
GibbsNet: Iterative Adversarial Inference for Deep

Graphical Models

Alex Lamb R Devon Hjelm Yaroslav Ganin Joseph Paul Cohen

Aaron Courville Yoshua Bengio

Abstract

Directed latent variable models that formulate the joint distribution as p(x, z) =
p(z)p(x | z) have the advantage of fast and exact sampling. However, these
models have the weakness of needing to specify p(z), often with a simple fixed
prior that limits the expressiveness of the model. Undirected latent variable models
discard the requirement that p(z) be specified with a prior, yet sampling from them
generally requires an iterative procedure such as blocked Gibbs-sampling that may
require many steps to draw samples from the joint distribution p(x, z). We propose
a novel approach to learning the joint distribution between the data and a latent
code which uses an adversarially learned iterative procedure to gradually refine the
joint distribution, p(x, z), to better match with the data distribution on each step.
GibbsNet is the best of both worlds both in theory and in practice. Achieving the
speed and simplicity of a directed latent variable model, it is guaranteed (assuming
the adversarial game reaches the virtual training criteria global minimum) to
produce samples from p(x, z) with only a few sampling iterations. Achieving the
expressiveness and flexibility of an undirected latent variable model, GibbsNet
does away with the need for an explicit p(z) and has the ability to do attribute
prediction, class-conditional generation, and joint image-attribute modeling in
a single model which is not trained for any of these specific tasks. We show
empirically that GibbsNet is able to learn a more complex p(z) and show that this
leads to improved inpainting and iterative refinement of p(x, z) for dozens of steps
and stable generation without collapse for thousands of steps, despite being trained
on only a few steps.

1 Introduction

Generative models are powerful tools for learning an underlying representation of complex data.
While early undirected models, such as Deep Boltzmann Machines or DBMs (Salakhutdinov and Hin-
ton, 2009), showed great promise, practically they did not scale well to complicated high-dimensional
settings (beyond MNIST), possibly because of optimization and mixing difficulties (Bengio et al.,
2012). More recent work on Helmholtz machines (Bornschein et al., 2015) and on variational au-
toencoders (Kingma and Welling, 2013) borrow from deep learning tools and can achieve impressive
results, having now been adopted in a large array of domains (Larsen et al., 2015).

Many of the important generative models available to us rely on a formulation of some sort of stochas-
tic latent or hidden variables along with a generative relationship to the observed data. Arguably
the simplest is the directed graphical models (such as the VAE) with a factorized decomposition
p(z, x) = p(z)p(x | z). In this, it is typical to assume that p(z) follows some factorized prior with
simple statistics (such as Gaussian). While sampling with directed models is simple, inference and
learning tends to be difficult and often requires advanced techniques such as approximate inference
using a proposal distribution for the true posterior.

z0 ∼ N (0, I) xi ∼ p(x | zi) zN ∼ q(z |xN−1) xN ∼ p(x | zN)

zi+1 ∼ q(z |xi) ẑ ∼ q(z |xdata) xdata ∼ q(x)

D(z,x)

Figure 1: Diagram illustrating the training procedure for GibbsNet. The unclamped chain (dashed
box) starts with a sample from an isotropic Gaussian distribution N (0, I) and runs for N steps.
The last step (iteration N) shown as a solid pink box is then compared with a single step from the
clamped chain (solid blue box) using joint discriminator D.

The other dominant family of graphical models are undirected graphical models, such that the
joint is represented by a product of clique potentials and a normalizing factor. It is common to
assume that the clique potentials are positive, so that the un-normalized density can be represented

by an energy function, E and the joint is represented by p(x, z) = e−E(z,x)/Z, where Z is the
normalizing constant or partition function. These so-called energy-based models (of which the
Boltzmann Machine is an example) are potentially very flexible and powerful, but are difficult to
train in practice and do not seem to scale well. Note also how in such models, the marginal p(z) can
have a very rich form (as rich as that of p(x)).

The methods above rely on a fully parameterized joint distribution (and approximate posterior in
the case of directed models), to train with approximate maximum likelihood estimation (MLE,
Dempster et al., 1977). Recently, generative adversarial networks (GANs, Goodfellow et al., 2014)
have provided a likelihood-free solution to generative modeling that provides an implicit distribution
unconstrained by density assumptions on the data. In comparison to MLE-based latent variable
methods, generated samples can be of very high quality (Radford et al., 2015), and do not suffer
from well-known problems associated with parameterizing noise in the observation space (Good-
fellow, 2016). Recently, there have been advances in incorporating latent variables in generative
adversarial networks in a way reminiscent of Helmholtz machines (Dayan et al., 1995), such as
adversarially learned inference (Dumoulin et al., 2017; Donahue et al., 2017) and implicit variational
inference (Huszár, 2017).

These models, as being essentially complex directed graphical models, rely on approximate inference
to train. While potentially powerful, there is good evidence that using an approximate posterior
necessarily limits the generator in practice (Hjelm et al., 2016; Rezende and Mohamed, 2015). In
contrast, it would perhaps be more appropriate to start with inference (encoder) and generative
(decoder) processes and derive the prior directly from these processes. This approach, which we call
GibbsNet, uses these two processes to define a transition operator of a Markov chain similar to Gibbs
sampling, alternating between sampling observations and sampling latent variables. This is similar
to the previously proposed generative stochastic networks (GSNs, Bengio et al., 2013) but with a
GAN training framework rather than minimizing reconstruction error. By training a discriminator to
place a decision boundary between the data-driven distribution (with x clamped) and the free-running
model (which alternates between sampling x and z), we are able to train the model so that the two
joint distributions (x, z) match. This approach is similar to Gibbs sampling in undirected models,
yet, like traditional GANs, it lacks the strong parametric constraints, i.e., there is no explicit energy
function. While losing some the theoretical simplicity of undirected models, we gain great flexibility
and ease of training. In summary, our method offers the following contributions:

• We introduce the theoretical foundation for a novel approach to learning and performing
inference in deep graphical models. The resulting model of our algorithm is similar to
undirected graphical models, but avoids the need for MLE-based training and also lacks an
explicitly defined energy, instead being trained with a GAN-like discriminator.

2

• We present a stable way of performing inference in the adversarial framework, meaning
that useful inference is performed under a wide range of architectures for the encoder and
decoder networks. This stability comes from the fact that the encoder q(z | x) appears
in both the clamped and the unclamped chain, so gets its training signal from both the
discriminator in the clamped chain and from the gradient in the unclamped chain.

• We show improvements in the quality of the latent space over models which use a simple
prior for p(z). This manifests itself in improved conditional generation. The expressiveness
of the latent space is also demonstrated in cleaner inpainting, smoother mixing when running
blocked Gibbs sampling, and better separation between classes in the inferred latent space.

• Our model has the flexibility of undirected graphical models, including the ability to do
label prediction, class-conditional generation, and joint image-label generation in a single
model which is not explicitly trained for any of these specific tasks. To our knowledge our
model is the first model which combines this flexibility with the ability to produce high
quality samples on natural images.

2 Proposed Approach: GibbsNet

The goal of GibbsNet is to train a graphical model with transition operators that are defined and
learned directly by matching the joint distributions of the model expectation with that with the
observations clamped to data. This is analogous to and inspired by undirected graphical models,
except that the transition operators, which correspond to blocked Gibbs sampling, are defined to
move along a defined energy manifold, so we will make this connection throughout our formulation.

We first explain GibbsNet in the simplest case where the graphical model consists of a single layer of
observed units and a single layer of latent variable with stochastic mappings from one to the other as
parameterized by arbitrary neural network. Like Professor Forcing (Lamb et al., 2016), GibbsNet
uses a GAN-like discriminator to make two distributions match, one corresponding to the model
iteratively sampling both observation, x, and latent variables, z (free-running), and one corresponding
to the same generative model but with the observations, x, clamped. The free-running generator is
analogous to Gibbs sampling in Restricted Boltzmann Machines (RBM, Hinton et al., 2006) or Deep
Boltzmann Machines (DBM, Salakhutdinov and Hinton, 2009). In the simplest case, the free-running
generator is defined by conditional distributions q(z|x) and p(x|z) which stochastically map back
and forth between data space x and latent space z.

To begin our free-running process, we start the chain with a latent variable sampled from a normal
distribution: z ∼ N (0, I), and follow this by N steps of alternating between sampling from p(x|z)
and q(z|x). For the clamped version, we do simple ancestral sampling from q(z|x), given xdata is
drawn from the data distribution q(x) (a training example). When the model has more layers (e.g., a
hierarchy of layers with stochastic latent variables, à la DBM), the data-driven model also needs to
iterate to correctly sample from the joint. While this situation highly resembles that of undirected
graphical models, GibbsNet is trained adversarially so that its free-running generative states become
indistinguishable from its data-driven states. In addition, while in principle undirected graphical
models need to either start their chains from data or sample a very large number of steps, we find
in practice GibbsNet only requires a very small number of steps (on the order of 3 to 5 with very
complex datasets) from noise.

An example of the free-running (unclamped) chain can be seen in Figure 2. An interesting aspect
of GibbsNet is that we found that it was enough and in fact best experimentally to back-propagate
discriminator gradients through a single step of the iterative procedure, yielding more stable training.
An intuition for why this helps is that each step of the procedure is supposed to generate increasingly
realistic samples. However, if we passed gradients through the iterative procedure, then this gradient
could encourage the earlier steps to store features which have downstream value instead of immediate
realistic x-values.

2.1 Theoretical Analysis

We consider a simple case of an undirected graph with single layers of visible and latent units trained
with alternating 2-step (p then q) unclamped chains and the asymptotic scenario where the GAN
objective is properly optimized. We then ask the following questions: in spite of training for a

3

Figure 2: Evolution of samples for 20 iterations from the unclamped chain, trained on the SVHN
dataset starting on the left and ending on the right.

bounded number of Markov chain steps, are we learning a transition operator? Are the encoder
and decoder estimating compatible conditionals associated with the stationary distribution of that
transition operator? We find positive answers to both questions.

A high level explanation of our argument is that if the discriminator is fooled, then the consecutive
(z, x) pairs from the chain match the data-driven (z, x) pair. Because the two marginals on x from
these two distributions match, we can show that the next z in the chain will form again the same joint
distribution. Similarly, we can show that the next x in the chain also forms the same joint with the
previous z. Because the state only depends on the previous value of the chain (as it’s Markov), then
all following steps of the chain will also match the clamped distribution. This explains the result,
validated experimentally, that even though we train for just a few steps, we can generate high quality
samples for thousands or more steps.

Proposition 1. If (a) the stochastic encoder q(z|x) and stochastic decoder p(x|z) inject noise such
that the transition operator defined by their composition (p followed by q or vice-versa) allows for all
possible x-to-x or z-to-z transitions (x → z → x or z → x → z), and if (b) those GAN objectives
are properly trained in the sense that the discriminator is fooled in spite of having sufficient capacity
and training time, then (1) the Markov chain which alternates the stochastic encoder followed by the
stochastic decoder as its transition operator T (or vice-versa) has the data-driven distribution πD

as its stationary distribution πT , (2) the two conditionals q(z|x) and p(x|z) converge to compatible
conditionals associated with the joint πD = πT .

Proof. When the stochastic decoder and encoder inject noise so that their composition forms a
transition operator T with paths with non-zero probability from any state to any other state, then T is
ergodic. So condition (a) implies that T has a stationary distribution πT . The properly trained GAN
discriminators for each of these two steps (condition (b)) forces the matching of the distributions of
the pairs (zt, xt) (from the generative trajectory) and (x, z) with x ∼ q(x), the data distribution and
z ∼ q(z | x), both pairs converging to the same data-driven distribution πD. Because (zt, xt) has the
same joint distribution as (z, x), it means that xt has the same distribution as x. Since z ∼ q(z | x),
when we apply q to xt, we get zt+1 which must form a joint (zt+1, xt) which has the same distribution
as (z, x). Similarly, since we just showed that zt+1 has the same distribution as z and thus the same
as zt, if we apply p to zt+1, we get xt+1 and the joint (zt+1, xt+1) must have the same distribution
as (z, x). Because the two pairs (zt, xt) and (zt+1, xt+1) have the same joint distribution πD, it
means that the transition operator T , that maps samples (zt, xt) to samples (zt+1, xt+1), maps πD to
itself, i.e., πD = πT is both the data distribution and the stationary distribution of T and result (1)
is obtained. Now consider the "odd" pairs (zt+1, xt) and (zt+2, xt+1) in the generated sequences.
Because of (1), xt and xt+1 have the same marginal distribution πD(x). Thus when we apply the
same q(z|x) to these x’s we obtain that (zt+1, xt) and (zt+2, xt+1) also have the same distribution.
Following the same reasoning as for proving (1), we conclude that the associated transition operator
Todd has also πD as stationary distribution. So starting from z ∼ πD(z) and applying p(x | z)
gives an x so that the pair (z, x) has πD as joint distribution, i.e., πD(z, x) = πD(z)p(x | z). This

means that p(x | z) = πD(x,z)
πD(z) is the x | z conditional of πD. Since (zt, xt) also converges to joint

distribution πD, we can apply the same argument when starting from an x ∼ πD(x) followed by q

and obtain that πD(z, x) = πD(x)q(z | x) and so q(z|x) = πD(z,x)
πD(x) is the z | x conditional of πD.

This proves result (2).

4

2.2 Architecture

GibbsNet always involves three networks: the inference network q(z|x), the generation network
p(x|z), and the joint discriminator. In general, our architecture for these networks closely follow
Dumoulin et al. (2017), except that we use the boundary-seeking GAN (BGAN, Hjelm et al., 2017)
as it explicitly optimizes on matching the opposing distributions (in this case, the model expectation
and the data-driven joint distributions), allows us to use discrete variables where we consider learning
graphs with labels or discrete attributes, and worked well across our experiments.

3 Related Work

Energy Models and Deep Boltzmann Machines The training and sampling procedure for gener-
ating from GibbsNet is very similar to that of a deep Boltzmann machine (DBM, Salakhutdinov and
Hinton, 2009): both involve blocked Gibbs sampling between observation- and latent-variable layers.
A major difference is that in a deep Boltzmann machine, the “decoder" p(x|z) and “encoder" p(z|x)
exactly correspond to conditionals of a joint distribution p(x, z), which is parameterized by an energy
function. This, in turn, puts strong constraints on the forms of the encoder and decoder.

In a restricted Boltzmann machine (RBM, Hinton, 2010), the visible units are conditionally inde-
pendent given the hidden units on the adjacent layer, and likewise the hidden units are conditionally
independent given the visible units. This may force the layers close to the data to need to be nearly
deterministic, which could cause poor mixing and thus make learning difficult. These conditional
independence assumptions in RBMs and DBMs have been discussed before in the literature as a
potential weakness in these models (Bengio et al., 2012).

In our model, p(x|z) and q(z|x) are modeled by separate deep neural networks with no shared
parameters. The disadvantage is that the networks are over-parameterized, but this has the added
flexibility that these conditionals can be much deeper, can take advantage of all the recent advances
in deep architectures, and have fewer conditional independence assumptions than DBMs and RBMs.

Generative Stochastic Networks Like GibbsNet, generative stochastic networks (GSNs, Bengio
et al., 2013) also directly parameterizes a transition operator of a Markov chain using deep neural
networks. However, GSNs and GibbsNet have completely different training procedures. In GSNs,
the training procedure is based on an objective that is similar to de-noising autoencoders (Vincent
et al., 2008).

GSNs begin by drawing a sampling from the data, iteratively corrupting it, then learning a transition
operator which de-noises it (i.e., reverses that corruption), so that the reconstruction after k steps is
brought closer to the original un-corrupted input.

In GibbsNet, there is no corruption in the visible space, and the learning procedure never involves
“walk-back" (de-noising) towards a real data-point. Instead, the processes from and to data are
modeled by different networks, with the constraint of the marginal, p(x), matches the real distribution
imposed through the GAN loss on the joint distributions from the clamped and unclamped phases.

Non-Equilibrium Thermodynamics The Non-Equilibrium Thermodynamics method (Sohl-
Dickstein et al., 2015) learns a reverse diffusion process against a forward diffusion process which
starts from real data points and gradually injects noise until the data distribution matches a analytically
tractible / simple distribution. This is similar to GibbsNet in that generation involves a stochastic
process which is initialized from noise, but differs in that Non-Equilibrium Thermodynamics is
trained using MLE and relies on noising + reversal for training, similar to GSNs above.

Generative Adversarial Learning of Markov Chains The Adversarial Markov Chain algorithm
(AMC, Song et al., 2017) learns a markov chain over the data distribution in the visible space.
GibbsNet and AMC are related in that they both involve adversarial training and an iterative procedure
for generation. However there are major differences. GibbsNet learns deep graphical models with
latent variables, whereas the AMC method learns a transition operator directly in the visible space.
The AMC approach involves running chains which start from real data points and repeatedly apply
the transition operator, which is different from the clamped chain used in GibbsNet. The experiments

5

shown in Figure 3 demonstrate that giving the latent variables to the discriminator in our method has
a significant impact on inference.

Adversarially Learned Inference (ALI) Adversarially learned inference (ALI, Dumoulin et al.,
2017) learns to match distributions generative and inference distributions, p(x, z) and q(x, z) (can be
thought of forward and backward models) with a discriminator, so that p(z)p(x | z) = q(x)q(z | x).
In the single latent layer case, GibbsNet also has forward and reverse models, p(x | z) and q(z | x).
The un-clamped chain is sampled as p(z), p(x | z), q(z | x), p(x | z), . . . and the clamped chain
is sampled as q(x), q(z | x). We then adversarially encourage the clamped chain to match the
equilibrium distribution of the unclamped chain. When the number of iterations is set to N = 1,
GibbsNet reduces to ALI. However, in the general setting of N > 1, Gibbsnet should learn a richer
representation than ALI, as the prior, p(z), is no longer forced to be the simple one at the beginning
of the unclamped phase.

4 Experiments and Results

The goal of our experiments is to explore and give insight into the joint distribution p(x, z) learned
by GibbsNet and to understand how this joint distribution evolves over the course of the iterative
inference procedure. Since ALI is identical to GibbsNet when the number of iterative inference steps
is N = 1, results obtained with ALI serve as an informative baseline.

From our experiments, the clearest result (covered in detail below) is that the p(z) obtained with
GibbsNet can be more complex than in ALI (or other directed graphical models). This is demonstrated
directly in experiments with 2-D latent spaces and indirectly by improvements in classification when
directly using the variables q(z | x). We achieve strong improvements over ALI using GibbsNet even
when q(z | x) has exactly the same architecture in both models.

We also show that GibbsNet allows for gradual refinement of the joint, (x, z), in the sampling chain
q(z | x), p(x | z). This is a result of the sampling chain making small steps towards the equilibrium
distribution. This allows GibbsNet to gradually improve sampling quality when running for many
iterations. Additionally it allows for inpainting and conditional generation where the conditioning
information is not fixed during training, and indeed where the model is not trained specifically for
these tasks.

4.1 Expressiveness of GibbsNet’s Learned Latent Variables

Latent structure of GibbsNet The latent variables from q(z | x) learned from GibbsNet are more
expressive than those learned with ALI. We show this in two ways. First, we train a model on the
MNIST digits 0, 1, and 9 with a 2-D latent space which allows us to easily visualize inference. As
seen in Figure 3, we show that GibbsNet is able to learn a latent space which is not Gaussian and has
a structure that makes the different classes well separated.

Semi-supervised learning Following from this, we show that the latent variables learned by
GibbsNet are better for classification. The goal here is not to show state of the art results on
classification, but instead to show that the requirement that p(z) be something simple (like a Gaussian,
as in ALI) is undesirable as it forces the latent space to be filled. This means that different classes
need to be packed closely together in that latent space, which makes it hard for such a latent space to
maintain the class during inference and reconstruction.

We evaluate this property on two datasets: Street View House Number (SVHN, Netzer et al., 2011)
and permutation invariant MNIST. In both cases we use the latent features q(z | x) directly from a
trained model, and train a 2-layer MLP on top of the latent variables, without passing gradient from
the classifier through to q(z | x). ALI and GibbsNet were trained for the same amount of time and
with exactly the same architecture for the discriminator, the generative network, p(x | z), and the
inference network, q(z | x).

On permutation invariant MNIST, ALI achieves 91% test accuracy and GibbsNet achieves 97.7% test
accuracy. On SVHN, ALI achieves 66.7% test accuracy and GibbsNet achieves 79.6% test accuracy.
This does not demonstrate a competitive classifier in either case, but rather demonstrates that the
latent space inferred by GibbsNet keeps more information about its input image than the encoder

6

learned by ALI. This is consistent with the reported ALI reconstructions (Dumoulin et al., 2017) on
SVHN where the reconstructed image and the input image show the same digit roughly half of the
time.

We found that ALI’s inferred latent variables not being effective for classification is a fairly robust
result that holds across a variety of architectures for the inference network. For example, with 1024
units, we varied the number of fully-connected layers in ALI’s inference network between 2 and
8 and found that the classification accuracies on the MNIST validation set ranged from 89.4% to
91.0%. Using 6 layers with 2048 units on each layer and a 256 dimensional latent prior achieved
91.2% accuracy. This suggests that the weak performance of the latent variables for classification is
due to ALI’s prior, and is probably not due to a lack of capacity in the inference network.

Figure 3: Illustration of the distribution over inferred latent variables for real data points from the
MNIST digits (0, 1, 9) learned with different models trained for roughly the same amount of time:
GibbsNet with a determinstic decoder and the latent variables not given to the discriminator (a),
GibbsNet with a stochastic decoder and the latent variables not given to the discriminator (b), ALI
(c), GibbsNet with a deterministic decoder (f), GibbsNet with a stochastic decoder with two different
runs (g and h), GibbsNet with a stochastic decoder’s inferred latent states in an unclamped chain at 1,
2 , 3, and 15 steps (d, e, i, and j, respectively) into the P-chain (d, e, i, and j, respectively). Note that
we continue to see refinement in the marginal distribution of z when running for far more steps (15
steps) than we used during training (3 steps).

4.2 Inception Scores

The GAN literature is limited in terms of quantitative evaluation, with none of the existing techniques
(such as inception scores) being satisfactory (Theis et al., 2015). Nonetheless, we computed inception
scores on CIFAR-10 using the standard method and code released from Salimans et al. (2016). In our
experiments, we compared the inception scores from samples from Gibbsnet and ALI on two tasks,
generation and inpainting.

Our conclusion from the inception scores (Table 1) is that GibbsNet slightly improves sample quality
but greatly improves the expressiveness of the latent space z, which leads to more detail being
preserved in the inpainting chain and a much larger improvement in inception scores in this setting.
The supplementary materials includes examples of sampling and inpainting chains for both ALI and
GibbsNet which shows differences between sampling and inpainting quality that are consistent with
the inception scores.

Table 1: Inception Scores from different models. Inpainting results were achieved by fixing the left
half of the image while running the chain for four steps. Sampling refers to unconditional sampling.

Source Samples Inpainting

Real Images 11.24 11.24

ALI (ours) 5.41 5.59

ALI (Dumoulin) 5.34 N/A

GibbsNet 5.69 6.15

7

Figure 4: CIFAR samples on methods which learn transition operators. Non-Equilibrium Thermody-
namics (Sohl-Dickstein et al., 2015) after 1000 steps (left) and GibbsNet after 20 steps (right).

4.3 Generation, Inpainting, and Learning the Image-Attribute Joint Distribution

Generation Here, we compare generation on the CIFAR dataset against Non-Equilibrium Thermo-
dynamics method (Sohl-Dickstein et al., 2015), which also begins its sampling procedure from noise.
We show in Figure 4 that, even with a relatively small number of steps (20) in its sampling procedure,
GibbsNet outperforms the Non-Equilibrium Thermodynamics approach in sample quality, even after
many more steps (1000).

Inpainting The inpainting that can be done with the transition operator in GibbsNet is stronger
than what can be done with an explicit conditional generative model, such as Conditional GANs,
which are only suited to inpainting when the conditioning information is known about during training
or there is a strong prior over what types of conditioning will be performed at test time. We show here
that GibbsNet performs more consistent and higher quality inpainting than ALI, even when the two
networks share exactly the same architecture for p(x | z) and q(z | x) (Figure 5), which is consistent
with our results on latent structure above.

Joint generation Finally, we show that GibbsNet is able to learn the joint distribution between
face images and their attributes (CelebA, Liu et al., 2015) (Figure 6). In this case, q(z | x, y) (y
is the attribute) is a network that takes both the image and attribute, separately processing the two
modalities before joining them into one network. p(x, y | z) is one network that splits into two
networks to predict the modalities separately. Training was done with continuous boundary-seeking
GAN (BGAN, Hjelm et al., 2017) on the image side (same as our other experiments) and discrete
BGAN on the attribute side, which is an importance-sampling-based technique for training GANs
with discrete data.

5 Conclusion

We have introduced GibbsNet, a powerful new model for performing iterative inference and generation
in deep graphical models. Although models like the RBM and the GSN have become less investigated
in recent years, their theoretical properties worth pursuing, and we follow the theoretical motivations
here using a GAN-like objective. With a training and sampling procedure that is closely related to
undirected graphical models, GibbsNet is able to learn a joint distribution which converges in a very
small number of steps of its Markov chain, and with no requirement that the marginal p(z) match a
simple prior. We prove that at convergence of training, in spite of unrolling only a few steps of the
chain during training, we obtain a transition operator whose stationary distribution also matches the
data and makes the conditionals p(x | z) and q(z | x) consistent with that unique joint stationary
distribution. We show that this allows the prior, p(z), to be shaped into a complicated distribution
(not a simple one, e.g., a spherical Gaussian) where different classes have representations that are
easily separable in the latent space. This leads to improved classification when the inferred latent
variables q(z|x) are used directly. Finally, we show that GibbsNet’s flexible prior produces a flexible
model which can simultaneously perform inpainting, conditional image generation, and prediction
with a single model not explicitly trained for any of these specific tasks, outperforming a competitive
ALI baseline with the same setup.

8

(a) SVHN inpainting after 20 steps (ALI). (b) SVHN inpainting after 20 steps (GibbsNet).

Figure 5: Inpainting results on SVHN, where the right side is given and the left side is inpainted. In
both cases our model’s trained procedure did not consider the inpainting or conditional generation
task at all, and inpainting is done by repeatedly applying the transition operators and clamping the
right side of the image to its observed value. GibbsNet’s richer latent space allows the transition
operator to keep more of the structure of the input image, allowing for tighter inpainting.

Figure 6: Demonstration of learning the joint distribution between images and a list of 40 binary
attributes. Attributes (right) are generated from a multinomial distribution as part of the joint with the
image (left).

References

Bengio, Y., Mesnil, G., Dauphin, Y., and Rifai, S. (2012). Better mixing via deep representations.
CoRR, abs/1207.4404.

Bengio, Y., Thibodeau-Laufer, E., and Yosinski, J. (2013). Deep generative stochastic networks
trainable by backprop. CoRR, abs/1306.1091.

Bornschein, J., Shabanian, S., Fischer, A., and Bengio, Y. (2015). Training opposing directed models
using geometric mean matching. CoRR, abs/1506.03877.

Dayan, P., Hinton, G. E., Neal, R. M., and Zemel, R. S. (1995). The helmholtz machine. Neural
computation, 7(5):889–904.

Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977). Maximum likelihood from incomplete data
via the em algorithm. Journal of the royal statistical society. Series B (methodological), pages
1–38.

Donahue, J., Krähenbühl, P., and Darrell, T. (2017). Adversarial feature learning. In Proceedings of
the International Conference on Learning Representations (ICLR). abs/1605.09782.

Dumoulin, V., Belghazi, I., Poole, B., Lamb, A., Arjovsky, M., Mastropietro, O., and Courville,
A. (2017). Adversarially learned inference. In Proceedings of the International Conference on
Learning Representations (ICLR). arXiv:1606.00704.

9

Goodfellow, I. (2016). Nips 2016 tutorial: Generative adversarial networks. arXiv preprint
arXiv:1701.00160.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., and
Bengio, Y. (2014). Generative adversarial nets. In Advances in neural information processing
systems, pages 2672–2680.

Hinton, G. (2010). A practical guide to training restricted boltzmann machines. Momentum, 9(1):926.

Hinton, G. E., Osindero, S., and Teh, Y.-W. (2006). A fast learning algorithm for deep belief nets.
Neural computation, 18(7):1527–1554.

Hjelm, D., Salakhutdinov, R. R., Cho, K., Jojic, N., Calhoun, V., and Chung, J. (2016). Iterative
refinement of the approximate posterior for directed belief networks. In Advances in Neural
Information Processing Systems, pages 4691–4699.

Hjelm, R. D., Jacob, A. P., Che, T., Cho, K., and Bengio, Y. (2017). Boundary-seeking generative
adversarial networks. arXiv preprint arXiv:1702.08431.

Huszár, F. (2017). Variational Inference using Implicit Distributions. ArXiv e-prints.

Kingma, D. P. and Welling, M. (2013). Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114.

Lamb, A., Goyal, A., Zhang, Y., Zhang, S., Courville, A., and Bengio, Y. (2016). Professor forcing:
A new algorithm for training recurrent networks. Neural Information Processing Systems (NIPS)
2016.

Larsen, A. B. L., Sønderby, S. K., and Winther, O. (2015). Autoencoding beyond pixels using a
learned similarity metric. CoRR, abs/1512.09300.

Liu, Z., Luo, P., Wang, X., and Tang, X. (2015). Deep learning face attributes in the wild. In
Proceedings of International Conference on Computer Vision (ICCV).

Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B., and Ng, A. Y. (2011). Reading digits in natural
images with unsupervised feature learning. In NIPS workshop on deep learning and unsupervised
feature learning, volume 2011, page 5.

Radford, A., Metz, L., and Chintala, S. (2015). Unsupervised representation learning with deep
convolutional generative adversarial networks. CoRR, abs/1511.06434.

Rezende, D. J. and Mohamed, S. (2015). Variational inference with normalizing flows. arXiv preprint
arXiv:1505.05770.

Salakhutdinov, R. and Hinton, G. (2009). Deep boltzmann machines. In Artificial Intelligence and
Statistics, pages 448–455.

Salimans, T., Goodfellow, I. J., Zaremba, W., Cheung, V., Radford, A., and Chen, X. (2016). Improved
techniques for training gans. CoRR, abs/1606.03498.

Sohl-Dickstein, J., Weiss, E. A., Maheswaranathan, N., and Ganguli, S. (2015). Deep unsupervised
learning using nonequilibrium thermodynamics. CoRR, abs/1503.03585.

Song, J., Zhao, S., and Ermon, S. (2017). Generative adversarial learning of markov chains. ICLR
Workshop Track.

Theis, L., van den Oord, A., and Bethge, M. (2015). A note on the evaluation of generative models.
ArXiv e-prints.

Vincent, P., Larochelle, H., Bengio, Y., and Manzagol, P.-A. (2008). Extracting and composing robust
features with denoising autoencoders. In Proceedings of the 25th international conference on
Machine learning, pages 1096–1103. ACM.

10

