
CONCURRENCY AND COMPUTATION: PRACTICE AND EXPERIENCE
Concurrency Computat.: Pract. Exper. 2011; 23:2477–2495
Published online 21 September 2011 in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/cpe.1810

Gibraltar: A Reed-Solomon Coding Library for Storage
Applications on Programmable Graphics Processors

Matthew L. Curry 1,*,†, Anthony Skjellum 2, H. Lee Ward 1 and Ron Brightwell 1

1Sandia National Laboratories, P.O. Box 5800, Albuquerque, NM 87185-1319, USA
2Computer and Information Sciences, The University of Alabama at Birmingham, 115A Campbell Hall, 1300 University

Blvd, Birmingham, AL 35294-1170, USA

SUMMARY

Reed–Solomon coding is a method for generating arbitrary amounts of erasure correction information from
original data via matrix–vector multiplication in finite fields. Previous work has shown that modern CPUs
are not well-matched to this type of computation, requiring applications that depend on Reed–Solomon cod-
ing at high speeds (such as high-performance storage arrays) to use hardware implementations. This work
demonstrates that high performance is possible with current cost-effective graphics processing units across
a wide range of operating conditions and describes how performance will likely evolve in similar archi-
tectures. It describes the characteristics of the graphics processing unit architecture that enable high-speed
Reed–Solomon coding. A high-performance practical library, Gibraltar, has been prototyped that performs
Reed–Solomon coding on graphics processors in a manner suitable for storage arrays, along with applica-
tions with similar data resiliency needs. This library enables variably resilient erasure correcting codes to
be used in a broad range of applications. Its performance is compared with that of a widely available CPU
implementation, and a rationale for its API is presented. Its practicality is demonstrated through a usage
example. Copyright © 2011 John Wiley & Sons, Ltd.

Received 9 January 2010; Revised 7 January 2011; Accepted 29 May 2011

KEY WORDS: graphics processors; storage; Reed–Solomon coding; reliability; fault tolerance

1. INTRODUCTION

Redundant array of independent disks (RAID) is a method for using large numbers of disks to pro-

vide increased secondary storage access speed, fault tolerance, and availability in the presence of

failures [1]. Increased access speed arises from using many disks in parallel to perform a single read

or write operation, or multiple unrelated reads and writes, whereas fault tolerance and availability

are introduced through the use of parity bytes, blocks, or drives. Generally, by introducing m appro-

priately distributed parity blocks (created with a maximum-distance separable code [2]) per k data

blocks in a disk array stripe, a disk array can withstand the total failure of up to m disk drives. RAID

levels 5 and 6 are two common RAID levels that are capable of m D 1 and m D 2, respectively.

Although m D 1 can be implemented with k � 1 exclusive-or operations, m > 2 involves a more

complex calculation [3].

*Correspondence to: Matthew L. Curry, Sandia National Laboratories, P.O. Box 5800, Albuquerque, NM 87185-1319,
USA.

†E-mail: mlcurry@sandia.gov

Contract/grant sponsor: United States Department of Energy; contract/grant number: DE-FC02-06ER25767
Contract/grant sponsor: National Science Foundation; contract/grant number: MRI-0821497

Copyright © 2011 John Wiley & Sons, Ltd.

2478 M. L. CURRY ET AL.

One standard method of generating more than one parity block is Reed–Solomon coding [4].

Many RAID 6-specific codes exist [3,5,6], but Reed–Solomon coding is often used today in RAID 6

systems, including the Linux kernel’s software RAID [7]. Although RAID 6 only requires two coded

blocks, Reed–Solomon coding can be used to generate an arbitrary number of independent coded

blocks. Unfortunately, most conventional commodity processors are not well-suited architecturally

to Reed–Solomon coding with arbitrary m. This quality results in slow ‘extended’ software RAID

with m > 2, necessitating alternative hardware solutions.

Reed–Solomon coding for parity computation is generally performed by hardware RAID con-

trollers that are positioned in the data path between the computer and its storage resources. The

controller can present the multiple attached storage resources as a single block device to the oper-

ating system, resulting in transparency and performance. However, a RAID controller is limited in

the tasks it can accomplish. Relocating the Reed–Solomon coding to a more general purpose piece

of hardware results in new flexibility. Any application that can benefit from Reed–Solomon coding

would be able to offload this computation, increasing the performance of that portion of the applica-

tion, either by increasing the speed of the task or overlapping it with a different computation running

on the CPU(s).

Graphics processing units, also known as GPUs, are highly parallel devices designed to exploit

the embarrassingly parallel nature of graphics rendering tasks [8, 9]. As conventional CPUs have

transitioned through single core, multi-thread, and multi-core devices, the anticipation is high that

CPUs will evolve into many-core devices to keep pace with the demands of Moore’s Law while

mitigating increasing power consumption [10]. Application developers have been considering the

GPU as a currently mature and highly developed computational platform with dozens to hundreds

of cores. GPUs have been successfully applied to applications that are either embarrassingly parallel

or have embarrassingly parallel sub-steps [11, 12].

Until recently, however, GPU platforms were restricted in terms of usable data types. Only cer-

tain floating point operations and data types were well-supported, as GPUs only contained floating

point units for use within shader programs [13]. Some other types could be emulated through lim-

ited range of floating point types; however, unless used judiciously, emulation often proved to be

an inefficient use of the GPU’s resources [14]. With the native types available, only applications

that heavily utilized single-precision floating point data and calculations could be meaningfully

accelerated via GPU computation.

To provide acceleration for more general-purpose GPU applications, NVIDIA released its CUDA

API (NVIDIA Corporation, Sta. Clara, CA, USA) and architecture [15], and ATI/AMD (Advanced

Micro Devices, Sunnyvale, CA, USA) released a stream computing software stack that potentially

allows the use of many high-level languages to program ATI GPUs [16,17]. Both ATI and NVIDIA

technology allow bitwise operations to be performed on arbitrary binary data using their GPUs

and software. This presents the opportunity for applications to perform more general data processing

tasks that are well-suited to the GPU’s overall architecture, but need different kinds of computation

than floating point units can provide.

This work identifies Reed–Solomon coding as an application that both suits the general architec-

ture of GPUs and requires the added primitive types and operations available through CUDA. In

particular, results presented previously by the authors demonstrated that GPUs could show superior

performance as part of a software RAID system that includes more than two parity disks by achiev-

ing an overall tenfold speedup over a CPU implementation for RAID 6 workloads and beyond

[18, 19].

This paper describes generalized Reed–Solomon coding on programmable GPU hardware, specif-

ically for use with applications requiring data resiliency in a manner similar to RAID. This paper

begins by describing Reed–Solomon coding in more detail within the context of RAID and dis-

tributed data applications. It goes on to detail the mapping of Reed–Solomon coding to NVIDIA

GPUs. A performance evaluation is provided, including comparison with a well-known CPU library

that also implements the Reed–Solomon coding as used in this work [20]. Future potential trends for

GPUs and other highly multicore devices and their effects on this application are described. A pub-

licly available prototype library, Gibraltar, demonstrates the findings of this work. To demonstrate

its practicality, a usage example and design rationale are provided.

Copyright © 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2011; 23:2477–2495

DOI: 10.1002/cpe

GIBRALTAR 2479

2. MOTIVATION

Given the statistics provided by drive manufacturers, RAID 6 allows for an impressive mean time to

data loss. For example, some disk drives are described as having a mean time to failure of 1.2 mil-

lion h [21]. Chen et al. derived the formula for calculating reliability of an array with several RAID 6

groups [1]. This formula yields a mean time to data loss of over 100 billion years for an array of 16

disks if repairs require 24 h to complete, and the mean time to failure is 1.2 million h.

Unfortunately, this formulaic representation of reliability is not representative of real installations.

Recent studies have raised several concerns about the reliability of disk manufacturers’ statistics.

Pinheiro et al. found that the annualized failure rates of their disk drives are much higher than are

implied by data sheets [22]. Schroeder and Gibson found similar results through a survey of drives

under multiple administrative domains [23]. These results imply that RAID 6 reliability cannot be

directly calculated from vendor data, but is more likely to be much lower than usually estimated.

There exist rare—yet grave—disk reliability problems, such as batch-correlated failures. Batch-

correlated failures result from a manufacturing defect in a group of drives. Pâris and Long show that

if several failure-prone disks from a defective batch compose a RAID 5 array, chances are poor that

one can rebuild a failed disk before another failure occurs [24]. They also show that adding another

parity disk can drastically increase chances of recovery, but having only two parity disks can still be

a risky proposition. For example, for a scenario where recovery requires 24 h, and one disk fails per

week on average, a RAID 6 array has less than 70% probability of being able to recover from a disk

failure before data loss occurs [24].

Another issue is double disk failures combined with read errors [25]. The areal density for disk

platters is approximately doubling every year, but disk speeds are not increasing that quickly [26].

Therefore, the time required to rebuild an array is increasing, causing a related increase in the prob-

ability of losing all redundancy in an array. Although this situation alone does not cause data loss,

there would be no protection in the case of a read error from any of the remaining disks. If such

an error occurs on one drive, that block must be recovered from backups if available. This is a

significant task for system administrators.

Given the bit error rate statistics from drive manufacturers, the probability that a large drive will

encounter an unrecoverable read error during the course of reconstruction is too large to safely

ignore. A typical disk could have a capacity of 1 TB, and an error rate of one read error per 1015

bits [21]. Consequently, the probability of a failure during a reconstruction pass through one disk is

8 � 1012=1015, or 0.008. However, extrapolating this to 10 drives with no redundant disks yields a

survival rate of only 92.3% after a single pass:

P D e�1�numdisks���TR (1)

D e
�10�

1

1015
�8�1012

(2)

D 0.92312. (3)

The RAID 1 can be used to increase and provide more reliability in an array, but is an inefficient

use of storage resources. For example, to mitigate the risk of unrecoverable read errors (UREs), data

must be stored at least three times within an array, tripling storage requirements. A more efficient

way to mitigate current reliability problems is to add more parity to a RAID array based on the

likelihood of data loss for the size of the array, the operating environment, and the properties of the

disks attached. This is not a commonly implemented solution because of the computational expense

of generating more than two parity blocks per stripe. However, one can utilize the computational

power of GPUs as part of a RAID system, allowing two or more parity blocks per stripe as needed

while maintaining high performance.

Copyright © 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2011; 23:2477–2495

DOI: 10.1002/cpe

2480 M. L. CURRY ET AL.

3. REED–SOLOMON CODING FOR REDUNDANT ARRAY OF INDEPENDENT DISKS

The primary operation in Reed–Solomon coding is the multiplication of F , the lower m rows of an

information dispersal matrix A D

�

I

F

�

, with a vector of data elements d [27].

�

I

F

�

d D

�

d

c

�

(4)

This yields another vector of redundant elements (the coding vector, c). The redundancy of the oper-

ation comes from the over-qualification of the system: Any k elements of e D

�

d

c

�

may be used

to recover d , even if some (or all) elements of d are not available [4]. A more in-depth discussion

is provided in the next section.

Rather than relying on integer or floating point arithmetic, the operations are performed on mem-

bers of a finite field [28]. Addition of two numbers is implemented with an exclusive-or operation,

whereas multiplication by two is implemented with a linear feedback shift register [7]. Multiplying

two arbitrary numbers involves decomposing the problem into addition of products involving pow-

ers of two, which potentially requires a large number of operations. One useful identity that holds

true in finite fields of size 2w (where w is the number of bits per symbol) is as follows:

x � y D exp.log.x/ C log.y// (5)

where the addition operator denotes normal integer addition modulo 2w �1, whereas exp./ and log./

are, respectively, exponentiation and logarithm operations in the finite field using a common base

[27]. Because w D 8 for RAID systems, an implementation can contain pre-calculated tables for the

exp and log operations, which are each 256 B in length. Multiplications can be implemented using

these tables with three table lookup operations and addition modulo 2w � 1 instead of potentially

many more logical operations. Decoding (recovering missing data elements from k remaining data

and/or coding elements) is a similar operation, so all of these also hold true for decoding.

Unfortunately, the type of table lookup operations used in Reed–Solomon coding does not exploit

the internal vector-based parallelism of CPUs. Although fast vector instructions have been included

in modern CPUs, few CPU models include a parallel table lookup instruction. In the case of IBM’s

power architecture, which has the AltiVec instruction set that includes a parallel table lookup

instruction, multiplication in finite fields is faster than implementations for x86 processors [29].

Unfortunately, parallel table lookup capability is not common, and CPU implementations of finite

field arithmetic tend to suffer accordingly. A more in-depth treatment of implementation details of

Reed–Solomon coding is available [27].

4. MAPPING REED–SOLOMON CODING TO GPUS

GPUs are architecturally quite different from CPUs. The emphasis of GPU architecture is to accom-

plish hundreds of millions of small, independent, and memory intensive computations per second

to provide interactive graphics to a user. As such, GPUs have several interesting qualities that are

directly applicable to the task of Reed–Solomon coding. In this discussion, a buffer is a particular

slice of data of s bytes. A k C m coding would require k data buffers and m coding buffers. These

buffers are typically stored together, one after another, within a continuous memory region that is

referred to as the buffer space. One may refer to the i th buffer in the buffer space, which specifi-

cally refers to the bytes between i � s. . . .i C 1/ � s � 1 within the buffer space. However, when

not explicitly qualified, the i th buffer indicates its contents rather than its position. For the first k

buffers, buffer 0 contains the first s bytes of data, buffer 1 contains the next s bytes of data, and so

on. The following m buffers contain the coding data.

One of the more well-known features of a CUDA-based GPU is its vast number of multi-threaded

processing cores organized into groups called multiprocessors. The GeForce GTX 8800 (NVIDIA

Corp., Sta. Clara, CA, USA), for example, features 128 cores spread among 16 multiprocessors,

Copyright © 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2011; 23:2477–2495

DOI: 10.1002/cpe

GIBRALTAR 2481

whereas the GeForce GTX 285 (NVIDIA Corp., Sta. Clara, CA, USA), contains 240 cores spread

among 30 multiprocessors [15]. These cores are designed to be effective for many threads of exe-

cution as small as a few instructions. In the context of parity generation, each set of bytes in the

data stream (i.e., byte b of all buffers) can be modeled accurately as an independent computation.

In the approach presented here, each thread is responsible for 4 B per disk ‡; this takes advantage

of the relatively wide 384-bit memory bus of the GeForce GTX 285, which allows multiple threads

to transfer all 32 bits each in parallel. It is unnecessary to load each thread with a significant por-

tion of the workload to achieve good performance, even though this may result in many thousands of

threads. Therefore, each thread can remain relatively small, and the GPU’s scheduling of the threads

can efficiently accomplish the work of creating parity for many megabytes of data at a time.

Each 200-series multiprocessor contains eight cores and a shared memory. This shared memory

is banked, allowing up to 16, 32-bit accesses to occur in parallel, and is as fast as registers for each

core. Bank conflicts can adversely affect performance because they can reduce the parallelism of

memory accesses. Given the previously mentioned 30 multiprocessors of the GeForce GTX 285,

each thread within a half-warp (a group of coscheduled threads that may have conflicting memory

accesses, or 16 threads per 8-core multiprocessor in the 200-series GeForce GPUs) can access a sep-

arate bank of memory, allowing up to 240 table lookup operations in two clock cycles throughout

the GPU. Unfortunately, it is difficult to manage the tables in each shared memory block to elim-

inate conflicts completely because the table accesses can be completely random. Mapping random

accesses to memory banks invokes the same statistics as the birthday problem [30]. The birthday

problem is the observation that, given a number of random selections from a finite group of val-

ues (e.g., the birthdays of people in a room), the probability of having multiple selections match

increases quickly with the number of random selections made. A match for memory bank accesses

equates to a conflict if the threads are not accessing the same address.

Simulations of this application’s workload (i.e., random lookup operations within 256-B tables)

have shown that there are on average 2.92 conflicting accesses to satisfy simultaneous random table

lookup operations for a half-warp. On the GeForce GTX 285, this corresponds to an overall reduc-

tion in average performance to approximately 41.1 lookup operations per clock across the GPU§.

Although this is significantly less than the peak of 120 accesses per clock, this is also significantly

better than the one lookup per clock on a Core i7 CPU with four cores (based on a four-cycle

latency for accessing data in the L1 cache [31]). This corresponds to a 20x performance superiority

of a 1.5 Ghz GeForce GTX 285 when compared with a 3.0 Ghz Intel quad-core Core i7 processor

(Intel Corp, Sta. Clara, CA, USA).

Another interesting hardware feature benefiting Reed–Solomon coding is the support for constant

memory values. As an architecture that deals primarily in accessing read-only textures for mapping

onto polygons, GPUs require fast constant accesses to provide high graphics performance¶. Unlike

other types of memory within the CUDA architecture, constant memory is immutable. Therefore,

to increase performance of constant memory accesses, each multiprocessor’s constant accesses are

cached. Once data is loaded into this cache, accesses to this data are, like shared memory, as fast

as register accesses. With this in mind, the constant memory is a prime location for the information

dispersal matrix. The matrices are small, and each element is accessed in lock-step across all cores

within a multiprocessor.

To reduce register usage, the computations are arranged on the GPU as follows. The 4-B output

values (i.e., the computed parity) are accumulated in registers. The input values (i.e., the user data)

are read one buffer at a time, used in all necessary computations, and overwritten with the data

bytes from the next buffer. The computations are arranged in this manner because k > m in most

situations, so storing the partially computed parity bytes is less expensive than storing all of the data

bytes. This efficiency is enabled by the loop ordering, which is as follows.

‡The use of 4 B per disk per thread differs from the approach used in the first effort [11]. Efficiency was improved by
reducing the size of operands and fetches from the main memory to the size of the memory banks of the GPU.

§This is an imprecise calculation, as the interactions with the thread scheduler are complex, but this is a reasonable
estimate.

¶This fact is derived from the emphasis on texture fill rates in marketing materials for consumer GPUs. The texture fill
rate is the theoretical limit of how fast a GPU can apply a texture to a polygon.

Copyright © 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2011; 23:2477–2495

DOI: 10.1002/cpe

2482 M. L. CURRY ET AL.

The sh_log[256] and sh_exp[256] variables are shared memory arrays initialized at the

beginning of the kernel that hold the log and exp tables. These tables are used to multiply elements

with the method summarized by Equation 5. The in variable, stored in a register, holds the data

bytes currently being processed, whereas the out[M] array (also stored in registers) holds the par-

ity as it is being computed. Their data type is a union of four char variables and an int variable,

where in.b[i] is the i th byte, and in.f is the contents of the entire data structure. This allows

independent addressing of the bytes within the kernel for calculations, but wider data types for

accessing global GPU memory.

4.1. Reed–Solomon Decoding

One major contribution of this work is the improvement over previous GPU-based decoding per-

formance [19]. The implementation of coding presented in this work is already highly optimized.

From the perspective of RAID, decoding should be as fast so that performance of the server is not

degraded upon failure of a disk. To ensure adherence to this performance requirement, the authors

decided to make the implementations of coding and decoding on the GPU as similar as possible.

When designing a decoding routine, there is a design decision to be made about whether buffers

must remain ordered, the user of the routine may be allowed to choose arbitrary orderings of buffers,

or some combination of the two. If the buffers are ordered, the kernel has no static knowledge of

which buffers require recovery, resulting in a need for indirect indexing through a table of failed

buffers provided by the user. By imposing a partial ordering on the buffers, the library can statically

determine how calculations should be performed without indirect indexing so as long as the genera-

tion matrix is adjusted to reflect buffer orderings. Therefore, in Gibraltar, a buffer ordering where all

good buffers are listed at the beginning of the buffer space is required. Further, memory for decoded

buffer contents is reserved after the original buffers within the buffer space. There are two further

arguments that justify imposing this alternative partial order:

� Contents of the buffers for data are not typically resident in the memory of the host performing

the decoding until requested. Instead, they are spread over devices (or another host) that can

become unavailable because of failure or fault. Therefore, a transfer must be incurred between

the host and device, and the host is free to place the contents of the transfer anywhere in its

memory.

� If k is significantly greater than m, there are simple manners of changing the order of the

buffers to satisfy the layout requirement quickly in CPU memory. If 1 6 q 6 m buffers have

failed, only q buffers must be moved within the buffer space after decoding.

The following example demonstrates the desired reordering requirements, along with a descrip-

tion of the quick reordering method. In an example k D 4, m D 4 coding system, codes are generated

in a straightforward way. An overdetermined information dispersal matrix A is generated. To gen-

erate the parity vector c, one multiplies the lower m rows of A (usually denoted as F) by the data

vector d . The memory layout for such an operation is simple, as each buffer is arranged linearly in

memory. (See the API discussion for more information.) It is known at compile time where the input

Copyright © 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2011; 23:2477–2495

DOI: 10.1002/cpe

GIBRALTAR 2483

bytes and output bytes are for a given step, so the generation routine can be highly efficient. Indices

do not need to be read from memory, but are computed. This simplicity allows many optimizations,

such as unrolling of loops within the kernel by the compiler.

However, there is some variability in how a recovery can be accomplished. Suppose that devices

0, 2, 3, and 5 fail. The state is now represented by the following equation, with unavailable elements

denoted with a question mark.

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

F0,0 F0,1 F0,2 F0,3

F1,0 F1,1 F1,2 F1,3

F2,0 F2,1 F2,2 F2,3

F3,0 F3,1 F3,2 F3,3

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

0

B

B

B

@

d0‹

d1

d2‹

d3‹

1

C

C

C

A

D

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

d0‹

d1

d2‹

d3‹

c0

c1‹

c2

c3

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

(6)

The goal of this operation is to solve for missing portions of d with the present portions of e, which

includes elements of d and c. By construction, A has full rank, so rows may be eliminated without

losing information until only k rows remain. Doing so requires removing the corresponding ele-

ments of e to maintain the correctness of the equation. The vector e and A are modified (creating

e0 and A0, respectively) to preserve the equality, yet reflect in e0 only the elements that have not

been lost.

0

B

B

B

@

0 1 0 0

F0,0 F0,1 F0,2 F0,3

F2,0 F2,1 F2,2 F2,3

F3,0 F3,1 F3,2 F3,3

1

C

C

C

A

0

B

B

B

@

d0‹

d1

d2‹

d3‹

1

C

C

C

A

D

0

B

B

B

@

d1

c0

c2

c3

1

C

C

C

A

(7)

Pre-multiplying each side by A0�1 will yield the desired configuration that will yield the missing

data elements with only the known data elements.

0

B

B

B

@

d0‹

d1

d2‹

d3‹

1

C

C

C

A

D

0

B

B

B

@

0 1 0 0

F0,0 F0,1 F0,2 F0,3

F2,0 F2,1 F2,2 F2,3

F3,0 F3,1 F3,2 F3,3

1

C

C

C

A

�1 0

B

B

B

@

d1

c0

c2

c3

1

C

C

C

A

(8)

The properties of finite field arithmetic and the methods of generation for A will ensure that these

equalities hold, A0 is invertible, and all elements generated are within the bounds specified by the

domain of the code (e.g., 8-bit values) [27].

One obvious optimization would be to not explicitly perform any of the row multiplications for

elements that are already present in d . This requires a vector that indicates the buffers that need

recomputing. In particular, to accomplish the decoding task on a GPU, this vector must be copied

into every thread block, and referenced heavily via indirect indexing, reducing the rate of finite

field multiplications that may be computed. To improve efficiency, the equations and buffers are

reordered. The change is original, but simple: When creating the matrix for recovery from the

initial information dispersal matrix, one rearranges rows of A and e so that data elements still

present in e are in the lower portion of the matrix, then ignore the lower rows when performing

Copyright © 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2011; 23:2477–2495

DOI: 10.1002/cpe

2484 M. L. CURRY ET AL.

the multiplication. The problem now more closely resembles a generation problem, with no need

for indirect indexing on the GPU. The previous example is now recast into the following equation:

B D

0

B

B

B

@

0 1 0 0

0 0 1 0

0 0 0 1

1 0 0 0

1

C

C

C

A

, (9)

B

0

B

B

B

@

d0‹

d1

d2‹

d3‹

1

C

C

C

A

D BA0�1

0

B

B

B

@

d1

c0

c2

c3

1

C

C

C

A

. (10)

In this formulation, the only extra parameter (aside from the coding scheme and the buffer space’s

address) that is required to work efficiently is the quantity of data buffers that need recovery. There

will always be a need for k data or parity elements to recover the missing data elements, so buffers

can be statically arranged such that k intact buffers are at the beginning of the memory region, and

the remaining buffers requiring recovery can be output in the next portion of the buffer region. The

order of the buffers themselves is unimportant; instead, it is the ability for the kernel to refer directly

to memory in a streaming manner without the use of a table of indices, as that table has been prop-

agated into the buffer order and information dispersal matrix. This propagation allows for direct,

efficient access to the data.

5. PERFORMANCE RESULTS

An experimental program was constructed to measure the performance of Gibraltar. It encodes a

set of data at varying values of k C m with each buffer occupying one megabyte of memory. The

program erases min.k, m/ random data buffers, then recovers their original contents. The same

operations are performed using Jerasure [20], a well-known library implementing many erasure

correcting codes including Reed–Solomon codes. The results are reported from the perspective of

user-visible throughput, as the basic operation is cast into the idea that this library implements a fil-

ter for ensuring reliability or recovery of data intended for other purposes. An example case would

be that coding is being performed on 10, 1-MB buffers in a k D 6, m D 4 configuration. A user

does not interact with parity, so throughput is calculated by dividing the size of the data (6 MB) by

the time required to code it. Similarly, the throughput for recovery is calculated to be the size of the

data (6 MB) divided by the time required to return that data.

It is important to note that recovery operations in Gibraltar are only intended to recover data

buffers, and that coding buffers should be recovered with a subsequent call to a generation routine.

This is different from Jerasure, as the coding buffers are recovered automatically if missing, even

when the coding buffers are not needed or devices to store the coding buffers are unavailable. To

ensure fair benchmarking, only data buffers are erased. The CPU operations are performed using an

unaltered version of the latest available Jerasure, version 1.2. The machine used in this test includes

an Intel Extreme 965. The memory used is 6 GB of tri-channel DDR3 memory clocked at 1333 Mhz.

The GPU used is an NVIDIA GeForce GTX 285.

Gibraltar was designed to allow support for a wide range of back-end devices, some of which

allow certain significant optimizations pertaining to memory allocation. For example, the NVIDIA

CUDA API allows for allocation of memory regions that are not swappable by the virtual memory

subsystem and are mapped into the GPU’s address space, allowing increased computation and PCI-

Express traffic overlap. To allow the user programs to transparently access these features, Gibraltar

API calls gib_alloc and gib_free have been defined as wrappers to these specialized memory

management routines. These wrappers have been used for these performance evaluations. A user is

allowed to use standard malloc and free calls, but can experience reduced performance.

Copyright © 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2011; 23:2477–2495

DOI: 10.1002/cpe

GIBRALTAR 2485

Given that the focus of Gibraltar is integration into a software RAID system, it is illustrative to

compare the bandwidth achieved by Gibraltar to that of a modern disk. Given recent benchmarks

of solid state drives and more conventional disks [32], 100 MB/s is a representative average band-

width. It is clear from Figure 1c, which shows Jerasure and Gibraltar performance for kC4 codings,

that Gibraltar can provide enough performance to support more than two dozen disks with enough

fault tolerance to withstand failure of any four disks in the array. This is quite different from nested

RAID levels such as RAID 6+0, which can combine two or more RAID 6 sets into an outer RAID 0

volume. RAID 6+0 can allow up to four failures, but not allow any four arbitrary disks to fail. Such

failures must be limited to two per inner RAID 6 volume. Figure 1a shows that Gibraltar can support

RAID 6 arrays at full streaming bandwidth for at least three dozen data disks.

An interesting performance characteristic is that Gibraltar has nearly identical performance for

coding and decoding, whereas Jerasure tends to experience reduced performance for recovery. This

is Gibraltar’s expected behavior, as the generation and recovery are made to be extremely simi-

lar. Jerasure does not, however, reconfigure the matrix in memory as needed, but instead indexes

within it. Several factors can cause Jerasure to be slower for decoding, including having less

prefetch-friendly access patterns and creating the need for additional memory reads for indirect

array accesses. A further note: When m > k, the tests performed show an increase in performance

because of the restrictions on which buffers may be erased during this experiment. Although the tests

show the efficiency of Gibraltar performing coding tasks involving large data transfers, single-stripe

writes are an important use-case for RAID controllers. Single-stripe writes can cause workloads that

are restricted to 64 KB of data per buffer. Although such workloads can potentially show reduced

performance by restricting the ability to overlap computation and PCI-Express bus transfers, it is

possible to bundle several non-contiguous updates into a single Gibraltar call by packing the stripes

in the buffer space. Therefore, many requests from distinct readers and/or writers can be processed

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

2 4 6 8 10 12 14 16

T
h
ro

u
g
h
p
u
t
(M

B
/s

)

k

Jerasure Coding
Jerasure Decoding

Gibraltar Coding
Gibraltar Decoding

(a) = 2

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

2 4 6 8 10 12 14 16

T
h
ro

u
g
h
p
u
t
(M

B
/s

)

k

Jerasure Coding
Jerasure Decoding

Gibraltar Coding
Gibraltar Decoding

(b) = 3

 0

 500

 1000

 1500

 2000

 2500

 2 4 6 8 10 12 14 16

T
h
ro

u
g
h
p
u
t
(M

B
/s

)

k

Jerasure Coding
Jerasure Decoding

Gibraltar Coding
Gibraltar Decoding

(c) = 4

k m

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500
 4000
 4500

T
h

ro
u

g
h

p
u

t
(M

B
/s

)

"limit.dat" using 1:2:4

 2 4 6 8 10 12 14 16

 2 4 6 8 10 12 14 16

 0
 500
 1000
 1500
 2000
 2500
 3000
 3500
 4000
 4500

(d) Encoding Performance for = 2 : 16, = 2 : 16mm

m m

n

Figure 1. Performance and comparison with Jerasure.

Copyright © 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2011; 23:2477–2495

DOI: 10.1002/cpe

2486 M. L. CURRY ET AL.

at the same throughput as single large contiguous operations. However, there are workloads that

may not be able to take advantage of these packing techniques. Figure 2 shows the impact of vary-

ing buffer sizes on the throughput of kC2, or RAID 6, coding performance. Although using smaller

buffers can significantly impact performance, performance decreases less than 50% for a factor of 32

reduction in workload size. Gibraltar does not provide support for partial stripe updates, but instead

requires parity generation from updated data and unmodified data within a stripe. With the advent

of multiple kernel support, stripe updates may have become feasible. Currently, it is undetermined

which strategies are best for partial stripe updates, and how this will change with GPU architectures.

6. FUTURE TRENDS

To demonstrate PCI-Express and compute throughput for Reed–Solomon coding on the GeForce

GTX 285, three modes of operation have been tested with 1-MB buffers:

� Operations performed on host memory. This is the typical mode of operation. This is denoted

as ‘total throughput’ in Figures 3a, 3b, and 3c.

� Operations performed on GPU memory. Given the high bandwidth of GPU memory compared

with PCI-Express bandwidth, this is an approximation of the maximum performance of the

GPU kernel without the impacts of PCI-Express transfers. This is denoted as ‘GPU throughput’

in Figures 3a, 3b, and 3c.

� No operations performed on host memory, while performing transfers as if the kernel were

performing computations. This is an approximation of the maximum performance of the

PCI-Express bus without the impacts of GPU computation. This is denoted as ‘PCI-Express

throughput’ in Figures 3a, 3b, and 3c.

Results show that, for a RAID 6 workload (Figure 3a), the system is well-balanced. For a RAID-TP

workload (Figure 3b), the balance is also good. The 285 starts to show more degraded balance with

m D 4 (Figure 3c) and beyond (Figure 4).

One can see the effects of the overlapping computation and communication via the non-

parallelizable overheads incurred, as represented by the near, but not precise, approximation of

the minimum performance of PCI-Express bandwidth and compute throughput. This is interesting

because the tendency for performance of the total system is to trend the PCI-Express performance

with significant overhead (approximately 1 GB/s of throughput) when bandwidth-bound. This over-

head is much smaller when coding becomes computation-bound. This is due to the large amount of

data that must be transported to and from the GPU before work can start and after work has ended,

respectively. The volume of data is required by the large number of GPU cores, and the NVIDIA

runtime’s attempts to use the entire GPU’s computational capacity.

Such performance characteristics at this stage imply that, to have appreciably large performance

improvements for m D 2 and m D 3, both the PCI-Express performance and the computation power

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

2 4 6 8 10 12 14 16

T
h
ro

u
g
h
p
u
t
(M

B
/s

)

k

1 MB Buffer

512 KB Buffer

256 KB Buffer
128 KB Buffer
64 KB Buffer
32 KB Buffer

Figure 2. Effects on coding throughput of varying buffer size for k C 2 codings.

Copyright © 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2011; 23:2477–2495

DOI: 10.1002/cpe

GIBRALTAR 2487

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

2 4 6 8 10 12 14 16

T
h

ro
u

g
h

p
u

t
(M

B
/s

)

k

GPU Throughput
PCI-Express Throughput

Total Throughput (GPU + PCI-Express)

(a) m = 2

0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

2 4 6 8 10 12 14 16

T
h

ro
u

g
h

p
u

t
(M

B
/s

)

k

PCI-Express Throughput
GPU Throughput

Total Throughput (GPU + PCI-Express)

(b) m = 3

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

2 4 6 8 10 12 14 16

T
h

ro
u

g
h

p
u

t
(M

B
/s

)

k

PCI-Express Throughput

GPU Throughput

Total Throughput (GPU + PCI-Express)

(c) m = 4

Figure 3. Performance of individual components.

-1500

-1000

-500

 0

 500

 1000

 1500

 2000

 2500

2 4 6 8 10 12 14 16

E
x
c
e
s
s
 P

C
I
C

a
p
a
c
it
y

k

Figure 4. Excess PCI-Express performance over GPU performance for m D 2 : : : 16; higher lines
correspond to greater m.

within the GPU must increase in concert. However, if GPU power increases disproportionately, it

becomes possible and reasonable to perform encodings and decodings with increasing values of m

at higher rates.

Copyright © 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2011; 23:2477–2495

DOI: 10.1002/cpe

2488 M. L. CURRY ET AL.

Another view into this data is the mismatch between PCI-Express bandwidth and computational

capacity of the GPU, as illustrated by Figure 4. Each line on the graph corresponds to a particu-

lar value for m. Currently, the only value of m that, for all values of k, has excess computational

capacity compared with PCI-Express bandwidth is m D 2, which corresponds to RAID 6. m D 3

comes much closer for many useful values of k to being balanced, but extra compute capacity in

future GPUs will be useful in bringing the other values of m into reach of fully using PCI-Express

bandwidth. Furthermore, solutions that trade PCI-Express bandwidth for extra computation power

remain effective. For example, it would be possible to split the m D 4 computation across two GPUs

by copying all data buffers to both GPUs, then have each GPU compute two of the parity buffers

each.

Unfortunately, the major GPU architectural feature that most limits the speed of this compu-

tation is the same feature that makes the GPU attractive: The multi-banked memories. Although

these memories are useful for making these computations more efficient, there are changes that can

improve performance of random table lookup operations in shared memory. Through simulation,

the authors have quantified the effects of many potential design changes to the 200-series NVIDIA

GPUs, which currently have on average 2.92 conflicting accesses per half-warp.

� Increase the number of banks per shared memory unit, but reduce the core-to-bank ratio. By

increasing the banks to 32 per shared memory unit and keeping eight cores per streaming mul-

tiprocessor, the number of conflicting accesses is reduced to 2.25 per half-warp. This is distinct

from the design changes of 400-series GPUs, where the number of cores increased with the

number of banks [9], resulting in a streaming multiprocessor with 32 banks and 32 cores, with

any thread in the warp potentially causing interfering accesses with other thread. This change

causes an increase in conflicting accesses to 3.15 per warp.

� Decrease the number of cores per multiprocessor, and increase the number of multiprocessors.

This course of action would reduce the effect of the birthday problem by reducing the number

of competing cores. This would likely be an expensive option, as the number of shared memory

units on the chip would grow quickly, but it would also be highly effective. Halving the number

of cores to four, which run 16 threads together, would reduce conflicting accesses to 2.01 per

half-warp, whereas two cores (with eight threads) would only have 1.32 conflicting accesses

per half-warp. A single core for four threads and the same shared memory would average 1.06

conflicting accesses per half-warp.

� Increase the speed of the shared memory. The 200-series GPUs requires two clock cycles to

satisfy a shared memory request, which allows conflicting accesses between threads that are

not necessarily running simultaneously. Allowing the memory to satisfy single-byte requests

in a single memory cycle would decrease the number of conflicting accesses per half-warp to

2.01. This would have the same effect as halving the number of cores per shared memory unit

and doubling the number of shared memory units.

A potential feature that could improve the speed of random lookup operations in small tables is the

ability to load a small array into a particular bank and index into that table. The programmer could

then load multiple copies of the table simultaneously, querying each through different threads with-

out conflict, or with controlled conflict. The authors experimented with this approach via computing

indices, but the compute overhead was somewhat worse than the delay incurred by bank conflicts.

7. CONCLUSIONS AND FUTURE WORK

This paper describes a method of performing Reed–Solomon coding on graphics processors and

general-purpose Reed–Solomon coding library, Gibraltar||, a prototype library that is suitable for use

in applications requiring efficient data resiliency in a manner similar to RAID. Its immediate value

stems from using CUDA-enabled GPUs to perform coding and decoding tasks, which has proven

to be between fivefold and 10-fold faster than a well-known CPU code running on a processor that

costs three times as much as the GPU used by Gibraltar.

||Gibraltar is available at http://www.cis.uab.edu/hpcl/gibraltar, along with sample applications to test it.

Copyright © 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2011; 23:2477–2495

DOI: 10.1002/cpe

GIBRALTAR 2489

There are at least two storage situations for which this library can be beneficial. First, in the realm

of high-performance storage systems, software RAID can be implemented that can provide better

reliability against disk failure than any RAID hardware available. This library can also be used for

end-user applications without the availability of local high-speed storage resources. Even relatively

modest GPUs are capable of performing Reed–Solomon coding, leading to a situation where a home

computer can create a reliable online backup system by aggregating storage from many providers

and administrative domains. Such backups can be performed without incurring high load on a sys-

tem’s CPU, whereas also using only a small amount of the computational capacity of a GPU. This

frees much of the CPU computation resources on the system for other applications.

Several other non-storage applications can benefit from this high-speed Reed–Solomon coding.

For example, new types of high-speed encryption and pseudorandom number generation become

feasible [33]. Similarly, secret sharing can be performed with large secrets at high speeds [34].

This work demonstrates the applicability of certain multicore architectures to Reed–Solomon

coding, as well as provides analysis into the effects of the design parameters for these archi-

tectures. Guidance has been provided as to the most beneficial architectural decisions related to

Reed–Solomon coding, which apply equally well to other applications with the same data access

patterns.

Gibraltar is intended to form the basis of a robust, high performance, and low cost alternative

to traditional types of RAID hardware, and has been demonstrated to be effective in a prototype

RAID system [35]. Performance indicates that reasonably sized RAID arrays can be supported with

inexpensive GPUs with good performance in both normal operation and degraded mode. Further,

the library’s flexible nature allows for the parity of an array to scale with its size, unlike the standard

set of RAID levels that only allow for a set maximum reliability.

APPENDIX A: GIBRALTAR APPLICATION PROGRAMMING INTERFACE

To address the need for improved RAID implementations, as well as provide this functionality to

other software, the authors have created Gibraltar, a C library using NVIDIA’s CUDA technology.

Gibraltar provides data parity and recovery calculations through a generic, flexible API that hides

the details of where the computations are being performed. Although Gibraltar does support GPU

computation, it can allow for CPU failover, as well as the ability to use alternate computational

methods with the same API. Furthermore, it is designed to provide the higher performance of a

GPU whereas also being easy to use. This section provides an overview of the API, along with

comments about design decisions.

gib_init

int gib_init(int k, int m, gib_context *gc);

This function initializes the Gibraltar runtime in order to perform k C m codings. Gibraltar is

capable of performing many different types of codings simultaneously, so this function may be

called several times with varying values for k and m. The gib_context object is used in future

calls in order to identify the type of coding to be performed. As will be verified by examining the

further function definitions, the return values are error codes, whereas the products of the functions

are returned by reference.

When this function is called, the GPU is initialized (if necessary), the routines to perform coding

and decoding are compiled for the specific values of k and m (if necessary), and the programs are

loaded into the GPU for later use.

gib_destroy

int gib_destroy(gib_context gc);

When the user no longer anticipates performing the coding represented by a context, its resources

on the GPU can be released for other uses. Once destroyed, gc can no longer be used by the program

unless it is re-initialized.

Copyright © 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2011; 23:2477–2495

DOI: 10.1002/cpe

2490 M. L. CURRY ET AL.

gib_alloc

int gib_alloc(void **buffers, int buf_size, int *ld, gib_context gc);

Gibraltar works with the assumption that all buffers are allocated end-to-end in main memory,

with the start of each buffer separated by ld, which is an abbreviation of ‘leading dimension’,

bytes, while the first buf_size bytes are used. When buffers are placed directly next to each

other, ld D buf_size. In general, ld > buf_size, and ld is used to satisfy some memory

alignment constraint. Notice that ld is a return value instead of a parameter, as ld is determined by

the library based on the target device. The amount of total memory allocated is ld� .k C m/.

It is not necessary to allocate buffers with this function. However, there are often ways to increase

performance depending on the underlying device (e.g., by using specialized memory allocation

functions, such as CUDA’s cuMemAllocHost [10]), or by altering the stride of memory accesses

during the coding process (as governed by ld). For example, with certain methods of CPU cod-

ing, we noticed that performance doubled if ld was not divisible by two. However, it is also not

necessary to use ld as given.

gib_ free

int gib_free(void *buffers, gib_context gc);

Gibraltar’s allocation function is able to use non-standard memory allocation functions, so the

user may not know how to appropriately free the memory associated. Furthermore, the use of func-

tions can change over time because of limited resources or the size of allocation. gib_free is used

to free memory allocated with gib_alloc.

gib_generate

int gib_generate(void *buffers, int buf_size, gib_context gc);

This function performs the encoding of the data buffers into parity buffers according to the param-

eters set by the gib_context. The buf_size is the size of one coding buffer, or ld as returned

by gib_alloc.

The situations, where data structures are coded for the sake of coding, are rare. Coding opera-

tions are usually part of another data moving task, such as writing to files, transfer over networks,

etc. Furthermore, in order to improve performance, the library encourages that applications load

data into buffers pre-allocated with gib_alloc. To take advantage of these conditions, Gibral-

tar imposes a particular style of layout on the data that it operates upon, which is in the form of a

multi-dimensional array embedded within a single array.

Figure A.1 illustrates how the layout is interpreted. In short, the buffers are situated in memory

such that byte i of data buffer j (i.e., Dj ,i) is at the location buf[j � ld C i]. Once the routine

Data Buffer 0

Data Buffer 1

Data Buffer k − 1

Redundancy Buffer 0

Redundancy Buffer 1

Redundancy Buffer m − 1

...
...

Figure A.1. Buffer layout for gib_generate.

Copyright © 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2011; 23:2477–2495

DOI: 10.1002/cpe

GIBRALTAR 2491

has been run, the output is situated at the end of the allocated space, such that byte i of parity buffer

j (i.e., Cj ,i) is at location buf[.k C j / � ld C i]. The output can be considered to have been

computed by a function RS such as that for byte i in all input buffers as follows:

RS.fD0,i , D1,i , : : : , Dk,ig/ D fC0,i , C1,i , : : : , Cm,ig

gib_recover

int gib_recover(void *buffers, int buf_size, int *buf_ids, int re-

cover_last, gib_context gc);

This function, given k intact buffers, will regenerate the contents up to f 6 m of the remaining

buffers, which have presumably lost their data. The buf_ids variable contains a list of integers

identifying the order of the buffers found in the variable buffers.

Although gib_generate took some liberties in dictating the layout of the buffers in mem-

ory, this function is more strict in some ways, less strict in others. Figure A.2 indicates the layout

required to use gib_recover.

In order to use the function, all of the k intact buffers should be positioned in the first k�ld bytes

of buffers. The order is not imposed by Gibraltar, i.e. they do not have to appear in sorted order.

However, buf_ids should be populated with the order of the buffers as given.

The last entries in buf_ids should be set to the identities of the buffers that the application

wishes to have recovered. The variable recover_last indicates the value f , which is the num-

ber of buffers that should be recalculated. When the function returns, the last f buffers will contain

the original data.

If it is not necessary to recover m buffers, it is acceptable to pass only k C f entries. However,

all buffers should be situated adjacent to each other with no gaps (except constant stride between

buffers as provided for by the ld parameter.)

APPENDIX B: OPERATIONAL EXAMPLE AND DESCRIPTION

Although Gibraltar does make use of GPUs to accomplish the vast majority of the computations

required for Reed–Solomon coding, it is not necessary to use a GPU to implement all operations.

Many of the operations, which are performed, require insignificant amounts of time to execute com-

paratively. With this simplified, faster implementation, the GPU is only required to perform large

numbers of small matrix–vector multiplications. All other matrix algebra, including the necessary

factorizations and inversions, occur within the CPU.

Intact Buffer[buf ids[0]]

k − 1]]

Recovery Buffer[buf ids[k]]

Recovery Buffer[buf ids[k + 1]

Recovery Buffer[buf ids[k + f − 1]]

...
...

Intact Buffer[buf ids[1]]

Intact Buffer[buf ids[

Figure A.2. Buffer layout for gib_recover.

Copyright © 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2011; 23:2477–2495

DOI: 10.1002/cpe

2492 M. L. CURRY ET AL.

An example program

In order to illustrate the way Gibraltar can be used, this section will present an example program.

Its operation is simple: Perform a coding operation to yield parity, erase some buffers, and decode

the remaining buffers to yield the original data.

Initializing Gibraltar. A context is used to manage Gibraltar’s operation. Different kernels are

required to perform different coding tasks, and one application can reasonably use multiple k C m

coding schemes simultaneously. To satisfy this requirement, a context is referenced in each call,

which identifies which compiled kernels to execute when performing tasks.

Although Gibraltar does make use of compile-time knowledge in order to allow static optimiza-

tion of the kernels, the user executable is not required to manage the configuration of Gibraltar.

Initialization of a context will compile kernels on demand for the appropriate matrix–vector oper-

ations. Such kernels are cached for later initializations with the same parameters. As such, the first

use of a particular encoding involves a delay.

After executing the above listing, the handle gc can now be used for coding operations.

In order to code and decode buffers, a buffer space must be allocated. To perform a k C m en-

coding on buffers of size s, a region of size .k C m/ � s must be allocated. Gibraltar includes an

allocation function which can improve the performance of the GPU functions by introducing an

optional stride between buffers and using specialized memory allocation routines. Such allocation

routines can prepare buffers for high-speed transfers over the PCI-Express bus.

Because Gibraltar, via its context, has already obtained the value of k C m, it is only necessary to

provide s. In this example, Gibraltar will be used to manage an array of integers.

At this point in the program, the user can fill the buffer with the data, which requires coding.

Coding. Once again, this call requires no explicit mention of k or m. The coding function call is

called gib_generate, as it is simplest to view the coding task as generating parity data from orig-

inal data. Conceptually, this is a very simple call. The initialization routine had already calculated

F , so the only task of this function is to manage the GPU.

Losing data. Any interesting use of Gibraltar involves unavailability of data. This example will

assume that an integer array, called fail_config of size k C m, contains a zero for a buffer that

is available or a one for a buffer that is not available. At most m entries in fail_config may be

set to one.

Copyright © 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2011; 23:2477–2495

DOI: 10.1002/cpe

GIBRALTAR 2493

Decoding. Technically, the only requirements for buffer positioning for the decoding routine are:

1. The buffers indicated in the list of buffer assignments within the first k entries must be

available and located in the same order at the beginning of the buffer space, and

2. the only buffers indicated for recovery should be data buffers.

However, in order to attain the highest performance when the application requires buffers to be in

order, some previously mentioned layout requirements must be followed. If buffer 0 6 i < k, which

is a data buffer, is available, it should be positioned in the i th buffer position within the buffer space.

The remaining spaces can be filled with available coding buffers. Upon completion of the routine,

the user can move the contents of the recovered buffers, which are located after initial k available

buffers within the buffer space, into proper positions.

Note: The function is called gib_recover, as this routine recovers lost data from available

data.

At the termination of this portion of the program, the first k buffers contain their original contents.

Copyright © 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2011; 23:2477–2495

DOI: 10.1002/cpe

2494 M. L. CURRY ET AL.

REFERENCES

1. Chen PM, Lee EK, Gibson GA, Katz RH, Patterson DA. RAID: High performance, reliable secondary storage. ACM

Computing Surveys 1994; 26(2):145–185.

2. Reed IS, Chen X. Error-control Coding for Data Networks. Kluwer Academic Publishers: Dordrecht, Netherlands,

1999.

3. Blaum M, Brady J, Bruck J, Menon J. EVENODD: An optimal scheme for tolerating double disk failures in RAID

architectures. In Proceedings of the 21st Annual International Symposium on Computer Architecture, 1994; 245–254.

4. Reed IS, Solomon G. Polynomial codes over certain finite fields. Journal of the Society for Industrial and Applied

Mathematics 1960; 8(2):300–304.

5. Corbett P, English B, Goel A, Grcanac T, Kleiman S, Leong J, Sankar S. Row-diagonal parity for double disk failure

correction. In Proceedings of the 3rd USENIX Symposium on File and Storage Technologies (FAST 04), 2004; 1–14.

6. Plank JS. A new MDS erasure code for RAID-6. Technical Report CS-07-602, University of Tennessee, September

2007.

7. Peter Anvin H. The mathematics of RAID-6. Available from: http://kernel.org/pub/linux/kernel/people/hpa/raid6.

pdf, [Accessed on January 6, 2010].

8. Foley JD, van Dam A, Feiner SK, Hughes JF. Computer Graphics: Principles and Practice in C, 2nd edn.

Addison-Wesley Professional: Boston, Massachusetts, 1995.

9. NVIDIA Corporation. NVIDIA’s next generation CUDA compute architecture: Fermi, 2009.

10. From a few cores to many: A tera-scale computing research overview, 2006. Available from: http://download.intel.

com/research/platform/terascale/terascale_overview_paper.pdf.

11. Carr NA, Hoberock J, Crane K, Hart JC. Fast GPU ray tracing of dynamic meshes using geometry images. In GI ’06:

Proceedings of Graphics Interface 2006. Canadian Information Processing Society: Toronto, Ont., Canada, 2006;

203–209.

12. Galoppo N, Govindaraju NK, Henson M, Manocha D. LU-GPU: Efficient algorithms for solving dense linear sys-

tems on graphics hardware. In SC ’05: Proceedings of the 2005 ACM/IEEE Conference on Supercomputing. IEEE

Computer Society: Washington, DC, USA, 2005; 3.

13. Patidar S, Bhattacharjee S, Singh JM, Narayanan PJ. Exploiting the shader model 4.0 architecture. Technical Report

145, International Institute of Information Technology, Hyderabad, 2007.

14. Göddeke D, Strzodka R, Turek S. Accelerating double precision FEM simulations with GPUs. In Proceedings of the

18th Symposium on Simulation Technique (ASIM 2005), Hülsemann F, Kowarschik M, Rüde U (eds). SCS Publishing

House e.V: Erlangen, Germany, September 2005; 139–144.

15. NVIDIA Corporation. NVIDIA CUDA C programming guide, version 3.2, November 2010.

16. AMD. ATI CTM guide, 2006. Available from: http://ati.amd.com/companyinfo/researcher/documents/ATI_CTM_

Guide.pdf, [Accessed on July 27, 2009].

17. AMD. ATI Stream technology: Technical overview, 2008. Available from: http://developer.amd.com/gpu_assets/

Stream_Computing_Overview.pdf,[Accessed on July 27, 2009].

18. Curry ML, Skjellum A, Ward HL, Brightwell R. Accelerating Reed–Solomon coding in RAID systems with GPUs.

In IEEE International Symposium on Parallel and Distributed Processing, 2008, April 2008; 1–6.

19. Curry ML, Ward HL, Skjellum A, Brightwell R. Arbitrary dimension Reed–Solomon coding and decoding for

extended RAID on GPUs. 3rd Petascale Data Storage Workshop held in conjunction with SC08, November 2008.

20. Plank JS, Simmerman S, Schuman CD. Jerasure: a library in C/C++ facilitating erasure coding for storage

applications, - Version 1.2. Technical Report CS-08-627, University of Tennessee, August 2008.

21. Seagate Technology LLC. Barracuda ES.2 data sheet, 2008. Available from: http://www.seagate.com/docs/pdf/

datasheet/disc/ds_barracuda_es_2.pdf.

22. Pinheiro E, Weber W-D, Barroso LA. Failure trends in a large disk drive population. In Proceedings of the 5th

USENIX Conference on File and Storage Technologies. USENIX Association: Berkeley, CA, USA, 2007; 17–28.

23. Schroeder B, Gibson GA. Disk failures in the real world: what does an MTTF of 1,000,000 hours mean to you? In

Proceedings of the 5th USENIX Conference on File and Storage Technologies. USENIX Association: Berkeley, CA,

USA, 2007; 1–1.

24. Pâris J-F, Long DDE. Using device diversity to protect data against batch-correlated disk failures. In StorageSS ’06:

Proceedings of the Second ACM Workshop on Storage Security and Survivability. ACM Press: New York, NY, USA,

2006; 47–52.

25. Bairavasundaram LN, Goodson GR, Pasupathy S, Schindler J. An analysis of latent sector errors in disk drives.

In SIGMETRICS ’07: Proceedings of the 2007 ACM SIGMETRICS international conference on Measurement and

modeling of computer systems. ACM: New York, NY, USA, 2007; 289–300.

26. Grochowski E, Halem RD. Technological impact of magnetic hard disk drives on storage systems. IBM Systems

Journal 2003; 42(2):338–346.

27. Plank JS. A tutorial on Reed–Solomon coding for fault-tolerance in RAID-like systems. Software—Practice &

Experience September 1997; 27(9):995–1012.

28. Lidl R, Niedrreiter H. Introduction to Finite Fields and their Applications. Cambridge University Press: New York,

1994.

29. Raghav B, Dubey PK, Kumar V, Rudra A. Efficient Galois field arithmetic on SIMD architectures. In SPAA ’03:

Proceedings of the Fifteenth Annual ACM Symposium on Parallel Algorithms and Architectures. ACM Press: New

York, NY, USA, 2003; 256–257.

Copyright © 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2011; 23:2477–2495

DOI: 10.1002/cpe

GIBRALTAR 2495

30. DasGupta A. The matching birthday and the strong birthday problem: a contemporary review. Journal of Statistical

Planning and Inference 2005; 130(1–2):377–389. Herman Chernoff: Eightieth Birthday Felicitation Volume.

31. Levinthal D. Performance analysis guide for Intel Core i7 processor and Intel Xeon 5500 processors, version 1.0.

Available from: http://software.intel.com/sites/products/collateral/hpc/vtune/performance_analysis_guide.pdf.

32. Narayanan D, Thereska E, Donnelly A, Elnikety S, Rowstron A. Migrating server storage to SSDs: analysis of trade-

offs. In EuroSys ’09: Proceedings of the fourth ACM european conference on Computer systems. ACM: New York,

NY, USA, 2009; 145–158.

33. Kiayias A, Yung M. Cryptography and decoding Reed–Solomon codes as a hard problem. In Theory and Practice in

Information-Theoretic Security, 2005. IEEE Information Theory Workshop on, Oct. 2005; 48–48.

34. Shamir A. How to share a secret. Communications of the ACM 1979; 22(11):612–613.

35. Curry ML, Ward HL, Skjellum A, Brightwell R. A lightweight, GPU-based software RAID system. In International

Conference on Parallel Processing, 2010; 565–572.

Copyright © 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2011; 23:2477–2495

DOI: 10.1002/cpe

