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Abstract

We report Giga-pixel lensfree holographic microscopy and tomography using color sensor-arrays such as CMOS imagers
that exhibit Bayer color filter patterns. Without physically removing these color filters coated on the sensor chip, we
synthesize pixel super-resolved lensfree holograms, which are then reconstructed to achieve ,350 nm lateral resolution,
corresponding to a numerical aperture of ,0.8, across a field-of-view of ,20.5 mm2. This constitutes a digital image with
,0.7 Billion effective pixels in both amplitude and phase channels (i.e., ,1.4 Giga-pixels total). Furthermore, by changing
the illumination angle (e.g.,650u) and scanning a partially-coherent light source across two orthogonal axes, super-resolved
images of the same specimen from different viewing angles are created, which are then digitally combined to synthesize
tomographic images of the object. Using this dual-axis lensfree tomographic imager running on a color sensor-chip, we
achieve a 3D spatial resolution of ,0.35 mm60.35 mm6,2 mm, in x, y and z, respectively, creating an effective voxel size of
,0.03 mm3 across a sample volume of ,5 mm3, which is equivalent to .150 Billion voxels. We demonstrate the proof-of-
concept of this lensfree optical tomographic microscopy platform on a color CMOS image sensor by creating tomograms of
micro-particles as well as a wild-type C. elegans nematode.
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Introduction

Color opto-electronic sensors such as CMOS imagers that

exhibit Bayer patterns (composed of one Red, two Green and one

Blue pixels) form the main stream detector-arrays employed in

digital electronic devices, including cell phones, webcams and

digital cameras, with a sales volume of.5 billion per year [1]. The

use of such cost-effective yet powerful imaging components has

been an emerging theme for various applications including point-

of-care microscopy and sensing [2–8]. Along the same lines,

lensfree computational imaging techniques [9–25] also demand

state-of-the-art sensor-arrays that employ smaller pixel sizes as well

as larger pixel counts (for increased imaging field-of-view). By

making use of such advanced image sensors, lensfree microscopy

can provide sub-micron spatial resolution over large imaging

areas, within a rather compact and cost-effective design, which is

particularly suitable for telemedicine needs and lab-on-a-chip

platforms. While consumer electronics has been the driving

motivation to create such sensor chips [26], an important obstacle

for lensfree holographic imaging has been the Bayer filter pattern

(i.e., Red, Green and Blue filters) installed on color sensor-chips.

Since holographic microscopy techniques typically employ quasi-

monochromatic light sources [12–23,27–36] (with spectral band-

widths of ,1–30 nm), the pixels coated with different color filters

respond differently to incident light. As a result, the Bayer color

filter pattern installed on the imaging area can introduce undesired

artefacts. While color sensors have been successfully employed in

phase-shifting digital holography schemes to achieve color imaging

with multiple lasers [27], such sensors unfortunately create

artefacts in lensfree on-chip holography, particularly impeding

the use of pixel super-resolution algorithms [19,20,37,38]. This

problem can potentially be mitigated by e.g., physical removal of

such color filters placed above the active region of each pixel.

While feasible, physical removal of such color filters is costly to

implement in high-volumes, and could alter the optimized design

of pixel structures. Another option is to use monochrome version

of the same sensor-chip of interest, which, however, is not often

released by CMOS manufacturers since the main application

areas, i.e., cell phones, and webcams, strictly demand color sensor-

arrays. To better handle this challenge, here we introduce a new

computational approach to utilize color sensor-arrays in lensfree

microscopy and tomography for achieving Giga-pixel imaging on

a chip. Our imaging setup (Fig. 1.a) is based on lensfree on-chip

holography [5,12–23], where a partially coherent light source is
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used to illuminate a sample that is placed on the top of a sensor

array, to record digital in-line holograms of objects with unit fringe

magnification over a large field-of-view (see the Methods section).

In this work, we specifically employed a color CMOS sensor chip

(Fig. 1.b) that has a pixel size of 1.12 mm and an active area of

20.5 mm2. Without physically removing the color filters installed

on a sensor chip, based on a new reconstruction approach, as

illustrated in Fig. 2, we synthesize pixel super-resolved lensfree

holograms of specimen using 45u rotated green pixel functions

(refer to Methods Section for details). These super-resolved

holograms are then reconstructed to achieve ,350 nm lateral

resolution, corresponding to a numerical aperture (NA) of ,0.8,

across a field-of-view of ,20.5 mm2. This constitutes a lensfree

digital image with ,0.7 Giga-pixels effectively, in both amplitude

and phase channels, i.e., ,1.4 Giga-pixels in total. It should also

be noted that the use of oil immersion techniques [39] can further

improve the lateral resolution, permitting numerical apertures

reaching up to e.g., ,0.9, as recently demonstrated in our work

[40]. In addition, by changing the illumination angle over 650

degrees, pixel super-resolved images of the same object from

different viewing angles can be created and digitally combined to

form lensfree tomograms of the object (see Methods Section)

[23,41]. The architectural simplicity of this platform also permits

scanning the light source across two orthogonal axes to obtain

additional perspective images of the sample, and further improve

tomographic imaging quality. With this dual-axis lensfree tomo-

graphic imager running on a color CMOS chip, we achieved

a spatial resolution of ,0.35 mm60.35 mm6,2 mm, in the x, y

and z directions, respectively. These results create an effective

voxel size of ,0.03 mm3 across a sample volume of ,5 mm3,

which is equivalent to .150 Billion voxels.

Compared to our earlier lensfree on-chip tomography platform

[23], which utilized relatively older generation monochrome

sensor-chips, these current results constitute more than an order of

magnitude increase in our voxel density, significantly improving

the 3D space-bandwidth product of our lensfree imaging platform.

We validated the performance of this on-chip tomographic

microscope by imaging micro-particles and a wild-type C. elegans

nematode.

Results

To quantify the lateral resolution of our lensfree holographic

set-up based on color CMOS sensor-arrays and validate our

modified pixel super-resolution method (Fig. 2), we imaged

a grating with 350 nm lines etched on glass (i.e., 700 nm period),

which was fabricated using focused ion beam (FIB) milling. Fig 3.a

shows the raw lensfree hologram of the grating, cropped from

a large FOV (,20.5 mm2). The first diffraction order can be seen

in the holographic image; although, the fringes for this order could

not be resolved due to spatial under-sampling. The zoomed inset

(top image) in Fig. 3.a also illustrates the presence of the Bayer

pattern artefact in this image.

Based on our modified pixel-super resolution approach (see the

Methods Section and Fig. 2), both the Bayer pattern of the color

sensor-array and the under-sampling related artefacts were

mitigated using 64 (868 grid) sub-pixel shifted lower-resolution

in-line holograms (see Fig. 3.b). Consequently, the grating object

with a half-period of 350 nm could be reconstructed, as shown in

Fig. 3.c. A conventional bright-field microscope image (606, 0.85-

NA) of the same grating is also provided for comparison (Fig. 3.d).

This result demonstrates the lateral resolving power of our lensfree

Figure 1. Giga-Pixel Lensfree Holographic Microscopy and Tomography setup. (a) Shows a multi-exposure photograph of the lensfree
optical tomography setup employing a colour image sensor. An optical fibre attached to a rotation stage delivers partially-coherent light to the
sample, placed on the sensor, at different angles. The light source is also translated laterally using scanning stages to perform pixel super-resolution
at each illumination angle. (b) Shows the photograph of the colour image sensor chip. The protective glass, colour filters and the microlens-array on
the active area of the sensor remain intact. (c) Shows a cropped lensfree hologram image to demonstrate the Bayer colour filter pattern.
doi:10.1371/journal.pone.0045044.g001

Giga-Pixel Holographic Microscopy and Tomography
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on-chip microscopy system based on a color CMOS imager,

achieving a numerical aperture (NA) of ,0.8.

In order to estimate the axial resolution of our platform, we

imaged spherical micro-particles that have a diameter of 2 mm.

These melamine micro-particles (refractive index: 1.68) were

randomly distributed in a chamber filled with an optical adhesive

gel (refractive index: 1.56). The chamber had a thickness of

,80 mm. The sample was placed on the color CMOS sensor with

,100 mm distance to its active area for lensfree tomographic

imaging. Figures 4.a1-a2 show the cross-sectional images of an

arbitrary micro-particle obtained by tomographic reconstruction

(see the Methods Section). While the bead appears circular in the

x-y plane passing through its centre, the x-z plane reveals that the

bead appears axially elongated (along the z direction). This is

a manifestation of the limited angular range that is used in our

lensfree optical tomography set-up, as a result of which the axial

resolution is lower than the lateral one [23,42,43]. In order to

estimate our axial resolution, we plotted the line profile through

the centre of the bead (along the z direction), and measured its full-

width-at-half-maximum (FWHM) value as ,3.1 mm (Fig. 4.c).

Moreover, we also calculated the one-dimensional spatial de-

rivative of this axial line profile, which can be used to estimate the

edge sharpness of these tomograms [44,45]. Based on the FWHM

values of this spatial derivative plot shown in Fig. 4.d, the axial

resolution can be estimated to be ,2 mm. Due to the relatively

lower axial resolution of in-line holography, merely reconstructing

a single in-line hologram of the same micro-particle does not

provide the same level of axial resolution. As shown in Fig. 4.c, the

axial line profile obtained by reconstructing a single vertical

hologram at different depths exhibits an FWHM value of

,20 mm. Therefore, it can be concluded that the multi-angle

tomographic imaging approach provides a significant improve-

ment on the sectioning ability of lensfree on-chip microscopy. It is

important to note that with a single data acquisition step, a large

imaging volume having an area of e.g., ,20.5 mm2 and a height

of e.g., 0.3 mm can routinely be probed [23], while the depth-of-

field can be further increased to .1 mm at the cost of reduced

spatial resolution.

To further demonstrate tomographic microscopy over a large

FOV, supplementary Movie S1 shows imaging of multiple regions-

of-interest (total imaging area ,20.5 mm2) from the same

chamber that contains randomly distributed particles with a di-

ameter of 2 mm. It should also be noted that the tomogram field-

of-view effectively shrinks at increasing sample-to-sensor distances

since the lensfree holograms of objects close to edges of the sensor

do not fall on the active area of the sensor at large illumination

angles. An effective imaging volume of ,5 mm3 can be calculated

for a cut pyramid-shaped volume over which the aforementioned

spatial resolution can be maintained.

To evaluate the performance of color sensor-array based

lensfree optical tomography in biomedical applications, we also

imaged a C. elegans worm. Fig. 5 shows three different slice

images through the worm along with conventional bright-field

microscope images (606, 0.85-NA) for qualitative comparison. It

can be observed that the pharynx of the worm is in-focus in the

tomogram at z = 0 mm, and the metacorpus of the worm mostly

disappears in the slices away from the centre, which can also be

confirmed by the corresponding microscope images. Further-

more, the tomograms reveal that the pharyngeal tube of the

worm is widest at z = 0 mm, and gets narrower at the outer

slices, which is expected due to its cylindrical structure. It

should be noted that a single axis tomography scheme was used

in obtaining these results, where the illumination angle was

varied along the direction orthogonal to the length of the worm,

Figure 2. Overview of the method for obtaining grayscale holograms using color imaging sensors. Illustrates the method used to obtain
a grayscale hologram using a colour sensor-array. (a) First, the green pixels are selected from the raw output image of the sensor. (b) The resultant
data array is rotated 45u to obtain virtual pixels. (c) Virtual pixel-array is obtained from the rotated array of green pixels in (b). (d) Shows a single
‘‘virtual pixel’’, which is a unit element of the pixel-array shown in (c). (e) The weighted pixel function to be used in pixel super-resolution is obtained,
representing the 2D spatial map of light collection within a virtual pixel.
doi:10.1371/journal.pone.0045044.g002

Giga-Pixel Holographic Microscopy and Tomography
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since including the other axis would not improve the image

quality due to the elongated shape of the worm [23].

Discussion

Using the state-of-the-art ‘color’ image sensors, lensfree optical

tomography can now achieve Giga-pixel imaging with ,350 nm

lateral resolution (corresponding to an NA of ,0.8) and ,2 mm

axial resolution, which results in an order of magnitude increased

voxel density, i.e., space-bandwidth product, compared to what

was previously achieved for on-chip tomography [23]. Owing to its

large imaging area of 20.5 mm2 and long depth-of-field (DOF) of

,0.3 mm, a large sample volume of ,5 mm3 can be probed with

.150 Billion voxels, which can be useful for wide-field imaging

applications in lab-on-a-chip platforms. Here, we should also

emphasize that Giga-pixel microscopy in the context of lensfree

on-chip imaging refers to the effective number of digital pixels in the

reconstructed image, with the assumption that 2 pixels define the

minimum resolvable feature size. In this scheme, pixel super-

resolution techniques permit achieving Giga-pixel imaging, which

is different than the recent Giga-pixel photography work [46].

The use of a color sensor-array is an important step forward in

lensfree holographic on-chip imaging. The rapid advances in

imaging sensors are mainly driven by consumer electronics

industry toward developing higher-resolution color sensor chips

with larger active areas. Therefore, their incorporation in lensfree

on-chip imaging platforms is critical such that off-the-shelf sensors

can be cost-effectively integrated with compact lensfree micro-

scopes to achieve immediate enhancement of image quality as

better sensors become available. The results presented in this work

demonstrate this trend, where an order of magnitude improve-

ment in space-bandwidth product is achieved using a color CMOS

imager and a modified pixel super-resolution algorithm that

overcomes the limitations posed by the Bayer filters installed on

sensor chips. It is important to note that even though our

experimental results are obtained using the green pixels only, the

illumination wavelength is not restricted to only ,530 nm, as the

spectral response of the green color filters is rather broad (i.e.,

FWHM ,115 nm). Therefore using different illumination wave-

lengths is also possible, without any modification to the presented

image processing technique or the experimental set-up.

The ability to image a large DOF is another important

advantage that significantly enhances the imaging throughput.

The key enabler for this is the in-line holographic recording

scheme that permits digital focusing to an arbitrary depth of

interest. Although the highest resolution is achieved when the

sample-to-sensor distance is ,0.3 mm, an extended DOF of e.g.,

4–5 mm can be imaged at the cost of reduced spatial resolution

due to lower detection SNR at increased heights above the sensor.

It is important to note, however, that this extended DOF does not

correspond to the thickness of a continuous sample that can be

axially sectioned. For lensfree optical tomography to provide

a decent image quality, the reconstructed images should represent

projections, i.e. line integrals along the illumination direction, of

a certain property of the object such as its phase, absorption or

scattering potential functions. Currently, we use the amplitude of

the reconstructed lensfree images, with the assumption that they

represent the projections of the scattering strength of the object.

The quality of reconstructions depends on the validity of this

assumption. Thick objects, e.g. .50 mm, violate this assumption

Figure 3. Lensfree imaging results demonstrating 0.35 mm half-pitch lateral resolution. (a) Shows a cropped raw lensfree hologram of
a grating structure etched on glass. The fringes on the first diffraction order (indicated by the arrow) cannot be resolved due to under-sampling. (b)
Shows a pixel super-resolved (SR) hologram of the same grating. The fringes on the first diffraction order are now resolved. (c) Shows the lensfree
image obtained by reconstructing the SR hologram, demonstrating that the grating lines can be clearly resolved. (d) Shows a bright-field microscope
image (606, 0.85-NA) of the same grating for visual comparison. Note that the contrast in (a) and (b) was enhanced for illustration of fine holographic
oscillations.
doi:10.1371/journal.pone.0045044.g003

Giga-Pixel Holographic Microscopy and Tomography
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Figure 4. Lensfree imaging results demontrating ,2 mm axial resolution. (a1) Shows a tomogram in the x-y plane (lateral slice image)
through the centre of a micro-particle having a diameter of 2 mm. (a2) Shows a tomogram in the x-z plane (ortho-slice image). The axial elongation is
a manifestation of the limited angular range used in our tomographic reconstruction. (b) Shows line profiles along the x direction through the centre
of the micro-particle’s tomographic (red curve) and holographic images (blue curve). (c) Shows axial line profiles through the centre of the micro-
particle’s tomographic (red curve) and holographic images (blue curve). The significant improvement in axial resolution can be observed, as the
FWHM of the axial line profile after tomographic reconstruction is much smaller. (d) Shows the derivative of the tomographic axial line profile in (c).
Based on this edge response result, an axial resolution of ,2 mm can be estimated.
doi:10.1371/journal.pone.0045044.g004

Figure 5. Gigapixel lensfree tomographic imaging of C. elegans on a chip. (a1) Shows the tomogram of a C. elegans nematode at z = 0 mm
plane. (a2) Shows a bright-field microscope image (206, 0.4-NA) showing the entire worm for qualitative visual comparison. (b1, c1, d1) Show
tomograms at different depth layers through the pharynx of the worm. (b2, c2, d2) Show bright-field microscope images (606, 0.85-NA) for the same
depth layers as in (b1, c1, d1) for visual comparison. All scale bars: 50 mm.
doi:10.1371/journal.pone.0045044.g005

Giga-Pixel Holographic Microscopy and Tomography
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for two main reasons. First, the depth-of-focus of a reconstructed

image will not be large enough such that all parts of such a thick

object can contribute equally to the reconstructed image, as some

parts of the object will be defocused. This limitation, however, can

be partially mitigated by using a diffraction tomography approach

[45–50], or by reconstructing each in-line hologram at different

depths to estimate the correct weighting factors of slices at various

depths at the cost of increased computational complexity. Second,

and more importantly, thicker samples will strongly scatter the

incoming photons. If light transmission is dominated by multiple

scattering, as is the case when the thickness of the object exceeds

the mean free path of photons through a turbid medium [51],

a line-integral relationship between the reconstructed image and

the structure of the object cannot be maintained. In this case, the

filtered back-projection algorithm (see the Methods Section) will

not provide accurate results and exhibit aberrations. Therefore,

lensfree optical tomography appears to be particularly suitable for

high-throughput imaging of cells and micro-organisms that are

distributed within a thick chamber (e.g. ,1–5 mm), rather than

for imaging thick and optically dense specimen such as tissue

slides. This limitation, however, is common to ‘all’ the existing on-

chip imaging modalities, regardless of their operation principles.

Methods

Lensfree Optical Tomography Setup
A partially coherent light source (Xenon lamp attached to

a monochromator), coupled to a multi-mode optical fiber (core

diameter: 105 mm), is attached to a motorized rotation stage,

which is also mounted on a scanning stage (see Fig. 1.a). For

illumination, we used a centre wavelength of 530 nm with

a spectral width of ,3 nm. Although, in the current setup,

3 nm bandwidth was achieved using a monochromator for

experimental flexibility, a light-emitting diode (LED) interfaced

with a simple interference filter could also be utilized. The use of

an interference filter does not significantly increase the cost and

complexity of the system toward field-portable microscopy, since

a filter with a rather small area (e.g. ,1 mm61 mm) placed right

after the LED would be sufficient as demonstrated in our earlier

work [21]. A color CMOS image sensor with a pixel pitch of

1.12 mm is employed (Fig. 1.b). The protective glass, the micro-

lens array and the color filters on the chip remained intact. In this

configuration the sample is placed with typically ,300 mm

distance to the active area. The rotation stage is used to

sequentially illuminate the sample from different angles within

a range of 650u. To achieve pixel super-resolution, multiple sub-

pixel shifted frames are acquired by translating the light source to

different positions using the scanning stage at each illumination

angle. In this set-up, the distance between the light source and the

sensor (z1) is ,8–10 cm, while the distance between the sample

and the image sensor (z2) is typically ,300–500 mm (which can be

increased to.1 mm at the cost of reduced spatial resolution). This

geometry, where z1.. z2, permits recording holograms with unit

fringe magnification [15] and therefore the entire active area of

the sensor (,20.5 mm2) serves as the imaging field-of-view (FOV).

Another important advantage of this geometry is that sub-pixel

hologram shifts of e.g., ,0.1–1 mm at the detector plane can be

achieved by actually shifting the light source by e.g., ,30–300 mm,

which is much easier to achieve without the need for precise

positioning. This is indeed a critical enabler to build compact,

cost-effective and field-portable computational microscopes that

employ pixel super-resolution techniques [20,21]. The intensity

recorded by the sensor-array is a holographically recorded

diffraction pattern of the objects, arising from the interference of

the un-scattered portion of illumination (reference wave) with the

light scattered by the objects (object wave).

The Bayer pattern artefact is clearly observed in the raw images

due to the wavelength selectivity of the color filters on the sensor-

chip (see e.g., Fig. 1.c). Even if a monochrome sensor was used and

full spatial information was retrieved without the Bayer pattern

artefact, the recorded lensfree holograms would still be under-

sampled due to finite pixel size and the unit-magnification.

Therefore, a modified pixel super-resolution algorithm optimized

for color sensor-arrays is a critical step to i) remove the Bayer

pattern artefact; and ii) achieve high-resolution (e.g., ,350 nm)

lensfree imaging beyond what is permitted by the pixel size, that is,

the sampling period of the CMOS sensor array.

Achieving Pixel Super-resolution in Lensfree On-chip
Holography using Color Sensors
To solve the under-sampling problem of in-line holograms

captured at unit fringe-magnification, we previously utilized pixel

super-resolution techniques [19,20,37,38]. This approach had to

be modified for color sensors. Using a partially coherent light

source with a centre wavelength of 530 nm, maximum response is

obtained from the pixels coated with green color filters. Hence, for

each unit of the Bayer pattern, only two green channels out of the

four available pixels were processed. The data array from two

green channels per period (Fig. 2.b) was rotated by 45u degrees so

as to obtain a down-sampled hologram ‘without’ interpolating the

pixel values (see Fig. 2.c). This rotation based approach that

eliminates the need for interpolation is rather critical, as

interpolation could alter the measured pixels, especially distorting

the information in the under-sampled regions that are to be

recovered by pixel super-resolution. This down-sampled matrix

can be considered as a monochromatic image captured by a virtual

sensor, as shown in Fig. 2.d, which is rotated by 45u with respect to

the actual image sensor. The virtual pixel size (i.e. the pixel size of

the virtual CMOS sensor) is equal to the diagonal length of the

physical pixels, i.e. ,1.58 mm in our case. To estimate the sub-

pixel shifts between the rotated lower-resolution (LR) images, an

iterative gradient method is utilized [38]. This iterative gradient

method provides accurate shift estimations, which were validated

empirically, even though the rotated pixels are virtual pixels, and

half of the area represented by this virtual image is not physically

captured (see Fig. 2.b). Then, a pixel super-resolved (SR) hologram

is synthesized by optimizing a cost function that minimizes the

difference between the estimated SR hologram and the set of

measured LR holograms [19,20,38]. Through this optimization

process, pixel super-resolution decomposes the larger virtual pixels

of the lower-resolution rotated holograms into effectively much

smaller pixels. Therefore, it is critical to have a correct model for

spatial light-collection of the virtual pixels. This spatial map of light

collection for a virtual pixel is provided to the minimization

problem as a pixel function. By convolving the ‘estimated’ high-

resolution image by this pixel function, then shifting and down

sampling the result, a measurement-like image is obtained, which

is compared to the actual rotated measurements. In our method

that utilizes color sensors, the pixel function was modified to

a weighted diamond shape (see Fig. 2.e). With this weighted

diamond-shaped pixel function, we obtained superior results

compared to using a flat (un-weighted) pixel function.

Digital Reconstruction of Pixel Super-resolved Holograms
to Obtain Lensfree Projection Images
The pixel super-resolved holograms obtained at different

illumination angles are reconstructed using the numerical tech-

Giga-Pixel Holographic Microscopy and Tomography
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nique reported in Ref. 23. Accordingly, the SR holograms are first

multiplied by a tilted plane-wave that represents the reference

wave for the corresponding angle of illumination. It is important to

note that the tilt angle of this reconstruction wave is not necessarily

equal to the physical tilt of the light source due to the refraction of

illumination inside the sample chamber. Therefore, the tilt angle,

hrec, should be digitally estimated as hrec= tan21(Ds/z2), where Ds

is the shift of holograms at a given angle compared to their original

position at vertical illumination, and z2 is the distance between the

detector and the object, which is also estimated digitally using

holographic reconstruction. After multiplication by the tilted

reconstruction wave, the complex field at the hologram plane is

propagated back to the object plane using the angular spectrum

approach. In order to remove the twin image noise from the

reconstructed images, an iterative phase recovery algorithm is

evoked. In this algorithm, by iteratively going back-and-forth

between the object and hologram planes, the phase of the

hologram can be estimated, and reconstructing this complex field

provides a refined lensfree image at the corresponding illumination

angle where the twin image noise is suppressed [15].

Tomographic Reconstruction using Lensfree Projection
Images
By performing pixel super-resolution, followed by iterative

holographic reconstruction for all angles of illumination (650u),

a set of 51 lensfree projection images is obtained for each

orthogonal tilt series. Then, filtered back-projection operation is

used to reconstruct 3D images of the sample. To achieve that, we

used TomoJ [52], which is a plug-in for the open-source image

processing software ImageJ. Accordingly, the projection images

are first registered to obtain a common centre-of-rotation using

a two-step cross-correlation based algorithm as described in Ref.

23. These projection images are then exported to TomoJ to

perform filtered back-projection.

Since the response of the pixels drastically decreases at large

angles (e.g. .50–60u), we limited our illumination angles to 650u.

Owing to this limited angular range of each tilt series, isotropic

spatial resolution in 3D cannot be achieved. To address this issue

dual-axis tomography can be utilized. If a dual-axis tomography

scheme is utilized, separate tomograms are initially obtained for

each axis. Then, their corresponding tomograms are merged in

the Fourier domain [23,42]. Each single-axis tomogram has

missing spatial frequencies, referred to as the ‘‘missing wedge’’,

due to the limited angular range used in back-projection [43].

Dual-axis tomography utilizes the fact that the missing wedge for

each set of tomograms will be orthogonal to each other, and the

complementary information in these tomograms can reduce the

missing wedge in Fourier domain to a ‘‘missing pyramid’’ [43].

Accordingly, a new 3D frequency space is synthesized by assigning

the average of the two tomograms to spatial frequencies at which

both tomograms have useful data. For frequencies where only one

axis provides useful information, no averaging is performed and

the value of the corresponding axis is assigned to the new

frequency space. An inverse 3D Fourier transformation of the final

spatial frequency spectrum provides improved tomograms, which

have laterally symmetric point-spread functions as well as

improved axial resolution.

Preparation of the C. elegans Sample
Wild-type C. elegans nematodes cultured in standard Petri dishes

were used in our experiments. A small piece of the culture,

containing many worms, was suspended in DI water in a small

tube. After 10 minutes, most of the worms swim out of the culture

gel into the water. To temporarily immobilize them during image

acquisition, levamisole (Tetramisole Hydrochloride 99%, Sigma

Aldrich) was added to the tube to obtain a 4 mM solution. Then,

5 mL of the solution was sandwiched between standard cover-slips

and placed on the sensor chip for lensfree tomographic imaging.

Conclusions
We demonstrated lensfree Giga-pixel microscopy and tomog-

raphy using color image sensors. This platform offers a lateral

resolution of ,350 nm (i.e., a numerical aperture of ,0.8) over

a large imaging area of e.g., 20.5 mm2, which is achieved by

implementing pixel super-resolution on holographic images

captured by state-of-the-art color CMOS sensor-arrays. Further,

an axial resolution of ,2 mm is demonstrated, which can be

achieved over a long depth-of-field of ,0.3 mm. These results

correspond to an imaging volume of ,5 mm3 with .150 Billion

voxels. Achieving such a large space-bandwidth product within

a compact architecture, lensfree optical tomography can provide

an important tool for 3D imaging applications in lab-on-a-chip

platforms.

Supporting Information

Movie S1 Lensfree tomographic imaging of micro-

particles over a large field-of-view. This video shows

tomographic on-chip imaging of micro-particles over a large

field-of-view.
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