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Gibbs-type Indian Buffet Processes

Creighton Heaukulani* and Daniel M. Roy'

Abstract. We investigate a class of feature allocation models that generalize the
Indian buffet process and are parameterized by Gibbs-type random measures.
Two existing classes are contained as special cases: the original two-parameter
Indian buffet process, corresponding to the Dirichlet process, and the stable (or
three-parameter) Indian buffet process, corresponding to the Pitman—Yor process.
Asymptotic behavior of the Gibbs-type partitions, such as power laws holding for
the number of latent clusters, translates into analogous characteristics for this
class of Gibbs-type feature allocation models. Despite containing several differ-
ent distinct subclasses, the properties of Gibbs-type partitions allow us to de-
velop a black-box procedure for posterior inference within any subclass of models.
Through numerical experiments, we compare and contrast a few of these subclasses
and highlight the utility of varying power-law behaviors in the latent features.

Keywords: feature allocation, partition, combinatorial stochastic processes,
completely random measure, Bayesian nonparametrics.

1 Introduction

Feature allocation models (Ghahramani et al., 2007; Broderick et al., 2013) assume that
data are grouped into a collection of possibly overlapping subsets, called features. The
best known example is the Indian buffet process (IBP) (Griffiths and Ghahramani, 2006;
Ghahramani et al., 2007), which has been successfully applied to a number of unsuper-
vised learning problems in which the features represent unobserved/latent factors under-
lying the data. While the IBP provides a nonparametric distribution suited to learning
an appropriate number of features from the data, additional modeling flexibility—like
heavy-tailed (i.e., power law) behavior in the number of latent features—is desirable in
many applications. Recent generalizations of the IBP addressing these needs parallel
existing developments in the theory of random partitions. Indeed, random feature al-
locations may be viewed as a generalization of random partitions where the subsets of
the partition are allowed to overlap. In recent work, Roy (2014) defines a broad class
of random feature allocations called the generalized Indian buffet process, each member
of which corresponds to the law of an exchangeable partition. In this article, we study
the subclass corresponding to the random Gibbs-type partitions (Gnedin and Pitman,
2006), which we call the Gibbs-type Indian buffet process or simply Gibbs-type IBP. The
Gibbs-type IBP inherits many useful properties from the Gibbs-type partitions (which
include many of the partitioning models studied in the literature), and the special form
of these models will allow us to develop practical black-box algorithms for simulation
and posterior inference.

*University of Cambridge, Cambridge, United Kingdom, c.k.heaukulani@gmail.com
fUniversity of Toronto, Toronto, Canada, droy@utstat.toronto.edu

(© 2020 International Society for Bayesian Analysis https://doi.org/10.1214/19-BA1166


http://bayesian.org
mailto:c.k.heaukulani@gmail.com
mailto:droy@utstat.toronto.edu
https://doi.org/10.1214/19-BA1166

684 Gibbs-type Indian Buffet Processes

1.1 Exchangeable feature allocations and the IBP

In the terminology introduced by Broderick et al. (2013), a feature allocation of a set
A is a multiset of nonempty subsets of A, called features, with the further restriction
that no element of A belongs to infinitely many features. In statistical applications, we
usually take A to be the set [n] := {1,...,n} for some n > 1, where A then indexes a
sequence of n data points. Intuitively, a random feature allocation of [n] can be used to
model n data points in terms of latent features the data points share. Note that a data
point may have multiple features, and so this notion generalizes clustering.

In many applications, we do not know the number of latent features necessary to
adequately model a data set. In such cases, one requires a nonparametric model in
which the number of latent features is a random variable to be inferred from the data.
The canonical example of such a model is the Indian buffet process (IBP), introduced
by Griffiths and Ghahramani (2006); Ghahramani et al. (2007). An IBP is a random
feature allocation with an a priori unbounded number of potential latent features whose
construction can be explained with the following culinary analogy: Imagine a sequence
of customers entering an Indian buffet restaurant. Each customer selects a finite number
of dishes, chosen from a limitless supply of potential dishes to taste. The first customer
enters the buffet and takes Poisson(v) dishes, where v > 0 is called the mass parameter.
For every n > 1, the n + 1-st customer enters the buffet and decides to take each
previously tasted dish k with probability nk/(n+8), where ny, is the number of previous
customers that took dish &, and where 6 > 0 is called the concentration parameter. The
customer then takes Poisson(6v/(6 + n)) new (previously untasted) dishes. For every
n > 1, let K,, denote the number of distinct dishes tasted among the first n customers,
and let F,, := {F,1,...,Fy k,}, where F}, 1, F, 2,... are random subsets of [n] such
that i € F,, , if and only if the i-th customer took the k-th dish, for every i < n and
k < K,,. By construction, for every n > 1, F,, is a random feature allocation of [n], and
the sequence F' := (F),),>1 defines a random feature allocation of N := {1,2,...}. We
call F'an Indian buffet process with mass parameter vy and concentration parameter 6.

Ghahramani et al. (2007) show that, for every n > 1, the distribution of F,, is invari-
ant to every permutation of [n], i.e., the order of the customers does not influence the
distribution of the resulting feature allocation. A feature allocation with this property is
called exchangeable in analogy to exchangeable sequences, which satisfy a related family
of distributional invariance properties. Indeed, much of the recent work on exchangeable
feature allocations has been inspired by analogous work in the theory of exchangeable
partitions. In statistical applications, random feature allocations have been applied to
many of the same clustering problems as random partitions, where the extra flexibility
of overlapping cluster assignments has often resulted in improved modeling power.

1.2 The Gibbs-type IBP

The Gibbs-type Indian buffet process, or Gibbs-type IBP, defines a class of exchangeable
feature allocations that generalizes the IBP. Let a < 1, which we will call the discount
parameter, and let V := (V,, p: n > k > 1) be a triangular array of non-negative weights
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satisfying V7 1 = 1 and the recursive equations
Vn,k = (TL — ak)VnJrLk =+ Vn+1,k+1a n>k>1. (11)

(In the cases we will study, the weights V' themselves are determined by a finite set of
parameters, which we will denote by ©.) Define the primitives

n

Vi
QY el21,22) = Z %;%]’fm%”(n,k;a), n>z >1, 2 €{0,1}, (1.2)
k=1

where €'(n, k; @) denotes the generalized factorial coefficient

k
E(n, k;o) = %Z(—l)i (’;) (—ia)p, n>k>1, (1.3)
1=0

and (a)p, :=T'(a+n)/T(a). (See Charalambides (2005) for a background on the gener-
alized factorial coefficients.) Then the Gibbs-type IBP may be described as follows: Let
~ > 0, and imagine a sequence of customers entering an Indian buffet restaurant.

e The first customer tries Poisson(y) dishes from the buffet.
e For every n > 1, the n + 1-st customer

— tries each previously tasted dish k£ independently with probability

(Snk —a)Qq 6(1,0),

where S, ; is the number among the first n customers that tried dish &;
— and tries Poisson(7Q [ g(1,1)) new dishes from the buffet.

Construct a random feature allocation F' of N from the actions of the customers, as
described in Section 1.1. We call F' a Gibbs-type Indian buffet process with parameters
(7,0, V). Like the original IBP, F is exchangeable, a property that will become clear
in Section 3 when we provide an alternative construction via exchangeable sequences of
random measures.

The reader familiar with the theory of Gibbs-type partitions (which we review in
Section 2) will recognize the recursive set of weights V appearing in Equation (1.1),
which along with the discount parameter o determines the law of a Gibbs-type partition
(Gnedin and Pitman, 2006). In what follows, we will see that every such choice (a, V)
defining a subclass of the Gibbs-type partitions will determine a subclass of the Gibbs-
type IBP. In fact, some subclasses of Gibbs-type IBPs have already appeared in the
literature, although they have not been presented from this perspective. For example,
the stable (or three-parameter) IBP introduced by Teh and Gériir (2009) and further
studied by Broderick et al. (2012) is a Gibbs-type IBP with the weights

_ L5 0+ t0)

Vok = ) >k>1, 14
. (9+ 1)71—1 " ( )
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for some parameter 6 satisfying

1.5
0 = m|a| for some m € {1,2,...}, when a < 0. (1.5)

{9 > —a, when « € [0,1),
This setting of (a, V) corresponds to a subclass of the Gibbs-type partitions known
as the two-parameter Chinese Restaurant processes, i.e., the random partitions induced
by the pattern of ties in exchangeable sequences sampled from a Pitman—Yor process
(Perman et al., 1992; Pitman and Yor, 1997). (We will discuss the connection between
exchangeable partitions and random probability measures in Section 2.) In this case,
we have © = {0} and the quantities Q' ¢(1,0) and Q7 g(1,1) reduce to

T+ D00+ a+n)

1
no(1,0) = — and Qro(1,1) = :
a,O( ’0) 9+n an QO"O( ) F(9—|—n+l)F(9—|—a)

(1.6)

respectively. For @« = 0 and 6 > 0, we obtain the (two-parameter) IBP reviewed in
Section 1.1, and for « = 0 and 6 = 1, the corresponding Gibbs-type IBP reduces to a
more restrictive one-parameter variant of the IBP originally presented by Griffiths and
Ghahramani (2006). In short, the stable IBP is the feature allocation analogue to the
two-parameter Chinese Restaurant process, and the two-parameter IBP is the analogue
to the one-parameter Chinese Restaurant process.

1.3 Outline and summary of results

In Section 2, we review the theory of exchangeable Gibbs-type partitions, focusing
on a few important subclasses. In Section 3, we derive the Gibbs-type IBP from a
construction with completely random measures. As an intermediate step, we define
the Gibbs-type beta process, a completely random measure that generalizes the beta
process introduced by Hjort (1990). We present stick-breaking constructions for the
Gibbs-type beta process that generalize similar representations in the literature for the
beta and stable beta processes (Teh et al., 2007; Paisley et al., 2010; Teh and Goriir,
2009; Broderick et al., 2012; Paisley et al., 2011). While these constructions are special
cases of the generalized beta process and corresponding generalized IBP defined by Roy
(2014), the special form of the Gibbs-type partitions will allow us to additionally derive
practical algorithms for simulation and posterior inference with the Gibbs-type IBP.

Partitions with Gibbs-type structure exhibit many properties that are useful for
applications. For example, when the discount parameter « is in (0,1), a Gibbs-type
partition exhibits heavy-tailed (i.e., power law) behavior in the asymptotic distribution
of the number of clusters induced by the partition. Latent features in the stable IBP
were shown to exhibit analogous power-law behavior (Teh and Gériir, 2009; Broderick
et al., 2012), and in Section 5 we show that these characteristics are in a sense inherited
from the two-parameter Chinese Restaurant Process or, equivalently, the Pitman—Yor
process (with « € (0,1)). More generally, our results show that the Gibbs-type IBP
inherits these power-law properties for any such class of partitioning models. Similarly,
when « < 0, the Gibbs-type partitions correspond to models with a random but finite
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number of clusters, and in Section 5.3 we show that the Gibbs-type IBP in this case
corresponds to models with a random but finite number of features.

Many computations of interest with Gibbs-type partitions are expressed only through
the parameters (a, V). Likewise, the primitives Q[ g(21, 22) in Equation (1.2) only de-
pend on these quantities. Note that the description of the Gibbs-type IBP in the previous
section only requires the arguments Q[ o(1,1) and Q[ o(1,0). These quantities have
probabilistic interpretations and are related to the well-studied probabilities of sampling
a new and previous color (or species) under the law of a Gibbs-type partition. (These
concepts will be made clear in Section 2.) A likelihood function for the Gibbs-type IBP
will be presented in Section 3, which additionally requires the arguments Q' 5°(s, 1) for
s < n. These terms also have probabilistic interpretations related to events in a Gibbs-
type partition, which are all discussed in the supplementary material (Heaukulani and
Roy, 2019). In Section 6, we derive a black-box posterior inference procedure that only
requires these n + 1 values of the primitives as input. Finally, in Section 7 we demon-
strate some of the practical differences between a few subclasses of the Gibbs-type IBP
in a Bayesian nonparametric latent feature model applied to synthetic data and the
classic MNIST digits dataset.

2 Exchangeable Gibbs-type partitions

We briefly review the theory of Gibbs-type partitions; the reader should consult Gnedin
and Pitman (2006) for a more thorough treatment and Pitman (2002, Chs. 2 & 3) for
background on exchangeable partitions more generally. Let IT be a random partition of
N := {1,2,...} into disjoint subsets, called blocks. We may write II = {41, Aa, ...},
where A; is the block containing 1 and Ag41, for every k > 1, is the (possibly empty)
block containing the least integer not in A; U --- U Ay. For every n > 1, let II,, be the
restriction of II to [n] := {1,...,n}. For every n > k > 1, let N, be the number
of elements in Ay N [n], and let B,, be the number of (nonempty) blocks in II,,. The
partition II, is said to be exchangeable when its distribution is invariant under every
permutation of the underlying set [n] and II is said to be exchangeable when every
restriction IT,,, for n > 1, is exchangeable.

The random partition II is of Gibbs-type when it is exchangeable and, for some v < 1
and V,, > 0, n > k > 1 satisfying Equation (1.1), we have

fn(nl, ey nk) = P(Bn = k, le = N1y, Nn,k = nk) (21)
k
= Vn,k H(]‘ - a)’ﬂe*la (22)
(=1

for every n > k > 1 and nq,...,n; > 1 satisfying Zj n; = n. The function fr(n4,...,
n), which is symmetric by exchangeability, is called the ezchangeable partition probabil-
ity function, or EPPF. The class of Gibbs-type partitions was introduced by Gnedin and
Pitman (2006) and has since been the subject of intense study due, in part, to the fact
that the product form of the Gibbs-type EPPF in Equation (2.2) admits closed-form
solutions for many quantities of interest.
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An exchangeable partition can be related to the pattern of colored balls drawn from
an urn in a sequence of rounds as follows: On each round, we may either (1) draw a
ball from the urn at random, record the color, and place the ball back into the urn with
another ball of the same color, or (2) we may place a ball of a new, previously unseen
color into the urn. The distinct colors of the balls correspond to the blocks in II, and the
indices of the rounds during which a particular color was drawn indicates the members
of the corresponding block. In particular, on the first round the urn is empty and a ball
of a new color is placed into the urn creating By = 1 block. We see from Equation (2.2)
that during the n + 1-st round, we draw a ball of the k’th previously seen color from
the urn with probability

= fnWnss Nog L, Nos,)
fH(Nn,la ceey Nn,Bn)
VnJrlB
= —" Nn - )
Vn,Bn ( » a)

P[Nn+l,k > Nn,k:‘anNn,lyNn,Q; v

(2.3)

for every k < B,,, where N, ;, denotes the size of the k-th block at the end of the n-th
round. We draw a ball of a new color with probability

f Nn,a"'aNn, -,,7]-
P[Bn—i-l > Bn|Bn7Nn,17Nn,2a-~-} = }Ir([(Nll NBB ))

_ Vn"l‘l)Bh"Fl
VB,

(2.4)

Gnedin and Pitman (2006, Section 2) show that the distribution of the number of blocks
after the n’th round is given by

P(B, =k) = a—]’c%(n, k; a), k<mn, (2.5)

where % (n, k; ) is the generalized factorial coefficient given in Equation (1.3).

The theory of exchangeable partitions is intimately connected to the theory of ran-
dom probability measures. In particular, by a representation theorem due to Kingman
(1978), every exchangeable partition may be obtained from the ties among an exchange-
able sequence sampled from a random probability measure, and the laws of the par-
tition and measure are one-to-one. The measures inducing the Gibbs-type partitions
are called Gibbs-type random measures. (The reader should consult Kingman (1975)
for background on random probability measures.) We will focus on subclasses of the
Gibbs-type partitions induced by several random probability measures that have been
well-studied in the literature. For example, the class of Gibbs-type random measures
include the Dirichlet and Pitman—Yor processes already mentioned in the introduction.
Another subclass we will refer to frequently are those induced by the normalized gen-
eralized gamma processes (Pitman, 2003), which have the weights

Bak~1 2 (n— i
Vo = S 3 (M7 ) 0BT i ), 26)

=0
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where o € (0,1), § > 0, and I'(z;a) := fmoo 5%"le~%ds is the incomplete gamma func-
tion. Special cases include the partitions induced by the normalized inverse Gaussian
processes (Lijoi et al., 2005) when o = 1/2; the normalized «-stable processes (Kingman,
1975) in the limit 8 — 0; and the Dirichlet processes, again, in the limit o — 0.

More generally, Gnedin and Pitman (2006, Theorem 12) showed that the law of
every Gibbs-type partition with fixed discount parameter o < 1 is a unique probability
mixture over one of three classes of extreme partitions, depending on the value of a.
When « € (0, 1), the extreme partitions are induced by the Poisson—-Kingman random
measures (Pitman, 2003); in this case, it follows from Pitman (2003, Proposition 9),
that

k

«
Vo =
- I'(n — ka)rke f,

' n—ka—1 _
(T)/O D fa(T(l p))dp, (27)

for a parameter 7 > 0, where f, is the density of a positive a-stable random variable.
Members of this subclass are obtained by mixing over 7 with respect to a probability
distribution on the positive real numbers. Particular attention has been paid to the cases
when 7 has density function h(t)f,(t), for some measureable function h: R<g — R<g.
For example, when h(t) = %t_e for some 6 > —a, then Equation (2.7) reduces
to Equation (1.4) and we obtain the partitions induced by the Pitman—Yor processes
(with o € (0,1)). When h(t) = e®" =5 for some § > 0, then Equation (2.7) reduces
to Equation (2.6) and we obtain the partitions induced by the normalized generalized
gamma processes. See Pitman (2003, Section 5) for a further treatment. When o = 0, the
extreme partitions are induced by the Dirichlet processes with concentration parameter
6 > 0. Members of the subclass are obtained by mixing over a random 6 with respect
to a probability distribution on R . Finally, when o < 0, the extreme partitions are
induced by the Pitman—Yor processes with concentration parameter 8 = m|al, for some
positive integer m. In this case, the weights in Equation (1.4) may be rewritten as

v el IS m =)
S T D

1{1,.“,min(n,m)}(k)a n>k> 1, (28)

highlighting the restriction on the weights V' to be non-negative. This is equivalent to
an urn scheme with a finite number m of different colors (Pitman, 2002, Chapter 3,
Section 2). Members of the subclass are obtained by mixing over a random m with
respect to a probability distribution on the positive integers.

In summary, each Gibbs-type partition with fixed @ < 1 is a unique probability
mixture over the extreme partitions induced by either:

1. The Pitman—Yor processes with discount parameter o. and concentration param-
eter § = m|a| for m in N, when a < 0;

2. The Dirichlet processes with concentration parameter § > 0, when o = 0; or

3. The Poisson-Kingman processes with parameter 7 > 0, when « € (0, 1).

It should be clear that each Gibbs-type partition defines a Gibbs-type IBP via the
construction in Section 1.2, and so it will suffice to characterize the Gibbs-type IBP in
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each of these regimes. In order to perform posterior inference within each subclass of
the Gibbs-type IBP, we will place prior distributions on any parameters defining the
weights V' and infer their values from data (see Section 6).

3 Constructions from random measures

Thibaux and Jordan (2007) connected exchangeable feature allocations with the theory
of completely random measures by showing that the IBP captures the combinatorial
structure of an exchangeable sequence of Bernoulli processes directed by a beta process
(Hjort, 1990). Generalizations of this approach have appeared in the literature, which,
from our perspective, include generalizations of the IBP that are parameterized by the
law of the Pitman—Yor processes (Teh and Goriir, 2009; Broderick et al., 2012) and,
more generally, by the law of any exchangeable partition (Roy, 2014). Here we describe
the case corresponding to the Gibbs-type partitions.

3.1 Gibbs-type beta processes

Let II be the exchangeable Gibbs-type partition defined by Equation (2.2), whose re-
striction II,, to [n] has block sizes (in order of appearance; see Section 2) denoted by
Ny1,Np2, ..., for every n > 1. By Kingman’s paint-box construction (Kingman, 1978),
the limiting relative frequencies of the blocks

Ny,
P, = lim L

n—oo n

(3.1)

exist almost surely for every k € N. Let py be the distribution of P;, which is called
the structural distribution. The structural distribution reveals quite a bit about the
exchangeable partition, but does not necessarily characterize it (Pitman, 2002, Chap-
ter 2.3); (Pitman, 1995). The structural distribution will entirely determine the law of
the corresponding Gibbs-type IBP. Let €2 be a complete, separable metric space and let
A be its Borel o-algebra. Following Roy (2014, Theorem 1.2), define a purely atomic
random measure B on (€2, A) by

B:=Y bids,, (3.2)

k>1
where (&1, b1), (@2,b2), ... are the points of a Poisson process on Qx (0, 1] with (o-finite)
intensity measure
vir(dw x dp) := Bo(dw) p~ ' pua (dp), (3.3)

for some non-atomic o-finite measure By on (€2, .A). Note that, because vy is not a finite
measure, B will have a countably infinite number of atoms, almost surely. We call B
a Gibbs-type beta process with EPPF fr1 and base measure By. Also note that the con-
struction of B ensures that the random variables B(A1), ..., B(Ag) are independent for
every finite, disjoint collection Ay, ..., Ax € A, and B is therefore said to be completely
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random or have independent increments. (See Kallenberg (2002, Chapter 12) for a back-
ground on completely random measures.) Following Thibaux and Jordan (2007), define
a sequence (Zp)nen := (Z1, Za, ... ) of random measures on (2, A) that are conditionally
i.i.d., given B, with

Zn = Z I{Un,,k<5k}5‘:’k’ n €N, (34)
k>1

where (U, k), ken is an independent collection of i.i.d. Uniform(0, 1) random variables.
Then (Z,)nen is an exchangeable sequence of Bernoulli processes. By construction,
because B is completely random, the elements of (Z,,),cn are completely random, both
conditionally on B, and unconditionally.

Fix n > 1. We now describe the conditional distribution of Z,, 1 given Z[n] =
(Zy,...,2Zy). A rigorous derivation can be found in Roy (2014) and James (2017, Propo-
sition 3.1). The following exposition emphasizes intuition, and follows the approach of
Teh and Goriir (2009) and Thibaux and Jordan (2007), who built on the work of Kim
(1999, Theorem 3.3). By the complete randomness of Z,,;1, we may first analyze the
conditional distribution of its fized atoms (that is, any atoms that have also appeared
among Z,)), followed by the conditional distribution of its ordinary component (which
consists of atoms that have not appeared among Z,,)). Consider the fixed atoms: That
is, let (w1,...,wk,) be the K, distinct atoms among Z,,), listed in order of appearance
(i.e., the order in which they first appear in the sequence, with ties broken uniformly
at random and independently). We can relate these distinct atoms to the atoms in B:
we have (wi,...,wk,) = (@j,,...,@j, ) for some random integers (j1,...,jK,). For
k < K,, the measure Z,,; takes atom wy with some probability b, = Bjk, and the
conditional distribution of by, given Z,,, is

PO (1= p) e (dp)

Plbp €dp | Z1,...,2,] = , 3.5
[ k p‘ 1 ] g(n,Snk) ( )
where Sy, 1= 32" Zij({wk}), for k < K, and
g(n,s) = /( ]ps_l(l =p)" *u(dp), n=s>1 (3.6)
0,1
Therefore, for every k < K,,, we have
PlZni1({wk}) =1 Z4,..., 2, =Ebg | Z1,...,Zy] (3.7)
1,8, ,+1
g(n’Sn,k)

Now consider the ordinary component: Informally speaking, the distribution of the
atoms of Z, .1 that have not appeared among Z,) may be described as follows: for
some infinitesimal set dw C Q\ {w1,...,wk, },

PlZpi1(dw) =1 Z4,...,Z,] = / p(1 —p)"vn(dw x dp) (3.9)
(0,1]

= By(dw)g(n+1,1). (3.10)
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More precisely, on Q\ {w1,...,wk, }, the measure Z,; is a Poisson process with inten-
sity measure g(n + 1,1) By, and the number of new atoms in 7, is therefore Poisson
distributed with rate vg(n + 1, 1), where v := By(Q) < 0.

3.2 Exchangeable feature allocations of Gibbs-type

We now construct an exchangeable feature allocation from the exchangeable sequence
(Z)nen- Recall the buffet process analogy introduced in Sections 1.1 and 1.2. Let n > 1.
For every i < n, associate the Bernoulli process Z; with the i-th customer entering the
Indian buffet restaurant, and associate the K, distinct atoms (wi,...,wk, ) among Z[,
with the distinct dishes sampled among the first n customers, where the dishes are listed
in order of appearance, as described earlier. Then K, represents the total number of
dishes taken by the first n customers, and Sj,  is the number of customers, among the
first n customers, that sampled dish k. Let F), 1, Fy, 2, ... be random subsets of [n] such
that, for every ¢ < n and k < K,,, we have ¢ € F, ;, if and only if Z;({wx}) = 1. It is
easy to verify that F,, := {F,1,...,Fy &, } is a random feature allocation of [n], and
F := (F)nen is a random feature allocation of N. Because the sequence (Z,,)nen is
exchangeable, it follows that F'is an exchangeable feature allocation of N. Note that F
captures only the combinatorial structure of the sequence (Z,),en—that is, the pattern
of shared atoms among the elements of the sequence (Z,)n,en, ignoring the locations
of the atoms themselves—analogously to the way exchangeable partitions only capture
the combinatorial structure of exchangeable sequences of random variables directed by
a random probability measure.

We will now show that the law of (Z,,),en, and therefore the induced feature alloca-
tion F, is characterized by the Gibbs-type IBP presented in Section 1.2. In particular,
we will show the probability the n+1-st customer takes a previously sampled dish agrees
with the probability that each atom in Z},) appears in Z, 11 (in Equation (3.8)), and the
mean of the Poisson distributed number of new dishes taken by the n + 1-st customer
agrees with the mean of the Poisson distributed number of new atoms in Z, 1. To that
end, it suffices to study the triangular array of integrals g(n,s), for n > s > 1. The
structural distribution p; relates the Gibbs-type beta process B to the probabilities of
combinatorial events in the exchangeable partition II,. In particular, we have

g(n,s) =P(Ngy =5 N Nyp1=5)=P(Npp,_.,, =9) (3.11)

To understand these identities, we return to the urn scheme interpretation, described in
Section 2, which we recall is initialized by placing a colored ball into the urn. From Equa-
tion (3.1), we may informally interpret the structural distribution p; as the (asymptotic)
probability of drawing this color from the urn in subsequent rounds of the scheme. We
may therefore interpret the definition of g(n,s) in Equation (3.6) as the probability of
drawing this color in the first s rounds of the urn scheme, followed by not drawing it
again in the following n — s rounds, resulting in the first equality in Equation (3.11).
The second equality follows by exchangeability, i.e., we may reorder the first s draws
from the urn scheme to instead be the last s draws without affecting this probability.
Formal derivations of such formulae can be obtained with properties of the structural
distribution, as discussed by Pitman (1995); Pitman (2002, Section 2.3).
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Clearly g(1,1) = 1. Consider g(n+1,1) = P(Np41,8,,, = 1) = P(Bn41 > By,). This
is the probability that a new color is drawn on the n + 1-st round, which conditioned on
B, is given by Vo41,B,+1/Va, B, (see Equation (2.4)). Then by taking an expectation
over B, (with respect to Equation (2.5)), we have for every n > 1,

Vo 1,B,+1 - Va 1,k+1 n
P(Bn—i-l > Bn) = E|:‘—;73+:| = Z(%%O% ka a)) = a,@(L 1)a
M En k=1

where we recall that Q2 o(+,-) was given by Equation (1.2). This is the mean number
of new dishes tasted by’the n + 1-st customer in the Gibbs-type IBP, as desired. In
general, g(n,s) = P{N, B,_,,, = s} is the probability that a new color is drawn on the
(n—s+1)-st iteration and then drawn again s —1 times in a row. Conditioned on B,,_s,
sampling a new color occurs with probability V,,_s+1.5, .+1/Va—s,B,_., and drawing
this color s — 1 additional times occurs with probability

ans P s V'I’L*S —s V’I’L n—s
2Bkl () Voot oy YmBaol (o
Vi—s+1,B,_.+1 Vi—s+2,B,_.+1 Vi-1,B,_ .41
(3.12)
_ Vnanferl (1 a)
=70 —a)s-1.
Vn—s-‘rl,Bn,s—i-l
Multiplying, we have
Vn,Bn_erl
]P)[Nnan—s+1 =S | Bn—s] = ﬁ(l — Oé)s_l. (313)
With an iterated expectation and the form of Equation (3.13), we may write
g(n—|—l,8+1) P[Nn'i‘l,anerl =s+1 | Bn—s]
= (3.14)
g(n7s) P[Nn,Bn—s+1 =S ‘ BR*S]
Vat1,B,
(s a)E[#] | (3.15)
VB, .41

Recall that, on the event {N,, 5 = s}, we have B,_s+1 = B,,_sy+1 = B,. Therefore,

n—s+1

(5= @B 2 = (5 - ) 30 PG ki) = (s - )QEe(10), (316)
T En k=1

which shows that Equation (3.8) is the probability the n + 1-st customer in the Gibbs-
type IBP tastes a dish that has been tasted s times previously. Finally, let by denote a
probability density function for the normalized base measure v~ By. In the supplemen-

tary material, we show that (Zi,...,Z,) has a probability density function p, given
by

P(Z1,. s Zn) = 7 exp(—v Y Qe 1))
j=1
K, (3.17)
< JT10 = @), —1Q0 6> (S bo(wr)]
k=1

where Q(S’@(n, 1) :==(1—a)p_1Vy,1 for every n > 1.
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3.3 Special cases

Clearly, any EPPF of the Gibbs-type form in Equation (2.2) will induce a Gibbs-type
IBP. Some special cases of these constructions are already known in the literature. We
have already discussed the Gibbs-type IBPs corresponding to partitions induced by the
Pitman—Yor (and, thus, Dirichlet) processes. Indeed, in the Pitman—Yor process case
the structural distribution is p; = beta(l — o, 0 + @) for @ € [0,1) and 0 > —a. In
this case, the Gibbs-type beta process specializes to the stable (or three-parameter) beta
process (Teh and Goriir, 2009), which contains the original beta process when a = 0.
Despite those authors not studying the case when a < 0 and 6 = m|a/, for some m in N,
we may just as well define this extension of the stable beta process and stable IBP, and,
indeed, the structural distribution (and so the construction of B and (Z,),en) are of
the same form. See (Pitman, 1995, Proposition 9 and the text following) for references
on the structural distributions in all of these cases.

As described at the end of Section 2, the only remaining case of the Gibbs-type IBPs
to consider are those corresponding to the Gibbs-type partitions with a € (0, 1), which
are the partitions induced by the Poisson—Kingman processes with parameter 7 > 0. In
this case, Pitman (2003, Section 5.4) shows that the structural distribution u; admits
a probability density function on (0,1) given by

o —a, —« fa(T(]' _,U))

p(’U) = m?} T fa—(T)’ (318)

which was also derived by Favaro and Walker (2013) with an application of Perman
et al. (1992, Theorem 2.1). For the remainder, we will refer to any subclass of the
Gibbs-type beta process or IBP by the name of the random measures inducing the
corresponding Gibbs-type partition. For example, we will say Pitman—Yor-type beta
process and Pitman—Yor-type IBP instead of stable beta process and stable IBP, etc.

4 Stick-breaking representations

So-called stick-breaking representations for the beta process are analogous to the stick-
breaking constructions for random probability measures such as the Dirichlet and
Pitman—Yor processes. (See Sethuraman (1994); Ishwaran and James (2001) for back-
ground on stick-breaking representations for random probability measures.) These rep-
resentations are useful for applications because they lead to practical inference proce-
dures. With an application of Roy (2014, Theorem 1.3), we may obtain an analogous
stick-breaking representation of the Gibbs-type beta process as follows: Recall from
Equation (3.1) that P; is the limiting frequency of the i-th block in a Gibbs-type parti-
tion, whose distribution is denoted by p;. Then (P;);cn are the size-biased frequencies.
Let By be a non-atomic measure on (£2,.4), and define

oo C;
B = ZZPi,jéwi,j, (4.1)
i=1 j=1

where (C;)ien, (wi )i jen, and (P; ;) en are independent processes and
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1. (C))ien are i.i.d. Poisson(vy) random variables with v := By(Q);

2. (wi j)ijen are ii.d. random elements in  with distribution v~ By; and

3. For every i € N, the random variables in the collection (P; ;);en are i.i.d. copies
of Pz

The problem of constructing B then amounts to that of constructing the size-biased
frequencies (F;);en specific to the underlying Gibbs-type partition. Efficient construc-
tions for these size-biased frequencies are available for many subclasses of the Gibbs-type
partitions; in these cases, we obtain efficient stick-breaking constructions for the corre-
sponding subclasses of the Gibbs-type beta process. Here we summarize these results.

For every i € N, let

P =Ww; (1 - Wj)? (4'2)

j=1

with P = Wi, for some random elements W := (W) en in (0,1]. If W; ~ beta(1,6),
i.i.d. for every j € N and 6 > 0, then Equation (4.2) is the i-th stick of a Dirichlet process
(Sethuraman, 1994). In our terminology, Paisley et al. (2010) showed that B is then a
Dirichlet-type beta process (with concentration parameter § and base measure By). If
the random variables W are merely independent with W; ~ beta(l — a, 6 + jo), for
every j € N and some a € (0,1) and § > —a, then Equation (4.2) is the i-th stick
of a Pitman—Yor process (Perman et al., 1992). In our terminology, Broderick et al.
(2012) showed that B is a Pitman—Yor-type beta process (with discount parameter
«, concentration parameter #, and base measure By). As with the Pitman—Yor-type
IBP, these authors did not consider a stick-breaking construction for the Pitman—Yor-
type beta process with a < 0 and # = m|a| for some m in N. However, the sticks of
the Pitman—Yor processes in this case are still independent and distributed as W; ~
beta(l — a, m|a| + ja), for every j € N (Pitman, 1995, Proposition 9), and so this
extension does indeed arise from the construction in Equation (4.1).

In order to complete the stick-breaking representations for the Gibbs-type beta pro-
cesses, all that remains is to describe the distribution of W in the case when a € (0, 1).
Favaro and Walker (2013) applied (Perman et al., 1992, Theorem 2.1) to show that
the sequence (W;);en is composed of dependent random variables that may be char-
acterized sequentially as follows: The first stick P, = W7 has distribution p; given by
Equation (3.18). For every j > 2, conditioned on W1,...,W;_;, the random variable
W, admits a conditional density on (0, 1] with density function

j—1 ;
wj | w wiig) = ——2|rw; —w ~ fa(r Iy (1 = wi))
g | w1y 0-1) r(l—a>[ ]kzl(l 0] falr THZ (1 = wi))

where 7 > 0 is the parameter of the Poisson—Kingman model (see Equation (2.7)). An
algorithm for slice sampling the sequence W was provided therein, and Favaro et al.
(2014) showed that, under certain assumptions on the parameter «, these sticks can be
directly constructed with beta and gamma random variables.

, o (43)
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We present an alternative stick-breaking representation for the Gibbs-type beta pro-
cess that represents the measures chzl P; jbu, ;, for every i > 1, in Equation (4.1) with
independent Poisson processes. This representation results from an application of Roy
(2014, Theorem 1.4). Let

B=) ) »pd, (4.4)

n=0 (w,p)€nn
where 19, 171,72, . .. are independent Poisson processes on 2 x (0, 1] with finite intensity
measures
(Enp)(dw x dp) = Bo(dw)(1 — p)"u1(dp), ne€{0,1,2,... }. (4.5)

One may verify that B in Equation (4.4) is indeed the Gibbs-type beta process given
by Equation (3.3) using a Poisson process superposition argument and the identity
pt=>7",(1—p)". For a <0, we have

I'(1+0)

(Enp)(dw x dp) = Bo(dou)r(1 — T (0t a

)p*“ufp)‘”a*"*dp, (4.6)

where 0 = m|a| for some m in N. This same form characterizes the case a = 0 by
setting > 0. When « € (0,1) and § > —«, Equation (4.6) characterizes the rest of the
Pitman—Yor-type beta processes. More generally, when « € (0,1) we have

(B x dp) = Bold) 5 s (- G0 S

where 7 > 0.

These stick-breaking representations are useful for applications because inference
procedures may be obtained in which the sticks are auxiliary variables. Though only a
finite number of the sticks may be represented in practice, these representations yield
error bounds when we truncate the outer sums in either Equation (4.1) or Equation (4.4)
to a finite number of terms (Doshi-Velez et al., 2009, Section 3.6); (Paisley et al., 2011,
Theorem 1); (Roy, 2014, Theorem 1.5). Additionally, a Markov chain Monte Carlo
routine including an auxiliary variable may be used to numerically integrate over the
number of represented sticks, which removes the approximation error in the asymptotic
regime of the Markov chain (Ishwaran and James, 2001).

5 Controlling the statistics of latent features

In statistical applications, it is important to tailor the assumptions that a model encodes
about the structure and complexity of the data. In this section, we characterize the
asymptotic behavior of the distribution of the latent features in the Gibbs-type IBP. As
before, let K,, denote the number of dishes sampled among the first n customers in the
Gibbs-type IBP. Additionally, let K, ; denote the number of dishes sampled exactly j
times among the first n customers, for every n > j > 1.
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5.1 Power-law behavior when o € (0, 1)

As we saw in Section 2, when « € (0, 1) the underlying Gibbs-type partitions correspond
to the class of partitions induced by the Poisson—Kingman measures with parameter
7 > 0, which includes the normalized generalized gamma processes and a subclass of
the Pitman—Yor processes. These models have been shown to exhibit power-law (i.e.,
heavy-tailed) behavior in the asymptotic distribution on the number of blocks in the
partition (Pitman, 2003). Empirical measurements in a variety of domains have been
shown to exhibit power-law behavior. For example, the occurrence of unique words
in a document, the degrees of interactions in a protein network, and the number of
citations of an academic article all exhibit power law behavior. An appropriate model
for data that may depend on these factors should be able to capture this behavior in
its latent structure. It was shown by Teh and Goriir (2009) and Broderick et al. (2012)
that the Pitman—Yor IBP exhibits power-law behavior in the asymptotic distributions
of K, and K, ;. We will now see that this behavior is, in a sense, inherited from the
partitions induced by the Pitman—Yor processes, and that power-law behavior for any
partition induced by a Poisson—-Kingman measure translates into power-law behavior in
the corresponding Gibbs-type IBP.

Let « € (0,1), let 7 > 0, and let vy be the Lévy intensity of the Gibbs-type beta
process defined in Equation (3.3), parameterized by the structural distribution for the
Poisson-Kingman measures in Equation (3.18). In this case, it follows analogously to
the results by Broderick et al. (2012, p. 459) that v satisfies the limiting behavior

/ prn(dw X dp) ~ LCxl_a, as ¢ — 0, (5.1)
Qx(0,2] l1-a

for a constant C' := 77%, where ~ indicates that the ratio of the left and right hand
sides tends to one in the specified limit. With derivations analogous to those by Brod-
erick et al. (2012, Proposition 6.1, Lemma 6.2, Lemma 6.3, & Proposition 6.4), it is
straightforward to verify that, with probability one,

al'(j — «)

K, ~~Cn® d K, ~y—————=
yhm At Bed P a)

Cn®, asn— oo, (5.2)
where v > 0 is the mass parameter of the Gibbs-type IBP. These statistics therefore
exhibit power law behavior controlled by the value of a € (0, 1); the closer « is to one,
the heavier the tails of these distributions.

Recall from Section 2 that members of the Gibbs-type partitions (and thus the
Gibbs-type IBP) are obtained by mixing over a random parameter 7. Consider the case
when 7 has a density function on Rsq given by h(t)f.(t), for a measurable function
h:Rsg — Rsg. In this case, the constant C' in Equation (5.2) becomes

O /0 R fu (H)dt. (5.3)

By choosing h(t) = %t’e for some 6 > —a, we have that vy is the Lévy intensity

of the Pitman—Yor-type beta process, and C = a~'TI'(§ + 1)/T'(f + «), which was pre-
viously derived by Broderick et al. (2012). By choosing h(t) = " Pt for some § > 0,
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then vy is the Lévy intensity of a normalized generalized gamma-type beta process, and
we find that C' = e [ t=*e~F! f,(t)dt. In this case, if o = 1/2, then vy is the Lévy
intensity of a normalized inverse Gaussian-type beta process, and C has a closed form
solution given by C' = %61/2651/2¢1(61/2), where ¢, is the modified Bessel function of
the third type.

In order to compare the power-law behaviors of different Gibbs-type partitions, De
Blasi et al. (2014) chose hyperparameters for the Pitman—Yor and normalized general-
ized gamma processes such that the expected number of blocks in the corresponding
partitions satisfy E[Bsg] &~ 25. By plotting statistics such as the expected number of
blocks B, in the partition as n varies, one may visualize differences in the asymp-
totic behaviors between the models. As one should expect, these same hyperparameter
settings also provide an appropriate comparison for their corresponding Gibbs-type
IBPs. In particular, recall that in the Gibbs-type IBP the j-th customer samples a
Poisson(*yQiE(l, 1)) number of new dishes. Then the total number of dishes K,, sam-

pled by n customers has a Poisson distribution with mean ~ Z;L:1 Q (7;91(1, 1), where we
recall that Q7 (1,1) := 1. Setting (a,8) = (0.25,12.22) and («, 8) = (0.74,1) for the
Pitman—Yor- and normalized generalized gamma-type IBPs, respectively, we then have
that E[K50] ~ 257 for both models. In Figure 1, we plot the behavior of K,, and K, ;
as n increases for these two Gibbs-type IBP subclasses, with the additional choice of

v=1.

We can see that, for this comparable set of hyperparameters, the normalized gen-
eralized gamma-type IBP exhibits heavier tails than the Pitman—Yor-type IBP on
both statistics, though in smaller n regimes the reverse holds. The normalized inverse
Gaussian-type IBP, at the same setting of 8 = 1, exhibits similar tail behavior in K, 1
to the Pitman—Yor-type IBP. For comparison, the asymptotic behavior of K, for the
Dirichlet-type IBP at the same hyperparameter setting as the Pitman—Yor-type IBP
is also displayed, which does not exhibit power-law behavior (K,, grows proportionally
with logn in this case (Ghahramani et al., 2007)). These characteristics distinguish the
subclasses of Poisson—-Kingman-type IBPs and provide a variety of power-law modeling
options to a practitioner.

5.2 Logarithmic growth when o = 0

Recall that the Gibbs-type partitions with o = 0 coincide with the random partitions
induced by the Dirichlet processes with concentration parameter . With probability
one, the number of blocks in the partition of [n] satisfies B, ~ flogn as n — oo
(Korwar and Hollander, 1973). Similarly, with probability one, the number of features
in the corresponding Gibbs-type IBP (i.e., the original IBP) satisfies K, ~ v0logn as
n — oo (Ghahramani et al., 2007), where «y is the mass parameter of the IBP.

5.3 Finite feature models when o < 0

Finally, recall that the Gibbs-type partitions with o < 0 coincide with the random
partitions induced by the Pitman—Yor processes with discount parameter o < 0 and
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(a) Asymptotic behavior of Ky, (b) Asymptotic behavior of K, 1.

Figure 1: The behavior of K, (the number of features) and K, ; (the number of features
with exactly one assignment) for several subclasses of the Gibbs-type IBP, as n increases.
Heavy-tailed behavior demonstrates power-law properties.

concentration parameter = m|a| (see Equation (1.5)), where m is a random element
in N (Pitman, 2002, Chapter 3, Section 2); (Gnedin and Pitman, 2006, Theorem 12).
This subclass may be interpreted as an urn scheme with a finite—but random—number
of colors m, and a number of specific examples have been investigated in the literature
(Gnedin, 2010; De Blasi et al., 2014). In this case, with probability one, B, = m for
all sufficiently large n. That is, there are a finite number of blocks that are eventually
exhausted.

As one may anticipate, the corresponding Gibbs-type IBP in this regime may be
analogously interpreted as a feature allocation with a random finite number of features.
In particular, when a < 0, the Gibbs-type IBP will have a finite number of features if
and only if E[m] < oco. Informally, recall from Section 3.1 that the number of new dishes
K 1 sampled by the n + 1-st customer in the Gibbs-type IBP is Poisson distributed
with rate YP(B,+1 > B,) (see Equations (3.9) and (3.11)). Using two Borel-Cantelli
arguments, we show in the supplementary material that E[m] < oo if and only if the
sequence P(B,, 11 > By,) is summable if and only if K:-;-l = 0 for all sufficiently large n
a.s.

6 Black-box posterior inference

We propose a Markov chain Monte Carlo algorithm generalizing the procedure for pos-
terior inference with the IBP, originally developed by Ghahramani et al. (2007) and
Meeds et al. (2007). We will see how these inference methods may be treated as a
black-box, where implementing any subclass of the Gibbs-type IBP requires only sev-
eral evaluations of the primitives Q' (21, 22), given by Equation (1.2).

Fix n > 1, and let (w1, ...,wk, ) denote the K, distinct atoms among the sequence
Z1,...,2Zn, where, in this section, we assume that the ordering is chosen uniformly at
random, conditioned on K. For every ¢ < n and k < K, define Z; = Z;({wk}),
and let Z := (Z; )i<n, k<K, - Latent feature models have been applied to a variety of
statistical problems (as discussed in Section 1.1). In most of these applications, the
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features (associated with the atoms) represent latent clusters or factors underlying a
data set comprised of n observations Y := (Y7,...,Y},). Informally, observation Y; is
associated with every latent component wy for which Z;; = 1. More carefully, let
Q= (wi,...,wg,) and recall that  is an i.i.d. sequence (drawn from the normalized
base measure) and independent of Z, conditioned on K,. Let ¢ be a latent variable
independent of © and Z, and define ® = (¢, 2). We then fix a likelihood p(Y'|Z, @) =
[T7, f(Yi;4, Z;) for some density f. In other words, the numbering of the features is
irrelevant to the likelihood.

Consider resampling an element of Z from its conditional distribution given Y, &,
and the remainder of Z. Fix a data point ¢ < n. For every k < K,,, let Z_(; 1) be the
elements of Z excluding Z; 1, let Zf(i k) be the elements of Z with Z; ;, replaced by z,

and let S,i_i) = Zj¢ij<n Zj 1 be the number of datapoints, other than ¢, that have
feature k. For k < K,, and S,g*i) > 0, Bayes’s rule implies that

PlZin =2 Y, Z_(ir), @] < p(Y | Zf(i’k),fb) xPZip=2|Z_ur), z€{0,1}, (6.1)

where p(Y | Z,®) is the likelihood defined above. Recall that we have associated the
i-th customer in the buffet analogy with Z;. By exchangeability, we may treat this as
the last customer to enter the buffet, and so

P(Zip=1]Z_p) x (S~ a)Qr & (1,0). (6.2)

Therefore, conditioned on K,, for every i < n and k < K, where S,gfi) > 0, we may
resample Z; j according to Equations (6.1) and (6.2).

We can resample the remaining elements of Z using the Metropolis—Hastings pro-
posal proposed by Meeds et al. (2007). In particular, for every ¢ < n, we propose
removing those features possessed by only Z;, that is, those atoms wy, in {wy,...,wk, }
with Z;, = 1 and S’,gﬂ) = 0. We propose replacing these atoms with K;r new atoms
(possessed only by Z;). Recall that K" is interpreted as the number of dishes taken by
only the i-th customer. Because we may treat the i-th customer as if they were the last
to enter the buffet, the distribution of K ;L is the same as the distribution of the number
of new dishes sampled by the last customer, and so

Kt ~ Poisson(vQ o' (1,1)). (6.3)
The Markov proposal replaces those entries in ® associated with the removed atoms
with a set of new parameters associated with the new atoms, sampled from the nor-
malized base measure. (In order to get a simple acceptance probability, the numbering
of the features, and thus the column ordering of the array Z, can be resampled uni-
formly at random. Alternatively, one can ignore the ordering and work implicitly in
the space of equivalence classes up to ordering, as the columns are already uniquely
identified by their latent parameters, assuming the base measure is non-atomic.) Let
Z* and ®* denote the proposed feature assignments and parameters. It is straightfor-
ward to show that the Metropolis—Hastings acceptance probability for this proposal is
min{l, p(Y|Z*,®*)/p(Y|Z,®)} (Meeds et al., 2007). This move potentially changes the
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number of atoms K, among Z1,...,Z, and thus the number of latent features in the
feature allocation. We then proceed to the next process Z; 1 and repeat this procedure.
Iterating these steps, along with standard Gibbs sampling moves that resample the la-
tent parameters ®, results in a Markov chain that targets the posterior distribution of
Z and ®, conditioned on the data Y, as its steady state distribution.

Without good prior knowledge of what the parameters 7, a and © governing the IBP
model should be for a particular application and data set, we may give them broad prior
distributions and infer their values during posterior inference. See Section 7 for further
details. Note that the inference procedure we have described may be treated as a black-
box for any subclass of Gibbs-type IBPs, where the user only needs to supply several
evaluations of the primitives @ «Z@(" -). In particular, resampling Z only requires the
two values Q" g'(1,1) and Q' (1,0) (in order to evaluate Equations (6.1) and (6.3))
for a dataset of size n. In order to resample the hyperparameters v, o and © for the
IBP model, one needs to supply n — 1 additional evaluations to obtain Q[ g*(s, 1), for
n > s > 1, required by Equation (3.17). These n + 1 values may be precofnputed and
stored for given values of o and ©. See the supplementary material for some notes on
computing these primitives, the required generalized factorial coefficients €'(n, k; «) in
Equation (1.3), and the Gibbs-type weights V for different models.

7 Experiments

We now demonstrate the differences between several subclasses of the Gibbs-type IBP.
We do not implement models with o < 0 here due to computational difficulties (as dis-
cussed in the supplementary material). This section will therefore focus on subclasses
of the Gibbs-type IBP with o € [0,1). See Section 8 for a further discussion.

For every i < n, assume that data point Y; is composed of p measurements Y; :=

(Yi1,...,Y:,). Consider the following factor analysis model for Y

K

Yi; = Z WikZikArj + €ij, i <n,j<p, (7.1)
=1

where W := (W, r)k<k, i<n are R-valued modulating weights, A := (Ax ;)k<k, j<p are
R-valued factor loadings, and € := (& ;) j<p,i<n are R-valued additive noise terms. Let

Wi,k | ow ~ N(an-{%v)a 1 S n, k S Kna (72)
Apjloag ~ N(0,0% ), j<p k<K, (7.3)
€i,j | Oy ~ N(O7U}2’)7 } S n, .] S D, (74)
where oy, 0w,04,1,...,04,p are positive-valued hyperparameters. Viewing Y, Z, W, A,

and ¢ as matrices in the obvious way, we may write Y = (W o Z)A+¢ where o represents
element-wise multiplication. Then the data Y is conditionally matrix Gaussian and
admits the conditional density
1
p(Y | Z,W,A,0x) = —oort |V - M - a]) (75)
o

— ¢
(2m)mP/20 xp{ X
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where M = (W o Z)A. Note that, in practice, W or A may be analytically marginalized
out of this likelihood expression, in which case Y is still conditionally Gaussian.

In the experiments below, we give all hyperparameters broad prior distributions
and resample their values during inference with slice sampling (Neal, 2003). Where
relevant, the discount parameter « is given a beta(1l,1) prior distribution. All other
parameters in © (i.e., the Gibbs-type hyperparameters, which are all positive-valued) are
given independent gamma prior distributions, whose hyperparameters are themselves
given independent exponential(1) prior distributions. For the noise parameter oy, we let
0;2 | ay,by ~ gamma(ay,by), where ay,by ~ exponential(1) are independent. We
give ow a similar prior specification. Independently of oy and oy, we couple the factor
variance parameters (04 ;) j<p with a similar model: let 023 | aa,ba ~ gamma(aa,ba),
for all j < p, where aa,ba ~ exponential(1l) are independent. Finally, for the IBP
mass parameter, let v | a,,b, ~ gamma(a,,by), and let ay,b, ~ exponential(1l)
be independent. In this case, Equation (3.17) implies the conditional distribution of ~
remains in the family of gamma distributions, with conditional density

p(v ] Z,a,0,a,,b,) oc v exp(—'yZQO]:@l(l, 1)) x gamma(7y; @, b) (7.6)
j=1

:gamma(w;aw + K, b, —s—ZQi”@l(l,l)). (7.7)

Jj=1

7.1 Synthetic data

First consider a synthetic latent feature allocation, displayed as a 200 x 50 binary matrix
in Figure 2(a). The rows correspond to the n = 200 data points and the columns
correspond to the K, = 50 latent features, that is, the i-th row and k-th column is
shaded black if Z; , = 1 (in the notation of Section 6). In this example, every data
point possesses one of the first two features, and the remaining 48 features are each
only possessed by one data point. We simulate a dataset Y of n = 200 measurements
in p = 50 variables from the model in Equations (7.1) to (7.4) with ox = ow = 1, and
oa; =1for j <p.

We implemented the posterior inference procedure described in Section 6 for 6,000
burn-in iterations. In Figure 2(b) we display the number of features inferred by the
Dirichlet, Pitman—Yor, normalized inverse Gaussian, and normalized inverse gamma—
denoted DP, PY, NIG, and NGG, respectively—subclasses of the Gibbs-type IBP on
different subsets of the data. In particular, we ran the inference procedure on 40% of the
data points, then on 50%, and so on, indicated by the horizontal axis from left to right.
The mean number of inferred features (along with + one standard deviation) over 3,000
samples following the burn-in period are displayed for each model. The true number of
features in each subset of the data are also displayed for reference.

We note that all models attained approximately the same training loglikelihood
given each data subset (averaged over the samples). However, the more flexible PY and
NGG-IBP variants were able to more accurately infer the number of features underlying
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Figure 2: (a) A synthetic latent feature matrix for n = 200 data points with Kogg = 50
features. The simulated data was in p = 50 variables. (b) The number of features
inferred by different subclasses of the Gibbs-type IBP as we sequentially include more
of the data. For each subset of the data, we plot the mean number of features over 3,000
samples following a burn-in period. Bars at 4+ one standard deviation are also displayed.
The true number of features in each subset of the data is plotted for reference.

the data compared to the less expressive subclasses, the DP- and NIG-IBPs. We recall
that the DP-IBP is an extreme point of both the PY- and NGG-IBP subclasses. The
discount parameter « differentiates these models, and as we saw in Section 5, inferring
this parameter allows these models to detect the power law structure present in the
latent feature allocation displayed in Figure 2(a). In the supplementary material, we
provide trace plots of the Gibbs-type hyperparameters over the burn-in period, along
with histograms over samples repeatedly drawn following the burn-in.

7.2 MNIST digits

We also applied the model in Section 6 to n = 1000 examples of the digit ‘3’ from the
MNIST handwritten digits dataset. We projected the data onto its first p = 64 principal
components in order to replicate the experiment performed by Teh et al. (2007) with the
DP-IBP (and a more restrictive setting of the hyperparameters). Here we present the
same qualitative analyses for different subclasses of the Gibbs-type IBP. The reader can
see Paisley et al. (2010); Broderick et al. (2012) for similar experiments. We ran our pos-
terior inference procedure for 20,000 iterations, which was sufficient for every model to
burn-in. We collected 1,000 samples (thinned from 10,000 samples) of all latent variables
in the model following the burn-in period, and we display boxplots of the number of
inferred features over the collected samples in Figure 3. (In the supplementary material,
we provide visualizations of the inferred values of the Gibbs-type hyperparameters.) In
Figure 4, we find the maximum a posteriori (MAP) sample (of all latent variables and
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Figure 3: Number of features inferred by the different subclasses on the MNIST dataset.
Boxplots over 1,000 samples (thinned from 10,000 samples) collected following a burn-in
period of 20,000 iterations.

parameters, from among the collected samples) for each model, and for that sample we
plot (1) the number of images sharing each feature and (2) a histogram of the number
of features used by each image. For visualization, the features in the former plots are
ordered according to the number of images assigned to them. The scale of the axes in
the subfigures are held fixed for comparison.

We find that the heavy-tailed models, i.e., the PY-, NIG-, and NGG-IBPs, exhibit
different extents of power-law behaviors achieved by tailoring the total number of in-
ferred features and the number of features with relatively few assignments. In particular,
Figure 3 shows that the PY-IBP infers more features than the DP-IBP (based on an
unpaired t-test at a 0.05 significance level). Moreover, both the NIG- and NGG-IBP
models infer significantly higher numbers of features than the PY-IBP, but do not
themselves differ significantly. Figure 4 shows that these differences are due to varying
power-law behaviors between the models. In particular, the PY-, NIG-, and NGG-IBP
models display increasingly heavier tail behavior in the (distribution of the) number of
images sharing each feature. The NGG-IBP model is notable as clearly having dramat-
ically heavier tails than all other models in this distribution. This additionally results
in a noticeably lower average number of features per image (visible in the histogram),
which does not appear to differ significantly between the other three subclasses.

This experiment demonstrates important variations between the Gibbs-type IBP
subclasses. Compare the latent feature distributions between the three heavy-tailed
variants. On one hand, the NIG-IBP has heavier tails than the PY-IBP, accomplished
by creating many features to which very few images are assigned, resulting in a signif-
icantly larger number of features. On the other hand, the NGG-IBP has much heavier
tails than the NIG-IBP, accomplished by heavily skewing the distribution towards the
(right) tail, yet maintaining approximately the same total number of features. It is par-
ticularly interesting to compare the PY- and NGG-IBP models in this respect, as the
DP-IBP may be approximated by both of these subclasses. As discussed in Section 5,



C. Heaukulani and D. M. Roy

. r ‘ ‘ ‘ ‘
o 1000
£ 800}
&
< 600 -
; 400
g 200+
£
*= 0L ‘ ‘ ‘ ‘

0 50 100 150 200 250

k (feature index--sorted)
(a) DP; # images sharing each feature

» r ‘ ‘ ‘ ‘
g 1000
£ 800t
&
= 600 -
; 400
g 200
£
#*= 0L ‘ ‘ : ‘

0 50 100 150 200 250

k (feature index--sorted)

(c) PY; # images sharing each feature
0 50 100 150 200 250
k (feature index--sorted)

1000 F
800 F
600 -
400 -

# images with feature k

(e) NIG; # images sharing each feature

1000 -
800+
600 -
400 -
200~

# images with feature k

|

# images
(=}

0r

50 100 150 200 250
k (feature index--sorted)

(=1

(g) NGG; # images sharing each feature

705

120

90

60

30

# images
(=}

10 20 30 40 50
# features

(b) DP; # feat. used by each image

120

90

60

# images

>

30

10 20 30 40 50
# features

(d) PY; # feat. used by each image

120

90

60

# images

-

30

10 20 30 40 50
# features

(f) NIG; # feat. used by each image

120

90

60

30

10 20 30 40 50
# features

(h) NGG; # feat. used by each image

Figure 4: Latent feature statistics inferred by each model on the MNIST dataset. For
each model, the number of images assigned to each feature is displayed as a plot (sorted
for visualization), and the number of features used by an image is displayed as a his-

togram.
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Figure 5: Top 10 (according to the weight matrix W) important features (represented
by the factors in A) for the digit ‘3’ inferred by each subclass of the Gibbs-type IBP.
Darker pixel values correspond to larger values in (the corresponding factor in) A.

these differing properties provide several different options to a practitioner, which are
accessible through our black-box constructions and posterior inference procedures.

Finally, we can visualize the effect that the different latent feature distributions have
on this particular application by investigating some of the latent features inferred by
each model. In Figure 5, we display the top 10 (according to the weight matrix W) most
important features (represented by the factors in A) from the MAP sample collected
for each model. The features inferred by the DP-, PY-, and NIG-IBP models do not
appear to differ, however, the NGG-IBP clearly places the heaviest weight on its features
(resulting in darker pixel values). Moreover, a few of these features appear to capture
distinct parts of the digits.

8 Conclusion

The Gibbs-type IBPs are a broad class of feature allocation models, parameterized by
the law of a Gibbs-type random partition. We showed how the Gibbs-type IBP can
be constructed from exchangeable sequences of completely random measures and gave
several stick-breaking representations. We also characterized the asymptotic behavior
of the number of latent features in a Gibbs-type IBP, which was seen to mimic the
asymptotic behavior of the underlying random partition. We described black-box rou-
tines for simulation and performing posterior inference with Gibbs-type IBPs that only
require a set of precomputed constants that are specific to the corresponding partition
law. Our numerical experiments demonstrated differences between the Gibbs-type IBP
subclasses, where we saw that different extents of heavy tailed latent feature behavior
could be attained beyond the PY-IBP.
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Many models that use the beta process as a basic building block can be generalized by
instead using the Gibbs-type beta process, which could benefit many applications of the
IBP. Further applications of the beta process beyond the IBP should also be considered.
For example, Roy (2014) provides a finitary construction for exchangeable sequences of
Bernoulli processes (as in Equation (3.4)) rendered conditionally i.i.d. by a hierarchical
beta process (Thibaux and Jordan, 2007). Such processes are used as admixture models,
in which a collection of feature allocations share features, analogously to (collections of)
random partitions induced by a hierarchy of partitioning schemes. Feature allocations
induced by hierarchies of Gibbs-type beta processes would be a natural generalization
of this framework, providing flexible properties (such as power law behavior) to the
admixture model.

Finally, we cannot practically apply the simulation or inference procedures described
in this article to Gibbs-type IBPs for a < 0, because we cannot robustly compute the
required primitives Q[ (-, ) in this case (as described in the supplementary material).
Constructions by Roy (2014, Definition 6.1) provide alternative simulation procedures,
however, posterior inference algorithms have yet to be developed. The stick-breaking
representations in Section 4 do not depend on these primitives, and so they may suggest
an approach for inference.

Supplementary Material

Supplementary Material: Gibbs-type Indian buffet processes
(DOI: 10.1214/19-BA1166SUPP; .pdf).
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