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Abstract 

This paper demonstrates by example that the use of the Gibbs sampler with diffuse proper priors 

can lead to inaccurate posterior estimates. Our results show that such inaccuracies are not merely 

limited to small sample settings. 

Keywords: Diffuse Priors, Impropriety, Maximum Likelihood Estimation, Non-informative Priors, 

Probit-Normal. 
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1 Introduction 

In complicated statistical models (for example, hierarchical models) the elicitation and specification 

of subjective prior information can often be difficult. Thus, as a matter of convenience, priors based 

on formal rules (reference priors) are typically relied upon in practice. These priors are selected with 

the justification of letting the data speak for themselves. However, reference priors are generally 

improper (that is, do not integrate to a finite number) and do not always lead to proper posterior 

distributions. Some work has been done on characterizing improper priors which ensure propriety 

for various models (Ibrahim and Laud, 1991; Berger and Robert, 1993; Natarajan and McCulloch, 

1995; Hobert and Casella, 1996; Yang and Chen, 1996), but no general rules have emerged so far. 

This fact is complicated further by the practical difficulty in recognizing impropriety. Monte Carlo 

methods such as the Gibbs sampler (Gelfand and Smith, 1990) can be implemented to sample from 

the posterior despite impropriety, so long as the full conditional specifications exist. Although the 

resulting Gibbs chains are null-recurrent and do not converge to a stationary distribution, they 

often move reasonably around the parameter space and provide no signs of trouble, for instance, by 

being trapped in absorbing states. Thus, the use of the sampler with improper priors can sometimes 

lead to seriously misleading results in practice. 

One approach to a default Bayes analysis in this situation is to identify transformations of the 

parameters for which reference priors on the transformed scale ensure proper posterior distribu­

tions.h The uniform shrinkage priors of Strawdermann (1971) are based on this idea. However, 

in multivariate settings, suitable choices of transformations are not entirely obvious. Further, the 

form of the induced prior on the original parameter scale may be highly complicated and could lead 

to difficulties in sampling from the resulting posterior distributions. Thus, one easily-implemented 

practical suggestion to circumvent these concerns about impropriety has been to use very diffuse but 

conjugate proper priors (McCulloch and Rossi, 1994; Hamada and Wu, 1995; Hobert and Casella, 

1996). These priors are fiat relative to the likelihood and can be constructed by truncating the 

domain of an improper prior to a compact set or by using proper priors with very large variances. 

McCulloch and Rossi (1994) outline such an analysis for the multinomial probit model using normal 

priors with large variances on the fixed effects and inverted Wishart priors with small hyperparam­

eter values for the variance components. With these conjugate distributions the full conditionals 

required by the Gibbs sampler have a very simple form and implementation is straightforward. 
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There are reasons to question whether the use of diffuse priors are a solution to this problem. 

First, parameters about which there is little information may suffer from sensitivity to the choice 

of even a diffuse prior. This point was discussed by Efron (1973) and more recently by Kass and 

Wasserman (1996). A second issue, which has received relatively little attention in the literature, is 

the computational difficulty which may accompany such an analysis. With increased prior diffusion, 

the convergence of Gibbs sampling methods can be extremely slow since it attempts to sample from 

an almost improper posterior. It may then become essential to generate a prohibitively large number 

of simulation samples to achieve convergence for the full vector of parameters, rendering such an 

approach practically infeasible. 

In this note we illustrate the degree of the computational problem in using diffuse priors in a 

probit-normal hierarchy for clustered binary observations. A family of proper priors with limiting 

distributions which are improper are studied. Our focus will be on investigating the behavior 

of posterior modes estimated from Gibbs output for varying degrees of prior diffusion. We are 

specifically interested in posterior modes since diffuse Bayes procedures are often touted as a valid 

approach to performing exact likelihood inference. Thus, a comparison of posterior modes to the 

maximum likelihood estimator to evaluate these claims would be of relevance and interest. Our 

results show that, even with very large simulation samples, modal posterior estimates resulting 

from Gibbs chains with diffuse proper priors can be inaccurate. 

2 Probit-Normal Hierarchy 

Consider a probit-normal hierarchy with a single normally distributed random-effect u and a single 

fixed-effect /3: 

Wij I 'Ui 

<I>- 1 (Pij) 

independent Bernoulli (Pij), 

Xij/3+ui, 

ui N(o, e), 

1, ... ,n, J 

(1) 

where <I>(.) is the cumulative distribution function of the standard normal with its inverse denoted 

by q,- 1 (.). This model corresponds tori binary observations drawn on each of n clusters. The 

random effects u provide a convenient mechanism to capture within-cluster correlation. Throughout 
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this manuscript we consider a balanced layout, that is ri = r, 'i/ i for convenience. The parameters 

of interest are the fixed-effect {3 and component of variance 0. 

Denote the vector of observed data by w. Then the observed likelihood function P. ({3, 0; w) is 

given by 

(2) 

and can be very accurately evaluated using Gauss-Hermite quadrature methods. It is therefore a 

good situation in which to make comparisons. 

For the model in (1) Natarajan and McCulloch (1995) show that the following power family of 

improper priors: 

7r({3, 0) ex o-a-I, -oo < {3 < oo, 0 < 0 < oo, 

where a is a pre-specified constant, lead to proper posteriors only if-~ < a < 0 and the dimension 

of the polyhedral cone 

C = {{3,a: (1-2Wij)(xijf3+ai):SO, i = 1, ... ,n,j = 1, ... ,ri}, 

is smaller than n + 1. Thus, the classic non-informative prior, that is, when a = 0 (denote by 

1rn({3, 0)) does not ever result in proper posterior distributions, while the flat prior, that is, when 

a = -1 (denoted by 1rf({3, 0)) fails to ensure propriety for data configurations which result in a 

full-dimensional C. 

3 Simulation Study 

We examined the performance of the Gibbs sampler with diffuse proper priors for five data sets 

generated from the model in ( 1) corresponding to different choices of n and r. For each data set the 

cone C was full-dimensional, thereby resulting in improper posterior distributions both under the 

non-informative and flat prior. The true parameters used for each simulated data set were {3 = -5 

and 0 = 2. The single covariate Xij was generated independentally and identically from a uniform 

distribution on ( -0.5, 0.5). All programs implementing the analysis described here were written in 

GAUSS (Aptech Systems, 1994). 
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Five sample size configurations were considered. Three of the five data sets simulated had 

clusters of size 2. Such data arise naturally in paired samples, for example, the analysis of family 

psychology using married couples as the unit of analysis (Raudenbush, Brennan, and Barnett, 

1995). In our simulations, the number of pairs n range from a small data set (n = 25), to a 

moderate (n 50) and a large one (n = 100). We also considered two examples with larger 

cluster sizes: n = 50, r = 4 and n = 15, r = 8. The first situation may arise in a 

longitudinal study where repeated assessments on a subject form a cluster. The second scenario is 

often encountered in animal breeding and carcigenocity experiments where animals from the same 

litter form clusters. In this setting it is reasonable to expect a small number of groups (litters) but 

a moderate cluster size. 

In order to implement a diffuse Bayes analysis for this model we considered proper counterparts 

of the fiat prior and the classic non-informative prior. Proper versions of the fiat prior were obtained 

by truncating the range to intervals of finite length. Two such distributions were considered: a 

uniform prior between [-25, 25] for {3 and [0, 25] fore denoted by 1!"{ ({3, e), and a uniform prior 

between [-10, 10] for {3 and [0, 10] for e denoted by 1rt ({3, e). More generally, for complicated 

problems where direct evaluations of the likelihood function (and consequently the ML estimate) 

are non-trivial, the region of truncation may be chosen to be substantially larger to avoid problems 

with cutting off potentially important pieces of the likelihood function. However, for the examples 

we consider, 1r{ ({3, e) is sufficiently diffuse. Proper versions of the classic non-informative prior were 

obtained by postulating a normal prior for {3 and inverted gamma (IG) priors for e. (A random 

variable X is said to follow an IG(a,b) distribution if its probability density function is given by 

f(x) = ba exp(-bjx)x-a-ljf(a), x > 0, a > 0, b > 0.) Three specifications were considered 

ranging from very diffuse to very tight: 

1rf(f3, e) 

1!"2 ({3, e) 

1r3(f3, e) 

N ( -5, 103) X IG (0.01, 0.1)' 

N ( -5, 102) X IG (0.1, 0.5)' 

N ( -5, v'iO) x IG (5, 5). 

In all cases the location of the normal prior was taken to be the true parameter value. 

For each prior specification, posterior modes were calculated by maximizing the Rao-Blackwellized 

estimate of the joint posterior using a sample generated by the Gibbs sampler. (A Gibbs implemen-
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tation for this model is described by McCulloch and Rossi, 1994.) This calculation was replicated 

across ten independent runs of the sampler. Each run generated a sample of size 10,000 collected 

after discarding (burning-in) the initial1,000 variates. These numbers are significantly larger than 

those suggested and used in the literature for problems with only two parameters. Thus, we are 

in fact providing the Gibbs chains with ample opportunity to achieve convergence. The posterior 

modes for each of the proper priors were also calculated by maximizing a numerical integration es­

timate of the joint posterior distribution (direct Bayes), for comparison purposes. For small values 

of the shape (a) and scale (b) parameters, we experienced instabilities in numerically evaluating 

the denominator of the posterior, that is, the marginal distribution of the data. Thus, we ignored 

the normalizing constant and simply maximized the numerator. This direct approach is possible 

for our simple example since the likelihood function in (2) is not difficult to evaluate. However, in 

the more general setting we envision, direct Bayes will not be feasible due to the computational 

intractability of likelihood calculations. 

The performance of the Gibbs sampler was investigated using a one sample t-statistic to test 

whether the Gibbs estimates across the ten independent runs reproduced direct Bayes on average. 

For those cases where we failed to reject this hypothesis of equality, we then considered how close 

the Gibbs estimates came to reproducing direct Bayes, by calculating two measures of closeness. 

The first measure was the percent increase in variance (% incr. var.) contributed because of using 

a simulation based approach rather than doing an exact calculation: 

% incr. var. 0 variance of Gibbs 
10 X . . 

true vanance 

The second is the number of multiple runs required to approximate the direct Bayes estimate 

to one decimal place of accuracy with 100(1 -a) percent confidence (required runs). 

We estimated "variance of Gibbs" by calculating the variability in the Gibbs modes across the 

ten independent runs and we estimated "true variance" by using the curvature of the logarithm 

posterior at the modal estimate. We judged an increase of variance of 10% or less to be acceptable. 

This corresponds to being willing to use a simulation-based method as long as it does not increase 

the variance of the estimator by 10% or more. Values greater than 10% seem like a large price 

to pay for noise due purely to simulation. Our experiences with simulated maximum likelihood 

and Monte Carlo EM for probit- and logit-normal problems such as these is that those methods 

typically add less than 2% variance. 
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The number of multiple runs for single-digit accuracy is obtained by an approximate power 

calculation: 

required runs ~ 
zLQ_ x variance of Gibbs 

2 

(0.05)2 

where z1_Q_ is the (1 - o:/2) quantile for the Gaussian distribution. In all our calculations we 
2 

considered o: = 0.05. Roughly speaking, we may interpret 10, 000 x required runs as the simulation 

sample size needed to be within ±0.05 of the direct Bayes estimate. 

4 Results 

Figure 1 displays the non-informative prior 1rn and its diffuse proper versions. The diffuse priors 1rf 

and 1r?] corresponding to e are represented modulo the normalizing constant to allow representation 

of all priors on the same scale. The non-informative prior for e has an infinite peak at zero, while 

the diffuse proper priors mimic this behavior by placing large mass for small e and tapering off for 

larger values. Figure 2 displays the likelihood surface for each of the five data sets. The likelihood 

function is fairly flat along the B- direction for all five data sets, which is common for parameters 

situated lower in hierarchical specifications (Kass and Wassermann, 1996). Table 1 a) - e) reports 

the results of our prior sensitivity experiment for the five data sets. The maximum likelihood 

estimates of (3 and e and associated asymptotic standard errors are reported for comparison for 

each data set. The Gibbs estimates are the average of ten independent runs of the sampler with 

simulation standard errors in parentheses. For several runs, we monitored changes in the Rao­

Blackwellized posterior density estimates. In all cases we found the changes to be minimal by 

10,000 iterations. The direct Bayes estimates of (3 and e are also reported alongside. 

The analyses of these five data sets are interesting in several respects and reveal problems with 

the Gibbs implementation regardless of sample size. First, despite non-existence of the posterior 

distribution under the flat and non-informative prior, it is still possible to run Gibbs chains for 

these priors. Figure 3 displays the histogram of a sample generated for one Gibbs run with the 

non-informative prior for the data in Table 1 e). This histogram is an example of how reasonable 

some null Gibbs chains may appear. There are no obvious warnings of impropriety since the iterates 

appear to move reasonably around the parameter space without getting trapped in the absorbing 
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state of zero for e. Thus, the use of the Gibbs sampler with improper priors (without verifying 

propriety) is dangerous and can lead to seriously misleading results. 

Second, the Gibbs modes based on proper flat priors either fail to reproduce the direct Bayes 

estimates on average or suffer from large amounts of simulation noise. More specifically, a 95% 

confidence interval for the average Gibbs mode from 1rt (/3, e) does not contain the direct Bayes 

estimate (that is, the ML estimate) for four of the five examples considered (indicated by an 

asterisk). On the other hand, based on the estimates from the more diffuse 1r{ (/3, e) although 

we fail to reject the hypothesis of equality between Gibbs and direct Bayes, the proportion of 

simulation noise is higher than 10% in four cases and in one example it is as high as 600% which 

is unacceptably large. The number of required runs to achieve single digit accuracy with 1r{ (/3, e) 

is greater than one million samples for all five examples. These numbers are large even for this 

simple problem. For instance one run of 10,000 iterations required between 20 minutes to an hour 

(depending on the size of the data set) of computer time on a SUN SPARC 20 workstation. A 

million iterations would require upward of two days of computing time. (These estimates may be 

significantly larger for more realistic models with complicated design matrices and random-effect 

structures.) Efficient programming could undoubtedly reduce these times somewhat, but not by a 

substantial amount so as to make the computations more feasible. In summary, it appears that in 

situations where flat priors lead to improper posteriors, one should not expect that all problems 

can be safely avoided by simply considering priors on finite intervals. Such methods likely work 

well when results based on the limiting flat prior are themselves reasonable (for instance, when the 

likelihood is sharply peaked). 

Thirdly, the non-informative prior and its diffuse counterparts clearly demonstrate problems 

with domination by the prior distribution, even for larger samples. The posterior mode of e resulting 

from these priors is systematically smaller than the ML estimates suggesting that information 

contained in the data is not abundant enough to counteract the large weight placed by these priors 

on small e. For example, for the moderately large data set in Table 1 e) we find the posterior mode 

of e corresponding to 1rr(/3, e) is 1.87 compared to the ML estimate of 3.18. Similar discrepancies 

are noted for all examples. The specification of these priors to approximate a likelihood inference 

could lead to modal estimates substantially different from the maximum likelihood estimate, which 

makes their use undesirable. A comparison of the Gibbs estimates with direct Bayes indicates 
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difficulties with increased prior diffusion. As expected, the Gibbs estimates corresponding to the 

tight proper prior 1r'3({3, e) reproduce the direct Bayes estimates very accurately (the % incr. var. 

is close to 0% in all cases and the number of required runs for single digit accuracy is small). 

However, inspection of the diffuse priors 1rr(f3, e) and 1r~({3, e) reveal problems with failure to 

reproduce direct Bayes or large amounts of simulation variance, especially with 1rr(f3, e). 

5 Conclusions 

This paper demonstrates by example that the use of the Gibbs sampler with diffuse priors can give 

inaccurate posterior estimates. Our simulations show that such inaccuracies are not necessarily 

limited to small samples, but in fact may be present for moderately large sample settings. By 

considering a simple model where direct calculations and multiple chains are feasible, we demon­

strate that the Gibbs estimates either fail to reproduce direct Bayes on average, or suffer from 

unacceptably large simulation variances, even for reasonably large burn-in and sample choices. In 

practice, direct calculations are often formidable and there are no obvious methods for verifying 

the answers based on these Gibbs chains. In such cases, the Markov chain cannot be relied upon 

to signal badly-behaved problems. 
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Caption for Table 1 

Estimates of posterior modes of {3 and e for varying prior specifications in a pro bit-normal hierarchy 

for five data sets with varying sample sizes. Posterior estimates are calculated by both a Gibbs 

sampler and by direct maximization of the numerator of the posterior distribution. MLEs and 

their asymptotic standard errors are given for reference. The average Gibbs mode derived from 

ten replicate runs of 10,000 variates each is reported (simulation standard errors in parentheses). 

A statistically significant difference (o: = 0.05) between the average Gibbs mode and the direct 

estimate is indicated by an asterisk. The % incr. var. (rounded to nearest integer) and required 

runs (rounded to two significant digits) are also reported for each prior specification. Priors with 

a superscript f (1rf) are flat priors with subscripts denoting truncated versions; priors with a 

superscript n (1rn) are priors which approach the classic noninformative prior as the subscripts 

decrease. 

Footnotes for Table 1 

1 Since the joint posterior distribution does not exist under 1rf and 1rn, the calculation of% incr. 

var. and required runs are not applicable. Further, the reported direct Bayes estimates are also 

not theoretically applicable. 

2 Since the Gibbs mode does not reproduce the direct Bayes estimate on average, the calculation 

of% incr. var. and required runs are not applicable. 

3 Optimization routine to compute the direct Bayes estimate failed to converge. 



Table 1 

a) n = 25 clusters and r = 2 observations per cluster; MLE(,B) = -6.24 with asymptotic 

standard error of 3.36, MLE(O) = 1.85 with an asymptotic standard error of 2.90 

,B e 

Prior Direct Gibbs % incr. Required Direct Gibbs % incr. Required 

var. runs var. runs 

1Tf -6.241 -9.09 (1.56) - 1 - 1 1.851 7.08 (2.59) - 1 - 1 

1Tf 
1 -6.24 -6.89 (1.55) 200 37,000 1.89 3.58 (2.26) 600 79,000 

1Tf -6.24 -5.70* (0.19) - 2 - 2 1.85 1.38* (0.15) - 2 - 2 
2 

1Tn _1,3 -4.25 (0.22) - 1 - 1 _1,3 0.19 (0.31) - 1 - 1 

1Tn 
1 -4.17 -4.50 (0.17) 23 440 0.13 0.24 (0.08) 200 96 

1Tn 
2 -4.91 -4.89 (0.11) 5 180 0.66 0.66 (0.05) 6 40 

1Tn 
3 -5.11 -5.10 (0.02) 0 5 0.87 0.88 (0.00) 0 1 



b) n = 50 clusters and r = 2 observations per cluster; MLE(,B) = -5.93 with asymptotic 

standard error of 2.46, MLE(O) = 2.90 with an asymptotic standard error of 2.83 

.B e 

Prior Direct Gibbs % incr. Required Direct Gibbs % incr. Required 

var. runs var. runs 

n.f -5.931 -6.21 (0.49) - 1 - 1 2.901 3.55 (0.75) - 1 - 1 

Jrf 
1 -5.93 -6.00 ( 0.35) 20 1,896 2.90 3.14 (0.42) 20 2,750 

Jrf -5.93 -5.33* (0.22) - 2 - 2 2.90 2.22* (0.23) - 2 - 2 
2 

Jrn -4.301 -3.70* (0.16) - 1 - 1 1.081 0.59* (0.13) - 1 - 1 

Jrn 
1 -4.41 -4.21 (0.23) 20 810 1.19 1.06 (0.19) 20 540 

7r?J: -4.66 -4.60 (0.16) 10 390 1.43 1.36 (0.13) 10 260 

Jrn 
3 -4.40 -4.42 (0.01) 0 1 1.06 1.06 (0.01) 0 1 



c) n = 100 clusters and r = 2 observations per cluster; MLE(.B) = -5.83 with asymptotic 

standard error of 1.93, MLE(O) = 2.58 with an asymptotic standard error of 2.19 

{3 e 

Prior Direct Gibbs % incr. Required Direct Gibbs % incr. Required 

var. runs var. runs 

1rf -5.831 -5.36 (0.44) - 1 - 1 2.581 3.55 (0.62) - 1 - 1 

1rf 
1 

-5.83 -5.65 (0.21) 10 692 2.58 2.38 (0.24) 10 853 

1rf -5.83 -5.18* (0.13) - 2 - 2 2.58 1.90* (0.12) - 2 - 2 
2 

1rn -4.681 -4.19* (0.12) - 1 - 1 1.301 0.91 * (0.14) - 1 - 1 

1rn -4.74 -4.03* (0.16) - 2 - 2 1.36 0.78* (0.13) - 2 - 2 
1 

1rn -4.90 -4.47* (0.14) - 2 - 2 1.53 1.16* (0.18) - 2 - 2 
2 

1rn 
3 -4.51 -4.51 (0.02) 0 4 1.09 1.09 (0.01) 0 1 



d) n = 50 clusters and r = 4 observations per cluster; MLE(,B) = -9.45 with asymptotic 

standard error of 2.62, MLE(O) = 4.30 with an asymptotic standard error of 2.74 

(3 e 

Prior Direct Gibbs % incr. Required Direct Gibbs % incr. Required 

var. runs var. runs 

rrf -9.451 -7.31 * (0.64) - 1 - 1 4.301 2.86 (0.76) - 1 - 1 

rrf 
1 -9.45 -8.14 (0.74) 80 8,490 4.30 3.48 (0. 70) 65 7,500 

rrf 
2 -9.45 -8.95 (0.34) 17 1,830 4.30 4.00 (0.36) 17 2,050 

rrn -8.121 -7.40 (0.39) - 1 - 1 2.831 2.25 (0.28) - 1 - 1 

rrn -8.15 -7.57* (0.20) - 2 - 2 2.85 2.36* (0.17) - 2 - 2 
1 

rrn 
2 -8.10 -7.20 (0.52) 73 4,190 2.82 2.17 (0.43) 60 2,860 

rrn 
3 -6.23 -6.24 (0.02) 0 9 1.29 1.30 (0.01) 0 2 



e) n = 15 clusters and r = 8 observations per cluster; MLE(/1) = -9.38 with asymptotic 

standard error of 2.79, MLE(B) = 3.18 with an asymptotic standard error of 2.36 

(3 () 

Prior Direct Gibbs % incr. Required Direct Gibbs % incr. Required 

var. runs var. runs 

n:f -9.381 -9.95 (0.91) - 1 - 1 3.181 4.02 (0.87) - 1 - 1 

'lrf 
1 -9.38 -8.62 (0.40) 20 2,480 3.18 2.71 (0.30) 16 1,370 

1rf -9.38 -9.75* (0.09) - 2 - 2 3.18 3.58* (0.09) - 2 - 2 
2 

'lrn -7.961 -7.52 (0.29) - 1 - 1 1.831 1.62 (0.14) - 1 - 1 

1rn 
1 -8.00 -7.68 (0.33) 26 1,720 1.87 1.70 (0.17) 15 430 

'lrn 
2 -8.02 -8.12 (0.14) 5 300 1.93 1.99 (0.07) 3 85 

'lrn 
3 -6.45 -6.43 (0.01) 0 3 1.06 1.06 (0.00) 0 1 



Caption for Figure 1 

Four priors for (3 and 0. The non-informative prior is represented by a solid line; the broken lines are 

diffuse proper priors in decreasing order of diffusion, with the dotted line representing the tightest 

specification. 

Caption for Figure 2 

Likelihood surface for five data sets simulated from a probit-normal hierarchy with (a) n = 25, r = 

2, (b) n = 50, r = 2, (c) n = 100, r = 2, (d) n = 50, r = 4, (e) n = 15, r = 8. True values 

of (3 and (} for all five data sets are -5 and 2 respectively. 

Caption for Figure 3 

Histogram of (3 and (} iterates for one run of 10,000 iterates using the Gibbs sampler with a 

non-informative prior for data from a probit-normal hierarchy with n = 15, r = 8. (Note that 

10% of the generated (}values were larger than 21 but are not included in the histogram) 
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