 

Example 4 The Hertzsprung-Russell diagram oí the star cluster CYG OBI showed in 

Figure 6 is a real data example. Two variables are observed in 47 stars in the direction of 
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Figure 4: Scatter plot of the Rousseeuw data. 
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Figure 5: Results of the Gibbs sampling with Rousseeuw data: (a) posterior probabilities for each data 

point to be outlier after 30,000 iterationsj (b) posterior probabilities as a function ofthe iteration number. 
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Fig~re 6: Hertzsprung-Russell diagram oí the star cluster CYG OBl. 

Cygnus. The independent variable (x) is the logarithm of the effective temperature at the 

surface of the star and the dependent variable (y) is the logarithm of the light intensity. 

The values are provided by Rousseeuw and Leroy (1987). The scatter plot shows that 

exist four outliers (observations 11, 20, 30 and 34) which correspond with giant stars. 

This example shows that the convergence problem observed in the previous examples 

may also appear in real data sets. It can be seen in Figure 7(a) and Figure 7(b) that after 

10,000 iterations the outliers are not identify and the series seem to converge. 

3 ANALYSIS OF THE GIBBS SAMPLING CONVERGENCE 

The examples in the previous section have shown that the direct application of the 

Gibbs sampling will be abad procedure for outliers detection in certain data sets, because 

the posterior probability series may seem to converge around false values. 

One reason for this is the masking problem. Ifoutliers mask or swamp each other, tneir 

8 variables are high correlated and, also, the parameter space dimension (the sample size 

plus the parameters in the model) rises with the sample size. Smith and Roberts (1993) 

indicated that high dimensional parameter space and high corre1ation will slow down the 

convergence, but the problem is more serious that the one indicated by these authors. 
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Figure 7: Results of the Gibbs sampling with data of the Hertzsprung-Russell diagram of the star 

cluster CYG OB1: (a) posterior probabilities for each data point to be outlier after 10,000 iterations; (b) 

posterior probabilities as a function of the iteration number. 

For instance, the data in Figure 8 is a sample oí a tW9 normal mixture (contamination is 

thirty percent oí the data) in which these two conditions will appear. The probabilities in 

Figure 9(a) and the series in Figure 9(b) show that the convergence is slow, as expected, 

but it is eventual1y achieved. This is not the case in the regression examples in section 2.2. 

The principal difference among these two situations is the role that leverage plays in the 

regression model. If the initial assignation oí the c1assification variables inc1udes as good 

data points many oí the high leverage outliers which cause masking and/or swamping, the 

regression coefficients will be biased, the residuals at these points will be very small, and 

the probability oí these points to be c1assified as outliers will be low in the next iterations. 

Let 6(0) be the initial configuration to start the algorithm and let 6(0) and let (3(0) 

be the generalized least square estimate using 6(0). In the first iteration, (W) = 1 with 

probability pP) given by (2.4), in which (3 is substituted by (3(0) and u by the standard 

deviation drawn in the first iteration. The probability pP) can be expressed as 

-1 
(1) _ -1 1 (0)2

Pi - ( l+ko (1-0) exp ( -2</>-I 2(I)Ui )) , (3.1)
U

where u~O) = Yi - z~{3(O) and </> = 1 - k-2• For large k, the probability (3.1) only depends 
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Figure 8: (a) Frequency histogram of n = 40 data generated from a normal mixture distribution. 
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Figure 9: Results of the Gibbs sampling with data generated from a mixture normal distribution; (a) 

posterior probabilities for each data point to be outlier after 10,000 iterations; (b) posterior probabilities 

as a function of the iteration number. 
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Figure 10: Posterior probabilities after 200 iterations when the outliers are initially assigned to the 

contaminated distribution: (a) Hawkins-Bradu-Kass data; (b) Rousseeuw data. 

on the residual u~O) (0'(1) is the same íor all oí them) and it will be c10se to one when u~O) 

is large, and c10se to zero when u~O) is small. 

Let So = (Xo, Yo) be the observations that are c1assified as good in the initial condi

tions. For large k, VeO) is approximately the identity matrix and, thereíore, u~O) will be 

the least square residual using the subsample (Xo,yo)' Ifthis subsample contains several 

high leverage outliers, the coefficient (j(0) will be biased and the least square residuals at 

these points will be small. Thereíore, they will have a very low probability oí being se

lected as outliers in the next iteration. The only chance oí detecting these outliers will be 

when all oí them are c1assified as outliers in the drawing írom the conditional distribution 

(3.1). For instance, if we have 10 outliers and p~l) = 0.01, this probability is 10-20 • 

The solution to this problem begins with the correct initial assignation oí the group 

oí masked outliers. For the examples 2 and 3 analysed in section 2.2, the graphs in 

Figure 10 show the probabilities when, at least, the outliers are initially assigned to the 

contaminated distribution. As it can be seen, convergence is reached very quick. 

One may wonder ií the lack oí convergence shown in the examples is due to the par

ticular model used. For instance, instead oí the scale contaminated model (2.1) and (2.2) 

we may have assumed the mean-shift model utilized by Guttman (1973) and Guttman, 

Dutter and Freeman (1978) or, even, assume no particular model íor the generation oí 
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the bad data, as advocated by Geisser (1991) and Pettit and Smith (1985). However, as 

shown by Peña and Guttman (1993) for large k, as assumed in this paper, the probabilities 

computed by the Tukey (1960) model, the mean-shift model and the predictive approach, 

in which no model for the generation of the outliers is used, are essential1y the same. The 

reason is that for large k, model (2.1) and (2.2) allows any departure from the central 

model, which is equivalent to al10wing any mean-shift or any source of heterogeneity (see 

also Guttman and Peña, 1993). 

We have also considered a most general non-parametric hierarchical model. In this 

model, the observations are generated by the equation (2.1) but now the error distributions 

are 

i = 1, ... ,n. (3.2) 

As different level and scale parameters for the contaminated distribution have to be es

timated using only one observation, the model is unidentified, except when sorne obser

vations share a common parameter. For this to happen, the distribution of the pairs 

()i = (h i , -rl) should be discreet. Therefore, to complete the prior structure we consider 

the fol1owing distributions: 

()i G'" 
G Dirichlet Process (¡.t, Go)'" 

Go N(m,b) x 1nv - Gamma (u/2,v/2) '" 
¡.t Gamma (ao, bo),'" 

where G is an unknown bivariate distribution, ¡.t is the total mass and Go is the prior 

expectation of the Dirichlet Process (Ferguson, 1973). 

Escobar (1994) proposed the use of Gibbs sampling in problems which involve Dirichlet 

process priors and showed that 

()i I y, ()(i) '" 7l'n+IGi +¿7l'j 1(8;=8)), (3.3) 
#i 

where ()(i) = (()I,"" ()n-b ()n+b"" ()n), 7l'n+I +E#i 7l'j = 1, and lA is the unit point mass 

at A. The equation (3.3) means that in the Gibbs sampling iterations the parameter 
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(Ji is one of the values in (J(i) with probability 'Trj ex f(Yi I (Jj), and with probabílity 

'Trn+l ex J f(Yi I (J) dGo((J) is drawn from Gi, that is the posterior distribution of (Ji given 

the data Yi and the prior distribution Go. Nevertheless, we use the modified scheme 

of the Gibbs sampling introduced by MacEachern (1994) and implemented by Müller, 

Erkanli and West (1992) in the nonparametric estimation of the regression function. The 

parameter vector is augmented with n group indicators 8 = (s}, ... , Sn) which hold that 

Si = Si' = j if and only if (Ji = (Ji' = (Jj, where (}* = ((Ji, . .. ,(Jk)' is the vector of the k ::5 n 

distint values in (} = ((J}, ... ,(Jn)" The posterior distributions'for 6, f3 and (J2 have the 

same structure than in model (2.1) and (2.2) and are given in the appendix, as well as 

the conditional.distributions of 8, (}* and 11. 

We have applied this model to the examples in section (2.2), finding the same results 

that are shown there in all the four cases. 

4 CONCLUDING REMARKS 

The Gibbs sampling can be used for outlier detection as Verdinelli and Wasser

man (1991) showed in the estimation of the mean for a normal model. When outliers 

are isolated, Gibbs sampling avoids the 2n necessary computation to obtain the marginal 

posterior probabilities in the scale contaminated regression model. However, when the set 

oí data has many outliers that mask each other, Gibbs sampling will faíl and posterior dis

tributions are badly estimated. An erroneous initial c1assification of the observations will 

conduct the algorithm to a wrong solution along thousands oí iterations. The examples 

have shown that in regression high leverage may avoid convergence completely. 

APPENDIX: CONDITIONAL DISTRIBUTIONS FOR THE� 

NONPARAMETRIC MODEL (2.1) AND (3.2)� 

The conditional distributions for the parameters in the model (2.1) and (3.2) are as 

follows: 
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1.� For each i, bi I y, (3, U 2, s, 0* has a Bernoulli distribution with success probability 

a:fN((Ui - h:)/u7";.)p' - ! • 

1 - a:fN((Ui - h:J/u7"~) +(1 - a:)7"~fN(u¡fur 

2.� The distribution oí the vector (31 y,u2,6,s,(J* is Np+IC8s,U2(X'VsXtI)), where 

(3s = (X'vsxtIx'Vs(y - H s), H s = (bIh:
1 

, .. ·,bn h:J' and V s is a diagonal 

matrix with elements (1 +bi ( 7";t - 1)tI. 

3.� The distribution oí u2 I y, {3, 6, s, (J* is Inverted - Gamma (n/2, u; /2), where 

u; = (y - X{3 - Hs)'Vs(Y - X{3 - H s)' 

4.� Let S(i) be the vector s when Si is eliminated and let nij be the number oí group 

indicators in 8(i) equal to j. Then the number oí different indicators is 

k -1 ií Si :f:. Sj and j :f:. i 
k(i) = k{� otherwise. 

In order to compute 1ri,j = P(Si = j I y,{3,u2,6,s(i),(J*,J.l) we consider two cases: 

(i) When bi = 1, the probability 1ri,j� is given by 

e nij 7"; fN((Ui - hj)/u7"j) íor j = 1, ... , k(i) 

1ri,j = { e J.l7"~ fN((Ui - h:J/u7"~) íor j = k(i) + 1, 

where e = (1ri,k(i)+I + ¿j:;a6i 1ri,j tI. Note that 1ri,k(i)+I is proportional to 

J f(Yi I O)dGo(O) and it is approximated by the density oí a N(zi{3-h:
i , 

U27"~*). 

(ii) When bi = 0, the probability 1ri,j is given by 

"" .. _ { nij / (J.l +n - 1) íor j = 1, ... , k( i) 
"1)� 

, J.l/(J.l +n - 1) íor j = k(i)� +1. 

5.� For j = 1, ... , k, we define the sets I; = {i I bi = 1 and Si = j} and call nj to the 

size oí IJ. Then the conditional distributions oí hj and 7"; are: 

hj I y,{3,u2,6,s,7"]* '" N(mj,bj )� 

7"]* I y,¡3,u2,6,s,hj '" Inverted-Gamma (nj;u, V~Vj),
 

where bj = (b-2 + 7"T2*u-2njtI, mj = bj (b-2m +7"T2*u-2¿iEI; Ui) and Vj 

u-2¿iEI*(Ui - hj)2.
] 
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6.� The conditional distribution of ¡t is computed by augmenting the parameter vec

tor with an artificial variable TI (see Escobar and West, 1995). The conditional 

distributions are given by 

TI I y,¡t '" Beta(¡t + 1,n)� 

¡t I y, 8, TI '" 1r Gamma(ab b¡) + (1 -1r) Gamma(al - 1, b¡),� 

where 1r = (al -l)j(al - 1+nbl ), al = aa + k and bl = ba -log(TI)' 
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