
Gibrat’s Law for (All) Cities

By JAN EECKHOUT*

Two empirical regularities concerning the size distribution of cities have repeatedly
been established: Zipf’s law holds (the upper tail is Pareto), and city growth is
proportionate. Census 2000 data are used covering the entire size distribution, not
just the upper tail. The nontruncated distribution is shown to be lognormal, rather
than Pareto. This provides a simple justification for the coexistence of proportionate
growth and the resulting lognormal distribution. An equilibrium theory of local
externalities that can explain the empirical size distribution of cities is proposed.
The driving force is a random productivity process of local economies and the
perfect mobility of workers. (JEL D30, D51, J61, R12)

The law of proportionate effect will there-
fore imply that the logarithms of the vari-
able will be distributed following the
[normal distribution].

—Robert Gibrat (1931)

The way the population is distributed across
geographic areas, while continuously changing,
is not random. In fact, there is a strong tendency
toward agglomeration, i.e., the concentration of
the population within common restricted areas
like cities. And while physical geography—riv-
ers, coasts, and mountains—may have played a
crucial role in early settlements, in the current
day and age, the evolution of the population
across geographic locations is an extremely
complex amalgam of incentives and actions
taken by millions of individuals, businesses,
and organizations. Most people will agree that
economic factors are the principal determinant
of the dynamics of city populations. In the last
decade, Detroit, for example, experienced a de-
cline in population as the manufacturing indus-
try in the area suffered a severe downturn. At
the other extreme, when the high-technology
industry was booming, villages, towns, and cit-

ies in the San Francisco Bay area experienced
higher-than-average population growth. In-
creased productivity due to technological
progress in the e-business sector led to the cre-
ation of such new companies as Yahoo! and the
expansion of such existing companies as HP
and Apple. This in turn increased labor demand
and wages, which induced many individuals to
relocate to the Bay area. No doubt an exodus
from the Bay area has been at work since the
technology market crashed at the beginning of
the current decade. This confirms that agglom-
eration and residential mobility of the popula-
tion between different geographic locations are
tightly connected to economic activity.

Given this direct connection between eco-
nomic activity and population mobility, it has
long been recognized that fully understanding
geographic economic activity involves under-
standing population mobility and economic
driving forces.1 A crucial first step is to provide
an accurate description of agglomeration and
population mobility. This involves accounting
for the way the population is distributed over
different geographic locations and accounting
for the evolution over time. Once population
mobility is understood, the second step involves
analyzing the underlying economic mecha-
nisms. Because economic factors are of para-
mount importance in providing incentives for
individuals and businesses to move to different
locations, being able to model the economic
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forces is of direct importance, especially since
different cities are subject to different types of
government policies, both within a city and
between cities. The motives for intervention
often depend on externalities (see Robert E.
Lucas and Esteban Rossi-Hansberg, 2002, for a
discussion). Through their interventions, poli-
cymakers affect economic factors, in particular
equilibrium prices of land and labor and, there-
fore, decisions by individuals and businesses on
where to locate. For example, city-specific
income-tax incentives will affect after-tax
wages and will make certain locations more
attractive than others. This in turn will lead to a
change in the number of people deciding to
establish residence in certain locations. Other
examples include transportation taxes and sub-
sidies within and between cities (for exam-
ple the subsidization of roads, railways, and
airports),2 regional subsidies, and agriculture
subsidies that benefit companies in rural towns.
An equilibrium theory of choice of geographic
location (city, town, or village) driven by mar-
ket wages and property prices is necessary for
the optimal design and evaluation of such
policies.

Unfortunately, the literature has faced sub-
stantial difficulties in the description of popula-
tion mobility. The difficulty derives from a
puzzle caused by two robust empirical regular-
ities. The first empirical regularity is that the
largest cities satisfy Zipf’s law. Despite the ap-
parent chaotic evolution of city populations,
surprising regularities have been observed in the
size distribution of cities. As early as 1682,
Alexandre Le Maı̂tre observed a systematic pat-
tern of the size distribution of cities in France.
He describes how the size of Paris related to two
groups of cities, each of them proportionally
smaller than Paris. But it was not until 1913 that
Félix Auerbach, and then George Kingsley Zipf
in 1949, formally established the first empirical
regularity. They show that within a country, the
size of the largest cities is inversely proportional
to their rank. For example, in the United States,
New York City is roughly twice the size of Los
Angeles, the second largest city, and about three
times the size of Chicago, the third largest city.

The proportionality of rank and size implies that
the upper truncated distribution is the Pareto
distribution3 (or power distribution) with expo-
nent equal to one. Zipf’s finding has been
shown to be robust, both over time and across
countries, though with varying Pareto expo-
nents. The second empirical regularity is that
the growth rate of city populations does not
depend on the size of the city. Even though
growth rates between different cities vary sub-
stantially, there is no systematic pattern with
respect to size, i.e., the underlying stochastic
process is the same for all cities. This is labeled
the proportionate growth process. Empirical re-
search4 has repeatedly shown that city growth is
proportionate: larger cities on average do not
grow faster or slower than smaller cities.

While it is surprising that such regularities
emerge from a highly intricate underlying
mechanism, there is also a puzzle: the two reg-
ularities cannot easily be reconciled.5 In partic-
ular, the proportionate growth process (the
second regularity) gives rise to the lognormal
distribution, not the Pareto distribution (i.e.,
Zipf’s law, the first regularity). This is a well-
known proposition established by Gibrat (1931)
and originally formulated by the astronomer
Jacobus C. Kapteyn (1903): a stochastic growth
process that is proportionate gives rise to an
asymptotically lognormal distribution.6 This is
not to say that a proportionate growth process
plus “something else” cannot give rise to the
Pareto distribution or another distribution.
There is a long tradition in the economics of
income inequality starting with David G. Cham-
pernowne (1953) and industrial organization

2 Transportation expenditure in 2002 was $62 billion
(3.1 percent of total government outlays; 9 percent of
outlays excluding transfers) (www.whitehouse.gov/omb/
budget).

3 Vilfredo Pareto (1896) is credited with the discovery
that the distribution of individual income satisfies a power
law, the Pareto distribution.

4 See, among others, Edward Glaeser et al. (1996),
Jonathan Eaton and Zvi Eckstein (1997), and Yannis M.
Ioannides and Henry G. Overman (2003).

5 Krugman (1995) writes: “We have to say that the
rank-size rule is a major embarrassment for economic the-
ory: one of the strongest statistical relationships we know,
lacking any clear basis in theory.”

6 Kapteyn (1903) studies skew distributions, mainly in
biology, and establishes that they are driven by a simple
Gaussian process. If a variable y is generated by additive
random shocks which give rise to an asymptotically normal
distribution, then given a transformation y � f (x), the
variable x has a skew distribution, derived from the trans-
formed stochastic process. One such transformation is y �
ln x.
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(see John Sutton, 1997, for an overview and
Boyan Jovanovic, 1982) studying the relation
between proportionate growth and size distribu-
tions different from the lognormal. With respect
to the size distribution of cities, Xavier Gabaix
(1999) and Aharon Blank and Sorin Solomon
(2000) propose a resolution of the puzzle and
show that proportionate growth processes can
generate Zipf’s law at the upper tail.7

The purpose of this paper is twofold. First,
a new resolution of the puzzle is uncovered
regarding the two empirical regularities, thus
providing an accurate description of popula-
tion mobility. While an accurate description
of population mobility per se may not be of
primary interest, it does have fundamental im-
plications for the underlying economic mecha-
nism, which in turn drives the population
mobility. The second purpose is to propose and
solve an equilibrium theory of local externali-
ties. The equilibrium theory provides an analy-
sis of the underlying economic mechanisms that
is consistent with the empirically observed pop-
ulation mobility. This approach of providing an
empirically consistent theory is in line with the
central thesis in this paper: population mobility
is driven by economic forces. Such an empiri-
cally consistent equilibrium theory is novel be-
cause heretofore the literature8 has focused on
solving the puzzle concerning population mo-
bility. The main interest of this empirically con-
sistent equilibrium theory is that it facilitates the
evaluation of government policies that affect
citizens’ mobility decisions. Is it efficient to
provide federal subsidies to small cities to at-
tract residents? What is the effect of govern-

ment-financed local transportation in large
cities?

The breakthrough in the current resolution of
the puzzle (the first purpose of this paper) de-
rives from the availability of Census 2000 data.
The new dataset is substantially larger than
those of earlier censuses. The current data in-
clude observations on the entire size distribu-
tion of geographic locations, referred to in the
Census as “places.” For the year 2000, there are
observations on 25,359 places, including cities,
towns, and villages,9 ranging in population from
1 to over 8 million. Previously in the literature,
only the truncated distribution, i.e., the upper
tail of the distribution of the 135 largest cities,
or metropolitan areas (MAs), was considered,
i.e., 0.5 percent of the current sample and 30.2
percent of the sample population. Using the new
data, it is shown that the size distribution of the
entire sample is lognormal and not Pareto.
Moreover, for those observations for which
1990 data also exist, the growth rate of cities is
calculated, and the second regularity, that
growth is independent of city size, is confirmed.
As a result, the growth process is shown to be
proportionate. The proportionate growth pro-
cess, together with the lognormality of the size
distribution, establishes that when considering
all cities and not just the upper tail of the
distribution, Gibrat’s prediction concerning the
stochastic process holds.

The second purpose of this paper is to ana-
lyze an equilibrium model consistent with the
empirically observed population mobility. A
theory of local externalities is proposed. Like
those in Lucas and Rossi-Hansberg (2002), the
cities in this model are characterized by local
externalities—both positive production exter-
nalities (spillovers from nearby factors of pro-
duction) and negative consumption externalities
(lost leisure time from traffic congestion).
Those externalities are local, which means they
affect the population within a city only, and
typically they depend on the size of the city’s
population. In large cities, for example, firms
and workers benefit more from the availability
of deep markets for employees and jobs, and
those cities also have larger “knowledge spill-

7 They consider random growth processes with “some-
thing else”—the entry of new cities—and apply a process
developed in Champernowne (1953) and Harry Kesten
(1973). While these processes do generate Pareto distribu-
tions, Blank and Solomon (2000) point out that the details
specifying and enforcing the smallest size of the cities are
crucial, as are the rules for creating new entering cities.
Whether or not the resulting limiting distribution is Pareto
with exponent equal to one is very sensitive to this entry
process. Moreover, testing whether the entry process satis-
fies the exact and detailed requirements for the Pareto
distribution is a challenging empirical endeavor (for the
metropolitan areas in the United States, for example, there
has been no entry or exit in the set of MAs between 1990
and 2000; the 276 MAs in 1990 are identical to those in
2000). To date, no such evidence has been provided.

8 Some notable exceptions are discussed below.

9 In what follows, the term “city” will be used to indicate
a place. When a city (as opposed to a town or a village) is
referred to, this will be made explicit.
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overs.” Information concerning new technolo-
gies and products spills over faster in markets
with high degrees of local interaction, like those
of large cities. Simultaneously, workers in
larger cities also impose negative externalities
on each other because commuting times are
longer. The economy differs from the one in
Lucas and Rossi-Hansberg (2002) because of
the explicit mobility between cities, rather than
within cities. The aim is to capture the notion of
competition between geographic locations, i.e.,
perfectly mobile citizens making location deci-
sions between different cities. Local externali-
ties within cities regulate the mobility of
citizens between different cities (i.e., there are
no externalities between cities). It is shown that
the local externality model economy predicts
behavior that is consistent with the empirical
city growth process.

The only remaining issue to resolve is how it
is possible that Zipf’s law is repeatedly con-
firmed in the literature, while the underlying
distribution is lognormal. The Pareto distribu-
tion is very different from the lognormal, so it is
obvious that if the true distribution is lognor-
mal, the entire distribution can never be fit to a
Pareto distribution at the same time. Consider
Figure 1 with a plot of the density function of
the lognormal and that of the Pareto distribution
(both on a ln scale); observe that the lognormal
on a log scale is the normal density function.
The density of the Pareto distribution is down-
ward sloping, whereas the lognormal density is
initially increasing and then decreasing (given
symmetry, half the observations are in the in-
creasing part). If the underlying distribution is
lognormal, then goodness of fit tests will cate-
gorically reject the Pareto distribution. Still,
when regressing log rank on log size for the entire
distribution,10 the coefficient comes out signifi-
cant. Estimating a linear coefficient when the
underlying empirical distribution is not Pareto
(i.e., the relation is nonlinear) can obviously
produce a significant estimate. This regression
test merely confirms that there is a relation
between size and rank, but it does not provide a
test for the linearity of this relation. As such,
testing the significance of the linear coefficient

is not the equivalent of a goodness-of-fit test for
the Pareto distribution.11

More important though is that until now the
literature considered the truncated distribution
(typically, the truncation point is at ln size equal
to 12 on the horizontal axis, i.e., for only 135
cities). At the very upper tail of the distribution,
there is no dramatic difference between the den-
sity function of the lognormal and the Pareto.
Now both the truncated lognormal and the Pa-
reto density are downward sloping and similar
(the Pareto is slightly more convex). As a result,
both the Pareto and the truncated lognormal
trace the data relatively closely. The problem is

10 This is the standard procedure in the literature to
verify for Zipf ’s law.

11 See also Gabaix and Ioannides (2003) on the short-
comings of OLS.

FIGURE 1. DENSITY OF LOGNORMAL (PANEL A) AND

PARETO (PANEL B) DISTRIBUTION

1432 THE AMERICAN ECONOMIC REVIEW DECEMBER 2004

http://pubs.aeaweb.org/action/showImage?doi=10.1257/0002828043052303&iName=master.img-000.jpg&w=191&h=352


that the estimated coefficient on the Pareto dis-
tribution is extremely sensitive to the choice of the
truncation point: as the truncation point increases
on the horizontal axis, the estimated Pareto coef-
ficient increases, while the estimated lognormal
coefficients remain unchanged. Moreover, for
lower truncation points, the Pareto fits the data
less and less well. In this paper, we show that
these observed empirical changes in the estimated
Pareto coefficient are theoretically consistent with
the comparative static of a changing truncation
point of the lognormal distribution.12

Finally, there is a growing literature propos-
ing equilibrium models of economic activity
with mobility of citizens that can account for
Zipf’s law.13 Rossi-Hansberg and Mark Wright
(2004) propose a dynamic general equilibrium
theory with population mobility and balanced
growth driven by industry-specific shocks. While
their theory can explain Zipf’s law for the size
distribution, the model can also explain deviations
of the empirical size distribution from Zipf’s
law.14 This attempt to account for empirically
observed differences from Zipf’s law using
growth theory is novel. The results they find con-
cerning the truncated size distribution are consis-
tent with those found in the current paper,
confirming the importance of deviations from
Zipf’s law.

This paper is organized as follows. In Section I,
the Census 2000 data are described in detail. The
size distribution is shown to be lognormal, and the
growth process proportionate. In Section II, the
implications, both empirical and theoretical, for
estimation of Zipf’s law are analyzed when the
true underlying distribution is lognormal. In Sec-
tion III, a theory of local externalities is proposed,
consistent with Gibrat’s proposition that propor-
tionate growth leads to a lognormal distribution.
Finally, some concluding remarks are made in
which the parallel is drawn between our results
and findings in the exact sciences.

I. The Empirical Size Distribution of Cities

A. The Data

Newly available data from Census 2000 are
used.15 The dataset for deriving the distribution
of cities is novel. The units of account are
denoted by the Census Bureau as “places.”
Places are either legally incorporated under the
laws of their respective state or are Census
Designated Places (CDP). Incorporated places
have political/statistical descriptions of city,
town (except in New England, New York, and
Wisconsin), borough (except in Alaska and
New York), or village. People living in loca-
tions that are not incorporated are legally resi-
dent in the respective counties. Incorporated
places can cross county boundaries. Because a
considerable fraction of the population lives in
places that are not incorporated,16 the Census
Bureau designates such places CDPs. Accord-
ing to the Census Bureau, a CDP is a “statistical
entity that serves as a statistical counterpart of
an incorporated place for the purpose of pre-
senting census data for a concentration of pop-
ulation, housing, and commercial structures that
is identifiable by name, but is not within an
incorporated place.”17 In the new census data,
the CDPs are included for the first time without
any restrictions.18 The data on places for all
U.S. states (including Hawaii and Alaska, and
the commonwealth of Puerto Rico) will be used.
In what follows, place (whether a city, town, or
village) and city will be used interchangeably.

The main advantage of using these census
data is that they cover the entire population size
distribution. Moreover, with the inclusion of the
CDPs in 2000, this new source of data repre-
sents the entire geographic concentration of the
U.S. population. In the year 2000, 208 million
of 281 million individuals (74 percent) were
living in a total of 25,359 places. Table 1 reports
on the population size in 2000 of the 10 largest
“places.”

12 The sensitivity of the Pareto coefficient to the trunca-
tion point has been observed in the literature (for an over-
view, see Gabaix and Ioannides, 2003). Explanations
offered for the sensitivity differ, however, from the expla-
nation proposed here, i.e., that the underlying true distribu-
tion is lognormal.

13 See, among others, Rossi-Hansberg and Wright
(2004) and Gilles Duranton (2002).

14 Unfortunately, when predicting a size distribution that
is different from the Pareto distribution, their model no
longer satisfies proportionate growth.

15 Source: www.census.gov/main/www/cen2000.html.
16 Very often, whether a place is incorporated depends

on state law. For example, under state law in Hawaii, there
exist no incorporated places.

17 Source: www.census.gov.
18 For Census 2000, CDPs did not have to meet a

population threshold to qualify for the tabulation of census
data.
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A substantial portion of research into the size
distribution of the U.S. population has been
done using the MA19 as the unit of measure-
ment (see, for example, Krugman, 1996;
Gabaix, 1999; Ioannides and Henry G. Over-
man, 2003). An MA typically covers one (or
several) large cities. The largest metropolitan
area is New York-Northern New Jersey-Long
Island, including the cities of New Haven, Con-
necticut, Newark and Trenton, New Jersey, and
several smaller towns in eastern Pennsylvania.
The ten largest MAs and their population size
are listed in Table 2.

The total number of MAs in the United States
is 276, the smallest of which is Enid, Oklahoma,
with a population of 57,813. In 2000, 80 percent
of the entire U.S. population lived in MAs. At
first sight, it may seem surprising that 80 per-
cent lived in the 276 MAs, while only 73 per-
cent lived in 25,359 places. The reason is that
MAs cover huge geographic areas. For exam-
ple, Trenton, New Jersey, is 64 miles from New
York City and 144 miles from New Haven,
Connecticut. As a result, MAs include a large
population living in rural areas which are not
counted as places. Consider, for example, Mer-
cer County, New Jersey, in the MA of New
York-Northern New Jersey-Long Island, which
includes Princeton and Trenton. In 2000, Mercer
County had a population of 350,761, of which
only about 31 percent lived in incorporated places.

B. The Size Distribution

Over the entire size distribution, the median
city has a population of 1,338. Figure 2 plots the
empirical density function on a natural logarith-
mic (ln) scale, together with the theoretical log-
normal density for the empirically observed
mean and variance. Figure 3 plots the cumula-
tive density function. The sample mean (in ln,
standard error in brackets) is �̂ � 7.28 (0.01)
and the standard deviation is �̂ � 1.75. The
theoretical density function of the lognormal
size distribution is normal in ln S and given by
�(�̂, �̂):

(1) ���̂, �̂� �
1

�̂�2�
e��lnS � �̂�2/2�̂ 2

.

A Kolmogorov-Smirnov (KS) test of good-
ness of fit of the empirical density function
against the lognormal with sample mean �̂ �
7.28 and sample standard deviation �̂ � 1.75
generates the KS test statistic D � 0.0189, and
the corresponding p-value obtained is 1 percent.
This is supporting evidence in favor of lognor-
mality of the size distribution. Though the fit is
remarkable, it is not perfect. There seems to be
some skewness (third moment is 0.21) and the
median value is 7.20 (with mean of 7.28). On
the other hand, there is hardly any kurtosis (the
fourth moment is 0.03). Possibly there is some
censoring (most likely at the bottom of the
distribution). The data collected may be con-
taminated by differences between state legisla-
tion with respect to legal incorporation, in
particular for small places. In addition, since the
data contain CDPs, the decision procedure by
the Census Bureau to designate a nonincorpo-
rated place may depend on the size of the place
and, as a result, it will affect the size distribution
of places, in particular at the bottom end. Fur-
thermore, given the extremely large sample size
of n � 25,359, small deviations from the theo-
retical distribution are exaggerated in goodness
of fit tests. It is surprising that, despite some
potential shortcomings of the data, the empirical
size distribution fits the lognormal distribution
that well.

Before analyzing the properties of the city
growth process, a fundamental issue remains:
what is the appropriate economic unit that
should be studied? As Tables 1 and 2 highlight,

19 According to the Census Bureau definition, an MA
“must include at least one city with 50,000 or more inhab-
itants, or a Census Bureau–defined urbanized area (of at
least 50,000 inhabitants) and a total metropolitan population
of at least 100,000 (75,000 in New England).”

TABLE 1—TEN LARGEST CITIES IN THE UNITED STATES

Rank City Population S SNY/S

1 New York, NY 8,008,278 1.000
2 Los Angeles, CA 3,694,820 2.167
3 Chicago, IL 2,896,016 2.753
4 Houston, TX 1,953,631 4.099
5 Philadelphia, PA 1,517,550 5.277
6 Phoenix, AZ 1,321,045 6.062
7 San Diego, CA 1,223,400 6.546
8 Dallas, TX 1,188,580 6.738
9 San Antonio, TX 1,144,646 6.996

10 Detroit, MI 951,270 8.419

Note: SNY /S denotes the ratio of population size relative to
New York.
Source: Census Bureau, 2000.
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cities and MAs represent different notions about
the corresponding theory of an economic unit.
And depending on the definition, we are study-
ing different objects and therefore different dis-
tributions. As is the case with comparisons of
countries, we do not have a perfect justification
for using a particular unit of account when
comparing cities. In our theory below, we con-
sider local externalities that do not affect agents
outside the economic unit as the defining char-
acteristic of a city. In reality of course, no
externality is purely local. One may therefore
want to interpret this assumption as a matter of
the extent to which externalities do or do not
affect agents outside a given city. The danger is
that the partition into economic units is either
too fine or, at the other extreme, too coarse. The
externalities for some agents in one part of a
given economic unit (say those living in New
Haven) may not have an impact on those living
in different parts of the same unit (say Prince-

ton). Moreover, different research objectives
may call for the use of different units of ac-
count. For example, if one is interested in ana-
lyzing the economic impact of airports, the MA
seems a natural unit of account, while cities
may be more appropriate when studying
schools, public transportation, or waste collec-
tion. In past research, both MAs and cities have
proven to be useful and relevant economic
units, and both have been studied extensively.

In this paper, cities are chosen for several
reasons. In addition to the fact that cities are a
natural economic unit for studying the local
externalities that are modeled in Section III,
there is a practical reason: the availability of
data. We want to use data that cover the entire
range of the populations, in particular the
smaller ones. Because MAs are defined by the
Census Bureau only for large populations (MAs
must include “at least one city with 50,000 or

FIGURE 2. EMPIRICAL AND THEORETICAL DENSITY

FUNCTIONS FIGURE 3. EMPIRICAL AND THEORETICAL CUMULATIVE

DENSITY FUNCTIONS

TABLE 2—TEN LARGEST METROPOLITAN AREAS IN THE UNITED STATES

Rank MA Population S SNY /S

1 New York-Northern New Jersey-Long Island, NY-NJ-CT-PA 21,199,865 1.000
2 Los Angeles-Riverside-Orange County, CA 16,373,645 1.295
3 Chicago-Gary-Kenosha, IL-IN-WI 9,157,540 2.315
4 Washington-Baltimore, DC-MD-VA-WV 7,608,070 2.787
5 San Francisco-Oakland-San Jose, CA 7,039,362 3.012
6 Philadelphia-Wilmington-Atlantic City, PA-NJ-DE-MD 6,188,463 3.426
7 Boston-Worcester-Lawrence, MA-NH-ME-CT 5,819,100 3.643
8 Detroit-Ann Arbor-Flint, MI 5,456,428 3.885
9 Dallas-Fort Worth, TX 5,221,801 4.060

10 Houston-Galveston-Brazoria, TX 4,669,571 4.540

Note: SNY /S denotes the ratio of population size relative to New York.
Source: Census Bureau, 2000.
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more inhabitants”), the MA dataset does not
cover the entire size distribution. And even if
the dataset spans the entire domain of the size
distribution of all cities, not all inhabitants live
in cities, towns, or villages.20 Unfortunately,
these restrictions do not allow for the possibility
of augmenting the dataset to include popula-
tions that are currently not covered.21 It should
be noted that the current dataset of all cities has
already been augmented to form the largest
possible dataset that is feasible, with the inclu-
sion of the census-defined CDPs. This increases
the number of cities by 31 percent, from 19,361
to 25,359.

The fact that part of the population is not
covered is potentially a cause for concern, be-
cause rather than capturing deep patterns of
populations and population dynamics, we may
merely be describing the idiosyncrasy of the
jurisdictional formation in the United States.
The population that is not covered may be dis-
tributed in a completely different way from the
lognormal distribution. And since we cannot
assign that population to any geographic area
comparable to a city, there is no hope of know-
ing how the remainder is distributed. The log-
normality seems to be a strong regularity,
however, from whichever perspective popula-
tion dynamics is considered. First, while we
have no way of showing that the distribution of
MAs is lognormal given the truncation by def-
inition, we show below that even for MAs,
changes in the truncation point produce changes
in the estimated Zipf coefficient that are consis-
tent with the fact that the underlying upper tail
is derived from the lognormal. Second, the size
distribution of CPDs is pretty close to the entire
distribution of cities and hence the lognormal.
And finally, in the Appendix we show the re-
sults of further analysis using additional data
that are available from the Census. We plot the
size distribution of counties, which covers the
entire U.S. population (see Figure A-1 and
Table A-1 in Appendix A for the ten largest

counties). While it is hardly convincing to make
a case for counties as the relevant economic
unit, it is surprising that even the size distribu-
tion of counties is close to the lognormal. Look-
ing at population dynamics from the perspective
of different economic units and including as
large a fraction as possible of the U.S. popula-
tion, there is a strong pattern that is consistent
with lognormality.

C. Proportionate City Growth

For the cities in the upper tail of the size
distribution, population growth has repeatedly
been shown to satisfy constant proportionate
growth.22 These findings can be extended be-
yond those for the upper tail of the distribution.
We therefore use the data on population size for
places in the United States from both the 1990
and 2000 Censuses. Unfortunately, 1990 Cen-
sus data do not include the CDPs. As a result,
the sample size is significantly smaller (19,361
instead of 25,359). Figure 4 shows the scatter
plot of growth against city size (on ln scales).
Mere observation of the scatter plot seems to

20 All citizens belong to a county, which is the primary
legal division and the functioning governmental unit.

21 Those residual populations are included in the coun-
ties, and after accounting for the cities, residual populations
very often are located in different geographic areas, sepa-
rated by cities. To make things even worse, many cities
extend over different counties, therefore guaranteeing that
parts of the residual populations are counted twice.

22 Glaeser et al. (1996) have shown this to be true for the
largest cities in the United States. Eaton and Eckstein (1997)
have confirmed this for the largest cities in France and
Japan. In a detailed investigation, Ioannides and Overman
(2003) nonparametrically estimate the mean and variance of
growth rates conditional on size for the largest MAs in the
United States. They accept the hypothesis that the city-size
growth rate is constant across cities of different sizes, i.e.,
population growth is proportionate.

FIGURE 4. SCATTER PLOT OF CITY GROWTH AGAINST

CITY SIZE
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support that growth is independent of size. In
what follows, the dependence relation of growth
on size is analyzed in greater detail. We perform
both nonparametric and parametric regressions
of growth on size.

First, we perform a nonparametric regression
of growth on size.23 The standard parametric
regressions as performed below provide us only
with an aggregate relationship between growth
and size, which is constrained to hold over the
entire support of the distribution of city sizes. In
contrast, the nonparametric estimate allows
growth to vary with size over the distribution.
The regression relationship we model is there-
fore

gi � m�Si � � �i

for all i � 1, ... , 19361. The objective is to
provide an approximation of the unknown rela-
tionship between growth and size using smooth-
ing, without making parametric assumptions
about the functional form of m. Before estimat-
ing m, we report the distribution of growth rates
for each decile of the size distribution. Follow-

ing Ioannides and Overman (2003), we use the
normalized growth rate (the difference between
the growth rate and the sample mean divided by
the standard deviation). In Figure 5, the stochas-
tic kernel density24 is plotted for each of the 10
deciles. Fixing a particular decile in the distri-
bution, we can observe the distribution of
growth rates within that decile. Figure 6 reports
the contour plot of the same stochastic kernel,
i.e., the vertical projection of the density func-
tion. Both figures illustrate that the distribution
of growth rates is strikingly stable over different
deciles. The best illustration of the size inde-
pendence is the fact that the contour lines are
parallel. The distribution is slightly skewed (the
mode is just below zero), and the mode appears
fairly constant over different deciles. The same
is true for the variance. While the variance of
the lowest decile seems to be somewhat higher
(the contour lines fan out somewhat), there
seems to be little change in the spread of the
distribution for higher deciles.

We now proceed to estimate the regression
relationship gi � m(Si) � �i, i � 1, ... , 19361,
where gi is the normalized growth rate, i.e., the

23 This section on the nonparametric analysis follows
closely the analysis in Ioannides and Overman (2003). We
derive a sequence of results for our dataset of all cities
similar to theirs, obtained for a time-series dataset on the
largest MAs.

24 Each stochastic kernel is calculated using the band-
width derived with the automatic method corresponding to
the Gaussian distribution (see Bernard W. Silverman,
1986).

FIGURE 5. SURFACE PLOT: KERNEL DENSITY ESTIMATION OF NORMALIZED GROWTH RATES

BY DECILE OF THE SIZE DISTRIBUTION
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difference between growth and the sample mean
divided by the sample standard deviation, and Si
is the log of the population size of a city. We
will approximate the true relationship by the
regression curve m(s) for all s in the support of
Si. The estimate of m(s) will be denoted m̂(s)
and is a local average around the point s. This
local average smooths the value around s, and
the smoothing is done using a kernel, i.e., a
continuous weight function symmetric around s.
The kernel K used in the remainder of the paper
will be an Epanechnikov kernel.25 The band-
width h determines the scale of the smoothing,
and Kh denotes the dependence of K on the
bandwidth h. With the kernel weights, we cal-
culate the estimate of m using the Nadaraya-
Watson method,26 where

m̂�s� �

n�1
¥

i � 1

n

Kh �s � Si �gi

n�1
¥

i � 1

n

Kh �s � Si �

.

In Figure 7 there is a plot of m̂(s) calculated
for a bandwidth of h � 0.5 (see Silverman,
1986). The Figure also shows the bootstrapped

95-percent confidence bands (calculated from
500 random samples with replacement). In line
with the earlier results, the nonparametric esti-
mate of the conditional mean is stable across
different population sizes, except for the very
bottom of the distribution.27 The estimate seems
to exhibit some slightly inverted U-shape, with
somewhat higher growth rates in the middle
range of population sizes and lower growth at
the ends. If the underlying relation between
growth and size is constant, then the estimate
will lie in the 95-percent confidence bands. This
seems to suggest that, except for some values
near the lower boundary, we cannot reject that
growth is independent of size. Observe that
because the kernel is a fixed function and
boundary observations have support only on
one side of the kernel, the kernel estimates near
the boundaries must be read with caution.

In Table B-1 in Appendix B, some further
descriptive statistics are reported for growth
rates over the entire support of the distribution.
Consistent with the kernel estimates, average
growth rates seem to be constant, except at the
very bottom of the distribution. We also calcu-
late the standard deviation and the Interquartile
Range (IQR) of the growth rate. The IQR is
defined as the difference between the seventy-
fifth and twenty-fifth percentiles (Q3 � Q1).
This provides an indication of the variation in
growth rates. For the largest 100 cities, growth
rates vary less, whereas the smallest 100 cities
exhibit higher variation in growth rates. The

25 Results below have been replicated using the Gaussian
kernel and reveal no differences with those using the Ep-
anechnikov kernel.

26 See Wolfgang Härdle (1990).

27 At the bottom of the distribution there is also more
variation in growth rates (see IQR calculations below).
Because the confidence bands impose a requirement over
the entire domain of the size distribution, the width of the
bands is likely to be affected by the variation at the bottom.

FIGURE 6. CONTOUR PLOT: KERNEL DENSITY ESTIMATION

OF NORMALIZED GROWTH RATES BY DECILE OF THE

SIZE DISTRIBUTION

FIGURE 7. KERNEL ESTIMATE OF POPULATION GROWTH

(BANDWIDTH 0.5)
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standard deviation of the growth rate of the
largest 100 cities is an order of 4 to 5 times
smaller compared to the entire sample (0.158
versus 0.729). Also for the IQR there is a de-
crease at the top of the distribution (0.154 ver-
sus 0.199), but to a lesser extent than in the case
of the standard deviation. This seems to indicate
that the tails of the distribution of growth rates
of the top 100 cities are not as fat. For the
smallest 100 cities, the variation in growth
rates as measured by the IQR increases28

2.5 times relative to the IQR for the entire
sample (0.493 versus 0.199). For the remainder
of the support of the size distribution, the IQR
of growth rates is more or less constant for all
sizes, except for the bottom decile of the size
distribution. Figure B-1 in Appendix B plots
the IQR for each decile. Observe the sharp in-
crease in the IQR at the bottom decile of the
distribution (0.297 versus 0.199 for the entire
sample).

The proportionate growth process that satis-
fies Gibrat’s law and that gives rise to a log-
normal distribution is also characterized by a
size-independent variance. The kernel estimate
of the variance �̂2(s) (see Härdle, 1990) is cal-
culated as

�̂2�s� �

n�1
¥

i � 1

n

Kh �s � Si ��gi � m̂�s��2

n�1
¥

i � 1

n

Kh �s � Si �

.

As in Ioannides and Overman (2003) for MAs,
we find that at the boundaries the variance of
growth rates of cities is dependent on size.29 In
particular, for very small cities with population
size around 10 inhabitants (with ln size between
2 and 3) and for very large cities, the variation
in growth rates is markedly different, as re-
ported in the IQR calculations above. Figure 7
plots the estimated variance30 (bandwidth 0.5)

for 95 percent of the cities in the sample, i.e.,
excluding the top and bottom 2.5 percent. This
corresponds to all cities larger than 65 (ln is 4.1)
and smaller than 56,000 (ln is 10.9). We find
that some outliers have an enormous impact on
the variance. For example, Eagle Mountain,
Utah, the fastest growing city in the sample, has
grown at a rate of 7,090 percent. These outliers
alone cause spikes in the variance, which can be
seen from observation of the dotted line, repre-
senting the kernel estimate of the variance for
all observations (for example, around ln size
equal to 7; observe also that given the band-
width of 0.5, the effect of the outliers is con-
strained to a distance of 0.5). The solid line
represents the kernel estimate of the variance
for all observations excluding 9 outliers (obser-
vations have been dropped with growth rates
above 1,000 percent). Without the outliers, the
variance is remarkably stable across different
sizes of cities.

Consider now the parametric growth re-
gressions. For the entire size distribution, no
significant effect of the size of a city is found
on the growth, as confirmed by the following
regression:

S00

S90
� 1.102 � 3.75E��08�

S90 � S00

2
�0.005� �7E��08��

(n � 19361), where S00/S90, the ratio of the
population size in 2000 and 1990, is the gross
growth rate of the population, and S90 � S00/2
is the average of the 1990 and 2000 populations.
The coefficient on size is clearly insignificant
(standard errors in parentheses). Note that the
intercept—a net rate of 10.2 percent—is the
country-wide growth for the entire sample pop-
ulation between 1990 and 2000 and corresponds
to an annual population growth rate of (1 �
ga)10 � 1.103 or ga � 1 percent. The lack of
significance of city growth on size is further
confirmed when the dependent variable is the
population size in 1990:

S00

S90
� 1.103 � 2.3E��09�S90

�0.005� �7.3E��08��

(n � 19361). Finally, also when using loga-
rithm of gross growth between 2000 and 1990

28 Though this is not the case for the standard deviation.
29 See also Härdle (1990) for a discussion on the reli-

ability of the estimates at the tails of the distribution where
the density takes on very small values.

30 Observe in Figure 7 that the variance of the full
sample is equal to one. This is due to the fact that we
calculate the variance of normalized growth rates.
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as the dependent variable, the coefficient on size
in 1990 remains insignificant. In the latter re-
gression, the p-value is 7 percent. When re-
gressing ln of the ratio of population sizes on ln
average size, the coefficient comes out signifi-
cant and positive: 0.0223 (0.001) and with a
negative intercept �0.104 (0.007). As can be
deduced from Figures 5, 6, and 7, this seems to
indicate that the size dependence of growth
rates at the very bottom of the distribution af-
fects the nonparametric estimate.

In summary, all these results seem to provide
support for the fact that city growth is indepen-
dent of population size. Some caution is due,
however. Growth rates could be calculated only
for a sample of 19,361 cities, i.e., those cities
for which there is an observation in 1990, and
those observations exclude all CDPs. The log-
normal distribution in Figure 2 was derived
from the size distribution of 25,359 cities in
2000, i.e., a distribution with an additional 31
percent observations. This unfortunate limita-
tion of the data does not permit us to make any
definite statement about growth over the entire
distribution, most likely until the Census 2010
data become available. If the size distribution of
CDPs in the 2000 data can provide any indica-
tion (the distribution of CDPs is close to the
distribution of all cities), one may expect the
CDP distribution of growth rates not to differ
too much from the rest of the cities.31

II. Zipf’s Law

The question remains: what is the relation
between Zipf’s law for the truncated distribu-
tion and the nontruncated lognormal distribu-
tion? As argued in the introduction, the entire
size distribution cannot possibly fit the Pareto
distribution. In what follows, the aim is to es-
tablish Zipf’s law for the truncated distribution.
It will be shown that the estimated coefficient
on the Pareto distribution is systematically sen-
sitive to the choice of the truncation point. This
will be confirmed to be consistent with the fact
that the underlying distribution is lognormal.

In the literature on Zipf’s law, the truncation
point has repeatedly been chosen around 135
cities,32 i.e., the 135 largest cities out of the total
25,359 cities are included in the census sample.
This implies that 99.5 percent of the sample of
cities is dropped, and only the upper 0.5 per-
centile of the size distribution is considered (this
corresponds to 30.2 percent of the population in
the sample, and 22.4 percent of the U.S. pop-
ulation).33 It is well known from the litera-
ture that the upper tail of the distribution of
cities fits the Pareto distribution extremely well.
The objective of this section is to investigate
how the estimated coefficient of the Pareto
distribution changes as the truncation point
changes. Consider therefore the following anal-
ysis of Zipf’s law.

Zipf’s law for cities states that the population
size of cities fits a power law with exponent
approximately equal to one: the population size
of a city is inversely proportional to the rank of
the size of the city. The law has been shown to
hold for different definitions of cities, including
both places and MAs. A city of rank r in the
(descending) order of cities has a size S equal to
1/r times the size of the largest city in that
country. For U.S. cities, the size S of Los An-
geles, the second largest, should be 1⁄2 the size
of New York. The tenth-ranked city, Detroit,
should have a size 1⁄10 of New York. Above in

31 It is worth noting that even if growth is shown not to
be exactly proportionate, the limit distribution can still be
the lognormal. Michael Kalecki (1945) generalizes Gibrat’s
law for growth processes that are not exactly proportionate.

32 The 135th largest city in the Census 2000 sample is
Chattanooga, Tennessee, with a population of 155,554.

33 It is of interest to provide some further descriptive
statistics of the distribution of cities relative to the sample
population of 208 million. Half the sample population lives
in the largest 647 cities, three quarters in the largest 2,678
cities, 95 percent in the largest 10,255 cities, and 99 percent
in the largest 17,425 cities.

FIGURE 8. KERNEL ESTIMATE OF THE VARIANCE OF

POPULATION GROWTH (BANDWIDTH 0.5)
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Tables 1 and 2, S/SNY � r is reported for the ten
largest cities and MAs respectively. The impli-
cation of Zipf’s law is that when the population
size is plotted against their rank on a logarith-
mic scale, an approximately straight line is
obtained.

To see that a distribution that satisfies Zipf’s
law is the Pareto distribution, consider a vari-
able S, distributed according to the Pareto dis-
tribution. Then the density function p(S) and the
cumulative density function P(S) satisfy

p�S� �
aS� a

Sa � 1 , 	 S 
 S�

P�S� � 1 � �S�

S�
a

, 	 S 
 S�

where a is a positive coefficient. Strictly speak-
ing, Zipf’s law satisfies Pareto with a � 1. Note
that the rank in the empirically observed distri-
bution is given by

r � N� � �1 � P�S��

� N� � �S�

S�
a

where N� is the number of cities above the trun-
cation point. Taking natural logs, we get that
rank is inversely proportional to size

ln r � K � a ln S

where K � ln N� � a ln S� is a constant.
Typically, Zipf’s law is verified by regressing

ln r on ln S. For the upper truncated city size
distribution, the regression gives a highly sig-
nificant estimate of â equal to 1.354:

ln r � 21.099 � 1.354 ln S
�0.144� �0.011�

(N� � 135, S� � 155, 554, R2 � 0.991). In Figure
9, a scatter plot is presented of ln r against ln S
and, in addition, the linear regression line esti-
mated above is plotted. This plot can be inter-
preted as a transformation of the cumulative
density function, where on the Y-axis we have
the natural logarithm of the survival function
(1 � P(S)) multiplied by N� .

Before considering the sensitivity of the es-
timated Pareto coefficient to the truncation in
the size distribution of cities, consider the size
distribution of MAs. Performing the same re-
gression on the truncated distribution of MAs,
where the MA at the truncation point is Erie,
Pennsylvania, with a population of 280,843, we
get

ln r � 17.568 � 0.999 ln S
�0.147� �0.011�

(N� � 135, S� � 280,843, R2 � 0.985). Observe
that for MAs, the estimated coefficient â is
nearly exactly equal to 1, as originally described
by Zipf (1949). Unfortunately, the fact that â is
equal to 1 is highly sensitive to the choice of the
truncation point in either direction: for N� � 276
(the entire MA sample and roughly double the
original), â � 0.850, and for N� � 67 (half the
original sample), â � 1.114). Figure 10 reports
a scatter plot of the MA size distribution and the
regression lines for the different sample sizes.
At the truncation point of N� � 135, the sam-
ple ensures a perfect fit with Zipf’s original
observation.34

34 A referee pointed out that the pervasiveness in the
literature of the truncation point at N� � 135 and the result-
ing estimate of a power coefficient exactly equal to 1, as
predicted by Zipf’s law, is due to a remarkable historical
coincidence. The literature, starting with Krugman (1996),
used the Statistical Abstract of the United States, which
shows only the data for the top 135 cities.

FIGURE 9. CITY SIZE DISTRIBUTION AND LINEAR

REGRESSION LINE
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The estimated coefficient on the Pareto dis-
tribution is clearly sensitive to the choice of the
truncation point. Moreover, the dependence of
the estimate is systematic: the lower the trunca-
tion point (i.e., the larger the sample size), the
lower the estimated coefficient of the Pareto
distribution.35 The same is expected to be true
for the size distribution of cities. In what fol-
lows, it is shown that a theoretical justification
for the fact that the estimated Pareto coefficient
is increasing for an increasing truncation point
is given by the fact that the underlying sample is
distributed lognormal.

Consider the lognormal density function ��
as given in equation (1). To simplify notation,
let x � ln S, and denote the normal cumulative
density function by �(x). Now consider the
truncated lognormal distribution at truncation
point x� � ln S� . Then the cdf of the truncated
lognormal is

��x� � ��x� �

1 � ��x� �
.

As before, let N� be the sample size of the
truncated distribution. Then the rank can be
written as

r � N� � �1 �
��x� � ��x� �

1 � ��x� � �
� N� � �1 � ��x�

1 � ��x� ��
and taking logs

ln r � ln�N� � �1 � ��x�

1 � ��x����
or

(2) ln r � ln
N�

1 � ��x��
� ln�1 � ��x��.

If the underlying true distribution is the log-
normal, then from the last equation, the relation
between ln r and ln S will not be linear. As a
result, the hypothesis that size is everywhere
inversely proportional to rank (Zipf’s law) is not
correct. In particular, ln(1 � �(x)) is not linear
in x � ln S. Calculating the derivative of the
term that depends on x in equation (2) gives

d

dx
ln�1 � ��x�� � �

��x�

1 � ��x�

� �h�x�

which is the negative of the hazard rate. It is
easily verified that the hazard rate for the cor-
responding lognormal distribution with sample
mean and variance �̂ � 7.28, �̂ � 1.75 is
strictly increasing over the entire domain (and
positive by definition). The plot of the hazard
function h(x; �̂, �̂) is given in Figure 11.

A strictly increasing hazard rate implies that
the second derivative of the term ln(1 � �(x))
is strictly concave, i.e., d2/dx2ln(1 � �(x)) �
�h	(x) 
 0. Now, given a decreasing, strictly
concave function in x, the linear estimate of this
function will systematically depend on the trun-
cation point: the higher the truncation city size,
the higher the estimate of the linear regression.
Because an increase in the truncation size im-
plies a decrease in the truncated sample popu-
lation, the estimate will be decreasing as the
sample population increases. This establishes
the following proposition:

PROPOSITION 1: If the underlying distribu-
tion is the lognormal distribution �(x; �̂, �̂),

35 While the analysis below for cities as opposed to MAs
may be suggestive for the relation between the estimated
Pareto coefficient and the truncation point, other expla-
nations have been suggested in the literature. In particu-
lar, see the review on MAs by Gabaix and Ioannides
(2003).

FIGURE 10. MA SIZE DISTRIBUTION AND LINEAR

REGRESSION LINES FOR DIFFERENT TRUNCATION POINTS
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then the estimate of the parameter â of the
Pareto distribution is increasing in the trunca-
tion city size (dâ/dS�) � 0 and decreasing in the
truncated sample population (dâ/dN� ) 
 0.

Given this theoretical prediction, Table 3 is
consistent with the fact that the underlying em-
pirical distribution function of city sizes (as
established in the former section) is indeed log-
normal. Estimated parameters are reported for
the regression

ln r � K̂ � â ln S, N� , S� .

Not only are the estimates of â highly sensitive
to the choice of the truncation point, they are so
in a systematic fashion, consistent with the fact
that the underlying distribution is lognormal.
For increasing S� (decreasing N� ), â is systemat-
ically increasing.36

Finally, Figure 12 provides a plot of the data
for the entire size distribution (ln r against ln S),
and the regression lines as obtained from the
linear regressions reported in Table 3.

III. A Theory of Local Externalities

The empirical analysis above supports the
hypothesis that the underlying mechanism that
governs the evolution of the size distribution of

cities satisfies Gibrat’s proposition. Growth
rates of cities are observed to be proportionate
to city size, and the limiting size distribution is
lognormal. From an economics viewpoint, the
question remains how economic forces can lead
to such population dynamics. While there may
be many idiosyncratic reasons why individuals
decide to live in one city over another, or
choose to move between cities, it is hard to deny
that economic forces are a major determinant in
population mobility. Cities like Detroit and
Philadelphia have seen a significant drop in
population, while at the same time experiencing
a serious decline in their manufacturing indus-
tries. In Silicon Valley on the contrary, cities
have seen higher-than-average population growth
rates over the 1990s (and often equally lower-
than-average rates since 2000). Cupertino City,
home to technology companies like Apple and
HP, saw a population growth rate of 25 percent
between 1990 and 2000, two and a half times
the national average. There is no doubt that
the economic impact of the technology boom
in those cities has contributed to attracting
citizens.

We therefore propose a general equilibrium
theory that incorporates those differences in
technological change across cities. In addition,
the main reason for the existence of cities and
the determination of population boundaries is
the presence of local externalities within cities.
Firms and workers locate in cities because there
are positive spillovers in production from
workers,37 consumers, suppliers, and even com-
petitors. Without those external benefits, firms
would locate in rural areas where property
prices are much lower. At the same time though,
land and space are in limited supply. All firms
and workers ideally want to locate as closely
together as possible, but that tendency is slowed
by a counteracting force. Not only does a higher
population lead to higher property prices (which
has been experienced extensively in cities
like Cupertino), the presence of more inhabit-
ants causes congestion. There is a negative ex-
ternal cost due to increased commuting time.

36 The GI s.e. is the Gabaix-Ioannides (2003) corrected
standard error. They show that the nominal OLS s.e. under-
estimates the true standard error due to the positive corre-
lations between residuals caused by the ranking procedure.

They derive that for large N, the approximate true standard
error is â(2/N)1/2.

37 Guy Dumais et al. (1997) provide evidence that shar-
ing a common pool of workers is the main reason why
industries locate together.

FIGURE 11. HAZARD RATE FOR THE LOGNORMAL

h(x; �̂, �̂)
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Citizens in large cities must devote part of their
leisure time to nonproductive but work-related
commuting.

The model, like Lucas and Rossi-Hansberg’s
(2002) theory of the internal structure of cities,
incorporates those two counteracting external
forces. The current model does not explicitly
model internal geographic heterogeneity of the
city. Because in Lucas and Rossi-Hansberg
(2002) citizens obtain the same utility over dif-
ferent locations, it is without loss of generality
that citizens within a given city are considered
identical. The main objective is to understand
economic and population differences between
cities, rather than within cities. The city is there-
fore not considered in isolation, but rather ex-
periences population mobility from and to
different cities. The main aim is to extend the
work in this literature on the internal structure

of cities and allow for competition between
cities of different sizes. The space in which
heterogeneous cities are considered is therefore
the size space rather than a given geographical
space.

Define an economy with local externalities C.
Time is discrete and indexed by t. Let there be
a set of locations (cities) i � I � {1, ... , I}.
Each city has a continuum population of size
Si,t, and the total, country-wide population size
S � ¥I Si,t. All individuals are infinitely lived
and can perform exactly one job. Let Ai,t be the
productivity parameter that reflects the techno-
logical advancement of city i at time t. The law
of motion of Ai,t is Ai,t � Ai,t�1(1 � �i,t). Each
city experiences an exogenous technology
shock �i,t. Let �t denote the vector of shocks of
all cities. The city-specific shock is symmetric
and is identically and independently distributed
with mean zero, and 1 � �i,t � 0.38 On ag-
gregate, there is no growth in productivity.39

38 This law of motion implies that ln(Ai,t) follows a unit
root process. In empirical applications, the presence of a
unit root often cannot be rejected. In the real business cycle
literature, for example, using the Solow residual to measure
TFP, the point estimates found on the persistence parameter
� in Ai,t � (Ai,t�1)�(1 � �i,t) cannot be rejected to be
different from 1 (see, for example, Robert G. King and
Sergio T. Rebelo, 1999).

39 Recent work by Rossi-Hansberg and Wright (2004)
and Gilles Duranton (2002) has proposed different growth
models that can explain Zipf’s law. Rossi-Hansberg and
Wright (2004), for example, have shocks at the industry
level. The implication is that while industry size is persistent
over time, the size of a given city is not related to that of
industries, as industries and workers can relocate each pe-

TABLE 3—PARETO COEFFICIENT REGRESSIONS

Truncation point Estimates

R2N� S� City K̂ (s.e.) â (s.e.) (GI s.e.)

135 155,554 Chattanooga (city), TN 21.099 1.354 0.99
(0.144) (0.011) (0.165)

2,000 19,383 Lyndhurst (CDP), NJ 20.648 1.314 0.997
(0.017) (0.002) (0.042)

5,000 6,592 Attalla (city), AL 18.588 1.125 0.985
(0.019) (0.002) (0.023)

12,500 1,378 Fullerton (city), NE 15.944 0.863 0.961
(0.014) (0.002) (0.011)

25,000 42 Paoli (town), CO 13.029 0.534 0.860
(0.010) (0.001) (0.005)

Notes: Dependent variable: Rank (ln). s.e. standard error; GI s.e. Gabaix-Ioannides (2003)
corrected standard error (â(2/N)1/2).
Source: Census Bureau, 2000.

FIGURE 12. ENTIRE SIZE DISTRIBUTION AGAINST RANK

AND LINEAR REGRESSION LINES FOR DIFFERENT

TRUNCATION POINTS
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Firms are identical, consist of one worker,
and are infinitesimally small. The marginal
product yi,t of a worker is composed of the city’s
productivity parameter and the positive local
externality a�(Si,t) from being in a city of size
Si,t:

yi,t � Ai,t a� �Si,t �

where a	�(Si,t) � 0 is the positive external ef-
fect. It is increasing in Si,t which reflects the fact
that larger cities generate bigger externalities in
production. The city’s labor market is consid-
ered perfectly competitive. Identical firms com-
pete for labor of a representative worker, so the
wage rate wi,t received by a worker is equal to
the marginal product yi,t. As a result of the fact
that larger cities have a higher marginal prod-
uct, they also have higher wages.

Workers are endowed with one unit of lei-
sure, which can be employed as labor. Denote
li,t � [0, 1] as the amount of labor employed,
and 1 � li,t as the amount of leisure. Unfortu-
nately, not all labor employed is productive.
Because of the negative commuting externality,
out of the total amount of labor employed, a
fraction needs to be devoted to commuting. As
a result, productive labor Li,t � a�(Si,t)li,t,
where a�(Si,t) � [0, 1] denotes the negative
external effect and a	�(Si,t) 
 0. The larger the
population, the lower the fraction of time that
remains to be devoted to productive labor.

The amount of land in a city is fixed and
denoted by H. Land is a scarce resource, and it
is assumed that the total stock of land available
is for residential use. The price of land is given
by pi,t. An individual citizen’s consumption of
land is denoted by hi,t.

Citizens have preferences over consumption
ci,t, the amount of land (or housing) hi,t, and the
amount of leisure 1 � li,t. The representative
consumer’s preferences in city i at period t are
represented by

u�ci,t , hi,t , li,t � � ci,t
� hi,t

 �1 � li,t �
1 � � � 

where �, , � �  � (0, 1). Workers and firms

are perfectly mobile, so they can relocate to
another city instantaneously and at no cost.40

After observing the realization of the vector of
technology shocks �t in each period t, citizens
choose location i to maximize the discounted
stream of utilities. Because all citizens are iden-
tical, each of them should obtain the same util-
ity level. Moreover, because there is no
aggregate uncertainty over different locations,
and because capital markets are perfect, the
location decision in each period depends only
on the current period utility. The problem is
therefore a static problem of maximizing cur-
rent utility for a given population distribution,
and the population distribution must be such
that in all cities, the population Si,t equates
utilities across cities. In what follows, given a
population size Si,t in city i, agents choose con-
sumption bundles {ci,t, hi,t, li,t} in a Walrasian
economy with local externalities. The “popula-
tion market” clears if all Si imply that the equi-
librium utilities are the same across cities.

Given Si, any individual maximizes utility
u(ci,t, hi,t, li,t) subject to the budget constraint
(where the tradeable consumption good is the
numeraire, i.e., with price unity)

max
�ci,t ,hi,t ,li,t

u�ci,t , hi,t , li,t ; Si� � ci,t
� hi,t

 �1 � li,t�
1 � � � 

s.t. ci,t � pi,thi,t � wi,tLi,t

where wi,t � Ai,ta�(Si,t) and Li,t � a�(Si,t)li,t. A
competitive equilibrium allocation for this
problem satisfies the first-order conditions
(where � is the Lagrange multiplier)

�ci,t
� � 1hi,t

 �1 � li,t �
1 � � �  � � � 0

ci,t
� hi,t

 � 1�1 � li,t �
1 � � �  � �pi,t � 0

�1 � � � �ci,t
� hi,t

 �1 � li,t �
�� � 

� �wi,t a� �Si,t � � 0

which, after substituting for the market clearing
condition of the housing market (hi,tSi,t � H)

riod. Their theory therefore also predicts a particular size
distribution of industries, in addition to that of cities.

40 In the real world, there are obviously transportation
and relocation costs. Dumais et al. (1997) find, however,
that transportation costs have become far less important.

1445VOL. 94 NO. 5 EECKHOUT: GIBRAT’S LAW FOR (ALL) CITIES



and for the budget constraint, give the following
equilibrium prices

p*i,t �
Ai,t a� �Si,t �a� �Si,t �Si,t

H

w*i,t � Ai,ta � �Si,t �

and the equilibrium allocation

c*i,t � �Ai,t a� �Si,t �a� �Si,t �

h*i,t �
H
Si,t

l*i,t � � � .

Observe that wages are higher in cities with
positive productivity shocks (higher Ai,t) and
they are also higher in cities with a larger pop-
ulation (due to the externality a�(Si,t)). This is
consistent with the empirical fact that there is an
urban wage premium (for an overview, see
Glaeser, 1998). Higher wages are in part offset
by higher property prices, which in equilibrium
implies that less hi,t is consumed, and in part by
the fact that more time must be devoted to
commuting in larger cities.41

Perfect mobility implies that upon realization
of the shocks, citizens must be indifferent
across different locations.42 As a result, in equi-
librium, city populations will be such that citi-
zens will obtain the same equilibrium utility
U43

u*�Si,t � � u*�Sj,t � � U

for all cities i and j and where u*(Si,t) � u(c*i,t,
h*i,t, l*i,t; Si,t). This implies that

Ai,t � a� �Si,t �a� �Si,t �Si,t
� /�

� Aj,t � a��Sj,t�a��Sj,t�Sj,t
� /�

is equal to a constant for all cities. Denote
�(Si,t) � a�(Si,t)a�(Si,t)Si,t

�/� the net local size
effect, so Ai,t � �(Si,t) is constant. Then provided
the inverse exists and ��1 is a positive power
function, we get

(3) ��1�Ai,t �Si,t � K

where K is a positive constant. After substitut-
ing for the law of motion of technology Ai,t �
Ai,t�1(1 � �i,t), we obtain

(4) ��1�Ai,t � 1 �1 � �i,t ��Si,t � K.

This expression now helps establish the follow-
ing result:

PROPOSITION 2: Let ��1 be a positive
power function. If �(Si,t) is decreasing, i.e.,
�	 
 0, then (ex ante identical) cities with
larger shocks will have larger populations:
(dSi,t /d�i,t) � 0.

PROOF:
Apply the implicit function theorem to equa-

tion (4), then we get that

dSi,t

d�i,t
� �

���1�	�Ai,t � 1

��Ai,t � 1�1 � �i,t��
.

Since [��1]	� � 1/�	�, dSi,t/d�i,t is positive
provided �	 
 0. This establishes the proof.

Consider the following example. Let
a�(Si,t) � Si,t

� , and a�(Si,t) � Si,t
�� then

��Si,t � � Si,t
� � � � /�

� Si,t
�

where � � � � � � /�. Note that ��1(Si,t) �
Si,t

1/� is a positive power function. As a result, we
write

41 The amount of time devoted to productive and non-
productive labor is the same across city sizes. An argument
could be made that in larger cities the total labor time is
larger than in small cities. Unfortunately, our simple model
with homothetic preferences cannot account for this. A
more sophisticated model with nonhomothetic preferences,
or even with heterogeneous agents, may provide a way to
introduce it.

42 Interestingly, Gibrat (1931) himself discusses wage
heterogeneity of a given profession (terrassiers) across dif-
ferent cities (Saint-Etienne and Lyon) in the presence of
random shocks. Unlike the perfect mobility economy con-
sidered here, he assumes the complete absence of mobility
of workers.

43 Like in Lucas and Rossi-Hansberg (2001), the location
choice of an atomless agent does not change market equi-
librium. For an analysis of the impact of individual location
choices on market equilibrium, see an interesting model by
Ellison and Drew Fudenberg (2003).
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�Ai,t � 1 �1 � �i,t ��
1/� � Si,t � K.

From Proposition 2, bigger shocks will lead to
larger cities, provided � 
 0, i.e. � � � �
/� 
 0. Observe that this condition requires
that the positive knowledge spillover in produc-
tion not be too large: � 
 � � /�. If the
positive spillover is very large, an equilibrium
will involve a degenerate distribution of cities
where all citizens live in the city with the largest
productivity shock.

From equation (3), it is immediate that

(5) Si,t � 1/��1�Ai,t � � K

for all t. Since Ai,t � Ai,t�1(1 � �i,t) and pro-
vided ��1 is a power function, it follows that
��1(Ai,t) � ��1(Ai,t�1) � ��1(1 � �i,t) and
therefore

Si,t � 1/��1�Ai,t � 1 � � 1/��1�1 � �i,t � � K

� 1/� � 1�1 � �i,t � � Si,t � 1

after substituting equation (5) evaluated at t �
1. We now redefine 1/��1(1 � �i,t) � (1 � �i,t)
to get

(6) Si,t � �1 � �i,t � � Si,t � 1 .

The latter equation is exactly what gives rise to
Gibrat’s law provided shocks are small.

Gibrat’s Law of Proportionate Growth.—
Gibrat (1931) (following the discovery by
Kapteyn, 1903) establishes the law of propor-
tionate effect. Consider a stochastic process
{Si,t} indexed by place i � 1, ... , I and time t �
0, 1, ... , where Si,t is the population size of a
place i at time t. Let �i,t be an identically and
independently distributed random variable44 de-
noting the growth rate between period t � 1 and
t for place i. If growth is proportionate, then

Si,t � Si,t � 1 � �i,t Si,t � 1

or

Si,t � �1 � �i,t � � Si,t � 1 .

Rewriting and taking the summation, we get

�
t � 1

T Si,t � Si,t � 1

Si,t � 1
� �

t � 1

T

�i,t

and since for small intervals

�
t � 1

T Si,t � Si,t � 1

Si,t � 1
� �

Si,0

Si,T dSi

Si
� ln Si,T � ln Si,0

or equivalently between any two periods

ln Si,t � ln Si,t � 1 � �i,t .

As a result, it follows that ln Si,T � ln Si,0 �
�i,1 � ... � �i,T. From the central limit theorem,
ln Si,T is asymptotically normally distributed,
and hence Si,T is asymptotically lognormally
distributed, provided the shocks are indepen-
dently distributed and small (thus justifying
ln(1 � �i,t) � �i,t). In other words, in line with
Gibrat’s proposition, a proportionate stochas-
tic growth process leads to the lognormal
distribution.

As a result, the above establishes the main
proposition of the theory of local externalities:

PROPOSITION 3: Let C be an economy with
local externalities, let ��1 be a positive power
function, and let �(Si,t) be decreasing. Then city
size satisfies Gibrat’s law: the population
growth process is proportionate and the asymp-
totic size distribution is lognormal.

It is important to note that Gibrat’s law will
still hold for economies with local externalities
that in addition have economy-wide externali-
ties. In fact, by introducing a technological pa-
rameter A, common to all cities, economy-wide
technological progress can be captured which
results from external effects. This typically de-
notes an aggregate measure—most often the
mean or the max—of the economy-wide tech-
nological progress. For Gibrat’s law to hold, it

44 Donald R. Davis and David E. Weinstein (2002) pro-
vide some evidence for persistence in the population shocks,
in particular when those shocks are extremely big. This was
the case, for example, in the Japanese cities of Hiroshima
and Nagasaki after they were destroyed by the atom bomb
in August 1945. For small variance, i.e., “normal” shocks,
nonpersistence is justified.
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does need to be satisfied that this country-wide
technology parameter is independent of city
size. For the case of the size distribution of
firms and not of cities, Eeckhout and Jovanovic
(2002) provide evidence that spillovers across
firms are dependent on the size of firms. In fact,
spillovers between firms are larger for smaller
firms. We do not find such evidence across
cities. If the true model of the economy is the
one proposed in this section, then the propor-
tionate population growth process is consistent
with the fact that there are no net local spill-
overs across cities of different sizes. That does
not, of course, rule out the possibility that there
are local spillovers between cities of different
sizes that are geographically close, but the net
effect over the entire distribution cancels out.45

Our results provide no evidence in that direc-
tion. Recent work on MAs by Linda H. Dobkins
and Ioannides (2001), however, establishes that
distance from the nearest higher-tier city (i.e.,
the nearest larger city in a higher tier) is not
significant as a determinant of size and growth.

Ideally, further analysis of the data should be
done. In particular, one would like to analyze
the entire size distribution over time. This
would provide an exact description of the mo-
ments of the distribution at different points in
time which would allow for further verification
of the underlying statistical process. It would
answer questions concerning the limit variance,
whether Gibrat’s law satisfies exactly a Geo-
metric Brownian motion, thus pinning down the
detailed process that generates a limit log-
normal size distribution.46 Unfortunately, due
to the lack of available data covering the entire
size distribution, those further analyses are not
possible at this time.

IV. Concluding Remarks

In this paper, a simple but robust underlying
mechanism of population dynamics of all cities

in the United States has been uncovered. Cities
grow proportionately, i.e., at a stochastic rate
that is independent of city size, and this gives
rise to a lognormal distribution of cities. This
property of the stochastic process has been
known at least since Gibrat (1931). At the same
time, this result can account for what for over
half a century has been the benchmark stylized
fact of economic geography, that the upper tail
of the city size distribution satisfies Zipf’s law.
It has been shown that the results confirming
Zipf’s law and the corresponding estimates of
the power coefficient can be obtained even if the
true underlying distribution is not the Pareto (or
Zipf) distribution. Estimated power coefficients
are sensitive to the choice of the truncation
point and are consistently increasing in the trun-
cation. Given a lognormal distribution, we have
proposed a simple resolution of one of the major
puzzles related to the size distribution of cities
based on Gibrat’s law.

This breakthrough can be made only now
because it hinges on the availability of new data
in Census 2000 for the entire size distribution.
The change in conclusion following the avail-
ability of different data does not seem to be an
isolated occurrence in science. A similar phe-
nomenon has occurred in material sciences, in
particular in the measurement of the atmo-
spheric aerosol size distribution.47 Atmospheric
aerosols are particles of different components
floating in the air. When the measurement of
particles is restricted to those with the largest
size (often due to the absence of measurement
technology that can capture the distribution of
the smaller ones), the resulting observed distri-
bution is in fact the truncated distribution and is
often fit to a power law. With the advent of
advanced measurement technology, however,
smaller particles and hence the total size distri-
bution can be measured. Knowledge of the
entire atmospheric aerosol distribution is impor-
tant mainly because, for humans, inhalation of
small aerosol is much more harmful than large.
The latter get stopped in the nostrils and throat
and never enter the lungs. For the entire size
distribution of many aerosol types, the distribu-

45 Consider, for example, an economy with many pairs
of cities, each pair with one large and one small city. If the
shocks between the large and the small city are correlated,
but shocks across the many pairs of cities are not, growth
will still be proportionate.

46 Kalecki (1945) extends the class of stochastic pro-
cesses that lead to the lognormal distribution. This is moti-
vated by his observation that Gibrat’s process leads to a
lognormal distribution with linearly and unbounded increas-
ing variance.

47 I am grateful to Samuel Pessoa for pointing this out.
See John H. Seinfeld and Spyros N. Pandis (1997), Amin
Haaf and Rainer Jaenicke (1980) and William Hinds (1982).
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tion is actually lognormal, or a convolution of
different lognormals.

The fact that Gibrat’s proposition is estab-
lished concerning the population mobility of
cities is a necessary requirement for an empiri-
cally consistent theory of the underlying eco-
nomic activity. The second main purpose of this
paper is to propose and solve an equilibrium
model of local externalities where wages and
prices guide citizens in their location decision.
Consistent with proportionate growth and a log-
normal size distribution, the model establishes a
mechanism of local productivity shocks in the
presence of local externalities and their effect,
through worker mobility, on the population size
distribution of cities.

APPENDIX A: THE SIZE DISTRIBUTION

OF COUNTIES

We investigate the size distribution of coun-
ties. While counties may not necessarily be the
right geographical unit that an economist is
interested in, they do have the major advantage
that the size distribution of counties comprises
100 percent of the U.S. population, i.e., 281
million in 2000. According to the Census, coun-
ties are described as the primary legal divisions
of most states. For example, voting for most
elections is organized at the county level. Most
counties are functioning governmental units,
whose powers and functions vary from state to

state. Legal changes to county boundaries or
names are typically infrequent.

In 2000, there were 3,141 counties in the
United States covering the entire population.
The ten largest are listed in Table A-1. The
largest, Los Angeles County, California, had
9.5 million inhabitants and the smallest, Loving
County, Texas, 67 inhabitants. The sample
mean (in ln, standard error in brackets) is �̂ �
10.22 (0.02) and the standard deviation is �̂ �
1.41.

In Figure A-1 we plot the size distribution,
together with the normal density �(�̂, �̂).

The size empirical density is remarkably simi-
lar to the normal. There is somewhat more mass
near the mode, and the distribution may be slightly
skewed, but the distribution of county size is
nonetheless surprisingly close to lognormal.

TABLE A-1—TEN LARGEST COUNTIES IN THE UNITED

STATES

Rank City Population S SLA/S

1 Los Angeles County, CA 9,519,338 1.000
2 Cook County, IL 5,376,741 1.770
3 Harris County, TX 3,400,578 2.799
4 Maricopa County, AZ 3,072,149 3.099
5 Orange County, CA 2,846,289 3.344
6 San Diego County, CA 2,813,833 3.383
7 Kings County, NY 2,465,326 3.861
8 Miami-Dade County, FL 2,253,362 4.225
9 Queens County, NY 2,229,379 4.269

10 Dallas County, TX 2,218,899 4.290

Note: SLA/S denotes the ratio of population size relative to
Los Angeles.
Source: Census Bureau, 2000.

APPENDIX B: ADDITIONAL STATISTICS

OF CITY GROWTH

TABLE B-1—DESCRIPTIVE STATISTICS OF CITY GROWTH

Range of cities Growth rate (non-normalized)

N mean stdev IQR (Q3 � Q1)

All 19,361 0.103 0.729 0.199
Top 100 100 0.108 0.158 0.154
Bottom 100 100 �0.127 0.671 0.493
P10 to P90 15,488 0.106 0.786 0.191

Source: Census Bureau, 1990–2000.

FIGURE A-1. EMPIRICAL AND THEORETICAL DENSITY

FUNCTIONS OF ALL COUNTIES
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concentration des entreprises, aux populations
des villes, aux statistiques des familles, etc.,
d’une loi nouvelle, la loi de l’effet proportion-
nel. Paris: Librairie du Recueil Sirey, 1931.

Glaeser, Edward L. “Are Cities Dying?” Journal
of Economic Perspectives, 1998, 12(2), pp.
139–60.

Glaeser, Edward L.; Scheinkman, Jose A.
and Shleifer, Andrei. “Economic Growth
in a Cross-Section of Cities.” Journal of
Monetary Economics, 1995, 36(1), pp. 117–
43.

Haaf, Amin and Jaenicke, Rainer. “Results of
Improved Size Distribution Measurement in
the Aitken Range of Atmospheric Aerosols.”
Journal of Aerosol Science, 1980, 11(3), pp.
321–30.

Hardle, Wolfgang. Applied nonparametric re-
gression. Econometric Society Monographs.
Cambridge, New York and Melbourne: Cam-
bridge University Press, 1990.

Henderson, J. Vernon. “The Sizes and Types of
Cities.” American Economic Review, 1974,
64(4), pp. 640–56.

Hinds, William C. Aerosol technology. New
York: Wiley, 1982.

Ioannides, Yannis M. and Overman, Henry G.
“Zipf’s Law for Cities: An Empirical Exam-
ination.” Regional Science and Urban Eco-
nomics, 2003, 33(2), pp. 127–37.

Jovanovic, Boyan. “Selection and the Evolution
of Industry.” Econometrica, 1982, 50(3), pp.
649–70.

Kalecki, Michael. “On the Gibrat Distribution.”
Econometrica, 1945, 13(2), pp. 161–70.

FIGURE B-1. INTERQUARTILE RANGE BY DECILE

1450 THE AMERICAN ECONOMIC REVIEW DECEMBER 2004

http://pubs.aeaweb.org/action/showImage?doi=10.1257/0002828043052303&iName=master.img-013.jpg&w=191&h=130


Kapteyn, Jacobus C. Skew frequency curves in
biology and statistics. Astronomical Labora-
tory, Groningen: Noordhoff, 1903.

Kesten, Harry. “Random Difference Equations
as Renewal Theory for Products of Random
Matrices.” Acta Mathematica, 1973, 131, pp.
207–48.

King, Robert G. and Rebelo, Sergio T. “Resusci-
tating Real Business Cycles,” in J. B. Taylor
and M. Woodford, eds., Handbook of macro-
economics, Volume 1B. Handbooks in Eco-
nomics, Vol. 15. Amsterdam, New York and
Oxford: Elsevier Science, North-Holland,
1999, pp. 927–1007.

Krugman, Paul. Development, geography, and
economic theory. Cambridge, MA: MIT
Press, 1995.

Krugman, Paul. The Self-organizing economy.
Cambridge: Blackwell, 1996.

Le Maitre, Alexandre B. La metropolitée, ou de
l’établissement des villes capitales, de leur
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