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Abstract
With the rapid increase of mobile devices and online me-
dia, more and more people prefer posting/viewing videos on-
line. Generally, these videos are presented on video streaming
sites with image thumbnails and text titles. While facing huge
amounts of videos, a viewer clicks through a certain video with
high probability because of its eye-catching thumbnail. How-
ever, current video thumbnails are created manually, which is
time-consuming and quality-unguaranteed. And static image
thumbnails contain very limited information of the correspond-
ing videos, which prevents users from successfully clicking
what they really want to view.
In this paper, we address a novel problem, namely GIF thumb-
nail generation, which aims to automatically generate GIF
thumbnails for videos and consequently boost their Click-
Through-Rate (CTR). Here, a GIF thumbnail is an animated
GIF file consisting of multiple segments from the video, con-
taining more information of the target video than a static
image thumbnail. To support this study, we build the first
GIF thumbnails benchmark dataset that consists of 1070
videos covering a total duration of 69.1 hours, and 5394 cor-
responding manually-annotated GIFs. To solve this problem,
we propose a learning-based automatic GIF thumbnail gen-
eration model, which is called Generative Variational Dual-
Encoder (GEVADEN). As not relying on any user interac-
tion information (e.g. time-sync comments and real-time view
counts), this model is applicable to newly-uploaded/rarely-
viewed videos. Experiments on our built dataset show that
GEVADEN significantly outperforms several baselines, in-
cluding video-summarization and highlight-detection based
ones. Furthermore, we develop a pilot application of the pro-
posed model on an online video platform with 9814 videos
covering 1231 hours, which shows that our model achieves a
37.5% CTR improvement over traditional image thumbnails.
This further validates the effectiveness of the proposed model
and the promising application prospect of GIF thumbnails.

Introduction
The past decade has witnessed a phenomenal surge in video
sharing. According to statistics, hundreds hours of videos
are uploaded to Youtube per minute (Jamil et al. 2018). With
such huge amounts of videos, whether a certain video will
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be clicked and further viewed with high probability depends
on its thumbnail and title. Videos with eye-catching thumb-
nails will definitely attract more viewers. Therefore, how to
create attractive image thumbnails to boost Click-Through-
Rate (CTR) becomes a major concern of video publishers and
streaming sites (Song et al. 2016; Yuan, Ma, and Zhu 2019;
Zhao et al. 2017; Kim et al. 2019).

Fig. 1 shows two different kinds of thumbnails of a video:
1) a static image (left) and 2) an animated GIF consisting of
three shots (right). Obviously, the right one is more attractive
because the GIF provides more vivid snapshots of the video
and consequently will stimulate users’ stronger interest in
clicking and viewing. However, manually creating thumb-
nails (especially GIF thumbnails) is time-consuming and
quality-unguaranteed. Thus, it is desirable to automatically
generate thumbnails in the form of animated GIFs.

Nowadays, some popular video streaming sites, such as
YouTube, begin to trim a short segment from a video as
the thumbnail to make it more attractive. However, only one
trimmed segment may lead to misunderstanding or even click-
baits for limited video gist information, while too many shots
in a GIF thumbnail will dampen viewers’ interest and pa-
tience. For example, with only the 2nd shot in Fig. 1 as the
thumbnail may make viewers mistake bullying as having fun,
but more than 3 shots will cost viewers too much patience
to browse the thumbnail. On the other hand, user interaction
information (e.g. time-sync comments and real-time view
counts) is helpful for locating interesting shots and gener-
ating GIF thumbnails. Nevertheless, for newly-uploaded or
rarely-viewed videos, there is little user interaction informa-
tion available.

With the observation above in mind, we propose a novel
problem: automatically generating GIF thumbnails for videos
from computer vision perspective. Considering that most
stories can be summarized in a three-part structure (“start-
develop-end”), we define a GIF thumbnail as three shots from
the target video in this paper. Therefore, our task is to select
three shots from the target video and rearrange them, not
necessarily in the original chronological order. From visual
perspective, a GIF is short, and sometimes contains unique
spatio-temporal visual patterns to thread multiple shots with
video gist content or of interestingness.

To support this study, we first build a benchmark dataset for
GIF thumbnail generation, which consists of 1070 videos of
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Figure 1: A video with two different kinds of thumbnails: static image (left) and animated GIF (right). The left is an image
thumbnail created by the video owner, which is carefully selected to show the situation that the dog is scared to tremble and
bullied by the white cat. The right includes several cut screens from three shots in an animated GIF, from which we can see the
storyline of the video: the dog wants to show kindness to the cat in the 1st shot, but it is hit by the cat in the 2nd shot. Then, it
cries in the 3rd shot. All these shots in the animated GIF are directly extracted from the video without modification.

various contents and a total duration of 69.1 hours. Consider-
ing the difficulty of searching the optimal GIF thumbnail for a
video, we take several GIFs as the ground truth of each video.
To generate GIF thumbnails, we introduce a model based on
Variational Auto-Encoder (VAE) (Kingma and Welling 2014)
to learn the video-dependent latent patterns of GIFs, which
is called Generative Variational Dual-Encoder (GEVADEN
in short). Here, GEVADEN is a combination of sequence-to-
sequence model and conditional VAE. Experimental results
on the benchmark verify the effectiveness of GEVADEN
and its advantage over the competing methods. Furthermore,
we deploy a pilot application of our model on a real video
streaming platform with 9814 non-annotated videos. Running
results of the application show that using GIF thumbnails
generated by GEVADEN achieves 37.5% CTR improvement
over using static image thumbnails, which demonstrates the
promising prospect of GIF thumbnails in real applications.

In summary, contributions of this paper are as follows:

• We introduce a novel problem of automatically generating
GIFs as thumbnails from vision perspective. To the best
of our knowledge, this is the first work to address such a
novel and challenging problem in the literature.

• To support the study of automatic GIF thumbnail genera-
tion, we build the first benchmark dataset with 1070 videos
and 5394 carefully annotated GIF thumbnails.

• We develop an effective model called Generative Varia-
tional Dual-Encoder (GEVADEN) to generate GIF thumb-
nails by learning the latent patterns of annotated GIFs.

• We conduct extensive experiments on the benchmark and
deploy a pilot application on a real video streaming plat-
form. Results of experiments and application running vali-
date the proposed model, and a 37.5% CTR improvement
demonstrates its potential in real applications.

Note that some existing vision tasks such as image thumb-
nail selection (Song et al. 2016), video highlight detec-
tion (Xiong et al. 2019), and video summarization (Zhang,
Grauman, and Sha 2018) are related to our problem, but
they are not suitable for or effective in our scenario. On the
one hand, for video summarization, though we can reduce

the length of the summary to 3 shots, most of the existing
methods (Mahasseni, Lam, and Todorovic 2017; Rochan, Ye,
and Wang 2018; Wei et al. 2018a; Jung et al. 2019) with
binary or importance score output and an additional selec-
tor (Gong et al. 2014) are not suitable for GIF thumbnail
generation, because they do not consider the chronological
orders of the selected shots. On the other hand, highlight
detection and image thumbnail selection consider only one
segment/frame in a video, while GIF thumbnail needs to se-
lect multiple shots jointly. Although highlight detection can
be extended to select multiple shots via top-k ranking scores,
it cannot be guaranteed that the selected shots contain video
gist information and inter-shot semantic connection, which
are indispensable to GIFs. Most importantly, we adapt four
existing methods, including one image thumbnail selection
method, one summarization method, and two highlight de-
tection methods to generating GIF thumbnails. Experimental
results show that our method outperforms these methods.

Related Work
Here we survey the latest advances in video summarization
and video highlight detection areas. We also review the tech-
niques closely related to the proposed model.

Video ummarization. It is to produce a set of shots or
keyframes that cover the gist of the original video. Summaries
are output in various structured forms, including storyline
graphs (Kim and Xing 2014; Xiong, Kim, and Sigal 2015),
montage representations (Kang et al. 2006), a sequence of key
frames (Zhang et al. 2016; Mahasseni, Lam, and Todorovic
2017) or shots (Zhang, Grauman, and Sha 2018), according
to different understandings and requirements of the task. In
what follows, we focus on the methods that output a sequence
of keyframes or clips.

As a long-standing computer vision task, video summa-
rization considers not only the importance of frames but
also the criteria of relevance, representativeness, interest-
ingness, and diversity (Hong et al. 2011; Mei et al. 2015;
Gong et al. 2014). Some (Mahasseni, Lam, and Todorovic
2017; Rochan, Ye, and Wang 2018; Wei et al. 2018a; Jung
et al. 2019) output binary value (importance score) for each
frame and select keyframes through DPP (Gong et al. 2014).
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For methods with regression strategy, (Zhang, Grauman, and
Sha 2018) generates the summary with the nearest neigh-
bor algorithm based on the output sequence, while (Fu, Tai,
and Chen 2019) predicts time stamps of selected keyframes
with Ptr-Net (Vinyals, Fortunato, and Jaitly 2015). Recently,
Many methods (Cai et al. 2018; Fu, Tai, and Chen 2019; Jung
et al. 2019; Mahasseni, Lam, and Todorovic 2017; Yuan et al.
2019) exploit unannotated data or Web priors via weakly-
supervised/unsupervised strategies.

Video Highlight Detection. It retrieves a moment that
may catch viewers’ attention. Early works mainly investigate
broadcast sports videos (Rui, Gupta, and Acero 2000; Wang
et al. 2004; Xiong et al. 2005; Tang et al. 2011). Recent stud-
ies focus on specific-domain videos (Sun, Farhadi, and Seitz
2014; Merler et al. 2017; Sun et al. 2017; Kim et al. 2018;
Xiong et al. 2019), and the detected highlights come with a
strong prior (category labels or keywords), like surfing and
dog etc. So given a video, different highlights may be de-
tected for different scenarios. For instance, (Kim et al. 2018)
exploits domain-specific top-ranked web images as weak su-
pervision and proposes a novel triplet deep ranking strategy.
(Wei et al. 2018b) proposes a Sequence-to-Segments Network
and uses Earth Mover’s distance to predict the localities and
scores of segments. (Xiong et al. 2019) assumes that shots in
shorter videos have higher highlight score than those in longer
videos, and proposes a novel video clip ranking framework
for noise data. More similar to our task, Video2Gif (Gygli,
Song, and Cao 2016) was proposed based on RankNet and
learned from GIF-video pairs created by rules, and each GIF
consists of only one segment, different from ours.

Variational Auto-Encoder (VAE). VAE (Kingma and
Welling 2014; Rezende, Mohamed, and Wierstra 2014) has
been explored in various tasks (Mahasseni, Lam, and Todor-
ovic 2017; Cai et al. 2018; Denton and Fergus 2018). Con-
cretely, (Denton and Fergus 2018) develops a recurrent infer-
ence network to estimate latent distribution for each time step
in the frame prediction task. (Mahasseni, Lam, and Todorovic
2017) integrates VAE and generative-adversarial training into
a deep architecture for unsupervised video summarization.
(Cai et al. 2018) utilizes videos from Web to estimate com-
mon latent distribution via VAE.

In our work, we use VAE to learn GIF patterns as the
posterior distribution from the ground-truth representations.
We merge the decoder of VAE and a video encoder into a
sequence-to-sequence model for GIF thumbnail generation.
As illustrated in Fig. 3, the generator of our model takes video
embedding and a random vector from latent distribution to
predict GIF thumbnails. The random vector for the generator
is drawn from the encoder of VAE in the training phase, but
from the encoder of our model in the test phase.

Problem Statement
Given a video X = [x1, x2, ..., xn], and a set of GIF thumb-
nails T = {T1, T2, ..., Tm}, where n is the length of video,
m is the number of ground-truth thumbnail for video X ,
xi indicates the feature vector of the i-th shot (in this pa-
per, each shot is 1-second length), and Tj is the j-th GIF
thumbnails of video X . For simplicity of notation, in the fol-
lowing we represent an arbitrary ground-truth GIF thumbnail

Dataset Task or problem # of videos duration
OVP S 50 each from 1 to 4m

Youtube S 50 each from 1 to 10m
SumMe S 25 1.2h
CoSUM S 51 2.5h
TVSum H & S 50 3.5h

YouTube Highlights H 712 23.8h
Yahoo Screen H 1,118 52.5h

VTW H & S 2,000 50h
SVCD H 11,000 each less than 10s

our dataset GIF Thumbnails 1,070 69.1h

Table 1: Statistics comparison of our dataset with some ex-
isting commonly-used vision task datasets. “S” means video
summarization, “H” indicates highlight detection. Duration
of OVP (De Avila et al. 2011), Youtube (De Avila et al. 2011)
and SVCD (Ren et al. 2020) means single video duration.

(a) Duration distribution of annotated videos.

(b) Histogram of the number of annotated GIF thumbnails for
videos.

Figure 2: Statistics of time duration and the number of anno-
tated GIFs for videos in our dataset.

Tj (j ∈ {1, 2, ...,m}) as Y = [y1, y2, y3] in the form of a
sequence of 3 time stamps, each of which indicates the start
time of a shot in the video. Time stamps in Y are not neces-
sarily arranged in chronological order as aforementioned.

The goal of our problem is to build a model for 1) gen-
erating a GIF Ŷ = [ŷ1, ŷ2, ŷ3] as the thumbnail for each
training video such that the aggregated difference between
the generated GIFs and the ground-truth GIFs is minimized
(training phase), and 2) generating proper GIF thumbnails
for testing videos (test phase) or new-coming videos such
that their CTR can be boosted (application phase).

GIF Thumbnails Benchmark
A major obstacle for this novel task is the lack of public
datasets that consist of video and GIF thumbnail pairs, as
well as posterior information (e.g. time-sync comments) for
evaluation. To tackle this problem, we collect and annotate
a dataset from scratch for this new task. To the best of our
knowledge, our GIF Thumbnail dataset is the first one for
generating GIF thumbnails from vision perspective.

Data Collection and Annotation
As it is difficult to find the optimal GIF thumbnail for each
video manually, we consider any acceptable annotated GIF
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Figure 3: The framework of our model. The red dashed line denotes data flow existing only in the training phase, and the blue
dashed line means data flow valid only in the test phase.

as a ground-truth. Thus, each video may correspond to a
certain number of GIF thumbnails, each of which consists of
three disjoint shots extracted from the video. These shots are
rearranged, not necessarily in their original orders.

Data Collection In the GIF Thumbnail dataset, videos
were collected from a popular Chinese video streaming
site called Bilibili. To select representative videos with non-
biased user interactions, we first crawl videos uploaded three
months ago to guarantee sufficient views and time-sync com-
ments. Then, we remove low-quality or meaningless time-
sync comments in videos and filter these videos via a thresh-
old of the number of sanitized time-sync comments. The
reason is that we try to keep only videos with sufficient high-
quality time-sync comments in the dataset.

Annotation. Due to the large search space and its subjec-
tive nature, manually annotating GIF thumbnails is a non-
trivial task, especially for long videos. Thus, we generate
GIF proposals based on time-sync comments. Concretely, we
first detect peaks of time-sync comments per second over
the timeline. Here, a peak means the number of comments at
this timestamp is larger than those of the preceding and the
following timestamps. Intuitively, peak timestamps have a
higher probability of being included in GIF thumbnails than
non-peak timestamps, because more time-sync comments
imply that more viewers are interested in the shots starting
from these timestamps. We then remove the peaks located in
the starting and ending segments of the videos, as shots in
the starting and ending segments are possibly meaningless

and unrepresentative. In such a way, we can obtain a series
of representative shots for each video.

To compose a GIF, we sample three disjoint shots from
the video with the probability in proportion to the number of
time-sync comments contained in each shot. To create more
proper thumbnails, we also apply Monte Carlo strategy and
several manually-designed rules to rearrange the sampled
shots, and then assemble them into a GIF proposal.

Finally, more than 30 GIF proposals are generated for each
video, and each GIF is labeled by at least two annotators to
indicate whether or not it is attractive to be clicked. Only
these GIF Thumbnails positively labeled by all annotators
are included in the dataset. Eventually, this dataset consists
of 1070 videos with a time duration of 69.1 hours and 5401
corresponding GIF thumbnails.

Data Statistics
Major statistic information of our dataset is presented
in Table 1. For comparison, we also give the statistic
data of some commonly-used datasets for video summa-
rization and highlight detection, including Open Video
Project (OVP) (De Avila et al. 2011), Youtube (De Avila
et al. 2011), SumMe (Gygli et al. 2014), CoSUM (Chu, Song,
and Jaimes 2015) and TVSum (Song et al. 2015) for video
summarization, YouTube Highlights (Sun, Farhadi, and Seitz
2014), Yahoo Screen (Song et al. 2016), VTW (Zeng et al.
2016) and SVCD (Ren et al. 2020) for video highlight detec-
tion. Compared to the existing datasets, our GIF Thumbnail
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dataset covers longer video time duration, and it also contains
9814 additional videos used in our pilot application.

Fig. 2(a) shows the distribution of video duration, ranging
from 20s to 25m. Fig. 2(b) illustrates the distribution of the
number of GIF thumbnails over videos, which reveals one
unique feature of our problem: each video corresponds to a
certain (but not fixed) number of GIF thumbnails.

Model
The major challenge of GIF thumbnail generation is how to
model the relationship between a video and multiple accept-
able GIF thumbnails. To this end, we propose a sequence-to-
sequence model based on a Variational Auto-Encoder, which
is called Generative Variational Dual-Encoder (GEVADEN
in short). In what follows, we present the framework, major
modules, and the loss function of our model in detail.

Generative Variational Dual-Encoder
Framework Our model GEVADEN has an end-to-end
trainable framework, as shown in Fig. 3, which consists of
three major modules: Prior Encoder, Posterior Encoder and
GIF Generator. The Prior Encoder is responsible for em-
bedding videos into semantic space and learning the video-
dependent prior distribution used for GIF generation in the
GIF Generator module. The Posterior Encoder is used to
learn unique patterns of GIF thumbnails in the latent space.
These patterns are taken as the posterior distribution for
model training. The GIF Generator generates a GIF thumb-
nail by combining video embedding (sx) and a random vector
z drawn from the latent space. During training, z is sam-
pled from the posterior distribution output by Posterior En-
coder (red dashed line in Fig. 3). While in the inference
phase, z is sampled from the video-dependent prior output
by Prior Encoder (blue dashed line in Fig. 3).

Prior Encoder We first apply a pretrained 3D-
ResNet (Hara, Kataoka, and Satoh 2018) to encode
each video into a feature vector sequence X . We then use a
two-layer LSTM to embed the video into a semantic vector
sx, with which the prior distribution N (µprior, σprior) of
latent space is characterized by a two-layer MLP with ReLU
activation. Then, we draw a random sample z from the prior
distribution to provide video-dependent patterns to the GIF
generator for GIF thumbnail generation. Formally,

z ∼ P (·|X; θ) = N
(
µprior(sx), σprior(sx)

)
, (1)

where θ indicates parameters of the two-layer LSTM and
MLP, and P (·|X; θ) is a Gaussian distribution with mean
µprior and variance σprior.

Posterior Encoder This module is introduced to recognize
the latent patterns from the ground-truth GIF thumbnails. It
has a similar architecture to Prior Encoder. By taking feature
XY = [xy1 , xy2 , xy3 ] of Y (a ground truth thumbnail) as
input, it outputs a semantic feature sy of Y , and a recognized
latent pattern mapped at the location µpost(sy) with uncer-
tainty σpost(sy) in the latent space. We denote the recognized

latent pattern as posterior distribution Q(·|X,Y ). A random
sample z is drawn from the posterior distribution as follows:

z ∼ Q(·|X,Y ;ω) = N (µpost(sy), σpost(sy)) (2)

where ω means the parameters of this module. z is then fed
to the GIF Generator to predict a GIF thumbnail Ŷ , which is
expected to be as identical as possible to the corresponding
input ground-truth Y . This results in the regression penalty
item in Eq. (5). Details of data flow and training strategy
about this module are given in Fig. 3.

GIF Generator. The combination of Prior Encoder and
GIF Generator is an extension to the sequence-to-sequence
architecture. As a decoder, GIF Generator consists of a two-
layer LSTM. Besides the video embedding feature sx as
initial hidden state, GIF Generator takes a random sam-
ple z from Q(·|X,Y ) in Eq. (2) (for training) or P (·|X)
in Eq. (1) (for inference) as input, and outputs shot features
sequentially. That is,

gi = G(Hi−1, z, gi−1;φ), (3)

where G denotes the generator, φ stands for the parameters
of G, gi is the i-th generated shot feature in the predicted
sequence g, andHi indicates the hidden state at the i-th time
stamp. In Eq. (3), Hi−1 = sx and gi−1 = ~0 when i = 1.
Then, we solve the closest matching problem with a disjoint
restriction to obtain the GIF thumbnail Ŷ = [ŷ1, ŷ2, ŷ3]:

Ŷ = argmin
Ŷ (l)

|g|∑
i

∥∥∥gi − xŷ(l)i

∥∥∥ ,
s.t. ŷ

(l)
i 6= ŷ

(l)
j , ∀i 6= j.

(4)

Loss Function
In training stage, a sample (vector) z is drawn from the pos-
terior distribution Q(·|X,Y ) and fed into GIF Generator
for GIF generation; while in the inference phase, z is drawn
from the prior distribution P (·|X). Thus, Kullback-Leibler
divergence is applied to penalizing the difference between the
posterior distribution and the prior distribution. In addition,
a regression loss is used to penalize the difference between
the feature of the predicted GIF thumbnail g and that of
ground-truth GIF thumbnail XY . Therefore, the optimization
objective function is formulated as follows:

L(θ, φ, ω) = Ez∼Q(·|X,Y )

[
− log pφ(Y |X, z)

]
+ βDKL

(
Q(z|X,Y )||P (z|X)

)
,

(5)

where pφ is the likelihood term of regression penalty between
g and XY . During training, the KL divergence DKL pushes
the posterior distribution and the prior distribution towards
each other. We train the model using the re-parameterization
trick (Kingma and Welling 2014), where we simulate the
expectation over the posterior distribution by drawing 4 sam-
ples for each input video. The hyper-parameter β in Eq. (5)
is the trade-off between minimizing the regression penalty
and fitting the prior. A small β will make the model tend to
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under-utilize/ignore the sample z, and even deteriorate to a
sequence-to-sequence model. If β is too small, the model
will lack exploration due to little utilization of z and become
hard to converge with multiple GIFs. If β is too large, the
model tends to over-fit for the ground-truth GIFs and achieves
high performance in training but low performance in testing.
More discussions about hyper-parameter β can refer to the
experimental part of the Appendix.

One key point of generating credible GIF thumbnails is to
follow the gist of the ground-truth. Actually, only regression
penalty for supervision is not enough. Inspired by perceptual
loss (Johnson, Alahi, and Fei-Fei 2016), we feed the predicted
feature sequence g into Posterior Encoder and re-embed it
into the semantic space of ground-truth GIF thumbnails. We
denote the re-embedded feature of the predicted GIF as ŝy.
Thus, we have the following loss:

Lpercept(θ, φ, ω) = ‖ŝy − sy‖2 . (6)

Note that in the perceptual loss of Eq. (6), no gradient is
accumulated for ω in the re-embedding phase.

Accordingly, we have the following loss function for gen-
erating credible GIF thumbnails:

Lmixed = L(θ, φ, ω) + λEz∼Q(·|X,Y )Lpercept(θ, φ, ω),
(7)

where λ is a trade-off parameter. With the mixed loss func-
tion above, our model can be trained via back-propagation
efficiently.

Performance Evaluation
Setup
Implementation Details. We randomly split the annotated
videos from the benchmark dataset into three parts: 857 for
training, 106 for validation, and 107 for testing. For all videos,
we resize them to 160p along the short side and resample
them to 16 fps frame rate. Before applying the Prior En-
coder, we utilize a 3D-ResNet pretrained on Kinetics (Kay
et al. 2017) as a bottomed video feature extractor. The 3D-
ResNet with ResNet-50 takes a 16-frame clip as input and
outputs a feature vector with 2048 channels. We set the di-
mensions of video semantic space, GIF semantic space, and
Gaussian distribution to 512, 128, and 10, respectively. We
train networks via Aadm (Kingma and Ba 2014) optimizer
with an initial learning rate of 3 × 10−4 and a mini-batch
size of 16. Both the closest matching in GIF Generator and
the regression penalty in our model use L2 norm. Networks
are implemented in Pytorch v1.3, and experiments are con-
ducted on eight NVIDIA Tesla P40s. Codes and Appendix
are available at https://github.com/xyiyy/GIF-Thumbnails

Baselines As our work is the first one to generate
GIF thumbnails for videos, we use four related existing
methods as baselines for performance comparison: Beaut-
Thumb (Song et al. 2016), GIF generation in Hecate (Hecate
in short) (Song et al. 2016), RankNet (Gygli, Song, and Cao
2016) and re-SEQ2SEQ (Zhang, Grauman, and Sha 2018).
BeautThumb was proposed for image thumbnail generation.
To generate GIF thumbnails by BeautThumb, we first predict
the time stamps of top-3 image thumbnails by analyzing the

visual quality and aesthetic metrics, then thread the corre-
sponding shots based on their time stamps to output a GIF.
As for the two video highlight detection methods Hecate and
RankNet, we construct GIF thumbnails with top-3 ranked
shots. We directly run the source codes and follow their orig-
inal settings of these three baselines1. Re-SEQ2SEQ is a
regression-based method for video summarization. We re-
implement and adapt it to the settings of GEVADEN.

Metrics. Considering that a GIF thumbnail consists of 3
independent shots, it is difficult to predict an exact matching
GIF thumbnail from a long target video. Therefore, we assess
the quality of generated GIF thumbnails by two specifically
proposed metrics.
• Perceptual Matching Error (PME). Recall that we apply

closest matching to generate GIFs, to exploit the properties
of closest matching, we propose the Perceptual Matching
Error (PME) as one of our evaluation metrics. PME is
defined as the minimal distance to move the generated fea-
ture gi so that it falls into the correct matching target. The
normalized PME can be obtained by solving the following
convex optimization problem:

PME(gi, X, yi) = min
~v

‖~v‖
‖gi − xyi‖

s.t. ‖gi + ~v − xyi‖ ≤ ‖gi + ~v − xj‖, ∀xj ∈ X,
(8)

where PME(gi, X, yi) denotes the normalized PME be-
tween the generated shot feature gi and the yi-th shot in
video X , ‖~v‖ is the L2-norm of vector ~v, and ~v is the
moving vector to be searched. PME(g,X, Y ) can be cal-
culated as 1

|Y |
∑
i PME(gi, X, yi). Intuitively, if the gen-

erated shot is located in the area where the nearest matched
shot is ground-truth, then ~v = ~0 and PME is 0. Otherwise,
if the generated shot is far from ground-truth, other shots
may disturb the matching result when we move the gener-
ated shot along ~v, then the result of ~v will tend to approach
gi − xyi and PME will be close to 1. One advantage of
PME is that it also considers the relationship with shots
that are not ground truth, which means that feature dif-
ference between the predicted GIFs and the ground-truth
GIFs is not the only factor that affects this metric.

• Posterior Score (PS). It is calculated with the posterior
information of videos, such as time-sync comments in this
work. We propose this metric based on the observation that
shots with more time-sync comments usually have a higher
probability of being selected to GIF thumbnails, because
more time-sync comments indicate more user interactions,
i.e., more interesting or attractive to viewers. We aggregate
the ratios of time-sync comments of selected shots as the
posterior score, and the ratios are normalized with the
maximal number of time-sync comments per-second. The
PS value of Ŷ is evaluated by

PS(Ŷ , C) =

|Ŷ |∑
i

Cŷi/max(C), (9)

1BeautThumb and Hecate: https://github.com/yahoo/hecate;
RankNet: https://github.com/gyglim/video2gif code
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Method PME (val) PS (val) PME (test) PS (test)
BeautThumb (Song et al. 2016) 0.267 0.906 0.268 0.938

Hecate (Song et al. 2016) 0.257 0.895 0.261 0.939
RankNet (Gygli, Song, and Cao 2016) 0.253 0.922 0.245 0.927

re-SEQ2SEQ (2018) 0.201 0.988 0.204 0.961
GEVADEN, fixed prior 0.232 0.920 0.229 0.945

GEVADEN, λ = 0 0.192 1.031 0.188 1.027
GEVADEN, λ = λ∗ 0.169 1.073 0.165 1.061

Table 2: Comparison with baselines and ablation study on
validation and test sets. λ is a hyperparameter in Eq. (7). λ∗
means the optimal value tuned on the validation set.

Method mPV mClick mCTR Improvement
raw thumbnails 3547.0 190.0 5.30% -
re-SEQ2SEQ 3603.8 221.4 6.36% 19.5%

GEVADEN, λ = λ∗ 3601.2 262.5 7.29% 37.5%

Table 3: Running results of a pilot application with an ex-
tended test set. “raw thumbnails” means image thumbnails
created by video publishers.

where Ci is the number of valid time-sync comments in
the i-th shot.

Considering that the relationship between videos and GIF
thumbnails in our dataset is “one-to-many”, we utilize the
best evaluation result among multiple GIF thumbnails as the
final result of each video.

Performance Comparison and Ablation Study

Here, we compare our model GEVADEN with four base-
lines and conduct an ablation study by considering three
versions of GEVADEN: GEVADEN with λ = 0, GEVADEN
with optimal λ = λ∗, and GEVADEN with fixed prior.
GEVADEN with fixed prior means that we use a fixed
prior (standard Gaussian distribution) for z, instead of a
learned data-dependent Gaussian. Fixing the prior implies
that P (·|X) in Eq. (1) and Eq. (5) is replaced by N (0, 1).
In evaluation, we draw 10,000 samples for each video to do
Monte Carlo estimation (Sohn, Lee, and Yan 2015) on the
latent space. Experimental results on both validation and test
data are presented in Tab. 2.

From Tab. 2, we can see that GEVADEN with λ∗ = 0.1
outperforms the other methods in terms of all evaluation
metrics on both validation and test data, which validates
the effectiveness of GEVADEN in GIF thumbnail genera-
tion. We also observe that GEVADEN without perceptual
loss (λ = 0) achieves 7.8% and 6.9% improvement over
re-SEQ2SEQ in terms of PME and PS, respectively, while
the performance of GEVADEN with fixed prior is worse than
that of re-SEQ2SEQ. These results show the advantage and
potential of learned data-dependent prior in GIF generation.
More results and analysis of fixed prior and learned prior are
presented in the Appendix, which also includes additional
results of the ablation study on the hyper-parameter β.

Pilot Application
To further show the effectiveness of our model and explore
the potential of GIF thumbnail in practical scenarios, we de-
ploy a pilot application of our model on a video platform. We
intend to compare the application effects of static image (raw
thumbnails) and GIF thumbnails in terms of CTR. Data used
in the application were crawled from the Bilibili site. Totally,
there are 9814 videos with time duration of 1231 hours. More
application settings and results are in the Appendix.

For our model, to perform deterministic inference, we draw
multiple latent vectors (z) from the learnt prior distribution
P (·|X) and take the average of the likelihoods as follows:

Ŷ ∗ = argmax
Ŷ

1

L

L∑
l=1

pφ(Ŷ |X, z(l)), z(l) ∼ P (·|X). (10)

Given a certain kind of thumbnails (static image or GIF),
we denote PV and Click the total number of times of a test
video assigned to and clicked by users respectively, and mPV,
mClick and mCTR are the mean values of PV, Click and CTR
over the test videos. Tab. 3 summarizes the results of two
methods after a month-long running of the application.

From Tab. 3, we can see that on average each video is
assigned to more than 3,000 users, among which around
200 clicked the video. Compared with raw image thumb-
nails, using GIF thumbnails generated by re-SEQ2SEQ and
GEVADEN gains significant CTR improvement, 19.5% and
37.5% ,respectively. This validates the advantage of GIF
thumbnails over traditional static image thumbnails and
shows a promising application prospect of GIF thumbnail
generation. Further comparing the results of the two methods,
we can see that our model GEVADEN clearly outperforms
the baseline method re-SEQ2SEQ.

In summary, the running results of the pilot application
on a real video platform show that GIF thumbnails do boost
the CTR of videos, and the proposed model is effective in
automatically generating credible GIF thumbnails and has
the potential of being deployed in real applications.

Conclusion
In this paper, we introduce a novel and challenging problem,
which aims to automatically generate GIFs as thumbnails
for videos from vision perspective. To facilitate the study of
this new problem, we build a benchmark dataset that consists
of 1070 videos and 5394 corresponding annotated GIFs. We
propose an end-to-end trainable model to generate multiple
GIFs for each video. The proposed model outperforms the
competing baselines in terms of two proposed metrics. The
significant improvement of CTR in a pilot application further
validates the effectiveness of our model and its promising
prospect for wide application in reality. Note that this work
is the first attempt to automatically generate GIF thumbnails,
in the future we plan to jointly exploit visual context (videos)
and textual context (titles and tags) to advance the proposed
model because additional textual information should be ben-
eficial for generating attractive and accurate GIFs.
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