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Abstract. A one dimensional infinite quantum spin lattice with a finite range inter-
action is studied. The Gibbs state in the infinite volume limit is shown to exist as a primary
state of a UHF algebra. The expectation value of any local observables in the state as well
as the mean free energy depend analytically on the potential, showing no phase transition.
The Gibbs state is an extremal KMS state.

§ 1. Introduction

A one dimensional infinite classical spin lattice system has been
studied in [12] and shown to be without any phase transition for a large
class of interactions. We show an analogous result for the quantum case
with any finite range interaction.

We first show that the power series for the time displacement auto-
morphism of the algebra of observables has an infinite radius of con-
vergence for local observables in one dimensional lattice. This enables
us to use the Tomonaga-Schwinger-Dyson perturbation type formula
and pull out each potential from e ## as a factor. The transfer matrix
technique for the classical one dimensional Ising model is then applicable
in a fashion analogous to [12] and we obtain a formula for the infinite
volume Gibbs state in terms of an eigen state of a certain linear bounded
operator acting on observables.

A standard pertubation theory of bounded linear operators on a
Banach space enables us to find an analytic continuation of the Gibbs
state with respect to the interaction potential and to prove the analy-
ticity of the expectation value of local observables in the Gibbs state as
well as the analyticity of the mean free energy.

This technique is applicable also to the classical case, provided that
the interaction potential decreases exponentially at large separation.

The Gibbs state is shown to be invariant under time and lattice
translation, satisfies the KMS boundary condition and has the exponen-
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tial, uniform clustering property. The last property implies, by a general
theorem, that the state is primary (a factor state) and is an extremal KMS
state.

.§ 2. Notation and Results

We represent a one dimensional lattice by the set of integers
Z={0, +1,...}. For each lattice point j, we have a d-dimensional
Hilbert space J#; where d is finite and independent of j. For each finite
subset I of Z, we consider a finite dimensional full matrix algebra
W) =B(HT)), #T)= Q) #;. For ICI, QeU(I) is identified with

Jjel

Q®1y,; in A(I') where I'\I denotes the complement of I in I and 1,
is the identity in (I'\I). The collection of A(I) for all finite subsets I
of Z together with this identification defines a normed *-algebra 2,
(the algebra of local observables). Its completion 2 is taken as the
C*-algebra of quasi local observables. The closed *-subalgebra of U
generated by all (1), I C I' will be denoted by A(I") for an infinite subset
I' of Z (as well as for a finite subset I').

For any two lattice points j and j, we fix a unitary mapping w(j, j)
from 5, onto #; such that w(j,j) w(i',j") = w(j,j"), w(,j')* =w(,j) and
w(j,j)=1. Let I +a denote the set {j+a;jeI}. Let w(I +a,)= X w(j + a,j),

jel

which is a unitary map of 5 (I) onto #(I + a). The *-automorphism
of A, which is induced by a *-isomorphism Qe U()—w( +a,l)
Qw(I +a,D)* is denoted by t,(a) and is called a lattice translation.
We also need the *-isomorphism of W(Z\[1-—n, n]) onto A, which is
induced by the *-isomorphisms 7,(n) ® t,(—n) of A([n+ 1, NJ])
®U([1—N, —n]) onto AL, N—n)@UA([1—-N+n0]), N=n+1,
n+2,.... It is denoted by t.(n). Here [a, b] denotes the set of integers j
satisfying a <j<b.

Let &(I) be the interaction potential among lattice sites in I. ¢(I)*
=@(I), (1) e A(I). We require &(I) =0 if I is not within some interval
of length r. We also require &(I + a)=1,(a) #(I). The Hamiltonian for
a finite interval [N;, N,] is

UNLN)= Y (). @1

IC[N1,N3]

The Gibbs state ¢f , of A([a, b]) is

@2 5(Q)=Z(a, b)" " tr, [Q exp — Ula, b)] , 22)
Z(a, b)=tr,[exp—U(a, b)], (2.3)

where tr,, is the trace of a full matrix algebra ([a, b]).
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Theorem 2.1. (i) The following limit exists and is finite:
P(d) =b_1£r_1'100 (b—a) *logZ(a,b). (2.9)

It is holomorphic in .
(ii) For every Qe A,, the following limit exists and defines a state
of W:

Po(Q)=_ lim  ¢3(Q). (2.5)
For each Q € N, it is holomorphic in .

The holomorphy in ¢ means the real holomorphy in {=({,,...,{,)
when each &(I) = &(1, £) is a restriction of an A(I) valued holomorphic
function @(I, {) to { = ¢ e some real domain.

The analyticity statement can be proved for the following class of
quasilocal observables with exponential tail.

Definition 2.2. Let Q e 2.

iQl, = inf j0-0,. 2.6
QneU([—n,n)

19l = 3 X1 )

Q1= 1121l + Q... (8

For x > 1, W(x) is the set of Q € W such that |0, . < 0.

@4(0) is holomorphic in @ if Q € AU(x) for some x > 1.

The limit

TT(t)Q — -~ lgr})_}weitv(a,b)Qe—itU(a,b) (29)

exists in U for all Q € W and defines a continuous one parameter group
of * automorphisms of U, which we denote by 7,(f) and call a time
translation. (The unit of time is (8#)~1.) A state ¢ of 9 is time and lattice
translation invariant if ¢(t4(f) 7,(a) Q) = ¢(Q), for any t, a and Qe .
It satisfies the KMS boundary condition if ¢(Q;Q,(fo)) = ¢(Q,(f1) Q1)
for all Q,,0,eM and feP where Q,(f)=]1.1) Q, £, (1) dt, £,(1)

<O
= [eT"5"*= f(5) ds. Let S; be a convex subset of set of states of 2. A state
= 0

@eS8, is extremal in S, if p=lp;+(1 =21 @,, ¢, 9, €8;, 0<i<1
imply ¢, =¢,=¢. If S, is the set of translation invariant states, ¢ 1s
an extremal translation invariant state and if S, is the set of time trans-
lation invariant states satisfying the KMS boundary condition, then ¢
is an extremal KMS state.



Gibbs States of a One Dimensional Quantum Lattice 123

A state ¢ has an exponential clustering property if there exists ¢ >0
such that

lim e?"[p(Q,7,(n) Q) 0(Q) 0(2(W Q)] =0 (210)

for any fixed Q,, Q, € U,. ¢ has a uniform clustering property if there
exists N for any given ¢ >0 and Q; € U such that

l0(Q102) — 0(Q1) ()l <&l Qy] (2.11)

for all Q,e W(Z\[ — N, N]). A state ¢ is primary (or a factor state) if
the cyclic representation =, of 2 associated with ¢ through the GNS
construction is such that =, ()" is a factor (i.c. the center of ()"
consists of multiples of the identity).

Theorem 2.3. The Gibbs state @4 for the infinite system is invariant
under time and lattice translation, satisfies the KMS boundary condition,
has exponential and uniform clustering properties, is primary, is an extremal
KMS state, and is an extremal lattice translation invariant state.

In the following discussion, we use the following combination of
o():
o= Y n) o) (2.12)
IC[0,r]
where n,(I) is the number of the translates I+ a of I which is still in
[0, r]. We denote

H(I)=[ +Z] Irs(n) D, (2.13)
H{a,b)=H([a,b]). (2.19)
H(a, b) and U(a, b) differs only near the two ends:
Ua,b)— H{a,b)= A + A, (2.15
Af e A([b—r,b]), A;eA(la,a+r]), (2.16)
145 Iécmé (0] 2.17)
4, | gmzm Il . (2.18)

§ 3. The Spaces U (M, x)

Lemma 3.1. |0l  is a norm of linear space N(x). W(x) equipped with
the norm || ||, (denoted as W(n, x)) is a * Banach algebra.

Proof. There always exists Qe ([ —n,n]) such that |Q — Q™| =0,
due to the compactness of a bounded closed subset of A([ —n, n]). Let

o
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101 = QPN = 11Q4 11> 102 — 0 = 1Q2 ]I, Then
101+ Qalln =101+ 0, — 0P — 0PI SM1Qylla+ 11Qalla- (31)
Similarly, |CQIl,<IC|[Qll,. At the same time, [Ql,=<IC™'[CQl,
Therefore [|CQ|,=|C] ],
Obviously [IQ*l,, = IIIQIH,.,x- Further, [Q; 0,1, =10:Q, - Q0PI

Sl 1Qall + 1051 1Q11a = 1Q 1l 1Q2lln + Q41 Q21+ 1124114 Q21
Hence [1Q; @l < N1, 1l -

Any Cauchy sequence Q, with respect to || [l is @ Cauchy sequence
with respect to the norm in U and has a limit Q in 2: 11£n 10— Q| =

This implies [Qll, < lim | Qxll, < m[|Q,l, < IQ]l, and hence |Ql,

= li{n | Okll,- Hence

N N
loi+ 3. 101 = fim( 104 + 31041 ) SsypliQu, <. 02

Thus ||Q]l,., . <o and Q € WU(n, x). Given &> 0. There exists K such that
Ok — Qull,»<e/4 for kz K. There exists N such that HQKIlN <&/

and [ Q|ly, . <&/4. There exists K’ such that [[Q — @yl + Z <0 — Ol

<¢/4 for k=K' Then ||Q — Q... <& for k=max(K, K) Therefore
im{Q,—Qlll,,=0. Q.E.D.

“Lemma 3.2. The set Xy(y) of Q € N such that
IOl =vo, Q=7 I=N,N+1,.. (3.3
is convex and compact provided that y, < oo, llim 7, =0.

Proof. The convexity is straight forward from the triangular inequality.
By setting Q, = 0in (2.6), we obtain [|Q|, < | Q] < y,. Let 0™ € ([ —n,n])
be such that ||Q — Q™| = Q||,- Then || < Q| + Q] <27,.

Let Q,eXy(y). Let k(i,j), j=1,2,... be a subsequence of k(i—1,j),
j=1,2,... such that Q%; j 1s convergent in norm as j— oo, where
n(N—1,k)=k and i=N, N+ 1, .... Such choice is inductively possible
because |QP|| <2y, for all i and k.

We can show that Q,; ; is a Cauchy sequence in 2. Let ¢ >0 be given.
There exist K such that y,<g/3 for /I=K and K'>K such that
106k, ) — Ok, i1l <&/3 for j, j Z K'. Since k(j,j)=k(K,v) with v=j if
j= K, we have |QX) ;, — Q{0 . <e/3if j,j = K'. Hence

K
“Qk(; D Qk(j',j’)” < “Qk(j,j) - ch(,)p”
K
+ 19885 — O il + 1O iy — Qe <

if j,j’= K'. Hence Q, has a convergent subsequence Qy; ;-

(3.4)
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Since A is a separable Banach space, its sequentially compact subset
is compact. Q.E.D.

Lemma 3.3. Let x,>x,>1. The closure of a bounded subset of
A(n, x,) with respect to the norm in W is in W(n, x,) and is a compact
subset of WU(n, xy) (with respect to |} ..,/

Proof. Let||Qll,. ., < a. Then |Q,]| £ a, |Qll, £ x5 aforl=nn+1,...

n,x; =
and lim x;'a=0. Hence Q, has a subsequence which converges with
=

respect to the norm in . Let now Q, be a sequence such that ’lim 1Q—0ll
-0

= 0. By the latter half of the proof of Lemma 3.1, |Q}, :likaIlel,, and

N—-1
hence |Q]| + ). |Qll;<a. Therefore [|Qll,, ., <a. Since [Qil,<x;'a,
I=n
12 n, we have ||Qylly.x, Salxy/x2)¥(1 —(x,/x,))” !, which tend to 0 as
N — 0. This is true also when Q, is replaced by Q. Since lim ||Q — Q,||;=0
for each I, we have lim||Q — Qlll,.., =0. Q.E.D.
In the above discussion A(n, x) for given x and varying n are topolo-
gically equivalent. We introduced || [[,, . merely for the convenience in
later computation.

Definition 3.4. A, and N, are sets of QW satisfying the following
conditions (i) and (ii), respectively.

(i) Y. x'Qll, <o for all x.
(i) Slup”_1 [log|[Q|l, + (n/r) logn] < co.

Lemma 3.5. U, and W, are *-subalgebra of W stable under t4(a). Ay
contains U, .

Proof. (i) Let Q,,Q, € 2. Then

IxMe1 Q4 ¢ Qalli Sleg| ZXHQylli+leal ZxXQall (3.5)
supn”'[logflc; @ +¢2 0, + (n/r) logn]

= Slﬁpn_1 og(e 1Q11l.+ leal 1Q211,) + (n/r) logn] (3.6)

= max{supn™" [log |01, +(/r)logn1} +log(ci| +Ics).

Hence U, and A, are linear subset of A. Next

101 Qall, £ 12122 — 0P QPN S 14l Q21+ 121 Q4
SHQul 1Q2lla+ 211l 1Qulla- (BT
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Hence

le“Ql Q21 =110, le‘|Q2Hl+2‘|Q2“ ZXIHanz,
Sgpn_l[logHQl Q5|+ (n/r) logn]

< max {supn ! [log |0, + () logn| +10g(10 1 +21Qa1). ()

J

(3.8)

Therefore 2, and A, are algebras. Since ||Q*|,=1Q|,, Y, and A, are
*-algebras. ||t,(a) @, = |Qll;+, Therefore A, and A, are stable under
1{a). A, C A, is obvious. Q.E.D.

Definition 3.6.- Let Q € . Define |Q || to be co if Q™1 ¢ A.

@ =1lol e, (3.10)
(@)=, Jnl 10— 10" (.11
Lemma 3.7. Let Q > 0. Then
lg~ti~t=o=l0l, (3.12)
«(Q) = sup¢'(Q)/¢"(Q) (3.13)

where sup is taken over all states @' and ¢” of U.

Proof. |Q|| is the Lu.b. of the spectrum of @ and |Q~*| is the Lu.b.
of the spectrum of Q ~!, which is the inverse of the g.Lb. of the spectrum
of Q. Hence (3.12) follows. Since sup@(Q)=||Q|, infe(@)= 0| !

? @

for Q >0, we have (3.13).

Lemma 3.8. If X and Y are elements of a Banach algebra, X!
exists and | Y| | X Y| =<1, then X+ Y has an inverse |(X +Y)™!|
SIX7 (=87, and

X+ 1) =X X {1 -8 1. (3.14)
Proof. Consider the series

fzx-lf(—YX—l)"=<f(—X-1Y)">X—1 (3.15)
n=0

n=0

which is absolutely convergent due to | YX 7! < ||Y]| | X 1| =6 < 1. It sat-
isfies(X+Y) f = f(X +Y)=1andhence f = (X + ¥)" L. Further | f — X !

<IX7H S oS IX (-9 1)

Lemma 3.9. Let 0>0, Qe
() ©Q)S@Q) - )@+1)" <1. (3.16)
Q) w@=ul@ i ISl (3.17)



Gibbs States of a One Dimensional Quantum Lattice 127

(3) There exists Qg€ W([— 1, 11), such that

1Q = Qull 12" =u(Q) and
107 (1 —w@)=10 SO (1 +0(Q).  (3.18)

@ lel=del -1~ ="2. (3.19)
G len=slely i r=i. (3.20)
6 a@=lolLle™ I a—lehle " (3.21)
M N12L=127 M (@) (1 — (@)™ (3.22)
@ 1Q)=u(Q), u(1Q)=w(Q) i Ai>0. (3.23)
@ 12+xl=I2l:. (3.24)
(10) If A7 + Q) <1, then

u(@-D=(@QI-2107 (1 +o@) ™", 4>0. (3.25)

@ — D= (@@ —Ae~ A —A1e™ )™ (3.26)

Proof. (1) If we set Q@ ={[|Q] + Q7| 7*}/2 then

(@) 12— 0“1 @)~
=(lel =1~ = yael+1e™ ™ = (@) - 1) @@)+1)~".

(4) follows from QI <[Q— Q| =(1QI —1Q7*[7")/2. (2) and (5) are
obvious. (3). Since [[Q; 'l =sup |yl [=(Q) w| ' Z|Q)| ™" where the
sup is over all non zero vectors in a faithful representation z of 2. Hence
as Qi > o0, 0= Qll 197 1Z1Ql 110, IF (1 = [1211/1Q4)) becomes = 1.
By (3.16), if 10— 0,1l 07 "}l <ey(Q) + ¢ with &< (I — 0,(Q)/2,.then [,
is bounded by a constant. Hence there exists Q€ W([—1, [])such that
10 —Qull 103" | =,(Q) by the compactness of a bounded closed set
in U([— 1, []). We have

(3.27)

1000" —11 =12 = Qul 123 | S x(Q). (3.28)
Hence 1 —a(Q) <100, ' £1+x(Q) and
120 1 SHQTHN1QQ0 =1 (1 +24,(Q)). (3.29)

From (3.28) and Lemma 3.8, (0,0 ' =I1+(QQ0% —1) I
<(1 —(Q))~*. Therefore

Q" I Z Q7 Q0@ I Z 107 (L —w(Q)) - (3.30)
By Lemma 3.8, we have

e~ =te a—-le—-o® e n-*. (3.31)
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Hence we have

w@=12-0Y1 e =le~thiela—lelnlen=" 3.32)

where QP e A([—L1]), |Q— QY| =Q|,. This proves (6). (7) follows
from (3).
(8) and (9) are immediate from definitions. To obtain (10), we note
that if Q, is given by (3), then, by Lemma 3.8,
1Qu =A™ =100 I (1 =141 1Qg )~
and hence
(Q—-N=12—Qul 1@y =M
<12 - 0l 10 I A~ A1Qg" I~ (3.33)
<o(Q) (1= 1A Q™ (1 + (@)~}

where we have used (3.29).

Since(Q) 210! 0= La(Q)~21Q ! Z[Q (@ - DZ1—1Q 7!
Hence we have (3.26).

Lemma 3.10. Let v be a state of U, a>0, 1 <a<oo, limeg; =0,
o, >0. Let X bethe set of Qe W, Q 20 suchthat v(Q)=a,x(Q) <o, O], 107
o, =N, N+1,..... Then X is a convex, compact subset of .

Proof. First we prove the convexity. Let 0 =10, +(1—1) Q,, Q, €2,
0,€2, 0<A<1. WQ) =A@y +(1—2) v(Q;)=a. Since 0, 20, 0,20, we
have Q = 0.

121 SANQ: I +A =D Q) Se{ZlQr T+ A=A Q7 1171 . (3:34)

lg=t~t= infe(Q) = 4infe(Q1)

. L (3.35)
+(1 =2 infe(Q) Z 07 M7+ (L= 10717

Hence «(Q) < o. Similarly,

121, =411l + (A=) Q2] S 0, (AIQT 171 + (A = DO 7). (3.36)

Hence [|Q],1Q7 1 S o

Next we prove the compactness. From v(Q)=a = |0~ 1=« 1||Q],
we have Q| Zaa. Similarly |Q], <0~ 1|~ =aa. Therefore Z is a
subset of a compact set. We now prove that X is closed. Let Q,eZ,
Jim [Q —Q,[=0. We have v(Q)=limv(Q,)=a. From Q,=[Q,"'|™"

Za Q. Za " a, we have Q@ =« 'a. Hence by Lemma 3.8,lim 101
=[Q"|l. Hence lima(Q,) = a(Q) £ « lim[Q,1,10, "1 = JQILIQ"|
sa. Q.ED.
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Corollary 3.11. Let v be a state of W, x>1, 1 <a<oo, a>0. The
set of Qe N, Q=20 such that v(Q)=a, [|Qlly..1Q 'l Sa is a convex
compact subset of U.

Proof. From ||Qlly, Q™I L&, we have a(Q) <o, Q[ 1Q | £x'a,
I=M,M+1, .... Thesetis closed and hence compact. From (3.34) ~(3.36),
121 Q1 + A2 Qolllag, < 141 Q4 +4,0,) "M £a if Q; and Q, are in the set,
A+ A4,=1,1, =0, 4, 20. Hence it is convex.

Corollary 3.12. The set of Qe U, Q =0 such that v(Q)=a, a(Q) < ¢,
Q) =y, I=N, N+ 1, ... is a subset of a compact convex set, if lima, =0.

Proof. This follows from (3.22) and Lemma 3.10.
Remark. In[12], quantities of the form f,(Q) = sup ¢ ®¢'(Q)/e®¢"(Q)
2]

has been used instead of our ,(Q), where ¢ runs over states of U([ —n, n])
and ¢',@” runs over states of W(Z\[—n,n]). B(AQ,+(1—2)Q,)
<max{f,(Q,), 5,(Q,)} for Q,,0,=0,0<4A=1. Hence the condition
BAQ) £ B, is stable under convex combination of Q. %, is a Fréchet
Montel space.

§ 4. Time Translation

For any two clements Q and R in ¥, define

0(R)@=[R,Q], 4.1)
{exp(R)} Q= 3 (1) 'S(RY'Q. (42)
n=0
We extend this definition to R= H(I)
SHN)Q= > [()®.0]. 4.3)
J:lj,j+rict

If 0 € A, the sum terminates at finite j.
Lemma 4.1. Let C*(n) be numbers such that

Crim)=(-r+1)Crny+2 Y. Cr(n) 4.4
k=1
Clm)=4,,(ie.=1 if I=n =0 if l*n) 4.5)
where lmeZ,mz0,n=r—1. Then Cl'(n) =0, and
CHm)=0 if l<n or I>n+mr. (4.6)

Let
f X, y) Zcm n)xl n mr+n l/m| (47)
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Then, (4.7) is absolutely convergent for all x and y, and is given by

fe. ) =explin—r+ 1)y +2 3 k' (c/yffexpky ~ 131 (48)
Let
F(x)= > CMn)x"/m!, 4.9)
Fi)=Y Y Cremyx"/m!. (Lzn) (4.10)
m I>L
Then
F)=expln—r+Dx+2 Y k- Hexpkx— 131,  (4.11)
k=1
Flrong < (L+ 1)1—1[2 $ k1 (e — 1):|L+1F,,(x) (x>0), (412)
k=1 .
where L >0.

Proof. C'(n)=0 and (4.6) are immediate from (4.4) and (4.5) by
induction on m. By (4.4) and (4.6), we have

SLIlpIC?‘“(n)I S{n+mry—r—+1+2r} 8111p|C§"(n)| . (4.13)

By repetition, we have sup|Cl'(n)| < [] (n+ 1+ kr). Therefore (4.7) is
! k=1

absolutely convergent near x = y = 0 and defines a holomorphic function.

Due to (4.4), f,(x, y) satisfies within the polycircle of convergence

the following partial differential equation

(ry") ™1 [x(6/0x) + y(0/0y)] J,

— @0 tn—r+1} f 42 0, *Y
k=1

From (4.5), we have the initial condition

£0,0)=1. (4.15)
After the change of variables
s=logx, t=logy—y, u=(s+1)/2 v=(-1)/2, (4.16)
we have

(0/0u) fulx, y)=g(x/y) (0y"/0u) f,(x, y), (4.17)
g0/y) =(i=r+ 1) +2 3 (/) @18)

k=1
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where (0/0u) is for fixed v. Since x/y =exp(2v — y"), we have
log f,(x, y) + k(v) = | glexp[20— y]) d(y")
=(n—-r+1)y -2 Zk /vy,

k=1
where the unknown function k(v) can be determined from (4.15) by
taking the limit y—0 with x/y fixed at e2¢

(4.19)

k(@)= —2 3 k~lete. (4.20)
k=1
Therefore we have (4.8). By definition, F,(x) = f,(x'/, x!/) and we have

4.11).
To obtain (4.12), we consider

filbey)=explln—r+1) y" +2(x/y¥ Z k™Hexpky —13]  (421)
Z n)xl n mr+n l/m| (422)

By the power series expansion of exponentials in (4.11) as well as in (4.21),
we obtain expressions for CJ*(n) and ém(n) as sums of positive terms. The
change of (x/y)* in (4.11) to (x/y)" = (x/y)*(x/y)y ~* increases the power
of x by r — k = 0 while keeping the total degree in x and y as well as the
numerical coefficient of each term. Therefore all terms in the expression
for C}*(n) moves into expressions for é;?(n) with the same m and higher
I'>1 Hence

o< Y crm=< Y Crn)

I>L I>L

OSFL)<FHx) =Y Y Crmyxm/m!, (x>0). (4.23)

n I>L

By Tailor’s expansion theorem, we have

FEreno) = {wn(x, )= 3 (MY 0/00 ¢, &, x)}
k=0 $=0
= (L+ D! X108 0,6 Xz (4.24)
where 0 <6< 1 and

& ) = [ (& pth)
:exp[(n—r+1)ﬂ+2ik—l(ekn_n(é/n)]. (4.25)
k=1

The main point of introducing F, is that (4.24) is easier to calculate for
F than for F. From (4.23), (4.24) and (4.25), we obtain (4.12).
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Theorem 4.2. (i) {expS(BH(I))} Q converges absolutely in the norm
for any complex f; Qe N, and ICZ. (ii) expd(BH(I)) is a group of
automorphisms of WI')NU, and W(I") A, with one complex parameter
B for any I'D1. {expd(BH(I))} Q is analytic in B for each Qe ¥,.
(iii) ©5(t) =exp&(it H(I)) for real t has a unique extention to a continuous
one parameter group of *-automorphisms of W, commuting with t(a).
2 =1,

(iv) If Qe U([0, n]), then for any N=0
{expS(BH(I))} Q = Qu,1(B) + 6Qn.1(B), (4.26)
On.(f)=expd[FHUIN[—N,n+ N])] Qe A([- N,n+ N]), (4.27)
16Qw, 1B <L +IN/r D!~ (BN LE,CIB DI 1), (4.28)

a(B)= Zki k™! exp2klpl @l - 1), (4.29)

where [ N/r] denotes the largest integer not exceeding N/r, and n=r — 1.
Proof. By definition, if Q € A([0, n])

S(BH@)"Q=p"2[1,Gm) B, [, [,(1) 2,01 ..T],  (4.30)

where the sum is over all j,...j,€ Z such that [j,,j,+7] has a non
empty intersection with the interval

I1Gy - jx—1) =[0,1] U(,Uk [il,j,+r]) (4.31)

for each k=1, 2,... m. Let C"(n) be the number of terms in (4.30) for
which the length of the interval I(j, ... j,) is I It satisfies (4.4) and (4.5),
where the first term of (4.4) represents the case in which [j,,. 1, j.+1 + 7]
falls in I(j, ... j,) and the rest represents cases in which [j,,+1>Jm+1 +7]
has still non empty intersection with I(j, ... j,) and sticks out to either
side of I(j; ... j,). We now have two inequalities

Is(BHD"QI = 2IB 21" lQl ;C?’(n), (4.32)

[o(BHI)"Q—6(BHUN[—N,n+N)"Q
s@ipllehmior 3. Cre.

I>N+n

(4.33)

Note that the change of Z to I CZ only decreases the number of terms
in (4.30).

We are now ready to prove (i) and (iv). If we write Q= ) 0,
k=ko

0, =0"—0* Ve A([—k k]), 1@ — 0¥l = [ Qll(k Z ko), Q*~"=0, we
have [[Qkll = 1Qllx + [1Qllk~1 where [|Q]lx,~y is to be replaced by [Q].
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Hence if Q € A,, then Zx*||Q,|| < oo for any x > 0. From our discussion,
we have

s

O(m!)_llﬁl"' Y M) @, L., [s61) 2,07 - ]I

m J1eoidm

3
n 18

(=}

(m)~'@IBI I 2l)" 11‘: Cr2R (1l + 1Ql-1)  (4.34)

P

IIA
s

=
S}

8

£ Y FuIBHI2D (1Q + 11Qllk-1) -

k=ko

By Lemma 4.1, F,(x) = (e**)¥Fy(x). Hence (4.34) is finite and we have (i).
Similarly, for Q € N[0, n],

160w 1B = So(m!)”l(ﬂﬁl e 2 Crin gl

I>N+n

SEpHIen ol (4.35)
S FINATrIg el el

By substituting (4.12) into (4.35), we obtain (4.28).
To obtain (ii), we first show that A, and A, are mapped into them-
selves.

LetQ=20Q4, Q€ QI([—k, k]), ”Qk“ =@l + I|Q||k_1,k=k0,k0+1,...
where |Qfl,,—1 is to be replaced by ||Q||. We have for n =k,

Vo= llexpd(BH(I)) 2],

ééfé"{’"”"(z IBo1) 1l + 3 Ful21B2I) 10u) (4.36)
Hence, for x> 1,
nioxm
< < Y X1 +[N/r])r1a(ﬁ)[”““>< 5 (xe““""’“)"ann> Fo1182])
N zk e IS0 6 1) Fo2l 1), 437)
which is finite if Q € ;. Next, if 0 € 9,, we have
logp, <10g 3, 7 <log {n +2 — ko) maxy,,}
k=ko (4.38)

=log(n + 2 — ko) + max logy,
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where y,, =081_, 62 for k=kg ... n,

oy =+ [N/ T BN, (4.39)
i = F 21BN 104, (4.40)
Prn+1 =k§:“sz(2llﬂ4’ll) 10l =1 —e™ Y7 K, 218217 ner,  (441)
Vront1 = sup [ PP Q, Ll (4.42)
We have, _for'ko <k<nand n2k,
n” ! [(n/r)logn—(k/r)logk —[(n—k)/r]log (n—k)] <r~'log2, (4.43)
n”log Fy (2| BO|) <4 pP| + log Fy 2 S ])) » (4.44)

n~ ' {logd,_ + ((n — k)/r) log(n — k)}
§§212N_ H{(N/r)logN —logI'(N/r+ 1)} +(1+1/r) loga(B) <o,  (4.45)

n~{logllQ.ll + (k/r) logk} < ilzlrfl_l {log| QI +(I/r)logl} < o, ’(4-46)
n~*{logy, .+ 1 +(n/r) logn}
= kS:lgl{(l + (k/n)) SI}P {1 (log Q]| + (I/r) log 1)} (4.47)
—r Mog(n+k)]+r Hogn+(k/n) (1 +4| D)} <oo.

Therefore supn™*(y, + (n/r) logn) < cc.

The isomorphism property of exp §(8H(I)) follows from the Leibnitz
formula:

S(BH(I)"(Q1Q,) = i (7:) (BBHMDY Q1) GBHI)"*Qy). (448)

k=0

To see the group property, we first note that
2 16(BL HI (B, HIY'Q/m!n!| < 0.
Hence we can change the order of summation to obtain

expd(B, H(I)) expd(B, H(I)) =expd((B, + B,) H(I)).

Since exp (B H (1)) Q has a power series expansion in § which converges
absolutely for all f, it is analytic in . This completes the proof of (ii).
The =-isomorphism property of 74.(¢) follows from

[8(it H(I) 01* =8(it H() Q. (4.49)
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Any =-isomorphism of ¥, into U can be uniquely extended to a #-iso-
morphism of W into A. The uniqueness guarantees that the extension
to A of the restriction to U, of expd(ir H(I)) is the extension of
expd(it H(I)). The group property and the continuity in 8 is preserved
in the extension. Hence each expd(it H(I)) has an inverse exp d(—it H(I))
and therefore must be a *-automorphism. The commutativity with
t,(a) is immediate. This proves (iii). Q.E.D.

Corollary 4.3. If |t| < 2r| @) *loglal, then
Jim el?||[Qy, t(a) T() Q511 =0 (4.50)

forany 0,0, U, and ¢ >0.
The proof is immediate fronf Theorem 4.2 (iv).

Remark 44. The convergence of expd(SH(Z")) Q for v dimensional
lattice has been proved for |f] <[2r(r—1) | @1 *. ([11, 13].) In this
case, a weaker commutativity can be proven in a region where |t| can
grow to infinity as |a] — co.

§ 5. Expansionals
Definition 5.1.(cf. [5]). Let Qe W,, Q(f;)=expd(BH(I)) Q. Then

o 1 B1 Bn— n—1
E(Q;H(I)= Zogdﬁl g dp,... (f) dg, n QB D), (.1
o 1 A1 Pn-1 1-n
E\(Q; H(I)) = Zobfdﬁl (j) dg,... E‘; dg, l_[ O(=8;1), (52)
where
1l_j"Aj:Al...An, nf[IAj:An...Al. (5.3)

By a change of integration variables, we also have, for real B,

o f B1 n—1
E(BQ;BH(I))= ;Mf)d 1 I dp,... I dg, ﬂ QB D, (54
w f B1 1-n

E(BQ;BH(I) = =Zoojd Of Of dp, HQ( Bj:D). (5.5)

For Q € U([0, n]), the sums and integrals are absolutely and uniformly
(for bounded [f®|, Q| and n) convergent because [Q(S;; D
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S FQIs2)1IQI for |B,{ <6 and hence

o f By Bn-1 n
Y, [dBy [dB, ... g dg, l:[l 1Q(8;; DI

n=00 0 (56)
< exp{Ifl F,2IB2I) QlI} <o0.
For bounded operators Q and R,
{expd(BR)} Q =R Qe PX, (5.7
E,(BQ; BR) {expR} =expf(Q+R), (5.8)
{exp R} E(BQ; BR)=expB(Q+R). (59)

These formulas can be easily proved by noting that they are 1 for f=0
and each side of 3 equations satisfy differential equations (d/d f) S=[R, 51,
(d/dp)S=S(Q + R), and (d/dp) S=(Q + R) S, respectively. ((5.7) is used
in the proof of (5.8) and (5.9).)
From (5.8) and (5.9), the following formulas follow immediately.
E(Q; + 0. R=E,(Q,;0, + R E(Q,; R), (5.10)

E(Q;R)=E(Q; —R—-0Q), E(Q;R)=E(Q;-Q-R), (511)

E(Q;R E(-Q; —R)=E(-Q; -RE(Q;R)=1, (512

E,(Q; R) {expd(R)} Q'=[{expd(Q + R)} QT E(Q;R),  (5.13)

[{expd(—R)} QT E(Q; R)=E(Q; R) {expd(—R—Q)} 0'. (5.14)
Lemma 5.2. (i) If Q € U([0, n]), then

E(Q;AHI)=E,[Q; AHIN[—=N,n+N}N]+5.(,N), (515)

[16,(, N)|| = C,0n(29), (5.16)

Sy(A®) = (1 + [N/r]! ™ La()NM+E] (5.17)

where C, depends on n, |A®|| and ||Q| but is independent of N and I.

(ii) The same equation holds when the suffix r is replaced by L.

(iii) If Qe Ny, then E(Q; AH()Ye U, E(Q; AH(I)e A,.

(iv) Formulas (5.10) ~ (5.14) hold when R is replaced by AH(I) and
lf Qla Q2a Qa Q, € QIO'

Proof. We have ||Q(f; DI SF,2|A®]) QI and [Q,(B)I
s F@JIA2ID Q] for |f]=1. Since

n—1 n n—j+1 j—1-1
HQ(ﬁj;I): Z( H Q(ﬁk;1)>5QN,I(ﬁj)< I;[ QN,I(ﬁk))

k

" (5.18)

n—1

+ n On,1(B;)
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we have (5.16) where, forn=>r — 1,
C,=F,CZ|A2]) Q] exp{F,Z[A2I) IO} . (5.19)

(ii) follows in exactly the same manner. By the Sterling formula, we
obtain (iii). The formulas (5.10) ~(5.14) hold when R is replaced by
AH(IN[ — N, n+ N]). By taking the limit N — oo, we obtain (5.10)~(5.14)
for R=AH(I). Q.E.D.

§ 6. The Mapping ¥
Definition 6.1. Let I be a finite subset of Z, ¢ be a state of W(I),
Q=2uQ;, ueA(), Q,eW(Z\]). Then ¢(Q)=Z¢(w,) Q,e WZ\I)CU.
It is easily proved that ¢(Q) does not depend on a particular decom-
position Q@ =2u,Q,.
Definition 6.2. Let Q € .

L Q) =1.(1)d"? try, 1} (K*QK), (6.1)
K=K.K_, (6.2)

K, =E[-(1/2)7(1) &; —(1/2) H(2, )], (6.3)
K_=E[—-(1/2)1(=r ®; —(1/2) H(— o0, —1)] . (6.4)

Lemma 6.3. (1) If Qe N,, then LQeW,. If QeN,, then Qe W,.

i) If 020, then Q=0. If 0=0 and Q=+0, then LQ+0. If 020
and Q! exists, then (£Q) 1 e . (iii) If n>r, then

L0 =p,t.(n) 0, (K;QK,), (6.5)

K,=K, K, ,K,, eA([l,0),K, eA(-x,0])  (66)
K, =E(—(1/2) 7,(n) ¥; —(1/2) {(H(,m)+ H(n+1,0)}),  (6.7)
K, =E,(~(1/2)t,(—n) ¥; =(1/2) {H(= 0, —=n)+ H1—n,0)}),  (6.8)

v= Y 1()®eUA[L-rr]), (6.9)

", (Q)=p; " tryy _, 1(Qexp— {H(1,n)+H(1—n,0)}), (6.10)
d?"p,=try _, mlexp — {H(1,n)+ H(1 —n,0)}). (6.11)

Proof. Since K, € ¥, by (5.2) (iil)), K¥*QK e N, or A, according as
Qe U, or U,. Since |L(Q)l, < [K*QKll,+1, L(Q)e Ay or Ay If 0 20,
then K*QK =0 and hence o(#£Q) = (z(1)* ) ®(d ™~ trpo, 1)) (K*QK) =0,
for any state ¢ of A, where 7.(1)*¢ is the state of A(Z\[0, 1]) such that
.()*p(Q") = @z (1) Q") for all Q"eW(Z\[0,1]). Hence £Q=0. If

10 Commun. math. Phys, Vol. 14
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ZLQ =0 in addition, then ¢ (¥0)= ¢ (K*QK)=0 for the central state
¢, of . Since ¢, is faithful on the non negative elements of 2, we have
K*QK =0. Since K .. has the inverses

Ki'=E(r(1) 9/2; H(2, 0)/2), (6.12)
KZ'=E(t,(—r) /2; H(— 0, —1)/2), (6.13)

we have Q =0. If Q ™! exists, then K¥*QK = |Q~*| ~*{| K~ !|| 2 and hence
L) =19 Y HIK™ Y| "2 Therefore £(Q) ' e .
To obtain (iii), we use (5.10):
1-N
[[%G-DK,=E[-1/2)H(1,N+r); —(1/2) H(N +1, 0)]

j =K, E,[-(1/2)H(1,N); —(1/2) H(N +1,0)] . (6.14)

Since H(1, N) commutes with every 7,(j) @ in H{N + 1, c0), the second
factor of (6.14) is exp —(1/2) H(1, N). Similar equation holds for K _.
Therefore

L = (m)d P try g (Ko Ko ¥ QK KNy, (6.15)

1N
K= [l 56— DKy, (6.16)
J
1-N
K,_=]] n,(0-)K_. (6.17)

This proves (iii).
Lemma 6.4. (i) Let Qe U, Q >0, a(Q) < 0. Then
uZ"Q) = (Q) b(|2]), (6.18)
0 Q)< a(Q) b'(I121) 6,-,(I21/2)+b(|P]) 2+ n(Q) 5 (6.19)

where §,(||®|/2) is defined in (5.17) and b'(|®||) is another constant.
(ii) Let [|Olla. Q" I <a, 0<a, x>1. Then there exists N(a, M, x, || ®])

such that
a(Z"Q) <3b(|P) (6.20)

for any n= N(a, M, x, | @|) uniformly in Q.
Proof. From (5.12) and estimates in Theorem 4.2 (i), we have
IS S exp{F,,_ (121} I'P1/2} S exp{(r/2) F5,- (121D 12]} (6.21)
IS~ <exp{(r/2) F,, -, (I12]) |21} (6.22)
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for S=K,,, K,_, K¥N', K¥Y" where r <N <n, N'Zr, N’ may become
+ o0 and
K =E,(~n) ¥/2;

—{H([n—N,n)+H([n+1,n+1+ N1)}/2),
KN¥N' = E (—1,(—n) ¥/2;
—{H{[—n—N', —n])+ H({1—n,1—n+ NJ)}/2).

(6.23)

(6.24)

Hence
W KFQK,) <a(Q) |(K}) ™M 1K, MK 1K) < a(Q) bl @), (6.25)

where
b(|@[)=exp {4rF,,_.(I2]) [P} . (6.26)

Since b, =Q"=b, implies b, = ¢,(Q")=b,, and since a(p,7.(n) Q")
=a(Q"), we have (6.18) for n>r.
If n<r, H(1,n) in (6.7) and H(1 —n,0) in (6.8) are absent and ¥ is
0

replaced by ¥, = ) 7,(j) ®, which satisfies || ?,|| <r||®|. Hence we
j=1-n
have the same result.

Since a(R) = «,(R) for any R by (3.16), the Eq. (6.19) for I <r follows
from (6.18). The modification for the case n <r is the same as above.
Hence we consider the case n>r,[>r.

Now we prove (6.19). Let Q, ;. be such that

Quin€UA[—n—=Ln+1], 10— Qpupll “Q(;Jlrl)” =0, Q).

Let
K(n,l) — K:; 1,1-1 K:: 1,1-1 .
Let
01=1.n) (Pn(K?;,t) Q(n+1) K(n,l)) eA(—L1])

and compute Q' —Q;ll [(Q)~'|| where Q'=1.(n)¢,(K}QK,). From
Lemma 5.2 (i) and (6.21), we have

1K QK, — K§, ) QK pl

' (6.27)
<4101 b2 2 {(r/2) | D] Fz,— (1 211)} 6,—,(I®1I/2),
K& 5(Q — Qs i) Kinpll DU 1Q — Qs - (6.28)
Hence we have
s Y 1/2y—=13/¢1
10— Qill £@2b(|21)»)~ b (11 2]) d,—,(121l/2) (629)

+b(I12NY21Q = Qull»

10*
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where
b'(|2]))=b(|®Il) {4r(®| Fy,_ (I PI)} - (6.30)
On the other hand,
K?:l,l) Q(n+l) K(n,l) z “ {K?:z, ) Q(n+l) K(n,l)} -t “ -1

6.31
Zb(I21)7 2 Qu iyl (©30

By Lemma 3.9 (3) and (1), we may assume
1Qainl SN~ 1+ 0(Q)=2(07 Y. (6.32)

Hence
Q1 zbI2) Qi T 227 b1 2. (6.33)
Therefore

w(@)=Q -l Q™|
=b(121) &, +,(Q) + b' (1 2]) (Q) 6, (1| D11/2) .

Since o,(p, Q") = o, {(Q’), we have (6.19).

We now prove (ii). In the previous computation, we consider Qy,
instead of Q,., and K, =K};*K}:” instead of K, ,. We then have
bound (6.29) and (6.31) for K;QK,—(K,)*Qu K, and (K,)*Qy K,
where [ —r is to be replaced by N —r + 1 and (n + ]) by (k). Hence for any
state ¢’ and ¢” of U, we have

(6.34)

@' (1(0) ,(KF QO K,) = @' [1(m) 9, (K)* Qy K] (1 +4) . (6.35)
@"(t(n) ¢, (KFOK,) 2 ¢"[7,(n) 9,(K,)* 0y K)1(1 - 4),  (6.36)
AZb(121) 0,(Q) +b' (1 PI) 2(Q) On - 41 (129]/2) (6.37)

From [|Qllly,<1Q ™" Sa, we have Q7! [Ql<x"*a for k=M.
By Lemma 3.9 (6), we have

0 (Q)<x *a(l —x *a)~*. (6.38)
Let L be an integer such that L > M,
xE=(1 +4b(| @) a. (6.39)

For k= L, we have o,(Q) < {4b(|®[)} ~*. Since Q[ =/Qllly,» we have
o(Q) < a. Let N be an integer such that N >r and

4 (2] ady-,+1(12]/2) = 1. (6.40)



Gibbs States of a One Dimensional Quantum Lattice 141

We then have 4 < 1/2 and hence by (6.5) and (3.13) we have
a(L"Q) =3 Sup @' [(n) @, (K0)* Quy K)1/9" [1:(m) 9, (K1) * Qi K] -
(6.41)
Now we set N(a, M, x, |®|)=L+ N+2. For n=N(a, M, x, || P|)), we
have Q, e W([ —k, k]), K, e W(Z\[ —k, k]). Let
0@ =@, [t.(n) (pn(Q(k)Q”)] = (<Pn®fc(”)*(01) (Q(k)Q”)

be a state on A(Z\[ -k, k]) (30”) induced by ¢,=¢’ and ¢”. Then
we have

AuL"Q) = 3sup P K)e (K)*K,)<3b(|2]).  (6:42)

Lemma 6.5. ¥ maps A (M, x) continuously into itself where x > 1.
Proof. By Lemma 6.3 (1), £1e U, CAUM, x). Now consider Q such

that [|Qly..<1, 0=0* Let Q'=2+Q. Then 3>Q'>1 and hence
(@) £3. By (6.19),

u(Z£Q) < b(||P) 04 1(Q)+36°(1PI) 6, (1 2] /2) . (6.43)
ByllQ'llyr, - £ 1, we have ||Q')l, £x7" By (3.21) we have
o4 (Q)Sx~ DA —x¢TD), (6.44)

where we have used [(Q)~ '] £1. Let L be such that y; <1 where
y=b(|®)x VA —x" D) £ 30 (|9]) 6, (1 @]/2).  (6.45)
From (6.1), we have
I SIKI21Q'I =3I (6.46)
By (3.22), [IR[| 2 [R™'{|~! and (6.46),
12Q'l < 31PNyt —y) 1. (6.47)
Thus

LN, = 3b(li<1"|1)”2{1 +IL— M|+ i Xy (1 —yp)~ ‘} <.  (6.48)
I=L
Therefore ||-ZQa,» S NLQ Nar,x + 211 1,  is uniformly bounded.
Let =0, +iQ,, 0f =0, 0 =Q,. Then
1911 =sup |@(Q)l = suple(Qy) +i9(Q) = QI - (6.49)

Similarly [ Q,[ £1/Q|l. Further, let Q¥ be such that {|Q — Q| = ||Ql],,
00=00+i09,(")*=0",(09)*=0%, 0P e AL -1, 1), 0P e AW([ - L11).
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Then by the same argument as (6.49), we have
12 =12 -0PI <120 =10l (6.50)

Similarly || Q[ £ 1|Ql;. Therefore |0 lla, x = N1QHa, x> 1Q2llas, x < 1QMas, »-
By using the uniform boundedness for selfadjoint Q, we have the uniform

boundedness of [|.LQl, x = NLQ1lllar, « + 1Lzl s, x-

§ 7. Convergence Proof

Lemma 7.1. There exists a state v of W and A>0 such that v(& Q)
=Av(Q) for all Qe .

Proof. Let % be the mapping of states of 2 into themselves defined
by
(Z9) (Q)=0(L1) ' ¢p(£Q). (7.1)
Since
PNz ()~ zb(1B)" 2 >0, (7.2)

Pis weakly continuous. The set of states is convex and weakly compact.
Hence ¢ has a fixed point v due to the Schauder-Tychonov theorem.
It satisfies

(L) =Av(Q), A=v{Z1)>0. (7.3)
Definition 7.2. Let Qe U, LQ =1~ '2Q. X(Q) denotes the closure of
the convex hull of {L"Q;n=0,1,2,...}.

Lemma 7.3. Let 0 >0, a(Q)<co. X(Q) is a compact subset of U,
convex and invariant under L. L is continuous on W. If Qe W,, then
2 c,.

Proof. 2(Q) is convex because it is the closure of a convex set. Since
ILQ)| £A72|K|*||Qli, L is continuous. Since the convex hull of
{I'Q;n=0,1,2,...} is invariant under L, its closure is also invariant
due to the boundedness of L. We now show that 2(Q) is compact.

From (6.18) and (6.19), we have

o L'Q) =" Q) = b(]| 2I}) 2(Q) ,
u(L"Q)=u(L"Q)<b,,
by =a(Q) b'(I[ D) 6,1 21l/2) + (Il 2])) (D) , (7.5)
where we have used o, ,,(Q) <o,(Q) (Eg. (3.17)). Since klimock(Q)zo for
any Qe U, llim b,=0. Further v(L"Q) = v(Q). Therefore X (Q.Q) is compact
due to Corollaqr)y 3.12.

(7.4)
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Now assume Q e 2,. Then sup!~* {loga,(Q) + (I/r) logl} < + co and
hence

Tim 1" {log b, +(I/r) log 1} = Tim ™" {log max (3, , (| ]/2)2,(Q)

(7.6)
+(/r)loglh} < co.
From (3.22) and |R™!|| "' <||R||, we have
I2Ql, = 1@l by(1 —by)~", (1.7)
where v(L'Q) = v(Q) and (7.4) implies
IL*QIl = v(Q) (@) b(l| @) . (7.8)

(7.7) and (7.8) give a uniform bound for L*Q, which is preserved in taking
convex hull and closure. Thus Q' € 2(Q) satisfies

101, < v(Q) (@) b(IPI) by(1 — by~ . (7.9)
By (7.6), we see that Q' e U,. Q.E.D.
Remark 7.4. X(Q) is compact for any Q. This is because
0=0,—0,+i(Q3—-Q,) (7.10)

where @, =(Q + 0%)/2+2|Qll 2 |21, @5 =i(Q* —0)/2+2] Q| = | Q]| and
Q,=0,=2]Q|. The estimates like (7.7) and (7.8) hold for each Q; and
hence 2(Q) is compact by Lemma 3.2.

Lemma 7.5. There exists h e ¥, such that
Lh=h,v(h)=1,a(h) <b([ D). (7.11)

Proof. Z(1) has a fixed point 4 under the mapping L by Lemma 7.3
and the Schauder-Tychonov theorem, and he U,. Since a(1)=1, (7.4)
implies a(h) <b(||P|)). Q.E.D.

Lemma 7.6. Let
EQ=v(Q)h. (7.12)
Then
Jim (@' lIL'(L — By, =0 (7.13)
for any x > 1 and some g, > 1.

Proof. Note that E*>=E. Since L and E are linear operators on
Wy . it is enough to prove the convergence of

Tim g ILQlly . =0 (7.14)

uniformly in Q such that |[|Qfl; ,£1 and (1-E)Q=0. The latter
condition is the same as v(Q)=0. Any Q can be decomposed as Q =Q,
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+iQ,, 0¥=0,, 05 =0, and by the proof of Lemma 6.5, we have

N2 illae,x = NQlas,x = 1, NQallar,x = Qs = 1. Further v(Q) = v(Q,)
+iv(Q,) =0 implies v(Q,) = v(Q,) =0. Therefore it suffices to prove the

uniform convergence of (7.14) for Q such that 0* = 0, v(Q) =0, iQlll; . < 1.
We already know by Lemma 6.5 that L is a continuous map of 2, .
into Uy, .. Let Q' =0 +2, 4,(Q)=0Q" and

A,(0)=L"4,_ (@)~ [6b(|2IN]™ ' v(4,-1(Q)), (7.15)
n=1,2,.... We fix an N such that

NzN(a, M, x,|®)), NzM, (7.16)
where N(a, M, x, ||®]) is givenin Lemma 6.4 (ii),
a=2(6b(|®])— 1), (7.17)
and M is chosen so as to satisfy
xM>2a, (7.18)
liX'b'(H@ll) o, (1211/2) £ 1/10. (7.19)
We now prove the following properties of 4,(Q) and A,(2).
4,(0)20, (7.20)
A4,(2)=0, (7.21)
4,Q)— 4,2 =1"Q, (7.22)
v(4,(Q)=20;"" =v(4,(2)), (7.23)
a.=[1—{6b(| @}~ 1]~ (7.24)
4@ Mar, 1 4,(Q) " < a, (7.25)
A, <1 4,2) " < a. (7.26)

First consider n=0. Since v(Q')=2 =v(2) due to v(Q) =0, we have
(7.23). Since |Qf ZIQlilz,x =1, we have 1 < Q' <3. Hence (7.20) (7.21)
holds. (7.22) is obvious. Since Qs <2+ Qs =3 =a, we have
(7.25). 12l 127 =1 < a.

Next assume (7.20) ~(7.26) for n=k — 1 and consider (7.20) ~(7.26)
for n = k. By definition (7.15), (7.22) holds, where we use (7.23) forn=k — 1.
Further, from (7.15),

v(4(Q))= {1 —[12b(|PNT ™"} v(4e—1(Q)) =22 (7.27)
and the same holds when Q' is replaced by 2. This proves (7.23) for n=k.
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From (7.16), (7.25) and Lemma 6.4 (ii), we have
(LY A, 1(Q)) = 3b(| @)
Therefore
LY A, (@) 2 B3b(f 1)) ' v(LY A 1(2))
=[3b(I P11~ v(4,-1(Q))-
From (7.29) and (7.15), we have
AdQ) Zv(A4, (@) [6b(12)] .
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(7.28)

(7.29)

(7.30)

Then same holds when Q' is replaced by 2. Hence we have (7.20) and

(7.21) for n=k.
From (7.29), we have

[6b(]@IN] ™ v( Ay -1 (@) I{LY A, - (Q)} T £ 1/2.
Therefore, by (3.26) and (7.28), we have
(A (Q)) S 20(IN A, (Q)) — 1 = 6b( @) —1.
From Lemma 6.4 (i),

O‘l(LNAk~ 1(Q,)) <b,

bi=a(4, (@) (121)6,-,(1211/2)+ b(I| Pl ety w{Ai- 1(2)-

From (7.18) and (7.25) with n=k — 1, we have
1A= 1 @) ia vl A (@) Sx"Mas1/2
for = M. By (3.21) and (7.35),
0w (A 1 (@) S 20 A4 - 1 (@MW wll A= 1 ()]

Hence

iMxlal+N(Ak— 1(Q,)) <2x7N [ Ax-1 (Q/)“M+N,x [ Ae-1(Q)" ! [l .
1=

(7.31)

(7.32)

(1.33)
(1.34)

(7.35)

(7.36)

(7.37)

From (7.18), we have 2b(|®|) x ™ <a 'b()|®|) <10~ *. Therefore, by

(7.19), (7.34), (7.37) and (7.25), we have

ac

Y. x'b;<a/10.

=M

From (7.38), it follows for [ > M

b<x Ma/10<2071,

(7.38)

(7.39)
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From (3.25), (7.31) and (7.39),

oy(4(Q)) S b {1l — (1 +by)/2} ™ < (40/19) b, . (7.40)
From (7.40), (7.39) and (3.22), we have
14dQ) I 4(Q) ™1 Il = (40/19) by(1 — (40/19)b) ™" = (40/17) b . (7.41)
By (7.38),(7.41), and (7.32), we have
AR, 1 4(Q) M S a. (7.42)

This proves (7.25) for n=k. The same calculation with @’ replaced by
2 yields (7.26). This completes the inductive proof of (7.20) ~ (7.26).
From (7.25) and (7.28), we have

AL QM S all 4,(Q) | S av(4,(Q)) < 2ag; ™" (7.43)

Similarly,

A M, < 208N . (7.44)
From (7.22), (7.43) and (7.44), we have

L™ Ol < dags ™. (7.45)
Hence

lim 11 Qll 0" = 0 (7.46)

for any ¢, <@,. This then implies, due to the boundedness of each L
(Lemma 6.5),

Tim [IL*Y*Qlllyy, 03 T =0 (7.47)
for k=0,1,..., N—1. Hence we have
lim 1Ol 03 =0. (748)

Since [|Ql; = 1@ £Qllas, for I=1, ..., M — 1, we have

MO, < = MO, - (7.49)
Therefore we have (7.13). Q.E.D.

§ 8. Gibbs States

Lemma 8.1. Let Qe U, , for some x. Let @, be the central state of U.
Let

Fu(Q)= 9 (Qexp{d;y +45 —U(Ln+n)—U(l—n—ny,,0})Z, ', (8.1)
zZ,= o lexp{A] + 45 ~U(l,n+n,)—U(l —n—n,,0)}). 8.2)
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Then
1im 3"(Q) =v(0),

.1 5 1
,l.llr}oz—nk’gz": ?logi.

Proof. By (5.8), we have
exp(1/2) {47 + 45 —U(L,n+n,)—U(l —n—n,,0)}
=Kyexp—(1/2) {HQ,N)+ H1-N,0+ H'},
H=H,+H_,
H,=H(N+1n+n)+4;,,,
H_=H(l—-n—n,, —-N)+4Z,_,,,
Ky=Ky. Ky,
Ky+ =E(—t(N) ¥/2; —{H(1, N)+ H. }/2),

Ky-=E(-t(-N)¥/2; ={H(1—N,0)+ H_}/2),

where n> N +r. Let
Br-n(0) = (Q exp — T (N) H)(Z,_ )",

Z;I—N = (pc(exp - TL‘(N) HI) .
We then have

Q) =2, Z, P, n[1(N) pyon((KW)* OKy)]

where p, and ¢, are defined in Lemma 6.3 (iii).
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(8.3)

(8.4)

(8.5)

(8.6)
(8.7)
(8.8)
(8.9)
(8.10)
(8.11)

(8.12)
(8.13)

(8.14)

We prove (8.3) for positive Q such that 2= Q = 1. (8.3) for a general

Q will immediately follow from this case by linearity.
Let B be a constant such that

IKKMI<B, [(Ky)I =B, |(Ky) 'II<B.
Given ¢, there exists L, (e) such that for n— N > L,(g)
| Ky — Kyl <e.
We then have
lon((Kn)* QKN — on(KFQ K oy (KFQ Ky) ™! <4B%e.
There also exists L,(¢) such that for N > L,(g)

147" 7(N) Py ooy (KFQKN) — v(Q) Bl <&

(8.15)

(8.16)

(8.17)

(8.18)
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Since {27Vt (N) pyon(KFQ KN} 1 1 S |71 7! + e by (8.18), we have

1A~ (N) pyon(Ky)*QKy) — v(Q) |1 ©.19)
<{B¥(1+elh D+ h 7 e=e,. '

Similarly

L e 520
< QB (L+elh™ )+ A7} e=s,.

For any state ¢,, we have
01 (A" "yt (N) on(KF QKN IVQ) @ (] — 11 Sey,  (821)
91 (A ¥ Pyt N) o (K K Lo (] — 1| <, . (8.22)
Therefore for n= Ly (2) + L, (e),
175 "(Q) [, () V(@] — 1] < (e + ) (1 —&5) 7" (8.23)
Since ™" (1) = 1 for all n, we have

lim@r (@)@ =1. (824)

We note that the convergence is uniform in n, and n,.

Next we prove (8.4). In (8.14), we set Q=1, n — N = L. Given g, we
choose L > L, (¢), and for this L we choose L;(¢) such that Ly(g) 1L <s,
Li(e) YllogZ;| <e. We then have, for n— N =L and N >max(L;(g),

Lz(g)),
|n_1 logZ, —log i)
_IIIOgZ'LI +n"'Lllog4|
“HlogPLLA™ VT (N) pyon(KiF Kyl
< (1 +logl) e+ Ly(e) "t log®y ()| + Ls(e) "' max {log(1 +&,), —log(l —c,)}.
Since |log @} (h)| < max {Jlog||k|| |, [log|h~ |||}, we have (8.4). Q.E.D.
Lemma 8.2. Let Qe U, and

(8.25)

F=E(-¥/2; —{H(—00,0)+ H(1, 0)}/2). (8.26)

Then
L lim g5 =v(FQRH(F*P), (827)
b_liargw(b —a) tlogZ(a, by = % log +logd (8.28)

where @%, and Z(a, b) are given by (2.2) and (2.3).
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Proof. Leta< —r,b>r and
F,,=E.(—¥/2;{A5 + A7 —U(a,0)— U(1, b)}/2) (8.29)
Then
Dap(Q) = P (F5 QO Fop)/ @y (K3, Fo) (8.30)
where a=1—(n+n,), b=n+n,. By a variance of Lemma 5.2,

lim ||F,, — F| =0 (8.31)

uniformly in n, and n,. Furthermore |F~!| < cc and hence v(F*F)™!
<|F~1)?< 0. By Lemma 8.1, we obtain (8.27).
To prove (8.28), we note the formula

Z(a, b)=Z, @y (F i F,y) dmtmt ) (8.32)

if a=1—n—n,,b=n+n,. Since @;'"*(F¥F,) converges to a non zero
constant v(F*F), we have

lim ZilogZ(—(n +ny),n+n,)

n—* o n

| . (8.33)
= lim — logZ, + logd = —logi+logd.
] 2
Since Z(a, b) depends only on b — a, we have (8.28). Q.E.D.
This lemma proves Theorem 2.1 except for the analyticity.
Lemma 8.3. ¢4(Q) is lattice translation invariant.
Proof. The following two quantities coincide for n > 0.
WF*F) 96(Q) = lim 33"(0), (834)
VE*F) ga(r(n) Q)= lim 3% °(x,(n) 0). (839)
Hence 0o(Q) = ¢u(1,(n) Q). Q.ED.
Lemma 8.4. ¢4(Q) is time translation invariant.
Proof. We have
?5»([U(a, b), Q1) =0. (8.36)
Hence
?a([6(U(2))0])=0. (8.37)

Hence ¢4(t4(1) 0)=0. Q.E.D.
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Lemma 8.5. ¢4(Q) satisfies the KM S condition.
Proof. Let Q, € Uy, @, € U,. We have

<Pf,b({exp 0(U(a, b)) Q,} Ql) =(Pf,b(Q1 ). (8.38)
Hence we have

Po({expd(U(2)) 02} Q1) = 00(01 Q). (8.39)

By continuity, it holds for any @, € U;.
By Lemma 4.2, expd(—sU(Z))t4(t) Q, is holomorphic in f+is.
Hence

[ expd(U(2)) (z1(t) Q2) fo(®) dt = (1) @, f1(t) dt (8.40)
where f,(t) = Te“'s‘““‘” f(s)ds is holomorphic in t+ix. Note that

t7(t) Q, € U, Hence we have ¢4(Q; Q,(fo)) = 04(Q2(f1) Q4) for 0,0,
e U,. By continuity, this equation holds for any Q,, Q, € . Hence ¢4

satisfies the KM S condition.
Lemma 8.6. ¢4,(Q) has a uniform exponential clustering property.

Proof. Let 0, € A,. Given ¢>0, we prove the existence of N, such
that for N > N, and Q, € A(Z\[~ N, N]), we have

[06(Q102) — 9a(Q1) Pa(Q2)l e?N<e 9.l (8.41)

where g is some positive constant.

We first prove the corresponding property for v. Let Q € U, v(Q) =0.
Let x > 1 and ¢ < (logg,)/2, 0 <logx, ¢ > 0.

Since v(Q) =v(L'Q") and «(L"Q)=a(Z"Q) =a(Q") b(||P]) by (6.18),
we have ||L*Q'|| £a(Q)b(|@))v(Q) if Q'>0. If Q' is selfajoint and
Q' <1, then |2+ Q'] <3,0(2+ Q') =3. Hence [|L'(2+ Q)] =9b(|| 2|).
Similarly ||[L*1] £b(|®|). Hence |L'Q’| <11b(|®]). For general Q'
Q'=0,+iQ,;, 0T =04, 01 =05, 1l =1Qll, 1Q2Il = 1Q']l. Hence

LI = 22b(| 21D Q'] (8.42)

for any Q' e .
Let K, be given by (6.6), K'Y by (6.23),(6.24), K, , = Kr; M1 KAZ b2,
There exists L, (¢g) such that for [ = L, (e)

|| Ky Kyt = 1] <e, (8.43)

due to [|K, K, '—1[ =Ky ,— K, IK; | and Lemma 5.2. Since
0 e A, there exists L,(g) such that for [ = L, (e)

Q- 0V <&, QVeA[—L1). (8.44)
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By Lemma 7.6, there exists L;(¢) such that for [ = Ly(¢)
UL < LQll < (8.45)

due to v(Q)=0.
We now have the following series of estimates. Let N = L(g)
=max(L,(g), L, (), L3(¢))and Q, € A(Z\[ — 2N, 2N]). By (8.43) and (8.44),

e?NQ — (KH1 K(ﬂ;v,N) Q(ZN)K(N,N)K]; "<e, (8.46)
eZQN”QQz _(Kz’s)_lKﬁv,N)Q(ZN)QzK(N,N)K; ! I<elQl, (8.47)
¢=e{[Q] 2+ +(1-+¢?}. (8.48)

By (8.45), (8.46) and (8.42), we have
e 20N (e +22b(| @) &) > | LN {(KH K& m QPP KwmKx 3. (849)
By (6.5) and Ky yy€ ([ —2N, 2N1), we have

LN{(K;{?)~ ! Kzl;v, N)Q(ZN)K(N,N)K; 1} 7.(N)Q,

8.50
= LN{(K;‘G)_ 1K(=|1=V,N)Q(2N)Q2K(N,N)KI; 1} . ( )

By (8.49), (8.50), (8.47) and (8.42), we have
ILY(QQ)Il e*¢™ < [|Q, ]l {e+44b(||@ll) &} - (8.51)

Hence, for N > L([1 +44b(|®@|) {4+ 3|1Q|I}] 'e), e <1, we have
V(@0 = W(IN(QQ,)) <ege 2N |Q,| (8.52)

for any Q, e W(Z\[ - 2N, 2N1]).
For general Q, apply (8.52) for Q — v(Q) and we obtain

V(QQ5) = v(Q) W(Q,)l <ee™2¢N[|Q,| . (8.53)

We now apply (8.53) for F*QQ,F, and F*QF. Although one F is on
the right of Q,, the same formula (8.53) holds for sufficiently large N
because [|[Q,, F]Il has a similar bound due to Lemma 5.2. Therefore

V(F*QQ,F) = v(F*QF) v(Q,)| <ee 22N Q,]l , (8.54)
V(F*Q, F) = v(F*F) v(Q,)| <ee 2V | Q] . (8.55)

By (8.27), we have
& N0a(0Q2) — 0a(Q) 0a(Q) <ev(F*F)™'(1+ | QI 10| - (8.56)

This proves the uniform exponential clustering property of ¢,. Q.E.D.
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§ 9. Analyticity
Lemma 9.1. If & e ([0, r]) and Q € ([0, N]) are holomorphic func-
tionof { =(¢, ... {,)inadomain D wherer and N are fixed, then E,(Q ; H(I))
is holomorphic in { in D with respect to || ||; ., x>1 and | |.
Proof. Let (DeD and ®=2¢,(( (", 0=2Q, -,
m=(m, ...m,), (={O"=[[(;={"y". Then Z|®,] |l -V <aq,

J
210l 1€ — @™ < ay uniformly in { in a neighbourhood of (.

We substitute these expansions into estimates in Theorem 4.2 and
Lemma 5.2. The estimate there only uses the property Qe ([0, r])
and their norms. Hence all estimates holds when ||@| and ||Q] are
replaced by a4 and ay. In particular, E(Q; H(I))=2E, ({ — (V)" and

Y NEAM I =L S exp{Fy(2ag) ag} , ©.1)
DN Enully+ LI = V1" < Cydp(aq), (©.2)

where Cy now depends on dg,a, and N. Therefore E,(Q; H(I)) has a
convergent power series expansion at {® and is holomorphic in (.

Lemma 9.2. Let B be a Banach space with a norm |||Q|l] for Q € B.
Let £({) be a bounded linear operator on B, holomorphic in { =, ... {,)
in a neighbourhood D of a real point &y, L(&) h(&) = A(&) h(&) for real ¢
in D, h(¢) € B, () >0. Let v, be in the dual B* of B, E.Q =v:(0)h(%),
ve(R(&) =1, v(L(&) Q) = (&) v.(Q) for real & in D and QeB. Assume
that there exists u. < A() satisfying

I}LI{IO#ENIIIS’(@N(I —EJl=0. (9.3)
Let Qo €B be fixed and v,(Q,) = 1. Then there exist extensions h({), A({)
and v, for { in some neighbourhood D' of &, such that A({) is a holomorphic

Sunction of (,h(() is a B valued holomorphic function of { and v, is a
B* valued holomorphic function of {.

Proof. The series
(Z-2E) ' =(Z - M) Ec+ i Z7EOTH I -E) 94

is convergent for |Z| > u,, Z + A(£), by (9.3) and is the inverse of Z —Z(£).
Let puy > pe, A(Go) — py > 0. If |[Z] = py, we have

I(Z =L o)™ N S 1Z = AE ™ HIE

+ iu;"mz(&o)"-l(l —E ). ©:5)
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Letd= Y u;"l L&)~ (1 —E: ). By Lemma 3.7, we have
n=1

<O

(Z—ZLL)—A) =L UZ-LE) ' B (Z L&)} (9.6)

n=1
provided that
4] <@ +6) " 1Z — A& > Eg I (877 9.7)

If A is a holomorphic function of {, (9.6) is holomorphic in { if ||4]
<(6+8)" 1. (The uniform limit of a holomorphic function is holomor-
phic.) Let S(¢') be the circle of radius 2|E, Il (§) ™" with the center A(&,).
Let A =2() — Z(,). Define

Eg=(27ri)”1 gﬁ (Z—-ZL(&y)—4)" 1 dZ. (9.8)
S(')
Provided that
2ELMN )P S ME) — py, A @G+, 9.9

we have from (9.4) and (9.8)
E.=E, if (={(,. (9.10)

Since (Z —£(£,)— 4)" ' is holomorphic in { as long as Z e S(§") and
(9.9) holds, E; is holomorphic in .

As is easily seen the dimension of E; B is continuous in {: If dimE,B
<dimE;B, dimE,B < oo then by an orthogonalization procedure there
exists p € E,B, v =& 0 such that E,yp =0, which contradict the continuity.
Therefore dimE;®B =dimE, B =1 as long as E; is holomorphic.

This then implies £({) E; = A'({) E, because Z({) commutes with E,.
Since A'(0) = ve (L) Eth(&y)) ve,(ELh(Eo)) ™, A'({) is holomorphic in { as
long as E; is holomorphic and v, (E;h(¢,)) # 0. The latter is guaranteed
in a neighbourhood of { = ¢, because v, (E; h(&,))= 1. Let h'({) = E;Q,.
It is holomorphic and K({) =h(¢,) when {=¢,. Finally, let v;(Q)
= v, (E{Q) ve, (W(0))™". Tt is holomorphic as long as v, (#'({)) %0, and
vi(Q)=v, (Q) when [=¢&,. Since v (h(&p)=1, v (K ({)*+0 in some
neighbourhood of { =¢&,.

By (9.4), A(¢) is the only singularity of (Z —%(&))™' outside of a
circle of radius p.. If { is in sufficiently small neighbourhood of ¢, so
that || 4] is small, then 4'({) is the only singularity of (Z — £({))~ ! outside
of a circle of radius u,. Hence A'(&) = A(&) for real £ in a neighbourhood
of ;. The expansion (9.4) then proves E;= E., I'(£)=h(¢) and v = v,
Q.E.D.

L) Ey = A(0) E; implies L) B'(()=2'({) h'(£) and L()*v;=2'(0) v;.

11 Commun. math Phys., Vol 14
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Lemma 9.3. ¢4(Q), Q € Ay, ., x> 1 and P(P) is holomorphic in .

Proof. Let @ be holomorphic in { and hermitian when { is real. Let
g(@Q:Tcﬂﬂrztr[o,l](K(C)*QK(C)) (9.11)

where K({) is defined by (6.2) ~(6.4) where @ is now a holomorphic
function of {. K({) € A, , for any x > 1 and is holomorphic with respect
to ||| |l by Lemma 9.1. Since ,, , is a x-Banach algebra, this implies
that K({)* QK({) is holomorphic in { with respect to || [l .- Since
llz.(1) A2 tryo, 1, QM1 x S MQM 1, £ () is also holomorphic in {.

Now Lemma 9.2 is applicable for 8 =2, . and Z({). We see that
A, v and h are holomorphic in {. Fe,,  is also holomorphic in (.
Hence P(®) and ¢, are also holomorphicin {. Q.E.D.

Remark 9.4. The present proof of analyticity is applicable to the one
dimensional classical spin lattice with an exponentially decreasing
potentials. For higher dimensional quantum lattice, the analyticity for
low activity is proved in [6,7, 8].

§ 10. Factor States and Extremal KMS States

Lemma 10.1. Let N be a C*-algebra, W, CU, neZ, A1) be the
C*-algebra generated by W,, nel, WZ)=N, Qe W, commutes with
Q' e, for n£n' and © be a representation of A such that =(WA(I)) is a
factor of type I for any finite 1. Then m(W()) na(A) =r(AZ\]))"
for any finite I.

Proof. Let A, (I) be the *-algebra generated by U, nel. Letu;; be
the matrix unit of #{UAU)]. Then Qe n(W)” is written as Q = Zu,;0;;,
Qi;= Y. Quy e n(U)). Since n(A)” is the g-weak closure of 7(WAy(Z))

k

and Qe n(Uy(Z\D)) for Q'en(W(Z)), we have Q; ;e W(Z\I). If Qe n(A(I)),
then Q;;=06;,0. Q.E.D.

This is essentially Lemma 2.3 of [10]. This lemma for somewhat
more general case follows from Lemma 3.2 of [4].

A state ¢ of 4 in Lemma 10.1 is said to be uniformly clustering if

there exists finite I for given ¢ >0 and Q € 2 such that
l0(Q01) — @(Q) p(Q )l <&l Q4 (2.1)

for every Q, € W(Z\I). This condition may be replaced by a number of
equivalent conditions. We may require (2.1) for any given Qe Uy (Z)
and for any Q, € U, (£ \I). If we denote the representation of 9 associated
with the state ¢ by 7, then another equivalent condition is

(¥, me(Q1) W) = (1, W) (@)l <[4l 2.2)
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for any given ¥,, ¥,. In fact (2.1) is a special case of (2.2) with
¥, =n,0%Q,, ¥, =2, On the other hand, (2.2) for a dense set of
vectors ¥, =m,(Q¥) Q,, m, =7,(Q4) 2,, Q,, Q, € Uy (Z) follows from (2.1)
for sufficiently big I such that Q,, @, e U(I). Hence (2.2) holds for every
given ¥, and ¥, for sufficiently large N. The condition (2.2) is equivalent
to (2.2) with the specialization ¥, = ¥,.

Lemma 10.2. Let U be as in Lemma 10.1 where ©=n,, is canonically
associated with a given state @. Then n,(A)" is a factor if and only if ¢
is uniformly clustering.

Proof. The only if part is in Lemma 4.12 of [1]. For the if part, any
central element § of ()" is in 7, (A(Z\I))" for any I. Given &, we
choose I satisfying (2.2) and then Q, € A(Z\I) such that

|(1P1’ (nq)(Ql) —S)¥,)l<e, (¥, V) {p(Qy)— (Q,,85Q,)<e.

Then we have (¥, S¥,) —~ (¥, ¥,)(2,,SQ,)| <3e. Since ¢ is arbitrary,
S=(2,,52,)1. QED.

This is essentially Theorem 2.5 of [10]. It is used under slightly
more general circumstances around Eq. (3.6) of [4]. Lemma 10.2 and
Lemma 10.1 are also derived in [9] in connection with a characterization
of pure phase in both classical and quantum statistical mechanics.

The central decomposition of states into factor states always exists
and is unique [14]. If the state is a KMS state, then the factor states are
KMS states at least if 4 is separable (Corollary 3.7[2]). Further Theorem
4.1 in [2] essentially implies, though not explicitly stated, the following
theorem.

Theorem 10.3. A KMS state is a factor state if and only if it is an
extremal KM S state.

Proof. Let the representation 7, of a C*-algebra U and a cyclic
vector @, in the representation space $, of 7, be canonically associated
with a KMS state ¢(ie. (Q)=(2,,7,(Q) Q,)). It is shown in [3] that
the center of 7,(A)” is elementwise invariant under time translation.
For any central projection F 0, ¢p(Q)=(FQ,,n,(Q) FQ,) |[FQ,|l~* is
a KMS state (| FQ,| 4 0 always) and is different from ¢(Q) unless F = 1.
Hence if p isnot a factor state, g = A +(1 =) ¢, 5, 0<i=|FQ,|*<1
and ¢ is not an extremal KMS state.

Conversely, let p =A@, +(1 —21) ¢,,0< 1 <1 where ¢, and ¢, are
'KMS states. There exists an operator F =0 in ()" such that 1¢,(Q)
=(Q,. 7,(Q) FQ,). Since ¢, (zr() )= ,(Q) by assumption, (r,(Q,) 2,,
Fr,(0,) Q,) = (n,(t7(t) Q;) Q,, Fr,(t1(t) Q,) 2,), from which we have
F=U,{t)*FU,(t). Namely F € R in the notation of [1]. By the KM S

11*
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condition on ¢,, we have (2,,0,0,(f0) FQ,)=(2,, 0.(f) 0,FQ,).
This is assumed for 0, en »() and hence it bolds for @, € =,(A)" by
the weak closure. Rewrltmg the equation as (Q,, 0,(f) QZF Q,)
=(Q,, 020, (fo) Q,) With f5(t) = fi(—1t), we see that it also holds for
0, e n, (W), ifit is assumed for @, € =,(A). Now we restrict our attention
to Ey9, of t invariant vectors in §,,. ¢ is a cyclic and separating trace
of Eqm,(A)'E,, where ¢(Q)=(Q,,02,) for Qe #(H,). This property
should also holds for ¢ similarly defined from ¢,. Namely ¢, is a cyclic
and separating trace of FE,n, ()" FE, in FE,$,. This implies that
FE, must be in the center of Eqn,(A)"E, by an easy calculation. The
argument in the proof of Theorem 4.1 of [2] then shows that there must
be a central element F; of n,(A)” such that FE, = F, E,. Since R} - R} E,
is an isomorphism, F=F, and F is a non trivial central element of
n,(A)". Namely n,(U)” is not a factor if ¢ is not an extremal KMS
state. Q.E.D.

The decomposition of a KMS states into extremal KMS states
coincides with the decomposition into extremal time translation in-
variant states if and only if 7, is # abelian where # is taken as the mean

Q7)1 ? dT as T—oo. ([2])

For the one dimensienal quantum spin lattice, Lemma 10.2 and
Theorem 10.3 are applicable and ¢, is a factor state and is an extremal
KMS state because it is uniformly clustering. The asymptotic abelaian
property relative to the lattice translation also implies that the factor
state ¢4 is an extremal lattice translation invariant state.
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