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High school students normally encounter the study and use of formal proof in the
context of Euclidean geometry. Professional mathematicians typically use an infor-
mal trial-and-error approach to a problem, guided by intuition, to arrive at the truth
of an idea. Formal proof is pursued only after mathematicians are intuitively con-
vinced about the truth of an idea. Is the use of intuition to arrive at the plausibility
of a mathematical truth unique to the professional mathematician? How do math-
ematically gifted students form the truth of an idea? In this study, 4 mathematically
gifted freshmen with no prior exposure to proof nor high school geometry were given
the task of establishing the truth or falsity of a nonroutine geometry problem, some-
times referred to as “circumscribing a triangle” problem. This problem asks whether
it is true that for every triangle there is a circle that passes through each of the ver-
tices. This paper describes and interprets the processes used by the mathematically
gifted students to establish truth and compares these processes to those used by pro-
fessional mathematicians. All 4 students were able to think flexibly, as evidenced
in their ability to reverse the direction of a mental process and arrive at the correct
conclusion. This paper further validates the use of Krutetskiian constructs of flexi-
bility and reversibility of mental processes in gifted education as characteristics of
the mathematically gifted student.

Introduction

The Principles and Standards for School Mathematics (2000), pub-
lished by the National Council of Teachers of Mathematics
(NCTM), envisions classrooms in which students “make, refine,
and explore conjectures on the basis of evidence and use a variety
of reasoning and proof techniques to confirm or disprove those con-
jectures” (p. 3). The NCTM envisions students in all grade levels
approaching mathematics in a manner akin to professional mathe-
maticians. For instance, at the early elementary level, teachers are
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encouraged to create learning experiences that allow students to
develop pattern-recognition and classification skills and to encour-
age students to justify their answers via use of empirical evidence
and short chains of deductive reasoning grounded in previously
accepted facts. As students progress to middle grades, they are
expected to have frequent experiences with formulating generaliza-
tions and conjectures, evaluating conjectures, and constructing
mathematical arguments. Finally, in high school, students are
expected to become adept at working formally with definitions,
axioms, and theorems and be able to write proofs. 

The recommendations outlined by the Principles and Standards
for School Mathematics (National Council of Teachers of
Mathematics, 2000) are generic and meant to apply to all students.
However, there is a substantial body of research in gifted education
that indicates that mathematically gifted students are different from
their peer groups in many ways. For instance, mathematically gift-
ed students differ from their peers in their capacity for learning at a
faster pace (Chang, 1985; Heid, 1983) and in their desire to under-
stand the conceptual ideas (Johnson, 1983; Sheffield, 1999). Further,
they differ from their peers in their ability to abstract and generalize
(Greenes, 1981; Kanevsky, 1990; Krutetskii, 1976; Shapiro, 1965;
Sriraman, 2002, 2003a), information-processing abilities and data
management (Greenes; Yakimanskaya, 1970), flexibility and
reversibility of operations (Krutetskii), and tenacity and decision-
making abilities in problem-solving situations (Frensch & Sternberg,
1992; Sriraman, 2003a). Instructional studies at Stanford University
(Suppes & Binford, 1965; Goldberg & Suppes, 1972) showed that,
with instruction, talented students could master inference princi-
ples such as modus ponens, modus tollens, and hypothetical syllo-
gism, which are all precursors to proof, as early as the fifth grade!

This led me to hypothesize that mathematically gifted students
may have an intuitive notion of proof and its role in mathematics,
even if they have never had any prior instruction on proof. In other
words, do mathematically gifted students have a natural capacity to
approach proof in a manner akin to mathematicians? Usually,
mathematicians first form a personal belief about the truth of an
idea and use that as a guide for more formal analytic methods of
establishing truth. For example, a mathematician may intuitively
arrive at the result of a theorem, but realize that deduction is need-
ed to establish truth publicly (Fischbein, 1980; Kline, 1976; Polya,
1954). Thus, intuition convinces the mathematician about the
truth of an idea, while serving to organize the direction of more for-
mal methods (Fischbein), namely, the construction of a proof to
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publicly establish the validity of the finding (Bell, 1976; Manin,
1977; Mason, Burton, & Stacey, 1992). This leads to the following
questions:

1. How do mathematically gifted students arrive at an intu-
ition of truth?

2. How do mathematically gifted students convince them-
selves and others about their intuition of truth?

3. Do the approaches used by gifted students parallel those
used by professional mathematicians? If so, what are the
parallels?

Literature Review

Epp (1990) stated that the kind of thinking done by mathematicians
in their own work is “distinctly different from the elegant deduc-
tive reasoning found in mathematics texts” (p. 257). This statement
puts into perspective the challenges faced by a student when
expected to construct deductive arguments upon first encountering
geometry in high school. When one talks to mathematicians about
mathematical discovery, they acknowledge making illogical steps
in arguments, wandering around in circles (Lampert, 1990), trying
guesses (Davis & Hersh, 1981; Poincaré, 1948), and looking at anal-
ogous examples (Fawcett, 1938; Polya, 1954) for help; and, yet, the
end result does not give the student this insight into the hidden
struggle beneath the crisp, dry proof. 

Chazan (1993) examined high school geometry students’ justifi-
cation for their views of empirical evidence and mathematical
proof and reported his findings from in-depth interviews with 17
high school students from geometry classes that employed empiri-
cal evidence. The focus of Chazan’s analysis was on students’ rea-
sons for viewing empirical evidence as proof and mathematical
proof simply as evidence. In the first part of the interview, students
were asked to compare and contrast arguments based on the mea-
surement of examples and deductive proof. The second part of the
interview focused on the textbook deductive proof and sought to
clarify if interviewees believed that a deductive proof proves the
conclusion true for all objects satisfying the given. They were also
asked to draw counterexamples if they could. Chazan concluded
that students had a good reason to believe that evidence is proof in
the realm of triangles because there was sufficient evidence to sup-
port the claim. These students expressed skepticism of the ability
of a deductive proof to guarantee that no counterexamples exist. 
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The van Hiele model (1986) of geometric thought emerged from
the doctoral works of Dina van Hiele-Geldof and Pierre van Hiele
in the Netherlands. The model consists of five levels of under-
standing, which can be labeled as visualization, induction, induc-
tion with informal deduction, formal deduction, and, finally, proof.
These labels describe the characteristics of the thinking at each
stage. The first level is characterized by students’ recognizing fig-
ures by their global appearance or seeing geometric figures as a
visual whole. Students at the second level (analysis) are able to list
properties of geometric figures; the properties of the geometric fig-
ures become a vehicle for identification and description. In the
third level, students begin to relate and integrate the properties into
necessary and sufficient sets for geometric shapes. In the fourth
level, students develop sequences of statements to deduce one
statement from another; formal deductive proof appears for the first
time at this level. In the fifth level, students are able to analyze and
compare different deductive systems. The van Hiele levels of geo-
metric thinking are sequential and discrete, rather than continu-
ous, and the structure of geometric knowledge is unique for each
level and a function of age. Van Hiele believed that instruction
plays the biggest role in students moving from one level of geo-
metric thinking to the next higher level. He also claimed that,
without instruction, students may remain indefinitely at a given
level. I do not agree with van Hiele’s claim that the levels are dis-
crete and a function of age. This claim may hold true for nongifted
students, but they certainly do not apply to mathematically gifted
students, as will be argued in the next paragraph. Moreover, the van
Hiele model does not take a holistic view of mathematical ability
and is strictly confined to the realm of geometry.

There were numerous experiments conducted in the former Soviet
Union from the 1950s to the 1970s (Ivanitsyna, 1970; Krutetskii,
1976; Menchinskaya, 1959; Shapiro, 1965; Yakimanskaya, 1970)
with mathematically “capable” students that demonstrated that gift-
ed students have a repertoire of abilities that cannot be pigeonholed
into discrete levels within a narrow subdomain of mathematics, such
as Euclidean geometry. Instead, these researchers characterized the
mathematical abilities of gifted children holistically, comprised of
analytic, geometric, and harmonic components, and argued that gift-
ed children usually have a preference for one component over the
others. The analytic type has a mathematically abstract cast of mind,
the geometric type has a mathematically pictorial cast of mind,
whereas a harmonic type is a combination of analytic and geometric
types. For instance, given the same problem, one gifted child might
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pursue an analytic approach, whereas another would pursue a geo-
metric approach. 

Strunz (1962) gave a different classification of styles of mathe-
matical giftedness and suggested the empirical type and the con-
ceptual type. In this classification, the empirical type would have a
preference for applied situations, immediately observable relations,
and induction, whereas the conceptual type would have a prefer-
ence for theoretical situations and deduction. 

Krutetskii (1976) observed that one of the attributes of mathe-
matically gifted students is the ability to switch from a direct to a
reverse train of thought (reversibility), which they performed with
relative ease. The mathematical context in which this reversibility
was observed was in transitions from usual proof to proof via con-
tradiction (reductio ad absurdum) or when moving from a theorem
to its converse. 

The researchers cited in these paragraphs have acknowledged the
use of intuitive ability in gifted children. To my knowledge, there
are no studies that have looked at how gifted students use their
intuition in mathematics. There are, however, a limited number of
studies with mathematicians who have tried to increase our under-
standing of how mathematicians use intuition (Fischbein, 1980;
Kline, 1976; Sriraman, 2003b). 

Kline (1976) found that a group of mathematicians said they
began with an informal trial-and-error approach guided by intu-
ition. It is this process that helped them convince themselves about
the truth of a mathematical idea. After the initial conviction, for-
mal methods were pursued: 

The logical approach to any branch of mathematics is usually a
sophisticated, artificial reconstruction of discoveries that are
refashioned many times and then forced into a deductive sys-
tem. The proofs are no longer natural or guided by intuition.
Hence one does not really understand them through logical
presentation. (p. 451) 

Fischbein (1980) believed that intuition is an essential component
of all levels of argument and referred to the use of intuition as
anticipatory: “While trying to solve a problem one suddenly has the
feeling that one has grasped the solution even before one can offer
an explicit, complete justification for that solution” (p. 10).

To determine qualitative characteristics of creative behavior, I
interviewed 5 mathematicians (Sriraman, 2003b). In that study, the
mathematicians were questioned about how they formed an intu-
ition of the truth of a proposition. All of the mathematicians in that
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study mentioned that the last thing they looked at was a formal
proof. They went about forming an intuition about truth by con-
sciously trying to construct examples and counter-examples
(Sriraman). In other words, they worked a problem both ways, con-
structing examples to verify truth, as well as looking for coun-
terexamples that would establish its falsity, thus using a back-and-
forth approach of conscious guessing (Bell, 1976; Lampert, 1990;
Polya, 1954; Usiskin, 1987). The “ideal mathematician,” a fiction-
al entity constructed by Davis and Hersh (1981), when asked by a
student of philosophy, “What is a mathematical proof?” replied
with lots of examples, such as “the fundamental theorem of this,
the fundamental theorem of that, etc.” (Hersh, 1993, p. 389). When
probed by the philosophy student, the ideal mathematician finally
succumbed and confided that “Formal logic is rarely employed in
proving theorems, that the real truth of the matter is that proof is
just a convincing argument, as judged by competent judges” (p.
389). This leads us once again to the questions posed earlier about
mathematically gifted students:

1. How do mathematically gifted students arrive at an intu-
ition of truth?

2. How do mathematically gifted students convince them-
selves and others about their intuition of truth ?

3. Do the approaches used by gifted students parallel those
used by professional mathematicians? If so, what are the
parallels?

Methodology

The Participants

Since one of the goals of this study was to determine whether math-
ematically gifted students have intuitive notions about proof, it was
important to select students who had no prior instruction on proof.
The participants selected for this study were 4 freshmen in a large,
rural midwestern high school, enrolled in various sections of
Integrated Mathematics I (an NSF-funded curriculum aligned to
NCTM standards and developed at Western Michigan University). I
was a full-time mathematics teacher and gifted coordinator of this
high school. The 4 students had been enrolled previously in the
same K–8 school district, one of the feeder schools of the high
school, and had been identified as mathematically gifted by the K–8
district guidelines based on test scores on the Stanford Achievement
Test (95 percentile) and teacher nominations. I was provided with
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this information by the K–8 district. Table 1 gives the achievement
profiles of the 4 students and shows that they were in the top one
percentile on the Stanford Achievement Test. 

In addition, at the end of their first semester in the high school,
their respective ninth-grade math teachers identified and recom-
mended the 4 students for the high school gifted program. The
achievement profiles in mathematics, along with the nomination
by math teachers in the K–8 district, as well as the high school, evi-
denced the mathematical giftedness of these 4 students.

The 4 students were not enrolled in any of the math courses taught
by me. They were invited to participate in this study through a letter
stating that the gifted coordinator (author) was interested in studying
the mathematical thinking of gifted students. The 4 students con-
sented to participate in this study and completed a survey about their
previous K–8 coursework in mathematics and answered specific ques-
tions about their familiarity with geometry and proof. The surveys
indicated that their previous math course was Algebra, with some
enrichment. All 4 students indicated studying classification of geo-
metric figures based on properties in grades 4 and 6. One of the stu-
dents mentioned an interest in geometric constructions, but reported
that no instruction was given in school. The mathematics curricula
in grades 7 and 8 did not include any instruction on Euclidean geom-
etry or proof. The only content that related to geometry and proof,
respectively, were (a) a small unit on the use of formulas to determine
surface areas and volumes of geometric shapes and (b) an enrichment
unit on establishing identities in ratio and proportion.

Table 1

Testing Profiles of the Four Students

SAT (Grade 1) SAT (Grade 8) Percentile rank
Math raw score1 Math raw score2 (national)
(out of 90 items) (out of 82 items)

Jill 90 82 99
Yuri 89 80 99
Kevin 89 81 99
Sarah 88 80 99

1The math portion of the 8th edition consisted of 90 items subdivided into items
that measured number concepts (34), computation (26), and applications (30).
2The math portion of the 9th edition consisted of 82 items subdivided into items
that measured problem solving (52) and procedures (30).



The Problem

The problem selected for this experiment is sometimes referred to
as the “circumscribing a triangle problem.” A perusal of common-
ly used textbooks in high schools indicated that this problem is
normally encountered as an enrichment problem toward the end of
the school year in geometry. This problem is also found in analytic
geometry books because it can be solved using analytic, algebraic,
or both tools. 

The problem states as follows: Consider the triangle below. The
circle passes through each vertex of this triangle:

1. Is it true that for every triangle there is a circle that passes
through each of the vertices?

2. If yes, why? If no, how would you go about finding out?
This problem was deemed suitable for an extended investigation
because of the following reasons:

1. The problem was simply stated and easy to understand,
and the 4 students had not encountered such a problem
before. Therefore, they were confronted with a novel task. 

2. The problem presented visual information on the basis of
which false inferences could be made. 

3. The problem could be approached in a variety of ways—
algebraically, analytically, empirically, via geometric con-
struction and logically—thereby allowing various styles of
solutions to manifest.

4. The problem was stated generally, although a particular
case was presented in the figure.

Data-Collection Procedures

The clinical interview technique attributed to and pioneered by
Piaget (1975) to study the thinking processes of the students was
followed. Each student was individually interviewed after school.
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The interviews were task based, centered on the aforementioned
problem and open ended with the purpose of getting students to
verbalize their thought processes while solving the given problem.
Each of the four interviews lasted approximately 1 hour. The stu-
dents were probed at length and asked to “think aloud.” The fol-
lowing questions were asked:

1. How would you go about convincing someone who thinks
that the statement is (the opposite of what the student has
said)?

2. How would one find the center, radius, or both of the cir-
cle circumscribing a triangle?

3. If the student based inferences on the given figure, they
were asked “Why?”

4. What constitutes a proof in mathematics? 
The students were asked to explain their reasoning in great detail.
The interviews were audiotaped, transcribed verbatim, and
rechecked for errors. The students were provided with a copy of the
interview transcript and asked to make clarifications they thought
were necessary. The objective of doing this was to not misconstrue
what the students said, to have a complete and accurate interview
transcript, and to ensure compatibility between what students said
and what they had meant to say. The 4 students were satisfied with
the clearness of the transcripts and did not make any clarifications
or corrections. In addition, I recorded my impressions about the
interview immediately after each interview. The data consisted of
interview artifacts (student work), interview transcripts, and my
notes.

Data Coding and Data Analysis

The transcribed data was coded and analyzed using techniques from
grounded theory (Glaser & Strauss, 1977). Coding began by reading
the interview transcripts line by line and spontaneously memoing
words that described the mental processes employed by the 4 stu-
dents. The goal of coding was to delineate the processes and build
categories (Corbin & Strauss, 1998). I purposefully looked for actions
that corresponded to a process, noting their evolution as students
responded to the problem. The constant comparative method was
applied to compare the actions of the 4 students and to isolate the
similarities of their thought processes as found in the data. The fol-
lowing categories emerged as a result of data coding and analysis. 

The category of visualization emerged when students repeatedly
verbalized the visual information provided, indicating that the cir-



Journal for the Education of the Gifted276

cumscribed triangle was equilateral. There were 108 memos of
words and phrases, such as “It looks equilateral,” “The angles and
sides look equal,” “It looks like a perfect triangle,” and so forth. The
category of intuition emerged as a result of 137 memos of phrases
like “It just seems right . . . I don’t know why,” “It just seems obvi-
ous,” “I’m sure there is a way,” and so forth. In other words, these
memos pointed to assertions of self-evidence. There were 212
memos for words indicating measurement and use of concrete
examples, which led to the creation of the category of empiricism.
Finally, there were 82 memos for phrases hinting at a reversal of the
process of looking at the problem. Such phrases as “How can I fit
points inside,” “What if I started with the circle,” and so forth led to
the category of reversibility. The four categories were defined.

Definitions

Visualization. This is the process by which a student makes infer-
ences by transforming or inspecting pictures (Hershkowitz, 1989).
Although visualization is an internal mental phenomenon, it can
be externally observed through a student’s transformatory actions
on a given figure. 

E m p i r i c i s m. This refers to the repeated use of examples that provide
conforming (nonconforming) evidence in order to support the truth
of an idea. Empiricism also involves the use of specific measure-
ments to make inferences (Chazan, 1993; Polya, 1954; Strunz, 1962).

Intuition. Intuition is the affective mood associated with having
grasped the solution while trying to solve a problem before one can
offer an explicit and complete justification for that solution
(Fischbein, 1980; Kline, 1976). It involves the use of reasoning that
is not formal, the use of everyday terms, and invoking empirical
examples for purposes of justification (Poincaré, 1948; Polya, 1954).

Reversibility. This is the process (or ability) to switch from a direct
chain of thought to a reverse chain. It is the ability to reverse a
mental operation (Krutetskii, 1976). This includes the ability to
solve (or think about) the same problem in several different ways.

Validity 

I used the strategy of intersubjectivity (Rubin & Babbie, 1997) by
having a colleague analyze the data from the interviews using the
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coding technique developed. The colleague coded and analyzed 36
random slices of interview data and came to the same conclusions
I did. For the slices of data coded independently by the colleague,
there was an agreement of 93% for processes indicating visualiza-
tion, 91% for empiricism, 92% for intuition, and 96% for
reversibility. This lends validity to the findings of the research
effort.

Results

The results of the study are first presented under the categories that
emerged as a result of data coding and analysis. The categories that
emerged as processes used to construct a “proof” were visualiza-
tion, intuition, empiricism, and reversibility. I have presented the
students’ pathways to “proof” in the form of tables summarizing
the patterns in each category. This is followed by an extensive
interpretation and commentary on the observed patterns and their
isomorphisms to mathematical techniques used by professional
mathematicians. Finally, I have established validity of the findings
by using “triangulation by theory” (Kelly & Lesh, 2000), which is
the application of various explanations from the literature to the
data at hand and the selection of the most plausible ones to explain
the research results. 

All 4 students came to the conclusion that the statement was
true for every triangle by an inductive process of trial and error. The
process of proving the statement began with the intuition that the
statement was true only for equilateral triangles (based on the visu-
al information). The students then ascertained this truth for equi-
lateral triangles by intuitively constructing the center and formu-
lating counterexamples to validate their conjecture that the state-
ment was false in general. They finally determined the truth of the
statement by dramatically reversing their thinking. An overall pic-
ture of this process is found in Figure 1. 

Visualization

Visualization played an important role in the process of establish-
ing the truth of the statement. All 4 students insisted that the given
triangle was equilateral because it “looked” like one. Although the
statement clearly asked if it was possible to circumscribe a circle
over every triangle, the students couldn’t ignore the visual image.
This led them to conjecture that the given statement applied to



only equilateral triangles or “special” triangles. Table 2 provides
examples of student verbalizations of their conjectures based on the
visual information. 

Intuition 

The 4 students followed their initial intuition that the statement
applied only to equilateral triangles. Three of the 4 were also able
to determine the correct construction to locate the center of the cir-
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Figure 1. Samples of interview artifacts. 
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cle circumscribing an equilateral triangle. This was remarkable
because they had never been taught this construction before.
However, their intuition guided them into discovering the con-
struction. It is important to note that students did not have a com-
pass and straightedge available and all constructions were done
freehand (see Figure 1). Table 3 provides glimpses of student intu-
ition used to construct the center of the circle.

Empiricism 

Students were probed as to whether the construction they had dis-
covered applied only to equilateral triangles. This led them to con-
struct counterexamples (see Figure 1) to substantiate their intuition
that the statement applied only to equilateral triangles and was
false in general. Table 4 provides glimpses of this empirical process
of constructing counterexamples used by the 4 students. 

Reversibility 

At this stage of the interview, each of the 4 students was almost con-
vinced that the statement was false in general. It is noteworthy that
they weren’t willing to commit to saying the statement was false, in
spite of the counterexamples they had constructed. The students want-
ed to try a different approach, which was evidence of their flexibility in

Table 2

Seeing Is Believing

Category Examples of process Student

Visualization It would only work for equilateral Jill
triangles (pointing to the figure that 
looks like an equilateral triangle). 

Right now you have an equilateral Yuri
triangle. At least it looks like one.

It’s working over here because it is Kevin
an equilateral triangle.

This looks like an equilateral triangle Sarah
with equal distances.
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thinking, a trait of mathematically gifted students (Krutetskii, 1976).
Table 5 shows similarities in how students dramatically reversed their
thinking by starting with an arbitrary circle first instead of the trian-
gle. By reversing their train of thought, they were able to convince
themselves that the statement was, indeed, true.

Interpretations and Isomorphisms

In the preceding tables and figure, similarities in the student path-
ways to their proof were reconstructed. The thinking processes of
the 4 students show remarkable isomorphisms to those of profes-
sional mathematicians, as will be discussed in this section.
Mathematics is often viewed as an activity of creating relation-
ships, some of which are based on visual imagery (Casey, 1978;
Presmeg, 1986). The image presented to the 4 students immediate-

Table 3

The Center of the Circle and the Equilateral 
Triangle Coincide . . . I’m Certain

Category Examples of process Student

Intuition Draw the perpendiculars that pass Jill
through midpoints and then, when 
you have the center, you can take 
the distance to one of the vertices as 
the radius and join them. . . . It just 
seems right. I don’t know why.

I draw an altitude to each side of the Yuri
triangle. . . . Where they intersect . . . 
it just seems obvious that this will 
give the center.

I know there is some way to do it. It’s Kevin
obvious that there is some way to find it.

I’ll draw the equilateral triangle, the Sarah
perpendicular . . . and another 
perpendicular and the point where 
they cross would be the center. 
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ly kindled the formation of a preliminary conjecture: The given tri-
angle was equilateral. This in turn led to the question of determin-
ing the center of the circumscribed circle, which resulted in the
students discovering the relationship that the center of the circle
coincided with the point of intersection of the three perpendicular
bisectors. It is important to understand that it is impossible to find
out directly how children (and hence how mathematicians) create
images; however, the manner in which they use images can be
studied from their actions on a given problem (Inhelder & Piaget,
1971). We, as adults, have often seen children do some strange
things when faced with a mathematical task. One often comes
across reactions from teachers where they view the child’s intuitive
actions as bizarre (Kamii & DeClark, 1985). This kind of reaction
reflects the teacher’s inability to imagine things from the child’s
perspective. Someone reading an abstract proof is in a similar situ-
ation because of being unable to imagine the proof from the cre-
ative mathematician’s perspective, as well as being unaware of the
images used by the mathematician in its creation. The 4 students
were able to isolate attributes (equal sides and equal angles) that
they deemed critical (Hershkowitz, 1989) in order to form the ini-
tial conjecture about the truth of the given statement. In other

Table 4

Look at All These Weird Triangles!

Category Examples of process Student

Empiricism If you have a triangle, say, like this (d r a w s Jill
a thin scalene triangle), you couldn’t get 
a circle to pass through this triangle. It 
would be more like an ellipse.

You can’t always use the altitudes to Yuri
determine the center. Let me draw 
another triangle.

Now, if you take a really different type Kevin
of triangle, then it won’t work. Here is 
a triangle and it is not working.

Yeah, I tried fitting a circle around these Sarah
other triangles; it didn’t work.
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words, the figure served as a visual reference point to kindle the
mathematical process of proving.

Intuition is the guide that mathematicians use to convince
themselves about the validity of a proposition (Burton, 1999;

Table 5

Let’s Start With the Circle First!

Category Examples of process Student

Reversibility Wait a minute . . . I suppose it is true. Jill
You can draw a circle and always fit 
some triangle inside it. (Draws an 
example) You can fit it as long as it is 
inside the circle.

I’ve found a new construction: What is Yuri
stopping me from fixing the base points 
elsewhere? I can fix the two points 
elsewhere (drawing chords) and then 
choose the third point. Yes, the state-
ment is true.

Let me try something else. I’ll draw a Kevin
really queer triangle, and I’m going to 
make it look like this (draws an obtuse 
scalene triangle). Would this work? But   
if you pick these 3 points on the circle,   
it seems to work . . . Yeah! You can 
always pick the points on the circle and  
then draw the triangle.

I’m trying to think here (tearing the Sarah
paper in frustration). What if I follow the 
circle and pick points? (Pause) Yeah. I’m  
trying to visually look at the triangles 
and I . . . guess the fact that no matter 
what kind of triangle I draw, if I can draw 
a circle first, then I can draw any triangle 
in it (trying more examples). I must draw 
the circle first. Yes, it’s true, it’s a true 
statement.
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Fischbein, 1980; Kline, 1976; Sriraman, 2003b). For the 4 students,
the process of proving began with the intuition that the statement
was true for equilateral triangles. This can be interpreted as the
intuitive action of specializing the given statement for equilateral
triangles. Mathematical thinking is often characterized by four
processes: specializing, conjecturing, generalizing, and convincing
(Burton, 1984, 1999). Once the students had specialized and conjec-
tured that the statement was true for equilateral triangles, they
were asked if this implied that the statement was true for all trian-
gles. This led to a quasiempirical (Ernest, 1991; Lerman, 1983)
approach to proof in which the students tried to construct mathe-
matical pathologies (Figure 1) or mathematical monsters (Lakatos,
1976) in the form of triangles that would disobey the given propo-
sition. This quasiempirical process again shows remarkable simi-
larities to a view of mathematical thinking introduced by the emi-
nent mathematical philosopher Imre Lakatos, in which mathemat-
ics is presented as a model of possibilities subject to conjecture,
proof, and refutation. In other words, mathematics is not viewed as
an absolute, immutable body of knowledge, but is, instead, sub-
jected to the scientific process of constantly revising and refining
preliminary hypotheses. In this view of mathematics, no theorem
or proof is perfect because there is always the possibility of a better
revision. The quasiempirical process of constructing pathologies by
the 4 students is a common trait among mathematicians when
working on problems. Pathologies serve the purpose of revisiting
the problem and refining the hypotheses or assumptions.

The quasiempirical process employed by the 4 students led to
the revised conjecture that the statement was, perhaps, false in gen-
eral. However, at this juncture, they were still unwilling to commit
to saying that the statement was false, in spite of the counterex-
amples they had constructed. A common trait among professional
mathematicians is for them to work on a problem for a prolonged
period of time, and, if no breakthrough occurs, they often stand
back and “sleep on it.” In other words, they let the problem incu-
bate and hope that an insight or breakthrough will eventually
occur. This is the Gestalt view of mathematical thinking
(Hadamard, 1945; Poincaré, 1948; Sriraman, 2003b; Wallas, 1926;
Wertheimer, 1945). Mathematicians often characterize this as the
stage where the “problem talks to you.” I contend that this
occurred in a microcosmic way with the 4 students. After having
spent close to an hour on the problem, they put their pencils aside
and mulled on the problem in silence for a few minutes.
Remarkably enough, the insight to reverse their thinking dawned
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upon them (Table 5). This process has many interpretations.
Insightful mathematical thinking and creativity can be viewed as a
process of nonalgorithmic decision making (Ervynck, 1991;
Poincaré, 1948). Decisions that have to be made by mathematicians
may be of a widely divergent nature and always involve a crucial
choice (Birkhoff, 1969; Ervynck; Poincaré). In an age where the use
of the computing power of machines to gain insights into results is
slowly becoming a valid approach, it is interesting that mathe-
maticians view a crucial aspect of their craft as nonalgorithmic
decision making. This was the most intense and frustrating stage
for the 4 students where conceptual activity (Ervynck, 1991)
occurred and manifested in an illumination (Wallas, 1926;
Wertheimer, 1945), namely, the decision or choice to reverse the
structure of the problem. It is common among mathematicians to
work on the problem one day and then on its converse the next day
or, simultaneously, work the problem both ways to gain an insight.
This process of reversibility is viewed as an aspect of flexibility in
thinking, a trait of mathematically gifted students (Krutetskii,
1976), and it connects well with the back-and-forth approach
employed by mathematicians when tackling a problem. 

After the students had convinced themselves that the statement
was true for all triangles, they were asked how they would convince
others about this truth. In other words, students were probed about
the methods they would employ to establish the truth publicly. It is
remarkable that all 4 students intuitively knew that one counterex-
ample was sufficient to establish falsity; however, establishing truth
involved more work and would require “substantial” evidence. The
students relied on the use of empirical evidence to explain truth and
were convinced that numerous visual examples were enough to con-
vince others about the truth of the statement. In other words, a
proof for them was explaining and convincing (Bell, 1976; Kline,
1976). This is a very natural view of proof, even among professional
mathematicians. “The formal logic view of proof is a fascinating
topic of study for logic . . . but it is not a truthful picture of real-life
mathematical proof” (Hersh, 1993, p. 391). The views expressed by
the 4 students about the role of proof are sophisticated for ninth
graders and, again, show remarkable isomorphisms to that held by
professional mathematicians and some philosophers of mathemat-
ics, as illustrated by the following quotes:

I look for examples that will support it and those that won’t
support it. I have to be looking for examples that would dis-
prove the statement, otherwise I would be wasting a lot of time
doing work for nothing. . . . Proof is written explanation or
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examples explaining, based on previous things that I believe to
be true. (Yuri)

This quote is astoundingly isomorphic to the view of proof
expressed by one professional mathematician, a brilliant analyst:

First I get an idea that something along a certain line should be
true and then I start to prove it, and in that proof I run into
some difficulties and then I say, can I construct an example
from those difficulties? If in constructing the example I run
into difficulties . . . then can those difficulties be put into this
proof you know, so I do this back and forth, usually at some
gut level I have the belief that something along that line is
true. Not always is that intuition correct but it is correct often
enough and . . . I am able to prove something that I suspect is
true. (quoted from Sriraman, 2003b)

This next quote shows startling similarities to Lakatos’ (1976) the-
sis of mathematics being an ever-evolving process of conjecture,
proof, and refutation.

You can always find one case where it doesn’t work. So to
prove something is true, even like in science you can have a
theory that it will work, but you can never definitely be sure
that it will always work. . . . You never prove something is
true. You can take a bunch of different types of cases and see if
it works and then it is generally accepted that it’s true . . .
unless someone comes around and proves it’s false. There are
things that are believed to be true for 200 years and someone
will come around with a particular case where it’s false.
(Kevin)

Informal, quasi-empirical mathematics does not grow through a
monotonous increase in the number of indubitably established the-
orems but through the incessant improvement of guesses by specu-
lation and criticism, by the logic of proofs and refutations (Lakatos,
1976).

Finally, the use of visual arguments by the students to convince
others about the truth of a statement has historically found expres-
sion in Indian mathematics. The following quotes illustrate this
isomorphism:

I guess you would start out like this visual, get your arguments
down, and then put it into words. I remember a lot of times
starting out visually and just seeing and working with that and
being able to put it into a proof1. . . . (Laughing) I just don’t see
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the point sometimes. Like, if I know it’s true, why do I have to
go through 16 steps in proving it? It’s much more effective in
getting the point across with visual examples. (Sarah)

In general the mathematics of Europe was influenced by Greek
mathematics while Indian mathematics, despite influences
from Greece and Arabia establish a unique tradition. There was
no conflict between . . . visual demonstration and numerical cal-
culation and . . . proof by deduction. (Almeida, 2003, p. 7) 

Our inherited notion is that rigorous proof is not carved in
marble. People will modify that notion, will allow machine
computation, numerical evidence, probabilistic algorithms, if
they find it advantageous to do so. Then, we are misleading our
pupils, if in the classroom we treat rigorous proof as shibbo-
leth.” (Hersh, 1993, p. 395, as quoted by Almeida, 2003, p. 7) 

Triangulation by Theory and Implications 

In this study, 4 mathematically gifted ninth-grade students with no
formal exposure to proof or Euclidean geometry were given the task
of establishing the truth or falsity of a statement. The strategies
used by the students to construct a “proof” were documented,
coded, and analyzed. It was found that these students relied on visu-
alization (Hershkowitz, 1989; Yakimanskaya, 1970), empiricism
involving the use of examples and counterexamples or conscious
guessing (Bell, 1976; Lampert, 1990; Polya, 1954; Sriraman, 2003b),
and reversibility (Krutetskii, 1976; Shapiro, 1965) to arrive at the
truth. This entire process was guided by their strong intuition as evi-
denced by their ability to formulate conjectures and devise con-
structions to validate their initial conjecture about equilateral trian-
gles. It is noteworthy that, although the 4 students were faced with
nonconforming evidence in the form of “weird” triangles that
seemed uncircumscribable, they were unwilling to commit to stat-
ing the statement was false. It is easier to say that something is false,
based on a poorly constructed counterexample, as is evidenced in
high school geometry (Senk, 1985; Usiskin, 1987), whereas to state
something is true in mathematics involves the conviction that the
statement holds for a potentially infinite number of cases. The 4
gifted students were aware of this distinction, whereas most high
school students in geometry think otherwise and believe statements
to be true just for a particular figure (Mason, 1996; Senk). 

Mathematicians have an awareness of the generality of a state-
ment by distinguishing between looking through and looking at.
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Looking through is analogous to generalizing through the particu-
lar, whereas looking at is analogous to specializing (identifying) a
particular case in general (Dubinsky, 1991; Mason, 1996). A sim-
plistic example that comes to mind and is also given by Mason is
in a high school geometry setting when a teacher draws a (particu-
lar) triangle on the board and says that the sum of the angles of a
triangle is 180 degrees. Most often what is stressed is the empirical
fact, namely 180 degrees. 

The generality of the statement is hidden in the indefinite arti-
cle a. A student looking through this statement sees the gen-
eral in the particular and recognizes that the essence of the
statement is the invariance of the angle sum in the domain of
all possible triangles. Looking through entails recognizing the
attribute of invariance in an implied domain of generality.
(Mason, 1996, p. 65)

The 4 gifted students in this study were able to look through the
statement posed in the problem and recognize the attribute of
invariance, a quality of professional mathematicians. The gifted
students were also aware of the differences between convincing
themselves and convincing others. This was clear when they said
that convincing the class entailed organizing the evidence and con-
structing an argument in a coherent way (Hersh, 1993; Hoyles,
1997; Mason et al., 1992). They demonstrated flexibility in think-
ing about the problem differently. This manifested in the remark-
able way they reversed their strategy (Krutetskii, 1976) to conclude
that the statement was indeed true. 

In terms of Strunz’s (1962) classification of styles of mathemati-
cal giftedness, the 4 gifted students showed a preference for imme-
diately observable relations and induction, but were conceptually
aware that proving a statement entailed all possible cases. They
could reason in the abstract and would be classified as amalgams of
the “empirical” and “conceptual” types. If one utilized the holistic
classification of the Soviet researchers, the 4 students’ mathemati-
cal giftedness was of the harmonic type, a combination of the ana-
lytic and geometric types. They were able to use their pictorial rep-
resentations to induce the truth of the statement analytically
(Ivanitsyna, 1970; Krutetskii, 1976; Menchinskaya, 1959; Shapiro,
1965; Yakimanskaya, 1970).

Finally, the gifted students exhibited great tenacity and perse-
verance (Burton, 1984; Diezmann & Watters, 2003; Sriraman,
2003a) and stuck with the problem until they were absolutely con-
vinced about their conclusion. Their approach to proof in this study
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was very different from the logical approach to proof found in most
textbooks and very similar to those used by professional mathe-
maticians. The processes used by the gifted students to prove the
truth of the statement showed remarkable isomorphisms to those
employed by professional mathematicians as discussed in the pre-
vious section. 

The logical approach is an artificial reconstruction of discoveries
that are being forced into a deductive system, and, in this process,
the intuition that guided the discovery process gets lost. The impli-
cation here is that many teachers use the logical approach to proof
in the classroom and thereby subdue gifted students’ intuition and
natural ways of thinking about the problem. These 4 students
would eventually encounter the study of geometry from an intu-
itive standpoint in the second year of the research-based and stan-
dards-aligned integrated mathematics course in which geometry is
introduced from an inductive and intuitive standpoint in the con-
text of transformations. In this sequence, the necessity for formal
proof is gradually introduced. However gifted students enrolled in a
traditional sequence of mathematics courses encounter the study of
Euclidean geometry and deductive proof, which robs them of using
their natural instincts to establish truth like mathematicians do.
The implication for gifted education is the need to develop mathe-
matics curricula that create opportunities for gifted students to
develop their intuition about proof and make use of challenging and
worthwhile mathematical tasks.

Limitations

The students in this study were freshmen enrolled in various sec-
tions of integrated math in a rural high school. Demographically
speaking, they were all White, with middle-class socioeconomic
backgrounds. They all had the same K–8 educational background.
All 4 students had very high academic aspirations and intended to
take Integrated Math 4 and AP Calculus concurrently in their
senior year. The 4 students had a positive disposition toward
mathematics and had enjoyed a high degree of success in all pre-
vious mathematical endeavors. These students had not been
exposed to constructing mathematical proofs, nor had they for-
mally studied geometry. The results of this study are attributable
to the unique characteristics of the population, the particular
problem chosen, and the interview design. The processes used by
the mathematically gifted students to construct a proof and their
intuitive notions of proof showed remarkable similarities to those
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of professional mathematicians. In order to generalize these find-
ings to mathematically gifted students who are entering high
school with similar middle school backgrounds, more research is
needed at the early high school level. It is certainly feasible to
replicate this experiment with similar types of open-ended prob-
lems that call for establishing the truth or falsity of mathematical
statements. 

I conjecture that mathematically gifted students have the nat-
ural intuitive dispositions of mathematicians. It would be a
worthwhile endeavor for the gifted education community to have
a deeper understanding of these dispositions in order to develop
high school curricula and pedagogies that nurture these natural
talents. 
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Endnote

1. Sarah is referring to exercises in ratio and proportion that give a
sequence of steps to establish basic identities. 


