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Abstract: We study stationary measures for the two-dimensional Navier–Stokes equa-
tion with periodic boundary condition and random forcing. We prove uniqueness of the
stationary measure under the condition that all “determining modes” are forced. The
main idea behind the proof is to study the Gibbsian dynamics of the low modes obtained
by representing the high modes as functionals of the time-history of the low modes.

1. Introduction and Main Results

We are interested in determining conditions sufficient to insure that the stochastically-
forced Navier–Stokes equation (SNS) possesses a unique stationary measure, or equiva-
lently, that the dynamics is ergodic in the phase space. Our main result is that this holds if
all the “determining modes” are forced. To prove this, we show that the dynamics of the
Navier–Stokes equation can be reduced to the dynamics of the low modes, the so-called
determining modes, with memory. This is the stochastic analog of results proved for
the deterministic case by Foias et al. [FMRT]. We will work with the periodic boundary
condition. But in principle our techniques should also apply for the more physical no-slip
boundary condition.

Consider the two-dimensional Navier–Stokes equation with stochastic forcing:{
∂u

∂t
+ (u · ∇)u+ ∇p − ν�u = ∂W(x, t)

∂t∇ · u = 0
. (1)

For simplicity of presentation we will takeW to be of the form

W(x, t) =
∑
|k|≤N

σkwk(t, ω)ek(x)m (2)

where the wk ’s are standard i.i.d complex valued Wiener process satisfying
w−k(t) = wk(t), andσk ∈ C, with |σk| > 0 andσ−k = σk, are the amplitudes of
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the forcing,{ek(x) = (−ik2
ik1

)
eik·x
|k| , k ∈ Z} are the basis in the space ofL2 divergence-

free, mean zero vector fields onT2, the two dimensional torus. Our techniques apply
to more general cases when the higher modes are also forced, as long as|σk| decays
sufficiently fast as|k| → ∞ or to forcing which is not diagonal in Fourier space. But
we will restrict ourselves to the form in (2) for clarity.

DefineB(u, v) = −Pdiv(u · ∇)v, �2u = −Pdiv�u, wherePdiv is theL2 projec-
tion operator onto the space of divergence-free vector fields. Letσ 2

max = max{|σk|2 :
|k| ≤ N}. E0 = ∑

|k|≤N |σk|2 andE1 = ∑
|k|≤N |k|2|σk|2. Writing u(x) = ∑

k ukek(x),

we will defineH
α = {

u = (uk)k∈Z2, u0 = 0,
∑

k |k|2α|uk|2 < ∞}
andL

2 = H
0.

We will work on a probability space(�,F,Ft ,P, θt ). We associate� with the
canonical space generated by alldωk(t). F and Ft are respectively the associated
globalσ -algebra and filtration generated byW(t). Lastly, θt is the shift on� defined
by θtdωk(s) = dωk(s + t). Notice thatθt is an ergodic group of measure-preserving
transformations with respect toP. Expectations with respect toP will be denoted byE.

Projecting (1) ontoL2, we obtain the the following system of Itô stochastic equation

du(x, t)+ ν�2u(x, t)dt = B(u, u)dt + dW(x, t). (3)

It can be shown that (3) generates a continuous Markovian stochastic semi-flow on
L

2 defined by

ϕω
s,tu0 = u(t, ω; s, u0). (4)

Whens = 0, we simply writeϕω
t (see [Fla94, DPZ96]).

We will take the state space of (3) to beL
2 equipped with the Borelσ -algebra. A

measureµ(du)onL
2 is stationary for the stochastic flow (3) if for all bounded continuous

functionsF onL
2 andt > 0,∫

L2
F(u)µ(du) =

∫
L2

EF
(
ϕω
t u

)
µ(du). (5)

Our main result is:

Theorem 1. There exists some absolute constant C such that if N2 ≥ C E0
ν3 then (3) has

a unique stationary measure on L
2.

The existence of at least one stationary measure was proved in [Fla94] and [VF88].
The proof proceeds by establishing compactness for a family of empirical measures.
The limiting points of these empirical measures are the stationary measures. Uniqueness
has been proved under restrictive assumptions when ALL modes are forced. Flandoli
and Maslowski [FM95] proved that if theσk ’s decay algebraically, i.e. if the forcing
is sufficiently rough spatially, then the system has a unique stationary measure. These
results were extended and refined in [Fer97]. In [Mat99], it was proven that if the viscosity
was large enough the contraction induced by the Laplacian dominates and the system
possesses a trivial random attractor; and hence, a unique stationary measure. We do not
address convergence to the stationary measure. This and the coupling construction used
to prove convergence are discussed in [Mat00]. Recently Kuksin and Shirikyan [KS]
proved uniqueness of stationary measure when the Navier–Stokes equation is perturbed
by a bounded degenerate kicked noise. Results similar to ours have also been obtained
independently by Bricmont et al. [BKL].
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Our main strategy is to reduce the dynamics of the Navier–Stokes equation to the
dynamics of a finite dimensional set of low modes with memory. The reduced dynamics
is no longer Markovian, but rather Gibbsian (see §2, §4). The finite dimensional Gibb-
sian dynamics has a non-degenerate noise, and have a unique stationary measure if the
memory is short ranged.

Before proceeding further, let us observe that any given stationary measureµ can
be extended to a measure on the path space, denoted byµp, wherep stands for path or
past. Consider the example of the path spaceC

(
(−∞,0],L

2
)
. Let A be a cylinder set

of the type: For somet0, t1, · · · tn, t0 < t1 < t2 · · · tn ≤ 0,

A =
{
u(s) ∈ C

(
(−∞,0],L

2
)
, u(ti) ∈ Ai, i = 0, · · · n

}
, (6)

where theAi ’s are Borel sets ofL2. Corresponding toA, letB ⊂ �× L
2,

B = {(u, ω), u ∈ A0, ϕ
ω
t0,ti

u ∈ Ai, i = 1, · · · n}. (7)

We will define

µp(A) = (P × µ)(B), (8)

where(P × µ) is the product measure on� × L
2. Clearlyµp is consistent on cylinder

sets and can be extended to the naturalσ -algebra using the Kolmogorov extension
theorem. The naturalσ -algebra is the one generated by the cylinder sets. The dynamics
of the stochastic semi-flow{ϕω

t } can be trivially extended to return a function from
C
(
(−∞, t],L

2
)
, given an initial function fromC

(
(−∞,0],L

2
)
. One simply flows

forward with ϕ from the initial condition at time 0. To avoid confusion, we will call
this mapψω

t . Symbolically, ifu(·) ∈ C
(
(−∞,0],L

2
)
, then(ψω

t u)(s) = ϕω
s u(0) for

s ∈ [0, t] and(ψω
t u)(s) = u(s) for s ≤ 0.

If we define the shift on trajectories by(θtv)(s) = v(s + t), we can define a dy-
namics onC

(
(−∞,0],L

2
)

by θtψ
ω
t . In other words,θtψω

t u takes a trajectoryu from
C
(
(−∞,0],L

2
)
, extends itt units of time by flowing forward and then shifts the entire

resulting trajectory backt units of time so it again lives onC
(
(−∞,0],L

2
)
.

It is easy to check directly that ifµ is invariant thenµp is invariant in the sense that∫
C((−∞,0],L2)

F (u)dµp(u) = E

∫
C((−∞,0],L2)

F (θtψ
ω
t u)dµp(u) (9)

for all bounded functions onC
(
(−∞,0],L

2
)
, andt ≥ 0.

Assume thatµ andν are two stationary measures for the stochastic flow (3), andµp

andνp are respectively their induced measure on the path spaceC
(
(−∞,0],L

2
)
. It is

obvious thatµp = νp impliesµ = ν.

2. Reduction to the Gibbsian Dynamics

Define two subspaces ofL
2:

L
2
( = span{ek, |k| ≤ N}, L

2
h = span{ek, |k| > N}. (10)

We will call L
2
( the set of low modes andL2

h the set of high modes. ObviouslyL2 =
L

2
( ⊕ L

2
h. Denote byP( andPh the projections onto the low and high mode spaces.
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Since we are concerned with stationary measures of (3), we are interested in (statis-
tically) stationary solutions of (3) that exist for time from−∞ to +∞. We will show
in this section that for such solutions, the high modes are completely determined by the
past history of the low modes. For this purpose, we writeu(t) = (

((t), h(t)
)

and

d((t) =
[
−ν�2(+ P(B((, ()

]
dt

+
[
P(B((, h)+ P(B(h, ()+ P(B(h, h)

]
dt + dW(t), (11)

dh(t)

dt
=

[
−ν�2h+ PhB(h, h)

]
+ PhB((, h)+ PhB(h, ()+ PhB((, (). (12)

Define the set of “nice pasts”U ⊂ C
(
(−∞,0],L

2
)

to consist of allv : (−∞,0] → L
2

such that:

i) v(t) is in H
2 for all t ≤ 0.

ii) The energy averages correctly. More precisely,

lim
t→−∞

1

|t |
∫ 0

t

|�v(s)|2
L2ds = E0

2ν
.

iii) The energy fluctuations are typical. More precisely, there exists aT = T (v) such
that

|v(t)|2
L2 ≤ E0 + max(|t |, T )

2
3

for t ≤ 0. The following lemma shows thatU contains almost all of the trajectories
defined on the whole time interval.

Lemma 2.1. Let µp be the measure on C
(
(−∞,0],L

2
)

induced by a stationary mea-
sure µ for (3). Then µp

(
U
) = 1.

Proof of Lemma 2.1. It is proved in [Mat98] or [Fer97] that with probability one, a
solution to (3) is inH2 for all t .

The fact that the last condition is satisfied by a set of full measure is proved in Lemma
B.3. All that remains to show is ii).

From Lemma B.2|�v|2
L2 is inL1(µ) for any stationary measureµand

∫ |�v|2
L2 dµ =

E0
2ν . Since the measure is invariant under shifts back in time and each ergodic component
has the same average enstrophy, the ergodic theorem implies that forµp–almost every
trajectory time average converges to the average of|�u|2

L2 againstµ. ��
Given an arbitrary continuous function of time((t) on L

2
(, we can view (12) as a

closed equation with some exogenous forcing((t). By,s,t ((, h0), we mean the solution
to (12) at timet given the initial conditionh0 at times and the “forcing”(.

Denote byP the set of all( ∈ C
(
(−∞,0],L

2
(

)
such that the following two conditions

hold. First,( = P(u for someu = ((, h) ∈ U . Second,h(t) = ,s,t ((, h(s)) for any
s < t ≤ 0, whereh was the matching high mode so((, h) ∈ U . That is to sayh(t)
solves (12) with low modes((t) and the total solution((, h) is in our space of “nice
pasts”. In light of Lemma 2.1 the setP is not empty. We now will show that thish is
uniquely determined by(.
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Lemma 2.2. There exists an absolute positive constant C such that if N2 > C E0
ν3 then

the following holds:
If there exists two solutions u1(t) =

(
((t), h1(t)

)
, u2(t) =

(
((t), h2(t)

)
correspond-

ing to some (possibly different) realizations of the forcing and such that u1, u2 ∈ U ,
then u1 = u2, i.e. h1 = h2.

Furthermore given a solution u(t) = (
((t), h(t)

) ∈ U , any h0 ∈ L
2
h, and t ≤ 0, the

following limit exists:

lim
t0→−∞,t0,t ((, h0) = h∗

and h∗ = h(t).

Proof of Lemma 2.2. We begin with the first clam. Denote byρ(t) = h1(t) − h2(t).
From (12) we have

dρ

dt
=− ν�2ρ + PhB(h1, h1)− PhB(h2, h2)+ PhB((, ρ)+ PhB(ρ, ()

=− ν�2ρ + PhB((+ h1, ρ)+ PhB(ρ, (+ h2)

=− ν�2ρ + PhB(u1, ρ)+ PhB(ρ, u2).

(13)

Taking the inner product withρ, using the fact that〈PhB(u1, ρ), ρ〉L2 = 0, gives

1

2

d

dt
|ρ|2

L2 = −ν|�ρ|2
L2 + 〈PhB(ρ, u2), ρ〉L2.

Since

|〈PhB(ρ, u2), ρ〉L2| ≤Ĉ |�ρ|L2 |ρ|L2 |�u2|L2

≤ν

2
|�ρ|2

L2 + Ĉ2

2ν
|ρ|2

L2 |�u2|2L2 ,

we get

1

2

d

dt
|ρ|2

L2 ≤ −ν

2
|�ρ|2

L2 + Ĉ2

2ν
|�u2|2L2 |ρ|2L2 .

Sinceρ only contains modes with|k| > N , the Poincaré inequality implies

d

dt
|ρ|2

L2 ≤
(
−νN2 + Ĉ2

ν
|�u2|2L2

)
|ρ|2

L2 .

Therefore we have, fort0 < t < 0,

|ρ(t)|2
L2 ≤ |ρ(t0)|2L2 exp

{
−νN2(t − t0)+ Ĉ2

ν

∫ t

t0

|�u2(s)|2L2 ds

}
. (14)

From the third assumption on functions inU , we know that lim1
t

∫ 0
−t

|�u2(s)|2L2 ds =
E0
2ν . Hence fort0 < T1, whereT1 depends ont andu2, we have

−νN2(t − t0)+ Ĉ2

ν

∫ t

t0

|�u2(s)|2L2 ds ≤ −γ

2
(t − t0),
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whereγ = νN2 − Ĉ2ε0
2ν2 . If we setC = Ĉ2

2 , then our assumption onN impliesγ > 0.
Now using the last property of paths inU we have for anyt0 ≤ T2,

|ρ(t)|2
L2 ≤ |ρ(t0)|2L2 exp

{−γ

2
(t − t0)

}
≤2

[E0 + |t0| 2
3 ]exp

{−γ

2
(t − t0)

} → 0

ast0 → −∞, whereT2 is some finite constant depending onu1 andu2. This completes
the proof of the first part of Lemma 2.2.

To see the second part, observe that (14) only required control of
∫ t

t0
|�u(s)|2

L2 ds for
one of the two solutions. If we proceed as before letting the given solutionu(t) play the
role ofu2 and the solution to (12) starting fromh0 play the role ofu1, the we obtain the
estimate

|ρ(t)|2
L2 ≤ |h(t0)− h0|2L2 exp

{
−νN2(t − t0)+ Ĉ2

ν

∫ t

t0

|�u(s)|2
L2 ds

}
. (15)

Sinceu(t) = (((t), h(t)) ∈ U , the same reasoning as before shows thatρ(t) goes to
zero ast0 → −∞. Hence the limit exists and equalsh(t). ��

In fact the splitting into high and low modes can be accomplished even when all of
the modes are forced. One replaces (12) with an Itô stochastic differential equation. This
causes little complication as (13) remains a standard PDE. See [Mat98].The ideas in this
section are related to the ideas of Lyapunov-Schmidt reduction and those around center
and inertial manifolds. See [EFNT94] for a discussion and other references.

From now on we assume thatN satisfies

N2 > C E0

ν3 , (16)

whereC is the constant from Lemma 2.2.
Because of Lemma (2.2), we can define a map,0 which reconstructs the high modes

at time zero from a given low mode trajectory stretching from zero back to−∞. Before
making this more precise, let us fix some notation. In general, we will use((t) to refer
to the value of the low modes at timet and will useLt to mean the entire trajectory from
−∞ to t . Hence((t) ∈ L

2 andLt ∈ C
(
(−∞, t],L

2
)

and((s) = Lt(s) for s ≤ t . In this
notationh(0) = ,0

(
L0

)
, whereL0 is some “low mode past” inP which is the projection

of U to the low modes. By,s(L
t , h(0)) with s ≤ t , we mean the solution to (12) at

times with initial conditionh(0) and low mode forcingLt . Of course,s(L
t , h(0)) only

depends on the information inLt between 0 ands. We can extend the definition of,
beyond time zero by defining,t(L

t ) = ,t(L
t , h(0)), whereh(0) = ,0(L

0).
Given the initial low mode past ofL0 ∈ P, we can solve for the future of( using

d((t) =
[
−ν�2((t)+ P(B

(
((t), ((t)

)+G
(
((t),,t (L

t )
)]

dt + dW(t), (17)

where

G((, h) = P(B((, h)+ P(B(h, ()+ P(B(h, h). (18)

Thus we have a closed formulation of the dynamics on the low modes given an initial
past inL0 ∈ P. We writeLt = Sω

t L0. We reiterate thatLt is the entire trajectory from
time t back to−∞, whereas((t) is simply the value of the low modes at timet .
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Except for the fact the G-term in (17) is history-dependent, (17) has the form of
a standard finite dimensional stochastic ODE with non-degenerate forcing, which of
course has a unique stationary measure. Our task is reduced to showing that the memory
effort in (17) is not strong enough to spoil ergodicity.

Existence of the solution for memory-dependent stochastic ODEs of the type (17)
was considered in the work of Ito et al. [IN].

3. Uniqueness of the Invariant Measure

3.1. Proof of the Main Theorem. Given any “nice low mode past”L ∈ P, we can
reconstruct the “high modes” and hence define a closed dynamics on the paths of the low
modes. However, this dynamics is no longer Markovian which will produce difficulties.

Let µ be an ergodic stationary measure onL
2 andµp be its extension to the path

spaceC
(
(−∞,0],L

2
)
. We will also consider the restriction ofµp to C

(
(−∞,0],L

2
(

)
,

still denoted byµp. Lemma 2.1 says thatµp(P) = 1.
Given anyL0 ∈ P, let Qt(L

0, · ) be the measure induced onC
([0, t],L

2
(

)
by the

dynamics starting fromL0. In other words,Qt(L
0, · ) is the distribution ofSω

t L0 viewed
as a random variable taking values inC

([0, t],L
2
(

)
. Similarly let Q∞(L0, · ) be the

distribution induced onC
([0,∞),L

2
(

)
starting fromL0.

Consider the stochastic process defined byθtSω
t L0, whereL0 is a random variable

onP distributed according to the invariant measureµp. Fort ≥ 0 it is a random process
with values inP. This is clear as all of the defining properties ofU are asymptotic int ;
and hence the addition of a segment of finite length does not destroy them. Sinceµp is
invariant with respect to the dynamics,θtSω

t L0 is a stationary random process. Hence
with probability one there exist time averages along trajectoriesθtSω

t L0.
Take any bounded measurable functionalF from C

(
(−∞,0],L

2
(

) → R such that
F(L0), L0 ∈ C

(
(−∞,0],L

2
(

)
depends only on a finite range ofL0. Let

F̄ =
∫

F(L)dµp(L). (19)

Theorem 2. The SNS equation (1) has a unique stationary measure.

The proof of Theorem 2 is based on the following two lemmas whose proofs will be
given later.

Lemma 3.1. Let L0
1 and L0

2 be two initial pasts in P , such that (1(0) = (2(0). Then
Q∞(L0

1, ·) and Q∞(L0
2, ·) are equivalent.

Recall that((τ ) is the solution of (16) with initial conditionL.

Lemma 3.2. For any pastL ∈ P and any t > 0, the distribution of ((t) ∈ L
2
( conditioned

at starting from L at time zero, denoted by Rt(L, ·), satisfies the following: there exists
a strictly positive function fL,t ∈ L1(L2

(), such that

dRt (L, ·) ≥ fL,t (·)dm(·).
where m(·) is the Lebesgue measure on L

2
( .
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For any measureµ onL
2 letP(µ denote its projection to a measure on the low modes

L
2
(. Namely,(P(µ)(B) = µ(P−1

( (B)). Then we have the following direct consequence
of Lemma 3.2.

Corollary 3.3. If µ is a stationary measure then P(µ has a component which is equiv-
alent to the Lebesgue measure.

Proof of Theorem 2. Assume that there are two different ergodic stationary measures
on L

2 calledµ1 andµ2. They must be mutually singular. Letµ1,p andµp,2 be the
extensions of these two measures onto the path spaceP. LetL0

i be a random variable on
P distributed asµi,p. SinceθtSω

t L0
i is stationary with respect toµp,i we can pick a set

Pi , of full µp,i-measure, such that for allL ∈ Pi One can find a functionalF such as
above so that̄F1 = ∫

F(L)dµp,1(L) �= F̄2 = ∫
F(L)dµp,2(L). This assumption will

lead to a contradiction. The limit

lim
T→∞

1

T

∫ T

0
F(θtSω

t Lo
i )dt = F̄i (20)

is well defined forP-almost everyω.
For( ∈ L

2
( definePi (() = {L ∈ Pi : L(0) = (} and letµp,i( · |() be the conditional

measure thatL(0) = (. By Fubini’s theorem, we know that forP(µi-almost every
( ∈ L

2
( we haveµp,i(Pi (() | () = 1. Hence we can find a setAi ⊂ L

2
( such that

µp,i(Pi (() | () = 1 for all ( ∈ Ai andP(µi(Ai) = 1. DefineA = A1 ∩ A2. Corollary
3.3 implies thatP(µi(A) > 0 for i = 1,2. Hence there exists some(∗ ∈ A.

Since(∗ ∈ A1∩A2, we know thatµp,i(Pi ((
∗) | (∗) = 1 for i = 1,2. Thus there exist

someL∗,1 ∈ P1((
∗) andL∗,2 ∈ P2((

∗). Notice that by constructionL∗,1(0) = (∗ =
L∗,2(0), and hence it follows from Lemma 3.1 thatQ∞(L∗,1, ·) andQ∞(L∗,2, ·) are
equivalent. SinceL∗,i ∈ Pi ((

∗), we know that we can pickBi ⊂ C
([0,∞),L

2
)

such
that the time average ofF converges toF̄i for all futures inBi andQ∞(L∗,i , Bi) = 1
for i = 1,2. Since theQ’s are equivalent,Q∞(L∗,1, B1 ∩ B2) > 0 and henceB1 ∩ B2

is non-empty. This in turn implies that̄F1 = F̄2 which contradicts the assumption that
they were not equal. ��

3.2. Proofs of the lemmas. We first prove Lemma 3.1. FixL0
1 andL0

2. Most of our
construction will depend explicitly on them. With probability one, we can extend each
of the initial pasts into the infinite future byLs

i = Sω
s L0

i and setting(i(s) = Lt
i(s)

for s ≤ t . We can also reconstruct the entire solution by using,t to obtain the high
modes. Sethi(s) = ,s(L

s
i ) andui(s) = (

(i(s), hi(s)
)
. Fix a constantC0 such that

|ui(0)|2L2 ≤ C0.
We begin by constructing a set of nice future paths which will contain most trajecto-

ries. For any positiveK we define

Ai(K) =
{
f ∈ C

([0,∞),L
2
(

) : |v(t)|2
L2 + 2ν

∫ t

0
|�v(s)|2

L2 ds < C0 + E0t +Kt
4
5

wherev(s) = f (s)+,s(f, hi)

}

andA(K) = A1(K) ∩ A2(K).
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By Lemma A.5, we know that for anya ∈ (0,1) there exists aK such that

P

{
ω : Sω

t L0
i ∈ Ai(K)

}
> 1− a

2
for i = 1,2,

and hence

P

{
ω : Sω

t L0
i ∈ A(K) for i = 1,2

}
> 1− a > 0.

This is just another way of sayingQ∞(L0
i , A(K)) > 1− a.

Lemma 3.4. Let L0
1 and L0

2 be two initial pasts in P such that L0
1(0) = L0

2(0). Let
A(K) ⊂ C

([0,∞),L
2
(

)
be as defined above. For any choice of K > 0, Q∞(L0

1, · ∩
A(K)) is equivalent to Q∞(L0

2, · ∩ A(K)).

Proof of Lemma 3.1. Since we can chooseK so thatA(K) has measure arbitrarily close
to 1, we have thatQ∞(L0

1, ·) is equivalent toQ∞(L0
2, ·). ��

Proof of Lemma 3.4. We intend to use Girsanov’s theorem to compare the two induced
measures,Q∞(L0

1, · ) andQ∞(L0
2, · ). However we do not do so directly. To aid in our

analysis, we consider the following surrogate processesy which will agree with( on the
setA = A(K). As before, we will usey(t) to denote the value of the process at timet

andY t to be the entire trajectory up to timet .

dyi(t) =
[
−ν�2yi(t)+ P(B

(
yi(t), yi(t)

)
+:t(Y

t
i )G

(
yi(t),,t (Y

t
i , hi(0))

)]
dt + dW(t) (21)

yi(0) = (i(0),

where

hi(0) = ,t(L
0
i ),

:t (f ) =
{

1 if f ∈ A|[0,t]
0 if f �∈ A|[0,t] ,

andA|[0,T ] is the low mode paths which agree with a path inA up to timeT . Recall that
,t

(
Y t
i , hi(0)

)
is the solution to (12) with( = Y andh(0) = hi(0).

Equation (21) is the same as (17) except for the insertion of:t(Y
t
i ). As long as

:s(Y
t
i ) = 1 for s ∈ [0, t], thenyi(s) = (i(s) for s ∈ [0, t].

Let Qy∞(L0
1, · ) andQ

y∞(L0
2, · ) be the measures induced byY1 andY2 respectively.

If applicable, Girsanov’s theorem would imply that these measure are equivalent, that
is Q

y∞(L0
1, · ) ∼ Q

y∞(L0
2, · ). For Girsanov’s theorem to apply, it is sufficient that the

Novikov condition holds. Namely,

E exp

{
1

2

∫ ∞

0

∣∣∣∣;−1:t(Y
t
1)D

(
y1(t),,t

(
Y t

1, h1(0)
)
,,t

(
Y t

1, h2(0)
))∣∣∣∣

2

dt

}
< ∞,

(22)

whereD(g, f1, f2)
def=G(g, f1) − G(g, f2) and; is a diagonal matrix with theσk ’s on

its diagonal. Here we have written the condition in terms of they1 process. One can also
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write the condition in terms of they2 process; the finiteness of one implies the finiteness
of the other.

We will in fact show something much stronger than (22). Since|;−1| < ∞, it would
be enough to show that

sup
ω

∫ ∞

0

∣∣:t(Y
t
1)D

(
y1(t),,t

(
Y t

1, h1(0)
)
,,t

(
Y t

1, h2(0)
))∣∣2 dt < ∞. (23)

Puttinghi(s) = ,s(Y
s
1 , hi(0)), ui(s) = (i(s)+ hi(s), ρ(s) = h1(s)− h2(s) and using

Lemma A.4, we have

∣∣D(
(1(s), h1(s), h2(s)

)∣∣2
L2 ≤ C′ |ρ(s)|2

L2

[
|u1(s)|2L2 + |u2(s)|2L2

]
. (24)

Notice that if(i ∈ A|[0,T ] then for allt ∈ [0, T ],

|ui(t)|2L2 < C0 + E0t +Kt
4
5 ,∫ t

0
|�ui(s)|2L2 ds <

1

2ν

(
C0 + E0t +Kt

4
5
)
,

|ρ(0)|2
L2 = |u1(0)− u2(0)|2L2 ≤ 2

(|u1(0)|2L2 + |u2(0)|2L2

) ≤ 4C0.

In addition, we can apply the same analysis as in Sect. 2. Starting from (14) and using
the above estimates produces

|ρ(t)|2
L2 ≤ |ρ(0)|2

L2 exp

{
−νN2t + Ĉ2

ν

∫ t

0
|�u2(s)|2L2 ds

}

≤ 4C0 exp

{
−νN2t + Ĉ2

2ν2

(
C0 + E0t +Kt

4
5
)}

.

Since by assumptionνN2 > C E0
ν2 = Ĉ2E0

2ν2 , the second term goes to zero sufficiently fast
and hence the estimate on the right-hand side of (24) decays exponentially fast. Thus,

sup
ω

∫ ∞

0

∣∣∣∣:t(Y1)D
(
y1(t),,t (Y

t
1, h1(0)),,t (Y

t
1, h2(0))

)∣∣∣∣
2

dt

≤ sup
f∈A

∫ ∞

0
|D (f (r),,t (f, h1(0)),,t (f, h2(0)))|2 dt

< const(C0) < ∞,

which implies,Qy∞(L0
1, · ) ∼ Q

y∞(L0
2, · ). As long asYi stays inA, yi = (i . Hence

Q
y∞(L0

i , · ∩A) = Q∞(L0
i , · ∩A) and finallyQ∞(L0

1, · ∩A) ∼ Q∞(L0
2, · ∩A). ��

In fact our proof provided more information than stated in Lemma 3.4. It contains
some estimates uniform over a class of initial pasts which will be useful in later inves-
tigations of the convergence rate. (See [Mat00]. ) We state the extra information in the
following corollary.
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Corollary 3.5. In the setting of the proof of Lemma 3.4, define P ′ = {L ∈ P :
|L(0)+,0(L)|L2 < C0}. Then there exists a constant, depending on C0 and K , so
that

sup
L1,L2∈P ′

∫ ∣∣∣∣1− dQ
y∞(L1, g)

dQ
y∞(L2, g)

∣∣∣∣
2

dQ
y∞(L2, g) < const(C0,K1) < ∞.

We now move to the proof of Lemma 3.2. FixL ∈ P. The proof proceeds by
comparing the process((t) to the associated Galerkin approximation living onL

2
( which

we will denote byx(t). The advantage is thatx(t) is a standard non-degenerate diffusion
and hence it is Markovian and well understood.

Takex(t) as the solution defined by the following stochastic ODEs:

dx(t) = [−ν�2x + P(B(x, x)
]
dt + dW(t),

x(0) = ((0).

As in the previous section, we do not comparex(t) directly to((t) but instead to a
modified version of((t) which we will denote byz(t). In analogy to before, we will
denote the path of this process up to timet by Zt . Before continuing let us assume
without loss of generality that|((0)|L2 ≤ C0 andt ≤ T for some positiveC0 andT .
This will give our estimates some uniformity over all initial conditions inside this ball
and for timest ≤ T .

The evolution ofz(t) is given by

dz(t) =
[
−ν�2z + P(B(z, z)+:t(Z

t )G
(
z,,t

(
Zt , h0

))]
dt + dW,

z(0) = ((0)
(= L(0)

)
,

whereh0 = ,0(L) andG is defined in (18). As in the last section,:t(Z
t ) is a cut-off

function. For any fixedb0 > 1, we define

:s(Z
s) =

{
1 if

∫ s

0 |Zs(r)|4
L2 dr < (b0C0)

4T

0 otherwise
.

Hereb0 is a fixed constant to be chosen below.
For anyB ⊂ L

2
(, define

[B] = {
v ∈ C

([0, t],L
2
(

) : v(t) ∈ B
}
.

ThenRt(L(0), B) = Qt(L, [B]).
LettingQx

t (L, · ) andQz
t (L, · ) be the two measures induced onC

([0, t],L
2
(

)
by the

dynamics ofx andz respectively. Lemma 3.2 will be a consequence of the following
two lemmas.

Lemma 3.6. Fix any b0 > 1. (The constant used in defining the z process.) Then the
following holds: For any L ∈ P and t ≥ 0, Qx

t (L(0), · ) is equivalent to Qz
t (L, · ).

Lemma 3.7. For any b0 the following holds: For any L ∈ P and t ≥ 0, there exists a
positive function g( · ) so that Qx

t (L(0), [B] ∩ A) ≥ ∫
B

g(y)dm(y), where m( · ) is the
Lebesgue measure.
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We now use these two lemmas to prove Lemma 3.2.

Proof of Lemma 3.2. Observe that by construction as long as the trajectories stay inA,
x(t) = ((t). Hence using Lemma 3.7, we have

Rt(L,B) = Qt(L, [B]) ≥ Qt(L, [B] ∩ A) = Qz
t (L, [B] ∩ A),

Qx
t (L(0), [B] ∩ A) ≥

∫
B

g(L(0), y)dm(y),

whereg(L(0), y) is a positive function iny. Since Lemma 3.6 says thatQz
t ((, · ∩A) is

equivalent toQx
t (L(0), · ∩A), we know thatRt(L(0), B) is also bounded from below

by a positive measure equivalent to the Lebesgue measure.��
We now turn to Lemma 3.6. Our construction gives some measure of uniform control

which is useful for estimating the rate the system converges to the stationary measure.
(See [Mat00]. ) We state these more precise estimates in the following corollary.

Corollary 3.8. Fix a C0 > 0 and define P ′ = {L ∈ P : |L(0)+,0(L)|L2 < C0}. Then
for any α ∈ (0,1) there exists a b0 > 0 (the constant used to define A) so that:

inf
t∈[0,T ] inf

L∈P ′ P
{
Sω

t L ∈ A
}
> 1− a,

sup
L∈P ′

∫ ∣∣∣∣1− dQz
t (L, g)

dQx
t (L, g)

∣∣∣∣
2

dQx
t (L, g) < K(C0, t)

for t ∈ [0, T ], where K is a constant depending on C0 and t such that for each C0,
K → 0 as t → 0.

Proof of Lemma 3.6 and Corollary 3.8. Girsanov’s theorem would imply the result if the
Novikov condition

E exp

{
1

2

∫ t

0
|:s(Z

s)|2 ∣∣G(
z(s),,s(Z

s, h0)
)∣∣2

L2 ds

}
< ∞

holds. As in the proof of Lemma 3.4, we will prove the stronger condition

sup
z(·)∈A

∫ t

0

∣∣G(
z(s),,s(Z

s, h0)
)∣∣2

L2 ds < ∞.

Using Lemma A.4, we obtain the following estimate onG:∣∣G(
z(s),,s(Z

s, h0)
)∣∣2

L2 ≤ C′[|z(s)|2
L2 |h(s)|2L2 + |h(s)|4

L2

]
,

where h(s) = ,s(Z
s, h0)

)
. By Lemma C.1 we know that ifz is in A then

sups∈[0,t] |h(t)|L2 is less than someC1, whereC1 depends on|h0|L2 and theb0, C0
andT used to defineA. Hence for anyz ∈ A, we have∫ t

0

∣∣G(
z(s),,s(Z

s, h0)
)∣∣2

L2 ds ≤ C′
∫ t

0

[|z(s)|2
L2 |h(s)|2L2 + |h(s)|4

L2

]
ds

≤ C′
(∫ t

0
|z(s)|4

L2 ds

) 1
2
(∫ t

0
|h(s)|4

L2 ds

) 1
2

+ C′C4
1t

≤ C′(b0C0)
2T

1
2 C2

1t
1
2 + C′C4

1t.
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Hence Novikov’s condition holds and the lemma is proven.��

Proof of Lemma 3.7. The basic idea is as follows. Some of the paths which satisfy the
condition definingA can be described by requiring that some norm of the paths be less
than some fixedf ∗

k (t) at timet . Such a condition has the advantage that it corresponds
to fixing a zero boundary condition along the boundary of some region for the associated
Fokker-Planck equation. Since the diffusion is nondegenerate this process has a positive
density on the interior of this region. By carefully pickingf ∗

k we can have the region
contain sets arbitrarily far away from the origin. We now make this precise.

Fix aL ∈ P, and at > 0. Fork = 0,1,2, . . . define the diskDk by

Dk = {
f ∈ L

2
( : |f |4

L2 ∈ [2k,2k+1)
}

and letD̄k be the closure ofDk. We will constructg( · ) = ∑
gk( · )1Dk

, wheregk is
strictly positive onD̄k and zero outside of̄Dk.

Let f ∗
k be a non-decreasing, positive, real-vauedC∞ functionf ∗

k such thatf ∗
k (s) =

(C4
0 + αk)

1
4 for s ∈ [0, (1− αk)t − ε] andf ∗

k (s) = (100· 2k+1)
1
4 for s ∈ [(1− αk)t, t]

and linearly interpolates in[(1−αk)t−ε, (1−αk)t].αk is some number in(0,1) chosen
so that

∫ t

0(f
∗
k (r))4dr < (b0C0)

4T . This is possible as long asb0 > 1 andt ≤ T .

Now define the subsetHk of C
([0, t],L

2
(

)
by

Hk =
{
f ∈ C

([0, t],L
2
(

) : sup
s∈[0,t]

|f (s)|L2 ≤ f ∗
k (s)

}
.

By the choice off ∗
k it is clear thatHk ⊂ A, whereA is the same set used in the definition

of z.
Now consider the processx′k(t) which follows the same equation asx(t) except that

it is killed whenever the trajectory leavesHk. Another way of saying this isx′k(t) is
the processx(t) conditioned on staying inHk. The transition density of this process
g′k(s, ((0), y) is the solution to the Kolmogorov equation with the same generator as
x but with zero boundary conditions along the boundary ofHk. Since the generator is
elliptic, we know thatg′k(t, ((0), y) is strictly positive everywhere in the interior ofHk.
Since the trace ofHk at timet strictly containsDk, we know thatg′k(t, ((0), y) is strictly
positive fory ∈ D̄k. Also by construction it is clear thatQx

t (((0),Hk) > 0 for all k. Let
ak = Qx

t (((0),Hk) and setgk( · ) = akg
′
k(t, ((0), · )1Dk

( · ).
All that remains is to verify that this choice ofgk constructs ag with the desired

minorization property since it is clearly everywhere positive. Without loss of generality
it is enough to show it for aB contained in some arbitraryDk. Then

Qx
t (((0), [B] ∩ A) ≥ Qx

t (((0), [B] ∩Hk) ≥ P((0){x ∈ [B] & x ∈ Hk}
≥ P((0){x ∈ [B] ∣∣ x ∈ Hk}P((0){x ∈ Hk}
≥ ak

∫
B

g′k(t, ((0), y)dm(y) =
∫
B

gk(y)dm(y). ��
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4. Stationary Measures and Thermodynamical Formalism

In this section we make a few general heuristic remarks about the methodology behind
our approach.

The starting point of our construction is rewriting the original Navier–Stokes equation
with random forcing as a finite-dimensional system of ordinary stochastic differential
equations whose drift coefficients depends on the whole past:

d( = [−ν�2(+ P(B((, ()+G((,,t (L
t ))]dt + dW. (25)

From (25)

dW = d(− [−ν�2(+ P(B((, ()+G((,,t (L
t ))]dt. (26)

The measure corresponding to alldwk(t), k ∈ Zν,−∞ < t < ∞ can be symbolically
written as

∫
exp


−1

2

∑
k∈Zν

1

|σk|2
∫ ∞

−∞

∣∣∣∣dwk(t)

dt

∣∣∣∣
2

dt




∏
k

dwk(t).

HereZν is the set of modes that are forced. The substitution of the expression fordwk

from (26) gives

exp

{∫ ∞

−∞
L1(((t))dt +

∫ ∞

−∞
L2(((t))dt

− 1

2

∑
k∈Zν

1

|σk|2
∫ ∞

−∞

∣∣∣∣d(k(t)

dt

∣∣∣∣
2

dt

} ∏
k

d(k(t),

where

L1(((t)) = −1

2

(−ν�2(+ P(B((, ()+G((,,t (L
t ))
)2

,∫ ∞

−∞
L2(((t))dt =

∫ ∞

−∞

∑
k∈Zν

1

|σk|2
(−ν�2(+ P(B((, ()+G((,,t (L

t ))
)
k
d(k(t).

The factor exp
{−1

2

∑
k∈Zν

1
|σk |2

∫∞
−∞

∣∣∣ d(k(t)dt

∣∣∣2 dt
} ∏

k d(k(t) can be considered as the

differential of a “free measure” which in our case is a finite-dimensional white noise.
The “Lagrangians”L1, L2 describe the non-local interaction of((t) with the past.

The whole expression shows that the stationary measure for the SNS system is actually
a Gibbs state constructed with the help of LagrangiansL1, L2.

The estimations of the growth ofL1, L2 as a function of the growth of|(k(s)|L2 , s →
−∞ show the class of realizations for which the conditional distributions can be defined.
Therefore we have a weaker form of the Gibbs state. R. L. Dobrushin in his last papers
and talks stressed the importance of this class of probability distributions. Since we are
dealing all the time with probability distributions, the free energy of our Gibbs state is
zero. It would be interesting to develop a general theory of existence and uniqueness of
Gibbs states for general LagrangiansL1, L2 so that our result becomes a particular case
of a more general statement.
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5. Conclusion

When analyzing the ergodic properties of an infinite dimensional stochastic process, one
of the most delicate aspects is often finding the correct topology in which to work. One
of the principle advantages of the approach presented in this paper is that it evades this
difficulty. We trade an infinite dimensional diffusion process for a finite dimensional Itô
process with memory.

We have tried to present the simplest case of our theory, so that the exposition would
be unencumbered. In fact the proofs contained in this work have proved a more general
theorem than originally stated. Consider forcing defined by

W(x, t) =
∑
k∈Z

σkwk(t, ω)ek(x),

whereZ is some finite subset ofZ2 such that(0,0) �∈ Z andk ∈ Z if and only ifσk > 0.
If we define

L
2
( = span{ek, k ∈ Z}, L

2
h = span{ek, k �∈ Z}

and

N− = sup
{
N : k ∈ Z for all k with 0 < |k| ≤ N

}
.

With these definitions all of the previous lemmas and theorems hold with the role ofN

replaced byN−. In particular, ifN2− > C E0
ν3 the system has a unique invariant measure.

This formulation emphasizes the nature of our principle assumption. By requiring that
all of the low modes are forced, we are essentially requiring that the reduced Gibbsian
dynamics are elliptic in nature. Some steps towards dealing with a hypo-elliptic setting
have been made. In [EMatt], finite dimensional truncations of the two dimensional SNS
equation were studied and shown to be ergodic under minimal assumptions. In [EM], a
reaction diffusion equation was studied under degenerate forcing.

Our arguments can be easily extended to the case where the forcing of thekth mode
has the formfk + σkdwk(t), fk is a constant,fk = 0 andσk = 0 for k /∈ Z or the case
when the forcing is not diagonal in Fourier space.

Our approach can also be extended in several other different directions. We can
consider the case when the high modes are also forced. As long as the forcing of the
high modes decays sufficiently fast, our argument still applies with almost no change.
The Wiener process in the forcing can be replaced by other diffusion processes such as
the Ornstein-Uhlenbeck process. Dissipative PDEs such as the Cahn-Hilliard equation
and the Ginzburg-Landau equations can also be studied using the same method. Finally,
exponential convergence of empirical distributions to the stationary distribution can be
proved.

A. Energy Estimates

In thisAppendix, we prove a number of estimates controlling the evolution of the energy
and enstrophy. Estimates for higher Sobolev norms are also possible, see [Mat98] for
examples. In all cases, they are analogous to the standard results in the deterministic
setting. Here we do not limit ourselves to forcing with only finitely many active modes.
We will characterize the forcing in terms of theEl defined byEl

def=∑ |k|2l |σk|2. We begin
with the basic energy and enstrophy estimates in the stochastic setting.
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Lemma A.1. For any p > 1, we have

E |u(t)|2p
L2 + 2pν

∫ t

0
E |�u(s)|2

L2 |u(s)|2(p−1)
L2 ds

≤ E |u(0)|2p
L2 + C0

∫ t

0
E |u(s)|2(p−1)

L2 ds,

E |�u(t)|2p
L2 + 2pν

∫ t

0
E

∣∣∣�2u(s)

∣∣∣2
L2

|�u(s)|2(p−1)
L2 ds

≤ E |�u(0)|2p
L2 + C1

∫ t

0
E |�u(s)|2(p−1)

L2 ds.

Here Ci = pEi + 2p(p− 1)σ 2
max and σ 2

max = sup|σk|2. In the case p = 1, we have the
equalities

E |u(t)|2
L2 + 2ν

∫ t

0
E |�u(s)|2

L2 =E |u(0)|2
L2 + E0t, (27)

E |�u(t)|2
L2 + 2ν

∫ t

0
E

∣∣∣�2u(s)

∣∣∣2
L2

=E |�u(0)|2
L2 + E1t. (28)

Proof. We begin by fixing a positive integerM and considering the Galerkin approxima-
tion defined byu(M)(t) = ∑

|k|≤M u
(M)
k (t)ek.u(M)(t) satisfies an equation of exactly the

same form as the full solution except the nonlinearity has been projected to those terms

of order less than or equal toM. We will also needEM
l

def= ∑
|k|≤M

|k|2l |σk|2. Our estimates

will be independent of the order of approximationM. For simplicity, we will sometimes
neglect the superscriptM.

Applying Itô’s formula to the map{uk}  →
(∑ |uk|2

)p produces,

d |u(t)|2p
L2 = 2p |u(t)|2(p−1)

L2

[
−ν |�u(t)|2

L2 dt + 〈u(t), dW 〉L2

]
(29)

+ 2p(p − 1) |u(t)|2(p−2)
L2

(∑
k

|uk(t)|2|σk|2
)
dt + p |u(t)|2(p−1)

L2 EM
0 dt

for the energy moments and

d |�u(t)|2p
L2 = 2p |�u(t)|2(p−1)

L2

[
−ν

∣∣∣�2u(t)

∣∣∣2
L2

dt + 〈�2u(t), dW 〉L2

]
(30)

+ 2p(p − 1) |�u(t)|2(p−2)
L2

(∑
k

|k|2|σk|2|uk(t)|2
)
dt

+ p |�u(t)|2(p−1)
L2 EM

1 dt

for the enstrophy moments.
Here〈�αu(t), dW(t)〉L2 is shorthand for

∑ |k|αuk(t)σkdwk(t). In the first, we have
used the fact that〈B(u, u), u〉L2 = 0 and in the second the fact that〈B(u, u),�2u〉L2 =
0. Since, on the torus, the structure of the energy and the enstrophy equations are the
same we will continue giving all of the details for analysis of the enstrophy equation.



Gibbsian Dynamics and Ergodicity for the Stochastically Forced Navier–Stokes Equation 99

The analysis for the energy equation proceeds analogously, see [Mat99,Mat98]. For a
fixedH > 0, we introduce the stopping time

T = inf
{
t ≥ 0 :

∣∣∣�2u(t)

∣∣∣2
L2

≥ H 2}.
Denoting byMt the local martingale term in (30) , we define the stopped martingaleMT

t

by

MT
t =

∫ t

0
2p |�u(s ∧ T )|2(p−1)

L2 〈�2u(s ∧ T ), dW(s)〉L2.

MT
t has the advantage that its quadratic variation, denoted by[MT ,MT ]t , is clearly

finite.

[MT ,MT ]t ≤ 2pσ 2
max

∫ t

0

∣∣∣�2u(s ∧ T )

∣∣∣2p
L2

ds

≤ 2pσ 2
max

∫ t

0

∣∣∣�2u(s ∧ T )

∣∣∣2p
L2

ds ≤ 2pσ 2
maxH

2pt < ∞.

BecauseE[MT ,MT ]t < ∞ we know thatEMT
t = 0. And becauset ∧ T is a bounded

stopping time the Optional Stopping Time Lemma says thatEMT
t∧T = 0. SinceMt∧T =

MT
t∧T , we have

E |�u(t ∧ T )|2
L2 + 2νE

∫ t∧T

0

∣∣∣�2u(s)

∣∣∣2
L2

ds = E |�u(0)|2
L2 + EM

1 E(t ∧ T ),

and whenp > 1,

E |�u(t ∧ T )|2p
L2 + 2pνE

∫ t∧T

0
|�u(t)|2(p−1)

L2

∣∣∣�2u(s)

∣∣∣2
L2

ds

= E |�u(0)|2p
L2 + E

∫ t∧T

0
2p(p − 1) |�u(s)|2(p−2)

L2

(∑
k

|k|2|σk|2|uk(s)|2
)

+ p |�u(s)|2(p−1)
L2 EM

1 ds.

Hence

E |�u(t ∧ T )|2p
L2 + 2pνE

∫ t∧T

0
|�u(t)|2(p−1)

L2

∣∣∣�2u(s)

∣∣∣2
L2

ds

≤ E |�u(0)|2p
L2 +

[
2p(p − 1)σ 2

max+ pEM
1

]
E

∫ t∧T

0
|�u(s)|2(p−1)

L2 ds.

Sinceu(t) is continuous in time,T → ∞ asH → ∞ and henceT ∧ t → t . Thus we
obtain

E |�u(t)|2
L2 + 2νE

∫ t

0

∣∣∣�2u(s)

∣∣∣2
L2

ds = E |�u(0)|2
L2 + EM

1 t,
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E |�u(t)|2p
L2 + 2pνE

∫ t

0
|�u(t)|2(p−1)

L2

∣∣∣�2u(s)

∣∣∣2
L2

ds

≤ E |�u(0)|2p
L2

[
2p(p − 1)σ 2

max+ pEM
1

]
E

∫ t

0
|�u(s)|2(p−1)

L2 ds.

Recall that we have been calculating with anM th order Galerkin approximation. For the
p = 1 equation, the right hand side converges to the desired right hand side. With this
bound onE |�u(t)|2

L2 in hand we can take theM → ∞ limit of the p = 2 equation.
Analogously, once we have taken the limit in thepth equation we have the dominating
bound needed to take the limit in thep + 1 equation. ��

In our setting, the Poincaré inequality reads|�f |2
L2 > |f |2

L2 and
∣∣�2f

∣∣2
L2 > |�f |2

L2.
This allows us to close the above inequalities. After applying Gronwall’s inequality, we
obtain the following estimates which are uniform in time.

Corollary A.2.

E |u(t)|2
L2 ≤ e−2νt

E |u(0)|2
L2 + E0

2ν

(
1− e−2νt

)
,

E |�u(t)|2
L2 ≤ e−2νt

E |�u(0)|2
L2 + E1

2ν

(
1− e−2νt

)
.

For any p > 1,

E |u(t)|2p
L2 ≤ e−2νt

E |u(0)|2p
L2 + C0

∫ t

0
e−2ν(t−s)

E |u(s)|2(p−1)
L2 ds,

E |�u(t)|2p
L2 ≤ e−2νt

E |�u(0)|2p
L2 + C1

∫ t

0
e−2ν(t−s)

E |�u(s)|2(p−1)
L2 ds.

We use standard estimates in the tri-linear term〈B(u, v), w〉L2 specialized to our two
dimensional setting. Its proof can be found in [CF88] for example.

Lemma A.3. Let α, β, γ be positive real numbers such that α + β + γ ≥ 1 and
(α, β, γ ) �= (0,0,1), or (0,1,0), or (1,0,0),

|〈B(u, v), w〉L2| ≤ C
∣∣�αu

∣∣
L2

∣∣∣�β+1v

∣∣∣
L2

∣∣�γ w
∣∣
L2 .

Using this lemma we prove the following estimate specialized to the two dimensional
setting with periodic boundary conditions.

Lemma A.4. Let {ek, k ∈ Z
2} be a basis for L

2. Consider a splitting of L
2 = L

2
( + L

2
h.

Let N+ be in sup{|k| : ∃ ek with ek ∈ L
2
(} and P( be the projector onto L

2
( . If u, v ∈ L

2

then

|P(B(u, v)| ≤ C(N+)3 |u|L2 |v|L2 .
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Proof of Lemma A.4. In the periodic setting,P(, Pdiv, and(−�)s all are simply Fourier
multipliers and hence commute with one other. Recall thatB(u, v) = Pdiv(u · ∇)v and
hence,

|P(B(u, v)| = sup
w∈L

2

|w|=1

|〈P(B(u, v), w〉L2| = sup
w∈L

2

|w|=1

|〈B(u, v), P(w〉L2|

= sup
w∈L

2

|w|=1

|〈B(u, P(w), v〉L2| ≤ C |u|L2 |v|L2 sup
w∈L

2

|w|=1

∣∣∣�3P(w

∣∣∣
L2

≤ C(N+)3 |u|L2 |v|L2 sup
w∈L

2

|w|=1

|w|L2 ≤ C(N+)3 |u|L2 |v|L2 . ��

Lemma A.5. Fix any δ > 1
2 , a ∈ (0,1) and C1 > 0. Let u(t) = ϕω

t u0. There exists a
K1 > 0 such that whenever |u0|2L2 < C0,

P

{
|u(t)|2

L2 + 2ν
∫ t

0
|�u(s)|2

L2 ds ≤ C0 + E0t +K1(t + 1)δ for all t ≥ 0

}
≥ 1− a.

Proof of Lemma A.5. The energy equation reads

|u(t)|2
L2 + 2ν

∫ t

0
|�u(s)|2

L2 ds = |u0|2L2 + E0t +
∫ t

0
〈u(s), dW(s)〉L2.

Since|u0|2L2 < C0, all we need to show is that

P
{
Mt ≤ K1(t + 1)δ for t ≥ 0

} ≥ 1− a

for K1 large enough, whereMt =
∫ t

0 〈u(s), dW(s)〉L2. The quadratic variation[M,M]t
can be calculated and one sees that

[M,M]t ≤ σ 2
max

∫ t

0
|u(s)|2

L2 ,

and hence

([M,M]t )p ≤ σ 2p
max

(∫ t

0
|u(s)|2

L2

)p

≤ σ 2p
maxt

p−1
∫ t

0
|u(s)|2p

L2 ds.

From Corollary A.2, we know that if|u(0)|2
L2 < C0, then there exists a constantCp(C0)

so thatE |u(t)|2p
L2 ≤ Cp for all t ≥ 0 andp ≥ 1.

Now define the events

Ak =
{

sup
s∈[0,k]

|Ms | > K1k
δ

}
.
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By the Doob–Kolmogorov martingale inequality we have

P
{
Ak

} ≤ E([M,M]t )p
K

2p
1 k2pδ

≤ σ
2p
maxCp

K
2p
1

kp

k2pδ
.

Lastly observe that

P
{
Mt ≤ K1(t + 1)δ

} ≥ 1− P

{⋃
k

Ak

}
≥ 1−

∑
k

P
{
Ak

}
.

By the previous estimate onP
{
Ak

}
, for anyδ > 1

2 we see that the sum is finite forp
sufficiently large. Specifically, we needδ > 1

2(1+ 1
p
). Lastly, the sum can be made as

small as we want by increasingK1. ��

B. Properties of Stationary Measures

We now establish a number of properties, derived from the dynamics, which any sta-
tionary measure must possess.

Lemma B.1. For any stationary measure all energy moments are finite. In fact for any
p ≥ 1 there exist a constant Cp < ∞ such that∫

L2
|u|2p

L2 dµ(u) < Cp

for all stationary measures µ. In particular C1 = E0
2ν .

Proof. We will consider the case whenp = 1. The other cases follow by the same
method. For anyε > 0 there exists abε such thatµ{u ∈ L

2 : |u|2
L2 ≤ bε} > 1− ε. Let

Bε denote{u ∈ L
2 : |u|2

L2 ≤ bε}. For anyH > 0 andt > 0, we have∫
L2

(
|u|2

L2 ∧H
)
dµ(u) =

∫
L2

E

(∣∣ϕω
0,t u

∣∣2
L2 ∧H

)
dµ(u)

≤ Hε +
∫
Bε

E

(∣∣ϕω
0,t u

∣∣2
L2 ∧H

)
dµ(u)

≤ Hε +
∫
Bε

E

(∣∣ϕω
0,t u

∣∣2
L2

)
dµ(u).

Applying the first bound in Corollary A.2 gives∫
L2

(
|u|2

L2 ∧H
)
dµ(u) ≤ Hε + E0

2ν
+ e−2νt

(
bε − E0

2ν

)
.

Taking the limit ast → ∞ and then observing thatε was arbitrary, we obtain∫
L2

(
|u|2

L2 ∧H
)
dµ(u) =

∫
U

(
|u|2

L2 ∧H
)
dµ(u) ≤ E0

2ν
.

TakingH → ∞ gives that the energy of any stationary measure is bounded byE0
2ν . The

argument for higher moments of the energy is the same��
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Lemma B.2. For any stationary measure µ,

∫
L2

|�u|2
L2 dµ(u) = E0

2ν
.

In addition if the forcing is such that E1 < ∞ then

∫
L2

∣∣∣�2u

∣∣∣2
L2

dµ(u) = E1

2ν
and

∫
L2

|�u|2p
L2 dµ(u) < C1(p) < ∞

for all p ≥ 1.

Proof. Using Eq. (27), we have that for any initial conditionu0 ∈ L
2,

E
∣∣ϕ0,t u0

∣∣2
L2 + 2ν

∫ t

0
E
∣∣�ϕ0,su0

∣∣2
L2 ds = |u0|2L2 + E0t.

Here we have switched the time integral and the expectation by the Fubini–Tonelli
theorem because the integrand is non-negative. We know from Lemma B.1 that any
stationary measure has finite energy moments. Hence averaging with respect to the
stationary measure gives

∫
L2

E
∣∣ϕ0,t u0

∣∣2
L2 dµ(u0)+ 2ν

∫
L2

∫ t

0
E
∣∣�ϕ0,su0

∣∣2
L2 ds dµ(u0)

=
∫

L2
|u0|2L2 dµ(u0)+ E0t.

Becauseµ was a stationary measure, we have that

∫
L2

E
∣∣ϕ0,t u0

∣∣2
L2 dµ(u0) =

∫
L2

|u0|2L2 dµ(u0)

and ∫
L2

∫ t

0
E
∣∣�ϕ0,su0

∣∣2
L2 ds = t

∫
L2

|�u0|2L2 dµ(u0).

Hence 2ν
∫

L2 |�u0|2L2 dµ(u0) = E0, concluding the proof of the first claim.
We now turn to the enstrophy moments. By the first part of this lemma, we know that

there exist aU ⊂ H
1 such thatµ(U) = 1. We now can proceed just as in Lemma B.1

to prove that all of the enstrophy moments are finite.
To find the expected value of theH2 norm we use Eq. (28). Then we proceed exactly

as we did to obtain the expected value of the enstrophy (theH
1 norm). ��

Lemma B.3. Let µp be the measure induced on C
(
(−∞,0],L

2
(

)
by any given station-

ary measure µ. Fix any K0 > 0 and δ > 1
2 . Then for µp-almost every trajectory in

C
(
(−∞,0],L

2
(

)
, v(s), there exists a constant T such that for s ≤ 0,

|v(s)|2
L2 ≤ E0 +K0 min(T , |s|)δ.
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Proof. The basic energy estimate, derived from (29), reads:

|v(t)|2
L2 = |v(t0)|2L2 + E0(t − t0)− 2ν

∫ t

t0

|�v(s)|2
L2 ds +

∫ t

t0

〈v(s), dW(s)〉L2,

for anyt0 < t ≤ 0. There is no problem writing the integration against the Wiener path in
the above integral. Our stochastic PDE had pathwise defined solutions. Therefore if we
know the initial conditionv(t0) and the trajectory ofv(s) for s ∈ [t0, t] the increments
of the Wiener process on the interval[t0, t] are uniquely defined.

For anyk ≥ 1, the above estimate implies

sup
s∈[−k,−k+1]

|v(s)|2
L2 ≤ |v(−k)|2

L2 + E0 + sup
s∈[−k,−k+1]

Fk(s),

whereFk(s) = −2ν
∫ s

−k
|�v(r)|2

L2 dr +Mk(s) andMk(s) =
∫ s

−k
〈v(r), dW(r)〉L2.

Now define

Ak =
{
v(s) : sup

s∈[−k,−k+1]
|v(s)|2

L2 ≤ E0 +K0|k − 1|δ
}

andUT = ∩k>T Ak. Since theUT are an increasing collection of sets it will be suf-
ficient to prove that the limT→∞ µp(UT ) = 1. This is the same as showing that
limT→∞ µp(U

c
T ) = 0. Now sinceµp(U

c
T ) ≤ ∑

k>T µp(A
c
k), we need only to show

that
∑

k>0 µp(A
c
k) < ∞:

µp(A
c
k) ≤ µp

{
v(s) : |v(−k)|2

L2 ≥ K0

2
|k − 1|δ

}

+ µp

{
v(s) : sup

s∈[−k,−k+1]
Fk(s) ≥ K0

2
|k − 1|δ

}
,

The first term is the most straightforward. Lemma B.2 implies that the second moment
of the energy is uniformly bounded by some constantC2. Hence Chebyshev’s inequality
produces

µp

{
v(s) : |v(−k)|2

L2 ≥ K0

2
|k − 1|δ

}
≤ 4

K2
0 |k − 1|2δ E |v(−k)|4

L2 ≤ 4C

K2
0 |k − 1|2δ

which is summable as long asδ > 1
2.

The second term proceeds in the same way but with Chebyshev’s inequality replaced
by the exponential martingale estimate. The exponential martingale inequality controls
the size of a martingale minus something proportional to its quadratic variation (see
[RY94,Mao97] for example). The details are given in the following.

The key observation is that we can controlFk(s) by controlling Mk(s)−
α[Mk,Mk](s), where[Mk,Mk](s) is the quadratic variation of the martingaleMk(s)

andα is a constant we will choose presently. First notice that with probability one,

[Mk,Mk](s) =
∫ s

−k

∑
l

|σl |2|vl(r)|2dr ≤ σ 2
max

∫ s

−k

|v(r)|2
L2 dr

≤ σ 2
max

∫ s

−k

|�v(r)|2
L2 dr
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and hence

Fk(s) ≤ Mk(s)− 2ν

σ 2
max

[Mk,Mk](s)

almost surely. In this setting, the exponential martingale inequality states that for positive
α andβ,

P

{
sup

s∈[−k,0]
Mk(s)− α

2
[Mk,Mk](s) > β

}
≤ e−αβ.

Takingα = 4ν
σ2

max
we find

µp

{
v(s) : sup

s∈[−k,−k+1]
Fk(s) ≥ K0

2
|k − 1|δ

}
≤ exp

(
−2νK0

σ 2
max

|k − 1|δ
)

.

Since this is summable for anyδ > 0, the proof is complete.��

C. Control of High Modes by Low Modes

Lemma C.1. If h(t) is the solution to (12)with some low mode forcing ( ∈ C
([0, t],L

2
(

)
,

then sups∈[0,t] |h(s)|L2 is bounded by a constant depending on |h(0)|L2 and
∫ t

0 |(|4
L2 ds.

Proof. Taking the inner product of (12) withh produces

1

2

d

dt
|h(t)|2

L2 = −ν |�h|2
L2 + 〈PhB(h, (), h〉L2 + 〈PhB((, (), h〉L2

because〈PhB((, h), h〉L2 = 〈PhB(h, h), h〉L2 = 0. Next using Lemma A.3 produces,

1

2

d

dt
|h(t)|2

L2 ≤ −ν |�h|2
L2 + C |�h|L2 |h|L2 |�(|L2 + C |�h|L2 |�(|2

L2

≤ C

2ν
|h|2

L2 |�(|2
L2 + C

2ν
|�(|4

L2

Since( ∈ L
2
( we have|�(|L2 ≤ (N+) |(|L2, whereN+ = sup{|k| : ∃ ek with ek ∈ L

2
(},

and hence after applying Gronwall’s Lemma we have

|h(t)|2
L2 ≤ C1 |h(0)|2L2 exp

(
a1

∫ t

0
|(|2

L2 ds

)

+ C2

(∫ t

0
|(|4

L2 ds

)
exp

(
a1

∫ t

0
|(|2

L2 ds

)
.

Since by Hölder inequality,∫ t

0
|(|2

L2 ds ≤ t

∫ t

0
|(|4

L2 ds,

the proof is complete. ��
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