
This paper is included in the Proceedings of the
18th USENIX Conference on File and

Storage Technologies (FAST ’20)
February 25–27, 2020 • Santa Clara, CA, USA

978-1-939133-12-0

Open access to the Proceedings of the
18th USENIX Conference on File and

Storage Technologies (FAST ’20)
is sponsored by

GIFT: A Coupon Based Throttle-and-Reward
Mechanism for Fair and Efficient

I/O Bandwidth Management
on Parallel Storage Systems

Tirthak Patel, Northeastern University; Rohan Garg, Nutanix;
Devesh Tiwari, Northeastern University

https://www.usenix.org/conference/fast20/presentation/patel-gift

GIFT: A Coupon Based Throttle-and-Reward Mechanism
for Fair and Efficient I/O Bandwidth Management on Parallel Storage Systems

Tirthak Patel
Northeastern University

Rohan Garg
Nutanix

Devesh Tiwari
Northeastern University

Abstract
Large-scale parallel applications are highly data-intensive

and perform terabytes of I/O routinely. Unfortunately, on a
large-scale system where multiple applications run concur-
rently, I/O contention negatively affects system efficiency and
causes unfair bandwidth allocation among applications. To
address these challenges, this paper introduces GIFT, a princi-
pled dynamic approach to achieve fairness among competing
applications and improve system efficiency.

1 Introduction

Problem Space and Gaps in Existing Approaches. In-
crease in computing power has enabled scientists to expedite
the scientific discovery process, but scientific applications pro-
duce more and more analysis and checkpoint data, worsening
their I/O bottleneck [7, 45]. Many applications spend 15-40%
of their execution time performing I/O, which is expected
to increase for exascale systems [12, 15, 22, 31, 53, 55]. Un-
fortunately, multiple concurrent applications on a large-scale
system lead to severe I/O contention, limiting the usability of
future HPC systems [11, 45].

Recognizing the importance of the problem, there have
been numerous efforts to mitigate I/O contention from both
I/O throughput and fairness perspectives [13, 14, 17, 25, 37,
42, 75, 76, 78, 88, 89]. Unfortunately, ensuring fairness and
maximizing throughput are conflicting objectives, and it is
challenging to strike a balance between them under I/O
contention. For parallel HPC applications, the side-effect of
I/O contention is further amplified because of the need for
synchronous I/O progress. HPC applications are inherently
tightly synchronized; during an I/O phase, MPI processes
of an HPC application must wait for all processes to finish
their I/O before resuming computation (i.e., synchronous I/O
progress among MPI processes is required) [28,31,39,57,90].

MPI processes of an HPC application perform parallel I/O
access to multiple back-end storage targets (e.g., an array
of disks) concurrently. These back-end storage targets are
shared among concurrently running applications and have
different degree of sharing over time and hence, a varying
level of contention. A varying level of I/O contention at
the shared back-end parallel storage system makes differ-
ent MPI processes progress at different rates and hence, leads

to non-synchronous I/O progress. In Sec. 2, we quantify non-
synchronous I/O progress as a key source of inefficiency in
shared parallel storage systems. It results in (1) wastage of
compute cycles on compute nodes, and (2) reduction in effec-
tive system I/O bandwidth (i.e., the bandwidth that contributes
toward synchronous I/O progress), since full bandwidth is not
utilized toward synchronous I/O progress.

Recent works have noted that non-synchronous I/O
progress degrades application and system performances on
modern supercomputers like Mira, Edison, Cori, and Ti-
tan [9, 31, 32, 39, 69, 83]. Thus, there is an emerging interest
in improving the quality-of-service (QoS) of parallel stor-
age systems [24, 80, 86]. Previous works have proposed rule-
based or ad-hoc bandwidth allocation strategies for HPC stor-
age [14, 17, 23, 36, 42, 88, 89]. However, existing approaches
do not systematically implement synchronous I/O progress to
balance the competing objectives: improving effective system
I/O bandwidth and improving fairness.

To bridge this solution gap, this paper describes GIFT, a
coupon-based bandwidth allocation approach to ensure syn-
chronous I/O progress of HPC applications while maximizing
I/O bandwidth utilization and ensuring fairness among con-
current applications on parallel storage systems.

Summary of the GIFT Approach. GIFT introduces two
key ideas: (1) Relaxing the fairness window: GIFT breaks
away from the traditional concept of instantaneous fairness
at each I/O request, and instead, ensures fairness over multi-
ple I/O phases and runs of an application. This opportunity
is enabled by exploiting the observation that HPC applica-
tions have multiple I/O phases during a run and are highly
repetitive, often exhibiting similar behavior across runs; and
(2) Throttle-and-reward approach for I/O bandwidth alloca-
tion: GIFT opportunistically throttles the I/O bandwidth of
certain applications at times in an attempt to improve the
overall effective system I/O bandwidth (i.e., it minimizes the
wasted I/O bandwidth that does not contribute toward syn-
chronous I/O progress). GIFT’s throttle-and-reward approach
intelligently exploits instantaneous opportunities to improve
effective system I/O bandwidth. Further, relaxing the fairness
window enables GIFT to reward the “throttled” application at
a later point to ensure fairness.

USENIX Association 18th USENIX Conference on File and Storage Technologies 103

Compute
Nodes
(OSCs)

SION
CTRL A

CTRL B

CTRL A

CTRL B

HBA

HBA

HBA

HBA

NET

NET

NET

NET

OSSes OSTs

MDSes MDTs

CTRL A

CTRL B

HBA

HBA

NET

NET

Figure 1: Overview of HPC storage system architecture.

First, GIFT allocates I/O bandwidth to all competing appli-
cations in a fair manner and ensures synchronous I/O progress
among all processes of the same application at all times - this
fundamental design principle eliminates the key source of
parallel storage system inefficiencies (Sec. 3.1). This allows
GIFT to estimate the amount of wasted I/O bandwidth (i.e.,
bandwidth which does not contribute toward the synchronous
I/O progress). Then, GIFT exploits the “opportunity” to re-
duce the bandwidth waste by identifying and throttling the
I/O bandwidth share of some applications and expanding the
I/O bandwidth share of other applications (Sec. 3.2). To mini-
mize the I/O bandwidth waste, GIFT uses constraint-based,
linear programming to optimally allocate bandwidths to ap-
plications (Sec. 3.4). GIFT issues “coupons” to the throttled
applications – the worth of these coupons is proportional to
the degree of throttling. At a later point, GIFT “redeems” the
previously issued coupons to throttled applications to ensure
fairness (Sec. 3.3). In cases where GIFT cannot redeem issued
coupons for an application, it rewards the application with
proportional compute node-hours (credited from a bounded
“system regret budget”). This system regret budget acts as
a credit bank of compute node-hours, which GIFT uses to
achieve fairness when coupons cannot be redeemed.

The contributions of GIFT include:
Design and Implementation. GIFT designs and develops
an efficient and practical coupon-based management sys-
tem for I/O bandwidth allocation among competing appli-
cations on shared parallel storage systems. GIFT develops
new lightweight and effective techniques to identify throttle-
friendly applications, determine the degree of throttling and
expansion of I/O bandwidth share of competing applica-
tions, and redeem coupons to ensure fairness. GIFT shows
that the usage of the “system regret budget” upon failure
to redeem coupons is minimal, and that the compute node-
hours required for the system regret budget are much less
than compared to the increase in system throughput due to
faster I/O. GIFT implements all the core ideas in a real-
system prototype based on the FUSE file system, demon-
strating that GIFT’s’ ideas can be realized in practice, open
to the community for reproducibility, and do not require
heroic optimization efforts or system-specific parameter tun-
ings to realize the performance gains. GIFT is available at
https://github.com/GoodwillComputingLab/GIFT.

Evaluation of GIFT. Our evaluation confirms that GIFT re-
duces the “bandwidth waste” caused by I/O contention on a
HPC storage system, and thereby, improves the I/O bandwidth
utilization toward synchronous I/O progress, application per-
formance and fairness, and system job throughput. Our evalu-
ation is based on extensive real system experimental results,
guided by real-world, large-scale HPC system and applica-
tion parameters, and supported by simulation results. GIFT is
shown to improve the mean effective system I/O bandwidth
by 17% and the mean application I/O time by 10%, compared
to multiple competing schemes. GIFT is also shown to be
effective under various scenarios including high contention
levels and different application characteristics.

2 Background and Motivation

HPC Storage Systems. This section describes the key com-
ponents of storage systems attached to large-scale HPC sys-
tems, such as Mira, Edison, Titan, Cori, and Stampede2 [1,22,
54,73]. HPC systems use parallel file systems, such as Lustre,
Ceph, GPFS, and PVFS, to perform parallel I/O [58–60, 79].
For simplicity, this works targets widely-used Lustre-like HPC
storage system. A Lustre-like architecture consists of mul-
tiple building blocks (Fig. 1). The most basic of these is an
Object Storage Target (OST), a RAID array of disks. A file
is typically distributed across multiple OSTs for parallelism
and can be accessed in parallel from multiple MPI processes.
The OSTs serve the Object Storage Servers (OSS), which
are connected to the front-end compute nodes via an I/O net-
work. Applications running on compute nodes communicate
with the OSSes via file system clients. The Meta Data Server
(MDS) is the starting point for all file metadata operations.
MDS consults with the Meta Data Targets (MDT), which
maintain the metadata of all I/O requests.

Day in the Life of an I/O Request in a HPC System. Large-
scale applications run on multiple nodes and spawn multiple
(MPI) processes. These processes periodically write (or read)
analysis output and checkpoint data to (or from) the storage
system – referred to as an I/O phase. Processes from the same
application may perform I/O on separate files or stripe a single
file across multiple OSTs for concurrent access [8].

We refer to an I/O operation (read/write) accessing one
OST from an MPI process of an application as an I/O re-
quest. First, the file system client on the compute node issues
a remote procedure call (RPC) to the MDS, which returns
information about the file stripe and OST mappings. For a
new file creation request, the MDS first assigns OSTs in a
capacity-balanced manner. For existing files, the MDS returns
previously assigned OST information to the file system client.
Then, the file system client issues an I/O request over the
network to the OSS corresponding to the target OST [81].
In practice, during the I/O phase, an HPC application issues
multiple I/O requests from different MPI processes.

104 18th USENIX Conference on File and Storage Technologies USENIX Association

Table 1: I/O characteristics of large-scale HPC applications.
< 1 min 1-15 mins > 15 mins

I/O HACC [63], HIMMER [63], PTF [32], VPIC [9],
Phase Chombo-Crunch Chombo-Crunch [52] Plasma Based
Length [52] WRF [48], Accelerators [19]

S3D [30, 33]
< 5 min 5-30 mins 30 mins - 3hr

I/O GTC [33], WRF [48], S3D, VPIC [9],
Interval Titan Apps [39], Chombo-Crunch [52], CHIMERA [33],

GYRO [33] Titan Apps [39] Chombo-Crunch [52],
VULCAN [33]

< 100 GB 100 GB - 1 TB > 1 TB
I/O GTC [33], WRF [48], VPIC [9],
Output POP [33], VULCAN [33], XGC1 [57],
Size GYRO [33] Titan Apps [39], HIMMER [63],

HACC [63] S3D [30, 33]

0 200 400 600 800
Number of Appearances

0

20

40

60

80

100

C
D

F
(%

 A
p
p
s.

)

Stampede2

Mira

Theta

(a)

50 100 150 200
Inter Arrival Time (hours)

0

20

40

60

80

100

C
D

F
(%

 R
e
p
e
ti

ti
o
n
s)

Mira

Theta

(b)

0 20 40 60 80 100
Std. Dev. (% of Mean)

0

20

40

60

80

100

C
D

F
(%

 A
p
p
s.

)

Total Reads

Total Writes

Seq. Reads

Seq. Writes

(c)

Figure 2: CDF of the (a) number of times that applications make
appearances, (b) inter arrival times between each appearance, and
(c) variation of I/O characteristics between two appearances.

I/O Phases of HPC Applications. HPC applications are
typically long-running and perform I/O at regular inter-
vals [28, 31, 39, 57, 90]. Their execution time ranges from
a few hours to a few weeks [4, 5, 33, 57, 62, 83], and the com-
pute period between two I/O phases can be from minutes to
hours [9,33,39,48,52]. The I/O phases typically produce large
amounts of data (up to hundreds of GBs) in the form of check-
points and post-simulation results [8, 9, 33, 39, 48, 57, 62, 63].
Table 1 highlights the I/O characteristics of some popular
HPC applications collected from multiple supercomputers. It
shows that I/O phases can be as long as 30 min and the I/O
interval (compute period) can be between 5 min and 3 h. Also,
large amounts of data (100 GB - 5 TB) are transferred during
each I/O phase. Next, we discuss some HPC I/O observations.

Observation 1. HPC applications are highly repetitive in
nature – that is, HPC applications typically run repeatedly
and exhibit similar I/O behavior across their execution in-
stances, though different applications have different I/O be-
havior. Previous studies have shown that many HPC applica-
tions execute multiple times with similar execution charac-
teristics [4, 5, 12, 22, 62, 63]. This is because scientific appli-
cations often model and simulate physical phenomena. This
is an iterative process and requires repeated simulations for
model refinement. Analysis of job scheduler logs for the last
five years, two years, and one year from the leading supercom-
puters (Mira, Theta, and Stampede2) shows strong repetition
(Fig. 2). More than 40% of the applications appear more than
200 times and about 15% of the applications appear more
than 1000 times. Only less than 20% of the applications are
run less than 5 times. Interestingly, we also found that the
inter-arrival times between re-occurrences of HPC applica-
tions is relatively short on Mira and Theta (inter-arrival times

2x4 4x4 8x4 16x4 32x4
MPI Processes

(# Nodes x # Procs/Node)

0

10

20

30

40

I/
O

 T
im

e
 p

e
r

M
P
I
P
ro

ce
ss

 (
s)

Guffler

2x4 4x4 8x4 16x4 32x4
MPI Processes

(# Nodes x # Procs/Node)

12

16

20

24

28

I/
O

 T
im

e
 p

e
r

M
P
I
P
ro

ce
ss

 (
s)

Stampede 2

Figure 3: I/O variability among I/O performing processes of an HPC
application on two HPC systems.

for Stampede2 were unavailable) (Fig. 2(b)). In fact, 80% of
repetitions occur within 24 hours of each other.

Furthermore, Fig. 2(c) shows that applications exhibit only
a small variation in their I/O characteristics across repeti-
tions. This data was obtained by instrumenting HPC applica-
tions with Darshan on the Mira supercomputer [63,83]. More
than 80% of the applications that repeat more than five times
show less than 5% standard deviation (as % of mean) in total
amount of data read and written. We observe similar trends
for different types of I/O requests (sequential and random).

Unfortunately, a shared storage back-end with no con-
tention mitigation strategies results in severe contention
among competing HPC applications [10, 28, 34, 47, 81, 85].
The I/O contention issue is further exacerbated by the need
for synchronous I/O progress in HPC applications – an
MPI process of an HPC application, exiting from an I/O
phase, must wait for the slower processes to also finish their
I/O [28,31,39,57,90]. Previous studies have noted that OSTs
are the most contended resource on the I/O storage path (i.e.,
compute node, I/O routers, and OSSes) [10, 34, 47, 81, 85],
since they have the lowest bandwidth among the different re-
sources. We note that the Meta Data Server (MDS) attempts to
capacity-balance the OSTs by mapping files uniformly across
OSTs, but since the MDS has no knowledge of future access
patterns, its decisions cannot avoid runtime I/O contention
on OSTs caused due to access patterns. Next, we provide
experimental evidence to demonstrate the impact of I/O con-
tention and how it affects synchronous I/O progress of HPC
applications.

Observation 2. MPI processes from the same application
experience significantly different I/O progress during an I/O
phase – resulting in non-synchronous I/O progress across pro-
cesses. This problem cannot be solved by simply identifying
and speeding up a straggler process. To demonstrate the ef-
fects of non-synchronous I/O progress, we performed a set of
IOR benchmark [41] experiments on a local, production HPC
system, Engaging. Engaging consists of over 100 compute
nodes, and runs a production Lustre parallel file system with
44 OSTs, 44 OSSes, and 1 MDS. We ran IOR with different
number of MPI processes, with each MPI process writing
to a different OST. Other concurrently running applications
were not controlled. We performed these experiments mul-
tiple times and from different compute nodes to eliminate
transient and spatial biases. From Fig. 3, we observe that the

USENIX Association 18th USENIX Conference on File and Storage Technologies 105

I/O time of different MPI processes can vary significantly (up
to 4x) across runs and the number of nodes (2-32 nodes, with 4
MPI processes per node). This non-synchronous I/O progress
is attributed to the difference in degrees of contention encoun-
tered by different MPI processes on their respective OSTs.
Similar experiments on Stampede2 showed up to 83% varia-
tion in I/O time. Previous studies have reported similar results
on non-synchronous I/O progress of MPI processes on other
large-scale supercomputers including Cori, Mira, Edison, and
Hopper [9, 40, 63, 83]. On further analysis, we discovered
that often different processes finish at very different speeds
(covering a large spectrum), and the ordering of processes in
terms of their completion time changes significantly across
different runs, because the I/O contention at different OSTs
changes over time. This shows that the non-synchronous I/O
progress problem is not the same as the traditional straggler
problem – and hence, cannot be solved by simply identifying
and speeding up a straggler MPI process or OST.

Observation 3. Non-synchronous progress among MPI pro-
cesses is caused due to unmanaged, varying I/O contention
at the OSTs in the HPC storage back-end. Naïve strategies
to ensure synchronous I/O progress cannot find the right bal-
ance between competing objectives: maximizing effective I/O
bandwidth and fairness among applications. To further ana-
lyze the I/O contention behavior, we ran another set of IOR
experiments on Engaging, measuring the observed I/O band-
width at each OST. Each experiment consists of writing to
a particular OST from one process. Fig. 4 shows the con-
tention (defined as the inverse of bandwidth) faced on a few
OSTs (other OSTs show similar trends). Results of this sim-
ple experiment show that the degree of contention is different
on each OST and varies over time. Unfortunately, allocating
I/O bandwidth among competing applications to achieve con-
flicting objectives (fairness, effective system I/O bandwidth,
synchronous I/O progress) is non-trivial. To achieve fairness,
POFS (Per-OST Fair Share) scheme allocates I/O bandwidth
to all competing applications equally on each individual OST
(as shown in Fig. 5). But, this fair scheme may generate non-
synchronous I/O progress and lead to lower effective system
I/O bandwidth (i.e., sum of all bandwidths that contribute
toward synchronous I/O progress). For example, under POFS,
a part of the bandwidth assigned to all applications on OST3
and a part of the bandwidth assigned to A on OST1 are wasted.
This is because additionally allocated bandwidths do not con-
tribute toward synchronous I/O progress.

To ensure synchronous I/O progress, one can allocate band-
width on each OST determined by the fair allocation on the
bottlenecked OST. In Fig. 5, BSIP (Basic Synchronous I/O
Progress) scheme performs such an allocation. Essentially,
BSIP scheme allocates the I/O bandwidth to an application
as determined by its most contended OST (e.g., A’s alloca-
tions on other OSTs is determined by its bottlenecked or
the most-contended OST (i.e.,OST2)). Unfortunately, this

0 200 400 600
Time (minutes)

0

10

20

30

C
o
n
te

n
ti

o
n
 (

s/
G

iB
)

0 200 400 600
Time (minutes)

0

10

20

30

C
o
n
te

n
ti

o
n
 (

s/
G

iB
)

0 200 400 600
Time (minutes)

0

10

20

30

C
o
n
te

n
ti

o
n
 (

s/
G

iB
)

Figure 4: I/O contention on 3 of the 44 OSTs on Engaging (blue line
indicates the mean contention level).

A A A

B

D
D

C

B

E

POFS BSIP

A A A

B

D
C

B

E

D

OST 1 OST 2 OST 3OST 1 OST 2 OST 3

MBW

A A A

B

DD
C

B

OST 1 OST 2 OST 3

100%

0%

25%

50%

75%

B / W

Figure 5: Bandwidth allocation among five applications spanning on
three OSTs with (1) Per-OST Fair Share (POFS), (2) Basic Synchro-
nized I/O Progress (BSIP), and (3) Minimum Bandwidth Wastage
(MBW) schemes. Checkered boxes indicate bandwidth waste (not
contributing toward synchronous I/O progress).

scheme also creates bandwidth gaps on less contended OSTs
and lowers effective system I/O bandwidth because the band-
width share is limited by the most-contended OST. On the
other hand, a greedy approach to minimize bandwidth gaps
by preferentially allocating bandwidth to applications that
maximize effective system I/O bandwidth, while still ensur-
ing synchronous I/O progress results in unfair allocations.
Fig. 5 illustrates such a scheme, referred as MBW (Minimum
Bandwidth Wastage), which minimize bandwidth gaps by al-
locating more bandwidth to certain applications and unfairly
hurting other applications (e.g., it reduces the bandwidth share
of application E to zero in Fig. 5). In summary, allocating I/O
bandwidth among competing applications presents challeng-
ing trade-offs and GIFT strikes a balance between them as
described in the next section.

3 GIFT: Design and Implementation

3.1 Overview of GIFT
First, GIFT enforces synchronous I/O progress among pro-
cesses of an application by allocating bandwidth using the
BSIP scheme (Fig. 5). BSIP determines the bandwidth alloca-
tion to an application according to its most contended OST.
As shown in Fig. 5, BSIP scheme can create bandwidth gaps
on OSTs, GIFT attempts to “fill” these bandwidth gaps by
carefully throttling the bandwidth share of some applications
and expanding the bandwidth share of some other applica-
tions, such that a net gain in the overall effective system I/O
bandwidth is achieved. This requires identifying which appli-
cations to throttle, when to throttle, whom to expand, and how
to compensate throttled applications for fairness. GIFT uses
a simple and low-overhead approach to dynamically identify
“throttle-friendly applications”: applications which GIFT can
throttle with high confidence of rewarding the stolen band-

106 18th USENIX Conference on File and Storage Technologies USENIX Association

width at a later point. The later point could be during the
same I/O phase, a later I/O phase during the same run, or a
future run of the same application (Sec. 3.2). GIFT issues
“coupons” to throttled application which can be redeemed at
later points. At regular intervals (also referred as “decision
instance”), GIFT considers all throttle-friendly applications
(i.e., applications which can redeem a high fraction of is-
sued coupons - “high redemption rates”) and solves a linear
programming (LP) based optimization problem to maximize
the effective I/O bandwidth (Sec. 3.4). This step determines
which applications are throttled, which ones are expanded,
and by how much. Expanded applications (which can also
include throttle-friendly applications) get more than their fair
share of the bandwidth, which reduces the bandwidth wastage.

Finally, GIFT bounds the unfairness toward throttle-
friendly applications by using a dynamic limiting strategy
(Sec. 3.2). GIFT periodically assess its fairness and compen-
sates for the unfair treatment in the form of compute time
(i.e., node-hours on the HPC system). GIFT also bounds the
node-hours given out to a maximum specified “system regret
budget” of compute node-hours. Algorithm 1 outlines the
steps that GIFT takes at the start of every decision instance.

Algorithm 1 GIFT Decision Algorithm.
1: X ← All apps performing I/O
2: ∀i ∈ X , Determine fair share of bandwidth as per bi,bsip
3: Redeem previously issued coupons if possible (Sec. 3.3)
4: ↑ Redemption rate of apps with redeemed coupons
5: Determine the set of throttle-friendly apps Y (Sec. 3.2)
6: Allocate bandwidth using LP optimization (Sec. 3.4)
7: Issue coupons to throttled apps ⊆ Y
8: ↓ Redemption rate of apps with issued coupons

3.2 Identifying Throttle-friendly Applications

To identify throttle-friendly applications, GIFT throttles, is-
sues coupons, and observes the coupon redemption rate of
throttled applications. Redemption rate can be estimated with
high accuracy if the whole system state (e.g., information
about all concurrently running applications, their OST map-
ping, I/O phase length, etc.) is stored with every coupon is-
suance and redemption event. However, this can impose a
high storage and access overhead. Also, note that, some ap-
plication’s OST-level I/O behavior might change over a long
period (e.g., the number of OSTs, and OST mappings), caus-
ing the application’s throttle-friendly status to change.

Therefore, GIFT uses the concept of receding window at
the application-level that captures the recent history of an
application’s coupon redemption behavior (Sec. 3.5 and 4
show it is both lightweight and effective). The recent coupon
redemption behavior of an application is estimated at the start
of every decision instance by taking the ratio of the coupons
redeemed to the last N coupons issued, where N denotes the

Table 2: GIFT model parameters.

N Length of the receding window of applications (unit:
number of coupons issued)

τ Minimum redemption rate required for an applica-
tion to be eligible for throttling and for the system
to throttle applications (unit: ratio)

Bthres Upper threshold of the factor by which each appli-
cation’s I/O request can be throttled

length of the receding window (Table 2). For fairness and sim-
plicity, length of the receding window (N) is kept the same
for all applications, although each application may take a
different amount of time to accumulate N coupons depend-
ing upon its OST mappings, I/O phase length, and system
I/O contention level, etc. At the start of decision instance, k,
the coupon redemption rate of an application i is expressed
as ci(k) = ni(k)/N, where ni(k) is the number of coupons
redeemed (out of N) by application i. GIFT considers an ap-
plication throttle-friendly, if its redemption rate is greater than
a set threshold τ: Y (k) = {i ∈ X(k), if ci(k)≥ τ}, where X(k)
is the set of all applications performing I/O and Y (k) is the
set of throttle-friendly applications. As the receding window
moves forward, more coupons are issued only until ci(k)≥ τ.
Once the redemption rate breaches the τ limit, GIFT avoids
issuing more coupons to the application until it redeems its
existing coupons and its redemption rate goes above τ. Using
this method, GIFT ensures that unfairness is bounded for each
application in case the application’s redemption rate cannot
go over the threshold. GIFT gives out compute node-hours
as regret for unfairly treated applications periodically - this
period is referred as “regret assessment period” and, as Sec. 4
shows, it can be much larger to allow applications sufficient
time for redeeming the coupons.

Throttling applications based on threshold-based redemp-
tion rate at the application-level helps constrain the “regret”
the system experiences from giving out node-hours (out of
the system’s regret budget) for unfair treatment toward one
single application. But, in a system with multiple applica-
tions, the system’s “cumulative” regret in terms of compute
node-hours given to all applications can still grow sufficiently
large. To address this challenge, GIFT employs a receding
window at the system-level too, where it tracks the aggregate
redemption rate of coupons issued by the system to all the
applications, in order to minimize the “system regret bud-
get” level. GIFT makes sure that the system only hands out
coupons until its redemption rate is above τ (same threshold
as the one used for the applications). However, unlike applica-
tions’ redemption rates, GIFT resets the system’s redemption
rate at the end of each regret assessment period. This prevents
the system’s redemption rate from being saturated at τ be-
cause of non-throttle-friendly applications which never get
redeemed, which can cause GIFT to miss the opportunity of
throttling even throttle-friendly applications. Our evaluation
(Sec. 4) shows that GIFT’s approach of using τ at the system-
and application- level helps keep the outstanding node-hours

USENIX Association 18th USENIX Conference on File and Storage Technologies 107

(“system regret budget”) to a reasonably low level (e.g., less
than 7% of the total gain in compute node-hours obtained
via system throughput improvement due to GIFT). We also
observed that keeping the same τ for applications and system
is simple and effective; a higher τ at the system-level does not
yield additional improvements.

Finally, we note that GIFT carefully chooses the length
of receding window (N) to balance competing trade-offs:
bound on unfairness toward applications vs. stability of ap-
plication’s status (throttle-friendly or non-throttle-friendly).
If N is too large, it increases the upper bound on unfairness
toward individual applications (i.e., possibility of higher num-
ber of coupons that cannot be redeemed). If N is small, an
application’s redemption rate ci(k) can vary erratically as the
window glides, and the application’s status can toggle fre-
quently between throttle-friendly and non-throttle-friendly.
GIFT achieves stable behavior by maintaining the variance of
the mean redemption rate of the receding window to be small.
For samples within a given receding window, the maximum
variance occurs when half of the coupons can be successfully
redeemed, and the other half cannot be redeemed. Hence,
the maximum possible variance is v2 = 0.25 (independent
of N). The variance of the mean redemption rate is defined
as σ2 = v2

N , which is bounded by σ2 ≤ 0.25
N . Statistically, σ

less than 0.001 can achieve reasonable stability [49]. GIFT’s
choice of receding window length is guided by this principle.
In fact, GIFT’s evaluation demonstrates that its improvements
are not sensitive to the choice of parameters N (receding win-
dow size) and τ (redemption rate threshold), and that GIFT
performs effectively well without the need to fine-tune.

3.3 Coupon Redemption Policy
Recall that redeeming previously issued coupons is critical to
ensuring fairness. GIFT does not simply attempt to redeem an
application’s coupons the very next I/O phase after they were
issued. This is because if redeeming a coupon requires throt-
tling another application, then it would lead to a zero-sum
result in terms of improvements in efficiency (e.g., effective
system bandwidth). Thus, GIFT redeems coupons only when
it does not require throttling applications. Before perform-
ing optimal bandwidth allocation and picking applications to
throttle, GIFT first attempts to redeem coupons of previously
throttled applications (Algorithm 1 line 3).

Coupons are redeemed when GIFT finds gaps on the OSTs
on which a coupon-bearing application is running. After mak-
ing the basic fair synchronous-I/O progress (BSIP) bandwidth
allocation, GIFT searches through the coupon database of
active applications. If all of the OSTs on which the coupon-
bearing application is performing I/O have a bandwidth gap,
then the coupon is redeemed either partially (if the gap is
less than the coupon value) or fully or multiple coupons can
also be redeemed (if the gap is large enough). By redeeming
coupons in this manner, GIFT avoids throttling other appli-

Issue coupon worth 15%
b/w on one OST to app. A

A (35%)

B (65%)

OST 1 OST 2

B (65%)

100%

0%

25%

50%

75%

B / W

Redeem app. A’s coupon
with 9% b/w on one OST

A (42%)

B (25%)

OST 1 OST 2

C (33%)

B (25%)

D (25%)

E (25%)

F (25%)

Redeem app. A’s coupon
with 6% b/w on one OST

A (39%)

B (25%)

OST 1 OST 2

C (36%)

B (25%)

D (25%)

E (25%)

F (25%)

Instance k1 Instance k2 Instance k3

Figure 6: GIFT redeems coupons in a manner which is fair and
efficient, without throttling other applications.

cations. Also, GIFT, by design, allows coupons to be issued
and redeemed on different OSTs for any given application.

GIFT intelligently allocates spare bandwidth toward
redeeming coupons to maintain fairness and efficiency.
We note that redeeming coupons without throttling other ap-
plications requires availability of “spare I/O bandwidth”. One
may reason that since spare I/O bandwidth is available, ap-
plications would have naturally been allocated higher I/O
bandwidth allocation, irrespective of GIFT’s I/O bandwidth
allocation policies. Consequently, why should GIFT refer to
this additional allocated I/O bandwidth as “coupon redemp-
tion” and claim this as a mechanism to achieve fairness? Be-
low, we discuss a simple example to illustrate the wide range
of choices to allocate spare I/O bandwidth. But, GIFT care-
fully allocates this spare bandwidth such that (1) it redeems
previously issued coupons (i.e., maintains fairness over longer
term), but (2) without throttling any application at the current
decision instance, otherwise it would cause more unfairness
and lead to a zero-sum result in terms of efficiency.

As shown in Fig. 6, let us consider a simple example: two
OSTs and bandwidth allocation decisions at three decision
instances (k1, k2 and k3). At instance k1, OST1 is shared
by two applications (A and B), but OST2 is only serving
application B. The fair share of application A is 50% on
OST1. But, if A was given its fair share on OST1, then half
of the bandwidth on OST2 would be wasted since it would
have not contributed toward synchronous I/O progress even
if it was allocated to application B. Therefore, GIFT decides
to throttle application A to reduce the overall I/O bandwidth
waste. Application A’s share on OST1 is reduced to 35%
and a corresponding coupon is issued, and application B’s
share on both OSTs is increased to 65% which results in 15%
reduction in I/O bandwidth waste on OST2.

At instance k2, OST1 is shared by three applications (A,
B, and C), and OST2 is now shared by four applications (B,
D, E and F). Note that application B’s bandwidth share is de-
cided by its bottlenecked OST (OST2). Application B’s share
on OST1 and OST2 is 25% – this ensures synchronous I/O
progress and is not unfair to application B and other applica-
tions on OST1 or OST2. Due to application B’s bottleneck on
OST2, 9% of spare bandwidth is available on OST1. The fair
share for application A and C on OST1 is 33% each. A GIFT-
less approach that does not issue coupons to maintain fairness
over longer time windows, would equally divide this spare

108 18th USENIX Conference on File and Storage Technologies USENIX Association

bandwidth on OST1 (9%) to both application A and C. How-
ever, GIFT decides to allocate this spare bandwidth fully to
application A (increases its share to 42%, partially redeeming
a coupon issued to application A at instance k1). Application
C is still treated fairly even though it is not allocated any part
of the spare bandwidth. Application C’s fair share was 33%
and it still receives it. At instance k3 (same OST sharing sce-
nario as instance k2), application A receives 6% of the spare
bandwidth (completely redeeming the coupon issued at k1)
and the remaining 3% bandwidth can be allocated in any way
(it is allocated to application C in this case).

In summary, application A was throttled in the past to in-
crease the effective system I/O bandwidth utilization. Applica-
tion A was kind then, and is later picked to receive the reward
(larger share in the available spare bandwidth), without being
unfair to C or throttling any other application below its fair
share. This way, GIFT’s decision to throttle A in the past
proves to be useful. Using a throttle-and-reward approach,
GIFT reduces the overall bandwidth utilization over these
three time steps, while ensuring fairness to other applications
and maintaining synchronous I/O progress. A GIFT-less BSIP
approach (instantaneous fairness and synchronous I/O ensur-
ing allocation at each decision instance but without throttle-
and-reward approach) would have been fair but incurred 50%
bandwidth waste on OST2 at instance k1; in comparison GIFT
incurs only 35% bandwidth waste, while remaining fair over
multiple decision instances. These are the kind of opportuni-
ties that GIFT detects and exploits. Such situations are not
deterministic or predictable, which is why GIFT learns using
the concepts of redemption rate and system regret budget.

Lastly, we note that GIFT can track coupon issuance and
redemption at the user-level if the same application is be-
ing shared across multiple users and maintaining fairness at
the user-level is deemed more appropriate. This will simply
require including and tracking different types of identifiers
per I/O request. GIFT can be extended to support different
variations of “fair share” instead of being limited to treating
all applications equally important. This can be achieved via
encoding and tracking relative priority levels, or weights.

3.4 Optimal Bandwidth Allocation

Once a set of throttle-friendly applications is determined and
coupons are redeemed, GIFT proceeds to make the bandwidth
allocations to maximize the effective bandwidth. Inputs to
this step include the set of throttle-friendly applications, the
set of all applications concurrently performing I/O, and the
set of OSTs being used by each application.

First, GIFT calculates the fair share of each application
on the OSTs it is performing I/O on, to ensure synchronous
I/O progress. These allocations are the same as in the BSIP
scheme (Fig. 5). Next, GIFT maximizes the effective I/O
bandwidth by adjusting the bandwidth of all applications sub-
ject to multiple constraints: (1) only throttle-friendly appli-

cations are allowed a lower bandwidth assignment than their
fair share, (2) the total effective bandwidth is always equal
to or greater than what is achieved by the BSIP scheme, and
(3) the gains from reducing the bandwidth wastage should
be more than the worth of issued coupons (i.e., bandwidth
waste with BSIP - bandwidth waste with GIFT > aggregate
worth of coupons). GIFT formulates and solves this problem
as a constraint-based, linear programming (LP) bandwidth
allocation optimization problem, as discussed below.

Bandwidth allocation LP optimization: GIFT accounts for
constraints from both, the applications’ and system’s perspec-
tives. For the applications, at each decision instance k:

• All I/O requests (ri) of application i issued across all
assigned OSTs (Si) should get the same bandwidth in
order to facilitate synchronized I/O progress, i.e., for
application i, bi j = bi∀ j ∈ Si, where bi j is bandwidth
allocated to application i’s I/O request on OST j and bi
is the bandwidth allocated to application i’s I/O request
running on the most contented OST.
• The final bandwidth allocation bi should be s.t.

(a) bi,bsip(1−Bthres)≤ bi ≤ 1 if i ∈ Y
(b) bi,bsip ≤ bi ≤ 1 otherwise

The second constraint essentially allows GIFT to reduce
the bandwidth share of a throttle-friendly application (belong-
ing to set Y) by a configurable parameter (Bthres) (Table 2).
Higher values of Bthres create more opportunity of reducing
bandwidth wastage, but also result in higher coupon values.
Our evaluation shows that GIFT delivers performance for a
wide range of Bthres values and does not require tuning.

From the system’s perspective, the bandwidth allocation at
each OST is constrained by its full capacity. That is, ∀ j ∈ Z,
where Z is the set of all OSTs, if L j is the set of applications
served by j, then ∑i∈L j bi ≤ 1. With these constraints in mind,
at every instance, k, we have the following polynomial-time
optimization problem: maximize the effective system I/O
bandwidth by making allocations bi for each application i:

maximize ∑
j∈Z

∑
i∈L j

bi (1)

We make two important remarks: (1) throttle-friendly ap-
plications are not always necessarily throttled. In fact, if it
is optimal to give more bandwidth to a throttle-friendly ap-
plication (i.e., expand a throttle-friendly application), given
a set of contending applications, then the GIFT’s LP-based
optimization solution does so. (2) At any time instance, the
throttling decision is not limited to picking only one can-
didate. In fact, the GIFT’s LP-based optimization solution
might select to throttle multiple throttle-friendly applications
simultaneously and expand multiple applications (including
throttle-friendly applications) if it leads to highest effective
system I/O bandwidth while honoring the constraints.

USENIX Association 18th USENIX Conference on File and Storage Technologies 109

3.5 GIFT Implementation

To evaluate GIFT, we implemented it using FUSE [67] as
the base file system. Our prototype extends FUSE to capture
the functionality of a parallel file system. The architecture of
the GIFT implementation is similar to that of a Lustre-based
HPC storage system (Sec. 2). Compute nodes mount the re-
mote partition through FUSE. A local service daemon acts
as a file system client on each compute node and monitors
the mounted partition. An application’s requests for file sys-
tem operations are intercepted by the service daemon and
executed on remote storage targets through RPC calls over
the network. The file system client forwards file metadata
requests to a remote metadata service (MDS), which decides
the remote storage target (OST) mappings of a file. Once a
file is open, data requests are directly sent over the network
to the appropriate OST without involving the MDS. Each I/O
request is augmented with metadata about application identity.
A local service daemon (OSS) running on the storage node
persists the application’s data to the OST. Similar to Lus-
tre, our implementation uses two separate network channels:
“Lnet” for internal messages (for example, heartbeat, control
messages, etc.) and “Dnet” for application data.

The MDS daemon broadcasts a heartbeat message to all
the OSSes at a user-configurable time interval. Each OSS
responds to the heartbeat message with a list of currently
active data requests. The OSSes send a set of <application,
I/O requests> tuples for each application they are serving.
The MDS uses this data to look up its “coupon” table, make
redemption decisions, and determine a set of throttle-friendly
applications. Then, it makes a LP optimal bandwidth allo-
cation decision and sends a set of <application, bandwidth
allocation> tuples to each OSS. The optimal bandwidth
allocation algorithm is implemented using the COIN-OR
CLP [43] library. The blkio control group (cgroup) is used
to enforce bandwidth limits. GIFT uses the MDS as a central-
ized coordination and decision-making service for all OSSes.
OSSes incurring transient failures can be synchronized at
the next decision instance. GIFT uses a 1 second timeout and
makes a new decision if more than 80% of the OSSes respond.
GIFT’s decision instance interval is configurable and set to
10 seconds by default, that is decisions are made every 10
sec (Sec. 4). Note that GIFT operates and makes decisions
at the system-level without requiring any input from the user
applications or changing user applications.

We chose FUSE instead of a production parallel file sys-
tem such as Lustre or GPFS to implement GIFT’s core ideas
because the current underlying implementation of bandwidth
control support provided in Lustre and GPFS cannot be used
for GIFT purposes. This is because the current bandwidth
control support does not guarantee synchronous I/O progress
and may create imbalance across contended OSTs – a key
source of inefficiency that GIFT attempts to solve. GPFS pro-
vides bandwidth control only for maintenance tasks [24]. We

experimented with recent QoS control features of Lustre as
provided by LIME and other frameworks (TBF-NRS algo-
rithm) [56, 80, 86], but found that fairness mechanism does
not work as expected because the QoS support does not ac-
count for the OST mappings. Even simple experiments such
as running a few applications with equal QoS support results
in significant performance differences (up to 25%) because
of varying level of contention at OST level which leads to
non-synchronous progress – these issues and OST mapping
information is not accounted by existing early QoS support
features. GIFT solves these issues.

4 Evaluation

Methodology. GIFT is evaluated on a real system using sys-
tem and application characteristics of supercomputers Mira,
Theta, and Stampede2. GIFT’s experimental setup includes
64 OSSes (and corresponding 64 OSTs) and one MDS run-
ning on a cluster with Intel Xeon E5-2686 v4 servers – similar
to the Stampede2 OSS and MDS configuration. A total of
192 file system clients are connected to OSSes. The servers
and clients are connected to each other via Ethernet with a
measured peak bandwidth of 4.5 GB/s. Each OST is con-
nected to a single HDD with a peak bandwidth of 102 MB/s.
Experiments are driven by an application set of 250 appli-
cations, where applications are executed with repetitions as
per the typical number of distinct applications submitted on
Stampede2 during a week [1, 16]. The characteristics of ap-
plications, such as number of nodes, total compute time and
amount of I/O data, are taken from applications running on
Stampede2 [16,62,66]. Number of MPI processes, and length
of compute interval and I/O intervals is based on Darshan logs
from Mira and Theta [83]. We use a transparent checkpointing
library (DMTCP [3]) to produce periodic I/O from HPC appli-
cations such as CoMD [51], SNAP [87], and miniFE [26]. The
application arrival times follow a Gamma distribution [1, 44]
and are scheduled on the system using an FCFS strategy
with easy-backfilling, as used by contemporary HPC sched-
ulers [65]. For practical repeatability, the real-system eval-
uation scales down the compute and I/O phases to get one
week’s system wall clock time to finish within a few days.
We also evaluate GIFT using simulations to gain deeper in-
sights into GIFT’s performance on large-scale systems. The
simulations allow us to study aspects of GIFT which are too
time consuming to be feasible for a representative real-system
evaluation. Specifically, we use simulations to explore the ef-
fect of GIFT model parameters and high contention on GIFT
performance – these explorations require hundreds of runs
to cover the full parameter space. The simulations use the
same parameters as the real-system evaluation, but the default
application set size is increased to 500 and the simulated time
period is 25 days of system wall clock time. As discussed
later, the simulation results support the real-system evaluation
results and demonstrate the robustness of GIFT.

110 18th USENIX Conference on File and Storage Technologies USENIX Association

BSIP TSA ESA TMF RND MBW GIFT
Bandwidth Allocation Policies

0.0
2.5
5.0
7.5

10.0
12.5

-26%

Mean App I/O Time
Improvement Over POFS (%)

(a) Mean App I/O Time

BSIP TSA ESA TMF RND MBW GIFT
Bandwidth Allocation Policies

0.5
0.0
0.5
1.0
1.5
2.0
2.5

-10%

Mean App Run Time
Improvement Over POFS (%)

(b) Mean App Runtime

BSIP TSA ESA TMF RND MBW GIFT
Bandwidth Allocation Policies

0
5

10
15
20 103%

-5%

System Bandwidth
Improvement Over POFS (%)

(c) Effective System I/O B/w

BSIP TSA ESA TMF RND MBW GIFT
Bandwidth Allocation Policies

0.0
0.5
1.0
1.5
2.0
2.5

-15%

System Throughput
Improvement Over POFS (%)

(d) System Throughput

Figure 7: GIFT’s implementation provides improvement for both application- and system- level objectives (higher is better).

Scheduling Policies. We evaluate GIFT against seven com-
peting I/O scheduling policies: Per-OST Fair Share (POFS),
Basic Synchronous I/O Progress (BSIP), Minimum Band-
width Wastage (MBW), Throttle Small Applications (TSA),
Expand Small Applications (ESA), Throttle Most Frequent
Applications (TMF), and Throttle Randomly (RND). POFS,
BSIP, and MBW are implemented as discussed in Sec. 2. TSA
attempts to increase the effective system bandwidth by throt-
tling small applications, while ESA attempts to improve the
system throughput by increasing the bandwidth allocation for
longer-running, smaller applications that generally do small
I/O [2, 4, 5]. We also compare against other simple, intuitive
strategies such as TMF and RND, which pick the “most fre-
quently appearing” and “random” applications for bandwidth
throttling, respectively. POFS is used as the baseline policy.

Objective Metrics. Application I/O Time is the amount of
time spent in I/O by an application during its run. Application
Run Time is the run time of the application. Effective System
Bandwidth is the average effective I/O bandwidth during the
run of an application set, defined as overall system bandwidth
minus the wasted bandwidth (Sec. 2). System Throughput is
the number of jobs completed per unit time.

GIFT’s real-system implementation provides better
application- and system- level performances. First, our re-
sults show that GIFT outperforms all competing techniques
significantly. Fig. 7 (a)-(d) show that GIFT performs better for
mean application I/O time, mean application runtime, effec-
tive system bandwidth, and system throughput, respectively.
The mean application I/O time with GIFT is 10% better than
with POFS, and 3.5% better than the next best technique,
BSIP. Interestingly, when applications are throttled based on
their characteristics (TSA, ESA, and TMF), or are arbitrarily
throttled (RND), the performance remains similar to that of
BSIP. This shows that naïve, rule-based techniques cannot
match the performance delivered by the GIFT approach.

GIFT also improves the effective system bandwidth by
more than 17% compared to POFS and other techniques, ex-
cept MBW. Expectedly, MBW improves the effective system
bandwidth the highest because it solely focuses on this metric.
Next, we note that by compromising fairness one could design
techniques that solely focus on improving system throughput
(e.g., favor small jobs). GIFT does not compromise fairness,

0 10 20 30 40 50
Time (hours)

0.00

0.04

0.08

0.12

Ou
ts

ta
nd

in
g

No
de

 H
ou

rs
(%

 o
f T

ot
al

No
de

 H
ou

rs
)

Figure 8: GIFT implementation bounds outstanding node-hours
using application- and system-level redemption rate thresholds.

and it neither directly manipulates nor aims to improve the
system job throughput, but by virtue of reducing I/O band-
width waste and mean application I/O time, GIFT yields 2%
improvement in system throughput. We note that even a small
improvement in system throughput leads to large monetary
savings in operational cost of HPC systems [18, 71, 84].

Next, we recall that GIFT gives out compute node-hours as
regret, but it is minimal compared to the system throughput
improvement it enables (2% savings in total compute node-
hours). Fig. 8 shows that GIFT gave out less than 0.06% hours
of total compute node-hours from the system regret budget in
a more than two-day long experimental run – this result shows
that application- and system-level redemption rate thresholds
keep the system regret budget under control. Even if one were
to award outstanding node-hours every day, GIFT would give
out only 0.12% of node-hours, which is much smaller than
the gains in system throughput (2%); this trend is also later
supported by simulation results.

Next, we discuss the effectiveness of GIFT in terms of fair-
ness. First, recall that the design of GIFT introduces two ideas:
(1) opportunistically rewarding applications, and (2) compen-
sating unfairness in I/O performance via additional compute
hours. These ideas do not naturally align with the traditional
notion of fairness - where a scheme tends to distribute the
“benefits” equally among all applications and the “currency”
of fairness measurement remains the same. In contrast, GIFT
is designed to distribute the benefit opportunistically among
applications because, as discussed earlier, distributing the ben-
efits equally among all applications leads to benefit (system
bandwidth) wastage due to non-synchronous I/O progress.
GIFT achieves fairness by compensating I/O unfairness with
compute resources. Therefore, GIFT’s performance cannot
be directly compared with POFS to establish its fairness ef-
fectiveness. Nevertheless, we provide this comparison for
completeness and to demonstrate that GIFT is not unfair.

USENIX Association 18th USENIX Conference on File and Storage Technologies 111

Fig. 9(a) and (b) show that GIFT implementation provides
similar fairness in terms of both the I/O and runtime perfor-
mance as the baseline fairness strategy (POFS). First, as ex-
pected, GIFT indeed provides better performance than POFS
for many applications. In fact, GIFT is able to improve the
I/O performance of one-third of the applications by more
than 20%, while competing techniques cannot. But, this im-
provement is not evenly distributed among all beneficiary
applications. This is because, as noted earlier, GIFT rewards
certain applications opportunistically by increase their I/O
bandwidth if it helps reduce the overall bandwidth waste. We
note that these decisions are not systematically biased toward
preferring certain applications over others.

Therefore, next, we focus on applications that receive worse
performance than under the POFS scheme. This set of appli-
cation provides us a better quantification of “unfairness” of
GIFT and other competing schemes. First we note that other
competing schemes, besides GIFT, tend to provide worse per-
formance than POFS for a large fraction of applications com-
pared to POFS - indicating that they are not consciously fair-
ness aware. To further quantify this better, we use a more intu-
itive and traditional way to measure unfairness - the fraction
of applications that achieve worse performance than POFS.
As Fig. 9(c) shows GIFT outperforms other schemes in this
metric as well (32% for GIFT vs. more than 45% for all other
schemes, and 76% for MBW which aggressively focuses only
on performance and not fairness). More importantly, even
though 32% of the all the applications under GIFT achieve
worse performance POFS, we calculated that the average mag-
nitude of I/O time degradation for applications performing
worse than POFS is approx. 1.2%. This shows that GIFT
is able to provide a similar fair performance compared to
our baseline fairness scheme (POFS). These are applications
which get throttled initially but are unable to redeem coupons,
for which they get compensated in node-hours. Finally, we
note, unlike other competing schemes, GIFT indeeds com-
pensates these applications via compute resources and hence,
achieves fairness over the long term.

GIFT improves performance across different parameters
and the required system regret budget level needed to
award outstanding hours is fairly low even under pes-
simistic scenarios. To study the impact of model parameters
on GIFT performance accurately, we perform a simulation-
based exploration. First, we briefly present the simulation
results for the same objective metrics as the real system eval-
uation. We find that GIFT’s simulation results support and
closely match the trends observed with the real system evalua-
tion (Fig. 10 vs. Fig. 7). Fig. 10 shows that compared to POFS,
GIFT improves the mean application I/O time by 15% and ef-
fective system bandwidth by 25%. Similarly, GIFT improves
the mean application run time by more than 4% and system
throughput by approx. 2%. We note thatthe absolute improve-
ment values are higher than real system evaluation because

1 63 126 188 250
Application ID

100

50

0

50

100
Individual App I/O Time

Improvement Over POFS (%)
BSIP
TSA
ESA
TMF
RND
MBW
GIFT

(a)

1 63 126 188 250
Application ID

40

20

0

20

40

Individual App Run Time
Improvement Over POFS (%)

(b) (c)

Figure 9: GIFT implementation provides I/O and runtime perfor-
mance fairness to individual applications.

BSIP TSA ESA TMF RND MBW GIFT
Bandwidth Allocation Policies

0

5

10

15

-41%

Mean App. I/O Time
Improvement Over POFS (%)

(a) Mean App I/O Time

BSIP TSA ESA TMF RND MBW GIFT
Bandwidth Allocation Policies

0

10

20

30 123%

Effective Sys. B/w
Improvement Over POFS (%)

(b) Effective System B/w

BSIP TSA ESA TMF RND MBW GIFT
Bandwidth Allocation Policies

0
1
2
3
4
5

-11%

Mean App. Runtime
Improvement Over POFS (%)

(c) Mean App Run Time

BSIP TSA ESA TMF RND MBW GIFT
Bandwidth Allocation Policies

0

1

2

-9%

Sys. Throughput
Improvement Over POFS (%)

(d) System Throughput

Figure 10: GIFT simulation results support GIFT real-system-based
implementation results and show significant improvements.

0 0.2 0.4 0.6 0.8 1
Tau

10
15
20
25
30

Im
pr

ov
em

en
t

Ov
er

 P
OF

S
(%

)

0 0.2 0.4 0.6 0.8 1
Bthres

10
15
20
25
30

101 103 105 107 109 1011

N
10
15
20
25
30

Mean App. I/O Time Effective Sys. B/w

Figure 11: GIFT improves performance across different values of
throttle-and-reward parameters.

simulation study covers a longer time frame (25 days) and a
larger application set (500); this provides more opportunities
for GIFT to make better throttle-and-reward decisions.

Next, our results (Fig. 11) illustrate that GIFT performs
effectively across the parameter space and does not require
tuning. Recall that τ is the minimum redemption rate for the
system to throttle and for an application to be considered
throttle-friendly. Therefore, it is expected that at higher values
of τ, the I/O time would improve slightly. GIFT also contin-
ues to provide significant improvement in effective system
bandwidth, even with high τ values. Recall that Bthres is the
maximum factor by which an application’s bandwidth can be
throttled. Fig. 11(b) shows that GIFT is effective at different
Bthres values. Note that GIFT increases the effective system
bandwidth by as much as 5% points for higher Bthres values.
This trend is expected: a higher Bthres value implies higher

112 18th USENIX Conference on File and Storage Technologies USENIX Association

0 4 8 12 16 20 24
Time (days)

0
10
20
30

Cu
m

ul
at

iv
e

Nu
m

.
Sa

m
pl

es
 (b

illi
on

s)

Tau=0.8, Bthres=0.1
Tau=0.1, Bthres=0.1
Tau=0.8, Bthres=0.8

(a) Cumulative Num. Samples

0 4 8 12 16 20 24
Time (days)

0
5

10
15

Ou
ts

ta
nd

in
g

No
de

 H
ou

rs

Tau=0.8, Bthres=0.1
Tau=0.1, Bthres=0.1
Tau=0.8, Bthres=0.8

(b) Outstanding Node-Hours

Figure 12: GIFT is able to collect high cumulative number of samples
and bound the node-hours awarded.

1 10 20 30 40 >50
Number of

App. Appearances

0

10

20

30

Mean App. I/O Time
Improvement Over POFS (%)

(a) Num of Appearances

1 3 5 7 9 11 13 >15
Number of

I/O Intervals

0

10

20

30

Mean App. I/O Time
Improvement Over POFS (%)

(b) Num of I/O Intervals

<1 2 4 8 >16
Size of I/O

Per Rank (GiB)

0

10

20

Mean App. I/O Time
Improvement Over POFS (%)

(c) Per Interval I/O Size

Figure 13: Applications with all types of characteristics experience
improvement in I/O performance with GIFT.

throttling power, and hence, better opportunities to fill the
bandwidth gap. However, this also causes slight reduction in
I/O time improvement (2% points). Next, Fig. 11(c) shows the
impact of parameter N (the length of the receding window)
on GIFT performance. Increasing N does not impact I/O time
but it improves effective system bandwidth slightly due to
better stability from one decision instance to the next. Overall,
GIFT does better than POFS across a wide range of N values.

Studying GIFT’s characteristics over time, Fig. 12(a)
shows that GIFT collects a large number of samples as
time progresses for both, default parameter configuration
(τ = 0.8,Bthres = 0.1) and extreme cases (τ = 0.1,Bthres = 0.1
and τ = 0.8,Bthres = 0.8). The sample collection continues in
order to adjust to application characteristics and learn about
new applications. Fig. 12(b) also shows that the number of
outstanding node-hours is quite low at all times due to ef-
fectiveness of GIFT’s redemption rate thresholds – therefore,
indicating that only a small system regret budget is needed.
Fig. 12(b) also shows that even under a pessimistic parameter
selection (τ = 0.1,Bthres = 0.1, low redemption rate thresh-
old for applications to be considered throttle-friendly), GIFT
needs a low number of outstanding node-hours at all times
(less than 20 hours at any instance, although the correspond-
ing 2% improvement in system throughput translates to a gain
of more than 5,800 node-hours). Even if outstanding node-
hours are awarded daily, the system regret budget needs to be
only 360 node-hours over 24 days, much less than the 5,800
node-hours gained with 2% system throughput improvement.

GIFT provides performance improvement for applica-
tions of different characteristics, under high I/O con-
tention, and device bandwidth (SSD vs. HDD). We per-
formed simulation based exploration to understand how GIFT

100 250 500 750 1000
Application Set Size

0
4
8

12
16
20

Mean App. I/O Time
Improvement Over POFS (%)

(a) App I/O Time

100 250 500 750 1000
Application Set Size

0
1
2
3
4
5
6
7

Mean App. Runtime
Improvement Over POFS (%)

(b) App Runtime

100 250 500 750 1000
Application Set Size

0
5

10
15
20
25
30
35

Effective Sys. B/w
Improvement Over POFS (%)

(c) Effective I/O B/w

Figure 14: GIFT performs better than POFS at all contention levels.

performs when key application characteristics are varied:
number of appearances of an application, number of I/O in-
tervals, and the size of I/O per I/O interval per MPI process
(rank). We found (Fig. 13 (a)-(c)) that GIFT continues to
provide a significant improvement in application I/O perfor-
mance as we vary the number of appearances of an application,
number of I/O intervals, and the per-interval I/O size across a
wide range. Our results (Fig. 14) also show that GIFT’s perfor-
mance benefits actually improve as we increase the contention
level from 100-applications set to 1,000-applications set; this
is expected because a higher-level of contention increases the
chances for GIFT to exercise throttle and reward. For 1,000
application-set GIFT improves mean application I/O time by
up to 16%, mean application run time by up to 7%, and effec-
tive system bandwidth by up to 30%. Finally, although GIFT
does not rely on specific storage device characteristics to pro-
vide benefits, we studied the effect of device bandwidth (e.g.,
SSD vs. HDD) on the limits of GIFT performance. As ex-
pected, we did not find the GIFT performance improvements
to be sensitive to the underlying storage device.

GIFT implementation is low-overhead and scalable on a
real system. GIFT has two sources of overhead: computation
and communication. MDS incurs the computation overhead
due to solving an LP optimization problem. Communication
overhead is incurred due to message exchanges between the
OSTs and MDS. To obtain pessimistic estimates on the GIFT
implementation overhead on a real system, we increase the
number of OSTs from 32 to 200 and increase the application
set size to 1,000 – amplifying the degree of GIFT overheads.
We measured that the CPU overhead on the MDS increased
from 1 ms to 5 ms which is negligible compared to decision
instance interval (10 seconds); GIFT produces similar re-
sults with similar decision instance interval lengths, however
choosing too small interval (e.g., 1 second) can make over-
head effects visible and choosing very large interval (e.g., 10
minute) can lead missed opportunities for throttle-and-reward.
The volume of messages between the MDS and the OSTs is
also minimal (less than 4 MB over two days) and occurs on a
non-critical network path. In our real system experiments, we
measured that overall GIFT’s implementation imposes a neg-
ligible overhead on I/O performance even under pessimistic
scenarios (less than 0.01%).

USENIX Association 18th USENIX Conference on File and Storage Technologies 113

5 Discussion

Relationship between I/O bandwidth improvements and
system throughput. We note that GIFT does not actively ma-
nipulate the I/O bandwidth allocation to directly improve the
system throughput. It is trivial to improve the system through-
put - for example, by allocating more I/O bandwidth share to
short-running jobs which can significantly increase the sys-
tem throughput at the expense of fairness. Nevertheless, as
our results show, GIFT is able to improve the overall system
throughput. This is because GIFT eliminatea I/O bandwidth
inefficiencies by increasing the I/O bandwidth toward syn-
chronous progress which reduces the overall I/O time and run
time of applications. Reducing the overall run time of appli-
cations by judiciously utilizing the available I/O bandwidth,
in turn, leads to completion of more jobs per unit time (i.e.,
system throughput increases).

Why traditional notions of measuring fairness alone
may be not be adequate for assessing the effectiveness
of GIFT. A conventional notion of fairness measures the
amount of equal opportunity among all participants. In the
case of GIFT, this translates to providing equal bandwidth
to all jobs concurrently performing I/O on the same OST
(i.e., POFS). However, this does not lead to effective equal
bandwidth division since jobs may not be able to leverage
the full I/O bandwidth due to non-synchronous I/O progress.
While, GIFT does not enforce this fair opportunity at every
decision instance, it does enforce it as a constraint in the long
run. Thus, GIFT enforces fair opportunity as a constraint.

Another conventional notion of fairness measures the
amount of equal performance among all participants. For
example, calculating the difference between maximum and
minimum performances, or the standard deviation of perfor-
mances, or Jain’s Fairness Index [27]. Fairness can be viewed
at as all jobs having equal I/O performance. In practice, this
is difficult to enforce and impractical to achieve in a diverse
and dynamic I/O environment of an HPC storage system. Job
I/O performance depends on a variety of job-specific aspects
which are not in control of GIFT (GIFT only performs time-
divided bandwidth allocation) such as number of OSTs across
which a file is stripped, size of I/O, type and pattern of I/O, I/O
interface (POSIX, MPIIO, STDIO), etc. Thus, while GIFT
enforces equal opportunity in terms of bandwidth (resource)
allocation as hard constraint, it cannot enforce overall equal
I/O performance.

In the case of GIFT, one could argue that fairness can be
defined as all applications having equal improvement as com-
pared to POFS. However, this definition is not meaningful
since POFS already performs instantaneous fair allocation,
thus, I/O performance with POFS is fair and attempting to
achieve “fair improvement from a fair performance” does not
have practical value for end users. Therefore, as discussed
in Sec. 4, GIFT’s fairness is better quantified by focusing
on the applications which achieves worse performance than

POFS. If the improvement over POFS is positive, then GIFT
is considered fair for such beneficiary applications, but the
improvement over POFS among such beneficiary applications
is not equal. This is because GIFT rewards certain applica-
tions opportunistically by increasing their I/O bandwidth if
it helps reduce the overall bandwidth waste. Finally, GIFT
compensates unfairness in one type of resource allocation by
allocating another type of resource - this feature makes GIFT
fairness fundamentally different than traditional notions.

6 Related Work

Many prior works have focused on identifying the root causes
of contention and characterizing the I/O bottlenecks [2,10,12,
22, 28, 31, 34, 38, 39, 46, 47, 63, 68, 81, 82, 85]. These works
do not propose mitigation techniques. Studies focusing on
application-level techniques [13, 35, 42, 56, 61, 89, 91, 92],
such as CALCioM [14], rely on application modifications and
cooperation for coordinating I/O transactions among appli-
cations. Client-side solutions, which coordinate I/O requests
to and from the client-attached burst buffers or requests han-
dlers [6, 25, 29, 36, 37, 76–78], end up underutilizing the back-
end bandwidth due to the lack of a storage-system view. In
general, client-side techniques are complementary to GIFT
and can be used to further enhance application performance.
On the other hand, server-side solutions aim to efficiently
schedule the I/O requests from the server nodes to the disk
targets [17, 20, 21, 50, 64, 69, 70, 72, 74, 90]. For example,
IOrchestrator [88] uses spacial locality of I/O requests to
unfairly prioritize the most disk efficient requests. Note that
none of these studies consider the distributed and synchronous
I/O behavior of HPC applications. This paper introduced,
GIFT, a new I/O bandwidth allocation approach to ensure syn-
chronous I/O progress for HPC application while maximizing
I/O throughput and ensuring fairness.

7 Conclusion

Improving effective system I/O bandwidth, providing fairness
among applications, and ensuring synchronous I/O progress
are three major challenges in parallel storage systems, but
no existing approaches have considered them as a joint prob-
lem. GIFT identifies and solves this new problem using a
throttle-and-reward approach - yielding significant improve-
ments (17% in mean effective system I/O bandwidth and
10% in the mean application I/O time). GIFT is available at
https://github.com/GoodwillComputingLab/GIFT.

Acknowledgment. We are thankful to our shepherd (André
Brinkmann), Phil Carns, Robert Ross, and anonymous review-
ers for their constructive feedback. This work is supported
in part by NSF Awards 1910601 and 1753840, Northeast-
ern University, and Massachusetts Green High Performance
Computing Center (MGHPCC).

114 18th USENIX Conference on File and Storage Technologies USENIX Association

References

[1] Stampede2 User Guide, 2018 (accessed January
10, 2019). https://portal.tacc.utexas.edu/
user-guides/stampede2.

[2] Gonzalo Pedro Rodrigo Alvarez, Per-Olov Östberg, Erik
Elmroth, Katie Antypas, Richard Gerber, and Lavanya
Ramakrishnan. Towards Understanding Job Heterogene-
ity in HPC: A NERSC Case Study. In Cluster, Cloud and
Grid Computing (CCGrid), 2016 16th IEEE/ACM Inter-
national Symposium on, pages 521–526. IEEE, 2016.

[3] Jason Ansel, Kapil Arya, and Gene Cooperman.
DMTCP: Transparent Checkpointing for Cluster Com-
putations and the Desktop. In Parallel and Distributed
Processing Symposium (IPDPS), 2009 IEEE Interna-
tional, pages 1–12. IEEE, 2009.

[4] Katie Antypas, BA Austin, TL Butler, RA Gerber, Cary
Whitney, Nick Wright, Woo-Sun Yang, and Zhengji
Zhao. NERSC Workload Analysis on Hopper. Technical
report, Technical report, LBNL Report, 2013.

[5] Brian Austin, Tina Butler, Richard Gerber, Cary Whit-
ney, Nicholas Wright, Woo-Sun Yang, and Zhengji Zhao.
Hopper Workload Analysis. 2014.

[6] Babak Behzad, Huong Vu Thanh Luu, Joseph Huchette,
Surendra Byna, Ruth Aydt, Quincey Koziol, Marc Snir,
et al. Taming Parallel I/O Complexity with Auto-Tuning.
In Proceedings of the International Conference on High
Performance Computing, Networking, Storage and Anal-
ysis, page 68. ACM, 2013.

[7] John Bent, Sorin Faibish, Jim Ahrens, Gary Grider, John
Patchett, Percy Tzelnic, and Jon Woodring. Jitter-Free
Co-Processing on a Prototype Exascale Storage Stack.
In 012 IEEE 28th Symposium on Mass Storage Systems
and Technologies (MSST), pages 1–5. IEEE, 2012.

[8] John Bent, Garth Gibson, Gary Grider, Ben McClel-
land, Paul Nowoczynski, James Nunez, Milo Polte, and
Meghan Wingate. PLFS: A Checkpoint Filesystem for
Parallel Applications. In Proceedings of the Conference
on High Performance Computing Networking, Storage
and Analysis, page 21. ACM, 2009.

[9] Suren Byna, A Uselton, D Knaak Prabhat, and Y He.
Trillion Particles, 120,000 cores, and 350 TBs: Lessons
Learned from a Hero I/O Run on Hopper. In Cray user
group meeting, 2013.

[10] Zhen Cao, Vasily Tarasov, Hari Prasath Raman, Dean
Hildebrand, and Erez Zadok. On the Performance Varia-
tion in Modern Storage Stacks. In FAST, pages 329–344,
2017.

[11] Franck Cappello. Fault Tolerance in Petascale/Exascale
Systems: Current Knowledge, Challenges and Research
Opportunities. IJHPCA, 23(3):212–226, 2009.

[12] Christopher S Daley, Devarshi Ghoshal, Glenn K Lock-
wood, Sudip Dosanjh, Lavanya Ramakrishnan, and
Nicholas J Wright. Performance Characterization of Sci-
entific Workflows for the Optimal use of Burst Buffers.
Future Generation Computer Systems, 2017.

[13] Matthieu Dorier, Gabriel Antoniu, Franck Cappello,
Marc Snir, and Leigh Orf. Damaris: How to Efficiently
Leverage Multicore Parallelism to Achieve Scalable,
Jitter-Free I/O. In Cluster Computing (CLUSTER),
2012 IEEE International Conference on, pages 155–163.
IEEE, 2012.

[14] Matthieu Dorier, Gabriel Antoniu, Rob Ross, Dries
Kimpe, and Shadi Ibrahim. CALCioM: Mitigating
I/O Interference in HPC Systems Through Cross-
Application Coordination. In Parallel and Distributed
Processing Symposium, 2014 IEEE 28th International,
pages 155–164. IEEE, 2014.

[15] Elmootazbellah N Elnozahy and James S Plank. Check-
pointing for Peta-scale Systems: A Look into the Future
of Practical Rollback-Recovery. TDSC 2004, 1(2):97–
108, 2004.

[16] Thomas Furlani. XDMoD Value Analytics. 2018.

[17] Ana Gainaru, Guillaume Aupy, Anne Benoit, Franck
Cappello, Yves Robert, and Marc Snir. Scheduling the
I/O of HPC Applications under Congestion. In Parallel
and Distributed Processing Symposium (IPDPS), 2015
IEEE International, pages 1013–1022. IEEE, 2015.

[18] Richard Gerber, James Hack, Katherine Riley, Katie An-
typas, Richard Coffey, Eli Dart, Tjerk Straatsma, Jack
Wells, Deborah Bard, Sudip Dosanjh, et al. Crosscut
Report: Exascale Requirements Reviews, March 9–10,
2017–Tysons Corner, Virginia. An Office of Science
Review Sponsored by: Advanced Scientific Computing
Research, Basic Energy Sciences, Biological and En-
vironmental Research, Fusion Energy Sciences, High
Energy Physics, Nuclear Physics. Technical report, Oak
Ridge National Lab.(ORNL), Oak Ridge, TN (United
States); Argonne . . . , 2018.

[19] Richard A Gerber and Harvey Wasserman. Large Scale
Computing and Storage Requirements for High Energy
Physics. Technical report, Lawrence Berkeley National
Lab.(LBNL), Berkeley, CA (United States), 20102.

[20] Ajay Gulati, Arif Merchant, and Peter J Varman. pClock:
An Arrival Curve Based Approach for QoS Guarantees
in Shared Storage Systems. In ACM SIGMETRICS

USENIX Association 18th USENIX Conference on File and Storage Technologies 115

Performance Evaluation Review, volume 35, pages 13–
24. ACM, 2007.

[21] Ajay Gulati, Arif Merchant, and Peter J Varman.
mClock: Handling Throughput Variability for Hyper-
visor IO Scheduling. In Proceedings of the 9th USENIX
conference on Operating systems design and implemen-
tation, pages 437–450. USENIX Association, 2010.

[22] Raghul Gunasekaran, Sarp Oral, Jason Hill, Ross Miller,
Feiyi Wang, and Dustin Leverman. Comparative I/O
Workload Characterization of Two Leadership Class
Storage Clusters. In Proceedings of the 10th Parallel
Data Storage Workshop, pages 31–36. ACM, 2015.

[23] Jun He, Duy Nguyen, Andrea C Arpaci-Dusseau, and
Remzi H Arpaci-Dusseau. Reducing File System Tail
Latencies with Chopper. In FAST, volume 15, pages
119–133, 2015.

[24] John Hearns, Marc A Kaplan, and Egonle Bo. Limit /
fair share of gpfs bandwidth, Jan 2018.

[25] Stephen Herbein, Dong H Ahn, Don Lipari, Thomas RW
Scogland, Marc Stearman, Mark Grondona, Jim Gar-
lick, Becky Springmeyer, and Michela Taufer. Scal-
able I/O-aware Job Scheduling for Burst Buffer Enabled
HPC Clusters. In Proceedings of the 25th ACM Inter-
national Symposium on High-Performance Parallel and
Distributed Computing, pages 69–80. ACM, 2016.

[26] M Heroux and S Hammond. MiniFE: Finite Element
Solver.

[27] Raj Jain, Arjan Durresi, and Gojko Babic. Through-
put Fairness Index: An Explanation. In ATM Forum
contribution, volume 99, 1999.

[28] Ye Jin, Xiaosong Ma, Mingliang Liu, Qing Liu, Jeremy
Logan, Norbert Podhorszki, Jong Youl Choi, and Scott
Klasky. Combining Phase Identification and Statistic
Modeling for Automated Parallel Benchmark Gener-
ation. ACM SIGMETRICS Performance Evaluation
Review, 43(1):309–320, 2015.

[29] Magnus Karlsson, Christos Karamanolis, and Xiaoyun
Zhu. Triage: Performance Differentiation for Storage
Systems using Adaptive Control. ACM Transactions on
Storage (TOS), 1(4):457–480, 2005.

[30] Seong Jo Kim. Parallel I/O Profiling and Optimization
in HPC Systems. 2014.

[31] Youngjae Kim and Raghul Gunasekaran. Understanding
I/O Workload Characteristics of a Peta-scale Storage
System. The Journal of Supercomputing, 71(3):761–
780, 2015.

[32] Michelle Koo, Wucherl Yoo, and Alex Sim. I/O Perfor-
mance Analysis Framework on Measurement Data from
Scientific Clusters. 2015.

[33] Douglas Kothe and Ricky Kendall. Computational Sci-
ence Requirements for Leadership Computing. Oak
Ridge National Laboratory, Technical Report, 2007.

[34] Samuel Lang, Philip Carns, Robert Latham, Robert Ross,
Kevin Harms, and William Allcock. I/O Performance
Challenges at Leadership Scale. In Proceedings of the
Conference on High Performance Computing Network-
ing, Storage and Analysis, page 40. ACM, 2009.

[35] Han Deok Lee, Young Jin Nam, Kyong Jo Jung,
Seok Gan Jung, and Chanik Park. Regulating I/O Per-
formance of Shared Storage with a Control Theoretical
Approach. In MSST, pages 105–117, 2004.

[36] Yan Li, Xiaoyuan Lu, Ethan L Miller, and Darrell DE
Long. Ascar: Automating Contention Management for
High-Performance Storage Systems. In Mass Storage
Systems and Technologies (MSST), 2015 31st Sympo-
sium on, pages 1–16. IEEE, 2015.

[37] Ning Liu, Jason Cope, Philip Carns, Christopher
Carothers, Robert Ross, Gary Grider, Adam Crume, and
Carlos Maltzahn. On the Role of Burst Buffers in
Leadership-Class Storage Systems. In Mass Storage
Systems and Technologies (MSST), 2012 IEEE 28th Sym-
posium on, pages 1–11. IEEE, 2012.

[38] Yang Liu, Raghul Gunasekaran, Xiaosong Ma, and Sud-
harshan S Vazhkudai. Automatic Identification of Ap-
plication I/O Signatures from Noisy Server-Side Traces.
In FAST, volume 14, pages 213–228, 2014.

[39] Yang Liu, Raghul Gunasekaran, Xiaosong Ma, and Sud-
harshan S Vazhkudai. Server-Side Log Data Analytics
for I/O Workload Characterization and Coordination on
Large Shared Storage Systems. In High Performance
Computing, Networking, Storage and Analysis, SC16: In-
ternational Conference for, pages 819–829. IEEE, 2016.

[40] Glenn K Lockwood, Wucherl Yoo, Suren Byna,
Nicholas J Wright, Shane Snyder, Kevin Harms, Zachary
Nault, and Philip Carns. UMAMI: A Recipe for Gen-
erating Meaningful Metrics Through Holistic I/O Per-
formance Analysis. In Proceedings of the 2nd Joint In-
ternational Workshop on Parallel Data Storage & Data
Intensive Scalable Computing Systems, pages 55–60.
ACM, 2017.

[41] William Loewe, T McLarty, and C Morrone. IOR Bench-
mark, 2012.

116 18th USENIX Conference on File and Storage Technologies USENIX Association

[42] Jay Lofstead, Fang Zheng, Qing Liu, Scott Klasky,
Ron Oldfield, Todd Kordenbrock, Karsten Schwan, and
Matthew Wolf. Managing Variability in the IO Perfor-
mance of Petascale Storage Systems. In High Perfor-
mance Computing, Networking, Storage and Analysis
(SC), 2010 International Conference for, pages 1–12.
IEEE, 2010.

[43] Robin Lougee-Heimer. The Common Optimization
INterface for Operations Research: Promoting Open-
source Software in the Operations Research Community.
IBM Journal of Research and Development, 47(1):57–
66, 2003.

[44] Uri Lublin and Dror G Feitelson. The Workload on
Parallel Supercomputers: Modeling the Characteristics
of Rigid Jobs. Journal of Parallel and Distributed Com-
puting, 63(11):1105–1122, 2003.

[45] Robert Lucas. Top Ten Exascale Research Challenges.
In DOE ASCAC Subcommittee Report, 2014.

[46] Huong Luu, Marianne Winslett, William Gropp, Robert
Ross, Philip Carns, Kevin Harms, Mr Prabhat, Suren
Byna, and Yushu Yao. A Multiplatform Study of I/O Be-
havior on Petascale Supercomputers. In Proceedings of
the 24th International Symposium on High-Performance
Parallel and Distributed Computing, pages 33–44. ACM,
2015.

[47] Sandeep Madireddy, Prasanna Balaprakash, Philip
Carns, Robert Latham, Robert Ross, Shane Snyder, and
Stefan M Wild. Analysis and Correlation of Applica-
tion I/O Performance and System-Wide I/O Activity.
In Networking, Architecture, and Storage (NAS), 2017
International Conference on, pages 1–10. IEEE, 2017.

[48] George S Markomanolis, Bilel Hadri, Rooh Khurram,
and Saber Feki. Scientific Applications Performance
Evaluation on Burst Buffer. In International Confer-
ence on High Performance Computing, pages 701–711.
Springer, 2017.

[49] Deirdre N McCloskey, Stephen T Ziliak, et al. The
Standard Error of Regressions. Journal of economic
literature, 34(1):97–114, 1996.

[50] Arif Merchant, Mustafa Uysal, Pradeep Padala, Xiaoyun
Zhu, Sharad Singhal, and Kang Shin. Maestro: Quality-
of-Service in Large Disk Arrays. In Proceedings of
the 8th ACM international conference on Autonomic
computing, pages 245–254. ACM, 2011.

[51] Jamaludin Mohd-Yusof, S Swaminarayan, and TC Ger-
mann. Co-Design for Molecular Dynamics: An Exas-
cale Proxy Application, 2013.

[52] Andrey Ovsyannikov, Melissa Romanus, Brian
Van Straalen, Gunther H Weber, and David Trebotich.
Scientific Workflows at Satawarp-Apeed: Accelerated
Data-Intensive Science using NERSC’s Burst Buffer.
In Parallel Data Storage and data Intensive Scalable
Computing Systems (PDSW-DISCS), 2016 1st Joint
International Workshop on, pages 1–6. IEEE, 2016.

[53] Tirthak Patel, Suren Byna, Glenn K Lockwood, and De-
vesh Tiwari. Revisiting I/O Behavior in Large-Scale
Storage Systems: The Expected and the Unexpected. In
Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Anal-
ysis, pages 1–13, 2019.

[54] Torben Kling Petersen. HPC Storage Current Status and
Futures.

[55] Yingjin Qian, Xi Li, Shuichi Ihara, Andreas Dilger, Car-
los Thomaz, Shilong Wang, Wen Cheng, Chunyan Li,
Lingfang Zeng, Fang Wang, et al. LPCC: Hierarchical
Persistent Client Caching for Lustre. In Proceedings
of the International Conference for High Performance
Computing, Networking, Storage and Analysis, page 88.
ACM, 2019.

[56] Yingjin Qian, Xi Li, Shuichi Ihara, Lingfang Zeng, Jür-
gen Kaiser, Tim Süß, and André Brinkmann. A Con-
figurable Rule Based Classful Token Bucket Filter Net-
work Request Scheduler for the Lustre File System. In
Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Anal-
ysis, page 6. ACM, 2017.

[57] Robert Ross, Robert Ross, Gary Grider, Gary Grider,
Evan Felix, Evan Felix, Mark Gary, Mark Gary, Scott
Klasky, Scott Klasky, et al. Storage Systems and In-
put/Output to Support Extreme Scale Science. Technical
report, Sandia National Lab.(SNL-NM), Albuquerque,
NM (United States), 2015.

[58] Robert B Ross, Rajeev Thakur, et al. Pvfs: A parallel
file system for linux clusters. In Proceedings of the 4th
annual Linux showcase and conference, pages 391–430,
2000.

[59] Frank B Schmuck and Roger L Haskin. Gpfs: A shared-
disk file system for large computing clusters. In FAST,
volume 2, 2002.

[60] Philip Schwan et al. Lustre: Building a file system for
1000-node clusters. In Proceedings of the 2003 Linux
symposium, volume 2003, pages 380–386, 2003.

[61] David Shue, Michael J Freedman, and Anees Shaikh.
Performance Isolation and Fairness for Multi-Tenant
Cloud Storage. In OSDI, volume 12, pages 349–362.
USENIX, 2012.

USENIX Association 18th USENIX Conference on File and Storage Technologies 117

[62] Nikolay A Simakov, Joseph P White, Robert L DeLeon,
Steven M Gallo, Matthew D Jones, Jeffrey T Palmer,
Benjamin Plessinger, and Thomas R Furlani. A Work-
load Analysis of NSF’s Innovative HPC Resources Us-
ing XDMoD. arXiv preprint arXiv:1801.04306, 2018.

[63] Shane Snyder, Philip Carns, Kevin Harms, Robert Ross,
Glenn K Lockwood, and Nicholas J Wright. Modular
HPC I/O Characterization with Darshan. In Extreme-
Scale Programming Tools (ESPT), Workshop on, pages
9–17. IEEE, 2016.

[64] Huaiming Song, Yanlong Yin, Xian-He Sun, Rajeev
Thakur, and Samuel Lang. Server-Side I/O Coordination
for Parallel File Systems. In Proceedings of 2011 Inter-
national Conference for High Performance Computing,
Networking, Storage and Analysis, page 17. ACM, 2011.

[65] Srividya Srinivasan, Rajkumar Kettimuthu, Vijay Sub-
ramani, and P Sadayappan. Characterization of Back-
filling Strategies for Parallel Job Scheduling. In Paral-
lel Processing Workshops, 2002. Proceedings. Interna-
tional Conference on, pages 514–519. IEEE, 2002.

[66] Dan Stanzione, Bill Barth, Niall Gaffney, Kelly Gaither,
Chris Hempel, Tommy Minyard, S Mehringer, Eric
Wernert, H Tufo, D Panda, et al. Stampede 2: The Evo-
lution of an XSEDE Supercomputer. In Proceedings
of the Practice and Experience in Advanced Research
Computing 2017 on Sustainability, Success and Impact,
page 15. ACM, 2017.

[67] Miklos Szeredi. FUSE: Filesystem in Userspace.
https://fuse.sourceforge.net/, 2005. Online (ac-
cessed January 10, 2019).

[68] Vasily Tarasov, Saumitra Bhanage, Erez Zadok, and
Margo Seltzer. Benchmarking File System Benchmark-
ing: It* IS* Rocket Science. In HotOS, volume 13, pages
1–5, 2011.

[69] Sagar Thapaliya, Purushotham Bangalore, Jay Lofstead,
Kathrn Mohror, and Adam Moody. IO-Cop: Managing
Concurrent Accesses to Shared Parallel File System. In
Parallel Processing Workshops (ICCPW), 2014 43rd
International Conference on, pages 52–60. IEEE, 2014.

[70] Matthew Wachs, Michael Abd-El-Malek, Eno Thereska,
and Gregory R Ganger. Argon: Performance Insulation
for Shared Storage Servers. In FAST, volume 7, pages
5–5, 2007.

[71] Edward Walker. The Real Cost of a CPU Hour. Com-
puter, (4):35–41, 2009.

[72] Chien-Min Wang, Tse-Chen Yeh, and Guo-Fu Tseng.
Provision of Storage QoS in Distributed File Systems
for Clouds. In Parallel Processing (ICPP), 2012 41st In-
ternational Conference on, pages 189–198. IEEE, 2012.

[73] Feiyi Wang, Sarp Oral, Saurabh Gupta, Devesh Tiwari,
and Sudharshan S Vazhkudai. Improving Large-scale
Storage System Performance via Topology-Aware and
Balanced Data Placement. In Parallel and Distributed
Systems (ICPADS), 2014 20th IEEE International Con-
ference on, pages 656–663. IEEE, 2014.

[74] Hui Wang and Peter J Varman. Balancing Fairness and
Efficiency in Tiered Storage Systems with Bottleneck-
Aware Allocation. In FAST, volume 14, pages 229–242,
2014.

[75] Jingjing Wang, Nael Abu-Ghazaleh, and Dmitry Pono-
marev. Controlled Contention: Balancing Contention
and Reservation in Multicore Application Schedul-
ing. In Parallel and Distributed Processing Sympo-
sium (IPDPS), 2015 IEEE International, pages 946–955.
IEEE, 2015.

[76] Teng Wang, Kathryn Mohror, Adam Moody, Kento Sato,
and Weikuan Yu. An Ephemeral Burst-buffer File Sys-
tem For Scientific Applications. In Proceedings of the In-
ternational Conference for High Performance Comput-
ing, Networking, Storage and Analysis, page 69. IEEE
Press, 2016.

[77] Teng Wang, Sarp Oral, Michael Pritchard, Bin Wang,
and Weikuan Yu. Trio: Burst Buffer Based I/O Orches-
tration. In Cluster Computing (CLUSTER), 2015 IEEE
International Conference on, pages 194–203. IEEE,
2015.

[78] Teng Wang, Sarp Oral, Yandong Wang, Brad Settlemyer,
Scott Atchley, and Weikuan Yu. Burstmem: A High-
Performance Burst Buffer System for Scientific Applica-
tions. In Big Data (Big Data), 2014 IEEE International
Conference on, pages 71–79. IEEE, 2014.

[79] Sage A Weil, Scott A Brandt, Ethan L Miller, Darrell DE
Long, and Carlos Maltzahn. Ceph: A scalable, high-
performance distributed file system. In Proceedings of
the 7th symposium on Operating systems design and
implementation, pages 307–320. USENIX Association,
2006.

[80] Li Xi and Zeng Lingfang. LIME: A Framework for
Lustre Global QoS Management. Lustre Administrator
and Developer Workshop, 2018.

[81] Bing Xie, Jeffrey Chase, David Dillow, Oleg Drokin,
Scott Klasky, Sarp Oral, and Norbert Podhorszki. Char-
acterizing Output Bottlenecks in a Supercomputer. In
High Performance Computing, Networking, Storage and
Analysis (SC), 2012 International Conference for, pages
1–11. IEEE, 2012.

118 18th USENIX Conference on File and Storage Technologies USENIX Association

[82] Bing Xie, Yezhou Huang, Jeffrey S Chase, Jong Youl
Choi, Scott Klasky, Jay Lofstead, and Sarp Oral. Predict-
ing Output Performance of a Petascale Supercomputer.
In Proceedings of the 26th International Symposium on
High-Performance Parallel and Distributed Computing,
pages 181–192. ACM, 2017.

[83] Cong Xu, Shane Snyder, Vishwanath Venkatesan, Philip
Carns, Omkar Kulkarni, Suren Byna, Roberto Sisneros,
and Kalyana Chadalavada. DXT: Darshan eXtended
Tracing. Technical report, Argonne National Lab.(ANL),
Argonne, IL (United States), 2017.

[84] Fan Yang and Andrew A Chien. Extreme Scaling of
Supercomputing with Stranded Power: Costs and Capa-
bilities. arXiv preprint arXiv:1607.02133, 2016.

[85] Orcun Yildiz, Matthieu Dorier, Shadi Ibrahim, Rob Ross,
and Gabriel Antoniu. On the Root Causes of Cross-
application I/O Interference in HPC Storage Systems.
In Parallel and Distributed Processing Symposium, 2016
IEEE International, pages 750–759. IEEE, 2016.

[86] L Zeng, J Kaiser, A Brinkmann, T Süß, L Xi, Q Yingjin,
and S Ihara. Providing QoS-Mechanisms for Lustre
through Centralized Control Applying the TBF-NRS.
Lustre User Group, 2017.

[87] Joe Zerr and Randal Baker. SNAP. http://www.
nersc.gov/users/computational-systems/cori/
nersc-8-procurement/trinity-nersc-8-rfp/
nersc-8-trinity-benchmarks/snap/, 2018 (ac-
cessed January 10, 2019).

[88] Xuechen Zhang, Kei Davis, and Song Jiang. IOrches-
trator: Improving the Performance of Multi-node I/O
Systems via Inter-server Coordination. In Proceedings
of the 2010 ACM/IEEE International Conference for
High Performance Computing, Networking, Storage and
Analysis, pages 1–11. IEEE Computer Society, 2010.

[89] Xuechen Zhang, Kei Davis, and Song Jiang. Oppor-
tunistic Data-driven Execution of Parallel Programs for
Efficient I/O Services. In Parallel & Distributed Pro-
cessing Symposium (IPDPS), 2012 IEEE 26th Interna-
tional, pages 330–341. IEEE, 2012.

[90] Zhou Zhou, Xu Yang, Dongfang Zhao, Paul Rich, Wei
Tang, Jia Wang, and Zhiling Lan. I/O-Aware Batch
Scheduling for Petascale Computing Systems. In Clus-
ter Computing (CLUSTER), 2015 IEEE International
Conference on, pages 254–263. IEEE, 2015.

[91] Timothy Zhu, Michael A Kozuch, and Mor Harchol-
Balter. WorkloadCompactor: Reducing Datacenter Cost
while Providing Tail Latency SLO Guarantees. In Pro-
ceedings of the 2017 Symposium on Cloud Computing,
pages 598–610. ACM, 2017.

[92] Timothy Zhu, Alexey Tumanov, Michael A Kozuch, Mor
Harchol-Balter, and Gregory R Ganger. PriorityMeister:
Tail Latency QoS for Shared Networked Storage. In Pro-
ceedings of the ACM Symposium on Cloud Computing,
pages 1–14. ACM, 2014.

USENIX Association 18th USENIX Conference on File and Storage Technologies 119

