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Abstract

Today, consumer cameras produce photographs with

tens of millions of pixels. The recent trend in image sensor

resolution seems to suggest that we will soon have cameras

with billions of pixels. However, the resolution of any cam-

era is fundamentally limited by geometric aberrations. We

derive a scaling law that shows that, by using computations

to correct for aberrations, we can create cameras with un-

precedented resolution that have low lens complexity and

compact form factor.

In this paper, we present an architecture for gigapixel

imaging that is compact and utilizes a simple optical design.

The architecture consists of a ball lens shared by several

small planar sensors, and a post-capture image processing

stage. Several variants of this architecture are shown for

capturing a contiguous hemispherical field of view as well

as a complete spherical field of view. We demonstrate the ef-

fectiveness of our architecture by showing example images

captured with two proof-of-concept gigapixel cameras.

1. Introduction

Today’s high-resolution cameras capture images with

pixel counts in the tens of millions. When digital cameras

can produce images with billions of pixels, they will usher

in a new era for photography. A gigapixel image has such

a tremendous amount of information that one can explore

minute details of the scene (see Figure 2). Gigapixel im-

ages are fascinating because they capture orders of mag-

nitude more detail than the human eye, revealing infor-

mation that was completely imperceptible to the photogra-

pher at the time of capture. At present, highly specialized

gigapixel imaging systems are being developed for aerial

surveillance [5].

To be generally useful to photographers, a gigapixel

camera must not differ drastically in terms of form and func-

tion from today’s consumer grade megapixel cameras. It

should have at least a 40◦ Field-Of-View (FOV). To be use-

ful in both indoor and outdoor lighting conditions, the cam-

era should operate with a small F/#, say between F/4-F/11.

To be portable it must not be prohibitively large or heavy.

Finally, a design with low complexity will ensure the cam-

era can be manufactured at low cost.

Why are there no gigapixel cameras commercially avail-

able today? CMOS and CCD technologies have improved

to the point that imaging sensors with pixels in the 1µm

range have been demonstrated [9]. It is certainly within

the reach of manufacturing technology to produce sensors

with 1 billion pixels. On the other hand, it remains a huge

challenge to design and manufacture lenses which have the

resolving power to match the resolution of such a sensor.

This is because the number of resolvable points for a lens,

referred to as the Space-Bandwidth Product (SBP) [11], is

fundamentally limited by geometrical aberrations. Ideally,

all lenses would be diffraction limited so that increasing

the scale of a lens while keeping FOV fixed would increase

SBP. Unfortunately, SBP reaches a limit due to geometrical

aberrations.

There are two common approaches that are taken to in-

crease SBP in the face of this fundamental limit. The first

is to just accept the loss in resolution and increase sensor

size. As an example, consider the commercially available

F/8 500mm focal length Schneider Apo-Symmar lens. If

this lens were diffraction limited, it would be capable of

resolving a gigapixel image on a 5”x5” sensor. However,

because of geometrical aberrations, a sensor size of nearly

12”x12” is necessary to resolve a full gigapixel image.

The second approach taken to increase SBP is to increase

complexity as a lens is scaled up. Introducing more opti-

cal surfaces increases the degrees of freedom in lens op-

timization, which can be used to reduce geometric aberra-

tions and achieve diffraction limited performance. Consider

the F/4 75mm focal length lens shown in Figure 1. The lens

is diffraction limited over a 60◦ FOV so that a gigapixel

image can be resolved on a 75mmx75mm surface, much
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Figure 1. (a) An F/4 75mm lens design capable of imaging one

gigapixel onto a 75x75mm sensor. This lens requires 11 elements

to maintain diffraction limited performance over a 60◦ FOV. (b)

The MTF at different field positions on the sensor.
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Figure 2. A 1.7 gigapixel image captured using the implementation shown in Figure 9. The image dimensions are 82,000 x 22,000 pixels,

and the scene occupies a 126◦x32◦ FOV. From left to right, insets reveal the label of a resistor on a PCB board, the stippling print pattern on

a dollar bill, a miniature 2D barcode pattern, and the fine ridges of a fingerprint on a remote control. The insets are generated by applying

a 60x-200x digital zoom to the above gigapixel image. Please see the Supplementary Material to view this example in more detail.

smaller than for the Apo-Symmar. The increase in perfor-

mance comes at a great cost, however. The design consists

of 11 different elements, ranging from 60-100mm in diame-

ter, resulting in a lens that is both expensive to produce and

difficult to align.

The following are the main contributions of our paper.

A Scaling Law for Computational Imaging. We

present a new approach to increase SBP - the use of com-

putations to correct for geometrical aberrations. In conven-

tional lens design, resolution is limited by the spot size of

the lens. For a lens with aberrations, spot size increases lin-

early with the scale of the lens. For a computational imag-

ing system, resolution is related to deblurring error. We ob-

serve, however, that for a lens with spherical aberrations,

deblurring error does not increase linearly with lens scale.

We use this remarkable fact to derive a scaling law that

shows that computational imaging can be used to develop

cameras with very high resolution while maintaining low

complexity and small size.

Two Proof-of-Concept Gigapixel Cameras. We

present an imaging architecture that consists of a large ball

lens shared by an array of small planar sensors coupled with

a deblurring step. Due to our monocentric optical design,

field-dependent aberrations are suppressed, and the primary

aberrations are spherical and axial chromatic, which are

known to code images in a manner that is invertible via

post-processing [27] [26] [12] [3]. We demonstrate two

proof-of-concept gigapixel cameras. The first is a single el-

ement monocentric camera that is implemented by sequen-

tially scanning a single sensor to emulate an array of tiled

sensors. The second is a system consisting of 5 tiled sensors

that produce a contiguous FOV.

Several Novel Gigapixel Camera Designs. In addition

to demonstrating two proof-of-concept gigapixel cameras,

we present two addition designs: one for a single element

gigapixel camera with a contiguous FOV, and one for a

spherical 2π FOV gigapixel camera.

2. Related Work

Large Format Imaging Systems. A few custom gi-

gapixel imaging systems have been developed using large

format lenses. These include systems built with commer-

cial lenses that sequentially scan a large image plane sur-

face [1] [29], as well as a system with a custom lens that

is photographed on film and later converted to a digital im-

age [10]. These are special purpose cameras that are ex-

tremely large (FL > 500mm) and therefore not suitable for

commercial photography.

Camera Arrays and Multiscale Optics. Camera ar-

rays have been used to capture high resolution images by

tiling multiple sensors paired with a complex lens [30] [24].

However, a camera array for gigapixel imaging would be

prohibitively large and expensive because it would require

tiling an array of long focal length lenses. A related ap-



proach taken by Brady and Hagen [2] is to use a multiscale

optical system consisting of a large single element lens cou-

pled with an array of smaller optical elements, each unique

and coupled with a different sensor. The advantage of this

approach is that it is a compact design that can correct for

geometrical aberrations. The disadvantage is that the sys-

tem requires a large number of different optical elements,

which may be difficult to manufacture and align.

Monocentric Optics and Curved Sensors. Monocen-

tric optical designs are free of field dependent aberrations

because they are completely symmetric: the image plane

and each lens surface lay on concentric spheres. Monocen-

tric designs date back to the Sutton Panoramic Lens (1859),

and later the Baker Ball Lens (1942) [14]. Luneburg pro-

posed the use of a monocentric lens with varying index of

refraction to correct for aberrations [21]. Rim et. al pro-

posed a small diffraction limited camera consisting of a ball

lens and curved sensor [25]. Krishnan and Nayar proposed

the use of a large ball lens and spherical sensor together

with deblurring to create a single viewpoint, fully spherical

FOV camera [16]. While several researchers have made

progress towards developing curved sensors [6] [15] [17],

the technology is not yet ready for commercialization.

Recently, Marks and Brady proposed a 7-element large

format monocentric lens called the Gigagon [22], which the

authors suggest using with a large array of planar sensors.

To our knowledge this system has yet to be implemented,

but is similar in architecture to some of the designs we pro-

pose. Our approach is fundamentally different in that we

show how computations can be used to achieve the desired

resolution while reducing complexity.

Computational Imaging. In the 90’s, Cathey and

Dowski proposed a hybrid optical-signal processing sys-

tem which uses a cubic phase plate to extended depth

of field [7]. Later they showed that the same element

can be used to reduce the complexity of infrared cam-

eras [8]. Robinson and Stork observed that spherical aber-

rations are easily invertible via image processing, and pro-

posed the use of simpler lens designs based on this princi-

ple [27] [26] [28]. Guichard et. al [12] and Cossairt and

Nayar [3] observed that the effects of axial chromatic aber-

rations can be inverted using a method that is inexact, but

produces images that look good.

3. The Curse of Aberrations

Lohmann originally observed that lenses obey certain

scaling laws that determine how resolution increases as a

function of lens size [19]. Consider a lens with focal length

f , aperture diameter D, and image size ∆x by ∆y. If we

scale the lens by a factor of M , then f ,D, ∆x by ∆y are

all scaled by M , but the F/# and FOV of the lens remain

unchanged. If, when we scale the lens, the minimum re-

solvable spot size has not also increased by a factor of M ,

then we have increased the total number of points that can

be resolved. The number of resolvable points for a lens

is referred to as the Space-Bandwidth Product (SBP) [11].

SBP is a unit-less quantity that tells us the number of dis-

tinct points which can be measured over a given FOV.

The minimum spot diameter of a lens due to diffraction

is δd ≈ λF/#, where λ is the wavelength of light. Since

this quantity is independent of lens scale, the SBP for a

diffraction-limited lens is

Rd =
M2

∆x∆y

(λF/#)2
. (1)

The SBP increases quadratically with the scaling factor M
(see the red curve in Figure 3). However, the SBP of a lens

also depends on the diameter of the blur circle caused by

geometric aberrations, δg , which increases linearly with the

scaling factor M . As a result, when aberrations are consid-

ered, the SBP becomes [19]

Rg =
M2

∆x∆y

(λF/#)2 + M2δ2
g

. (2)

Now the SBP plateaus at ∆x∆y/δ2

g when the lens is no

longer diffraction limited and Mδg >> λF/# (see the

green curve in Figure 3). Since the geometric blur size can

be decreased by stopping down a lens, lens designers typ-

ically increase the F/# as a lens is scaled up. A general

rule of thumb is that the F/# is increased such that the focal

length in mm is approximately equal to (F/#)3. For instance,

the 500mm focal length Schneider Apo-Symmar operates at

F/8, and 83
≈ 500. If this rule of thumb is used on a lens

which primarily exhibits spherical aberration, it turns out

that the geometric blur size δg becomes independent of the

scaling factor M (see [19] for details). Then (see the blue

curve in Figure 3) the SBP becomes

Rf =
M2

∆x∆y

λ2M2/3 + δ2
g

. (3)

Equation 3 is a scaling law that tells us generally how SBP

increases with lens size for a conventional lens design.
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Figure 3. A plot showing how Space-Bandwidth Product (SBP)

increases as a function of lens size for a perfectly diffraction lim-

ited lens (Rd), a lens with geometric aberrations (Rg), and a lens

whose F/# increases with lens size (Rf ).



4. A Scaling Law for Computational Imaging
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Figure 4. (a) A singlet lens with strong spherical aberrations. (b)

The rayfan shows ray position on the sensor plane as a function of

position in the lens aperture. The PSF has a strong peak because

rays are concentrated around the center of the image plane.

In Lohmann analysis, it is assumed that the minimum

resolvable spot size is equal to the blur size due to geo-

metric aberrations, δg . However, the blur caused by a lens

with spherical aberrations can be removed via deconvolu-

tion [27] [26] [28]. This is because a lens with spherical

aberrations produces a Point Spread Function (PSF) that is

well-conditioned and easily invertible. Figure 4(a) shows

several rays from a distant point source traced through a sin-

glet lens with spherical aberrations. The radial coordinate

x of each ray on the sensor plane as a function of radial co-

ordinate u in the aperture plane is given by the cubic curve

x = SA3 ·u3, where SA3 is the spherical aberration coeffi-

cient, as shown in Figure 4(b). The PSF is found by project-

ing this curve along the sensor axis, resulting in a sharply

peaked PSF. The modulus of the Fourier Transform of this

PSF, called the MTF, is relatively large at high frequencies

and has no zero crossings. As a result, a captured image can

be deblurred without introducing significant artifacts.

For a computational imaging system (i.e., with deblur-

ring), the resolution is given by the pixel size ξ, and SBP

does not depend directly on the geometric blur radius δg .
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Figure 5. RMS deblurring error as a function of lens scale (M ) for

a lens with spherical aberrations. As M increases, both the PSF

size and the deblurring error increase. While the size of the PSF

increases linearly with M , deblurring error increases with M
1/3.8.
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Figure 6. A new scaling law for computational imaging (Rc). Note

that Rc not only improves upon the aberration limited curve Rg , it

also improves upon the conventional lens design curve Rf without

requiring F/# to increase with M .

A more pertinent quantity for measuring image quality is

SNR. In the absence of any noise we can theoretically in-

crease SBP by decreasing pixel size until we have reached

the diffraction limit. In order to provide a fair comparison

between any two computational imaging systems, we must

fix the SNR. Therefore, we fix SNR and then derive a new

scaling law for computational imaging.

First, let us consider the effect of deblurring on SNR. The

SNR of an image produced by any computational imaging

system is simply 1/σD, where σD is the deblurring error.

Figure 5 shows how σD scales as a function of lens size. To

calculate the deblurring error we follow the procedure used

by Zhou and Nayar [32]. A captured image is simulated

by blurring a ground truth image with the PSF at the given

scale and adding white gaussian noise with standard devia-

tion σN . The blurred image is then deblurred using Wiener

deconvolution, and σD is calculated as the RMS error be-

tween the deblurred and ground truth images, averaged over

a set of natural images. The deblurring error curves are

shown for a variety of σN , and the best fit polynomial is

empirically found to be in the range from σD ∝ σNM1/3.6

to σD ∝ σNM1/4, which we approximate as:

σD = σNM1/3.8. (4)

Next, we relate pixel size ξ to sensor noise σN . Scaling

ξ by a factor of M increases the pixel’s area by a factor of

M2. For a fully saturated pixel, assuming a shot noise lim-

ited sensor, this will increase the sensor’s full well capacity

by M2 and decrease noise by a factor of M−1 relative to

the signal. The sensor noise is then related to pixel size as:

σN =
k

ξ
, (5)

where k is a constant. If we fix the SNR of our compu-

tational imaging system (by fixing σD), then, using equa-

tions 4 and 5 and defining a new constant k1 = k/σD, we

can relate pixel size and scale as:

ξ = k1M
1/3.8. (6)



Finally, assuming that our pixels size is greater than the

diffraction limited spot size, the number of resolvable points

is just the sensor area divided by the pixel area:

Rc =
M2

∆x∆y

ξ2
=

M2
∆x∆y

k2

1
M2/3.8

. (7)

Equation 7 is a scaling law for computational imaging that

says resolution increases faster with M than in the case of

Lohmann’s scaling law for conventional lens design, with-

out requiring F/# to increase with M (see Figure 6). This

tells us that, for a computational imaging system with a

fixed SNR (i.e. fixed deblurring error), SBP scales more

quickly with lens size than it does for conventional lens de-

signs.

5. Proposed Architecture

According to Equation 7, a computational imaging ap-

proach can enable a greater resolution to be achieved with

a smaller camera size. To demonstrate this principle, we

show results from two proof of concept systems that utilize

a very simple optical element. By using a large ball lens,

an array of planar sensors, and deconvolution as a post pro-

cessing step, we are able to capture gigapixel images with a

very compact camera.

The key to our architecture lies in the size of the sensors

relative to the ball lens. Together, a ball lens and spherical

image plane produce a camera with perfect radial symme-

try. We approximate a spherical image plane with a tessel-

lated regular polyhedron, such as an icosahedron. A planar

sensor is placed on each surface of the polyhedron. Note

that because sensors are typically rectangular, a different

polyhedron, such as a truncated icosahedron, may provide

more optimal sensor packing. Relatively small sensors are

used so that each sensor occupies a small FOV and the im-

age plane closely approximates the spherical surface. As

a result, our camera produces a PSF that is not completely

spatially invariant, but comes within a close approximation.

Single Element Monocentric Gigapixel Camera. The

first system we demonstrate consists solely of a ball lens and

an array of planar sensors. We use a 100mm acrylic ball lens

and a 5 megapixel 1/2.5” Lu575 sensor from Lumenera [20]

(see Figure 7(a)). We emulate an image captured by multi-

ple sensors by sequentially scanning the image plane using

a pan/tilt motor. With this camera, a 1 gigapixel image can

be generated over a roughly 60ox40o FOV by tiling 14x14

sensors onto a 75mmx50mm image surface. When acquir-

ing images with the pan/tilt unit, we allow a small overlap

between adjacent images.

The PSF as a function of field position on each individual

sensor is shown in Figure 7(b). Note that the PSF shape re-

mains fairly consistent across the FOV of each sensor. The

MTF (shown in in Figure 7(c)) avoids zero crossings up to
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(a) An F/4 75mm focal length ball lens system.
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Figure 7. (a) Our single element gigapixel camera, which consists

solely of a ball lens with an aperture stop surrounded by an array

of planar sensors. (b) Because each sensor occupies a small FOV,

the PSF is nearly invariant to field position on the sensor. (c) The

PSF is easily invertible because the MTF avoids zero crossings and

preserves high frequencies.
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Figure 8. (a) A multiscale design based on our proposed architec-

ture. An array of relay lenses modifies the system magnification

so that the FOV of adjacent sensors overlaps slightly. The PSF (b)

and MTF (c) are similar to the system in Figure 7(a).
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Figure 9. A system used to verify the performance of the design

shown in Figure 7(a). An aperture is placed on the surface of the

ball lens. A gigapixel image is captured by sequentially translat-

ing a single 1/2.5”, 5 megapixel sensor with a pan/tilt motor. A

final implementation would require a large array of sensors with

no dead space in between them.
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Figure 10. A 1.6 gigapixel image captured using the implemen-

tation shown in Figure 9. The image dimensions are 65,000 x

25,000 pixels, and the scene occupies a 104◦x40◦ FOV. The left

inset reveals individual hairs and pores on the person on the right.

The right inset reveals the extremely fine features of a resolution

chart. Please see the Supplementary Material to view this example

in more detail.

the Nyquist frequency of the sensor. The plots were gener-

ated using Zemax Optical Design Software [31].

An implementation of this design is shown in Figure 9.

Figures 2 and 10 show two gigapixel images captured with

this system. Note the remarkable level of detail captured in

each of the photographs. Zooming in to Figure 2 reveals the

label of a resistor on a PCB board, the stippling print pattern

on a dollar bill, a miniature 2D barcode pattern, and the

extremely fine ridges of a fingerprint. Closeups in Figure 10

reveal pores on the skin of one of the persons photographed.
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Relay
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Figure 11. Implementation of the design of Figure 8(a) capable

of capturing a 15 megapixel region of a gigapixel image. A full

gigapixel camera requires 66x as many sensors and relay lenses.

10,000 pixels
1
,4

0
0

Figure 12. A 14 megapixel image captured using the video ready

implementation shown in Figure 11. The image dimensions are

10,000 x 14,000 pixels, and the scene occupies a 15◦x2◦ FOV.

The insets show a closeup of a person’s face (left) and a resolution

target (right).

Multiscale Monocentric Gigapixel Camera. Our first

camera system is extremely compact, but it assumes there

is no dead space between adjacent sensors. Sensors require

at least some packaging around the active pixel area, which

renders this solution impractical. A solution to overcome

this problem is to introduce a secondary optic for each sen-

sor, changing the system magnification so that the FOV of

adjacent sensors overlaps slightly. This approach is taken in

the implementation shown in Figure 8(a).

A photo of the video ready implementation, currently un-

der development, is shown in Figure 11. The system con-

sists of custom optics manufactured by LEI Optics [18], and

5 NET-USA Foculus Sensors [23]. A 14 megapixel image

captured with this system is shown in Figure 12.



Color. Because our cameras do not include any color

correcting elements, they suffer from axial chromatic aber-

rations. For the 100mm diameter ball lens that we use, the

chromatic focus shift is about 1.5mm over the visible wave-

length range. However, most of the image blur caused by

chromatic focus shift is in the chrominance channel of cap-

tured images [12] [3]. Since humans are less sensitive to

blur in chrominance channels, axial chromatic aberrations

do not cause a significant degradation in perceived image

quality. We use the deblurring technique from Cossairt and

Nayar [3], which is inexact but produces images that look

good.

Post Processing. The post processing for captured im-

ages follows several steps. First, a transformation from

RGB to YUV color space is applied to each captured image.

Next, Wiener deconvolution is applied to the luminance

channel only, and the image is transformed back to RGB

color space. A noise reduction algorithm is then applied to

the image to suppress deblurring artifacts. We found the

BM3D algorithm [4] to produce the best results. Finally,

the set of captured images are stitched to obtain a high res-

olution image using the Microsoft Image Composite Edi-

tor [13].

6. Discussion

A Single Element Design. The design in Figure 7(a) is

extremely compact, but impractical because adjacent sen-

sors must be packed without any dead space in between

them. The design in Figure 8(a) is practical enough for

an implementation using off-the-shelf components (see Fig-

ure 11), but is much less compact. The size of this system

is limited by the package size of the sensor relative to the

active sensor area. Sensors with a package size that is only

1.5x larger than the active sensor area are currently commer-

cially available. With these sensors, it is possible to build

a gigapixel camera that uses only a single optical element,

Sensor
Array

Ball
Lens

Lens
Array

Figure 13. A single element design for a gigapixel camera. The

design is a hybrid between the two implementations introduced in

Section 5. Each sensor is coupled with a lens that decreases focal

distance, allowing FOV to overlap between adjacent sensors.

as shown in Figure 13. In this design, each sensor is cou-

pled with a smaller acrylic relay lens that decreases the focal

length of the larger acrylic ball lens. The relay lenses share a

surface with the ball lens, which means that it is possible to

combine the entire optical system into a single element that

may be manufactured by molding a single material, drasti-

cally simplifying the complexity (and hence alignment) of

the system.

Capturing the Complete Sphere. All the designs pro-

posed in this paper use a ball lens. A great advantage of

using a ball lens is that, because it has perfect radial sym-

metry, a near hemispherical FOV can be captured. In fact, it

can even be used to capture the complete sphere, as shown

in Figure 14. This design is similar to the one in Figure 8(a)

with a large gap between adjacent lens/sensor pairs. Light

passes through the gaps on one hemisphere, forming an im-

age on a sensor located on the opposite hemisphere. As a

result, the sensors cover the complete 2π FOV at the cost of

losing roughly half the incident light.

Limitations of the Scaling Law. Lohmann’s scaling

law tells us how the resolution of a conventional lens de-

sign will scale with lens size, but the law is based on a

generalization, and there are many exceptions to this rule.

According to Equation 7, with the aid of computations, the

resolution of a lens with spherical aberrations will, in gen-

eral, scale more quickly than for a conventional lens design.

However, there is no free lunch. A lens which requires de-

blurring will have a smaller SNR than a diffraction limited

lens of the same scale. Implicit in our new scaling law is

a trade-off between SNR and complexity. In our proposed

architecture, we have chosen a design that favors simplicity,

and as a consequence, also results in a lower SNR.

Balancing Complexity and Computations. Any com-

putational imaging system poses an inherent trade-off be-

tween complexity and SNR. In the context of developing a

compact high resolution camera, we are forced to choose
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Figure 14. A design for a gigapixel camera with a 2π radian FOV.

The design is similar to the implementation in Figure 8(a) with a

large gap between adjacent lens/sensor pairs. Light passes through

the gaps on one hemisphere, forming an image on a sensor located

on the opposite hemisphere.



a small pixel size. Small pixels make the above trade-off

more pertinent. In practice, exploring this trade-off requires

a carefully designed measure for complexity.

A good complexity measure must take into account

many different factors: the number of surfaces, the degree

polynomial of each surface, etc. While we have not given

a complete treatment to lens complexity in this paper, the

scaling law of Equation 7 does give new insight into the

potential benefit of computational cameras. Given an ap-

propriate measure for lens complexity, it may be possible

to design a lens that achieves an optimal balance between

complexity and computations. Rather than favoring sim-

plicity, an optimal design may consist of more elements

than the designs discussed previously in this paper. One

can imagine, for instance, a lens of moderate complexity,

such as a Schneider Apo-Symmar, that is optimized for de-

blurring quality. By finding an optimal trade-off between

complexity and computations, such a lens might be capable

of imaging a gigapixel with a much smaller package size

while still maintaining a satisfactory SNR.
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