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Abstract— This paper deals with a new GIMC structure con-
sidering a communication delay by using the Smith Predictor
and its application to a mechatronic system. First, we stabilize
the unstable mechatronic system by a PD controller and define
the stabilized system as a new augmented plant. We design the
proposed GIMC structure using the Smith Predictor based on
H∞ controllers for the new stabilized augmented plant. Finally,
the proposed structure is evaluated experimentally and the
effectiveness of the proposed approach is proven. In addition,
we apply the proposed structure to a virtual networked control
mechatronic system.

I. INTRODUCTION

It is well-known that general control architectures cannot

achieve both performance and robustness simultaneously,

because there is a tradeoff in these two specifications [1].

The Generalized Internal Model Control (GIMC) structure

was proposed for this tradeoff problem [2], [3]. It can achieve

both performance and robustness specifications based on a

switching strategy: a nominal high performance controller

K0 controls the nominal plant and a robust controller K

maintains stability for perturbed plants.

Consequently, this structure has been applied to gyroscope

and motor control so far, and experimentally it achieves

stability in a plant perturbed by changes such as sensor

failure [4], [5].

The GIMC structure is not affected by a small communi-

cation delay because this structure has high robustness. But

this structure does not have been considered for larger delays

such as those found in network communications[6].

It is difficult to manage a general control architecture

which has a time delay. An output after delay time is

predicted to use an architecture which has a plant model and

a time-delayed model in the internal control loop. The Smith

Predictor is well-known as an effective control method based

on a predictive output [7] [8]. A control system with the

Smith Predictor can be designed without considering delay

because the output of the plant after delay time is canceled

by the predictive output.

Our goal is to apply a new GIMC structure, considering

communication delays by using the Smith Predictor, to a

magnetic suspension system, which is an unstable mecha-

tronic system, and evaluate its effectiveness via control

experiments. In addition, the proposed structure applied to

the networked control system is evaluated via experiments.
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First, a design scheme for the GIMC structure and Smith

Predictor are shown. Then we propose a new GIMC structure

with Smith Predictor. Next, the magnetic suspension system

is described. Since the Smith Predictor cannot be applied to

unstable systems, this system is stabilized by a PD controller.

The stabilized system is defined as a new augmented plant.

We design two controllers using H∞ mixed sensitivity prob-

lems for the new augmented plant, and design the control

system of a new GIMC structure with the Smith Predictor

based on these controllers. Finally, the proposed structure can

achieve both performance and robustness specifications in

control experiments for a time-delayed mechatronic system.

In addition, the proposed structure can be applied to a virtual

networked control system [9] and its effectiveness is shown

by several control experiments.

II. GIMC STRUCTURE WITH SMITH PREDICTOR

A. GIMC Structure

Let P(s) be a nominal plant model of plant P̃(s) and K0(s)
be a stabilizing controller for P(s). Suppose that P and K0

have left coprime factorizations expressed by (1).

P(s) = M̃(s)−1Ñ(s), K0(s) = Ṽ (s)−1Ũ(s) (1)

It is well known that all stabilizing controllers K(s) for P(s)
can be expressed in (2) and (3) by using a free-parameter

Q(s) ∈ RH∞,

K(s) = (Ṽ (s)−Q(s)Ñ(s))−1(Ũ(s)+Q(s)M̃(s)), (2)

det(Ṽ (∞)−Q(∞)Ñ(∞)) 6= 0. (3)

GIMC structure is based on this idea and it is shown in

Fig.1. This has an outer feedback loop(K0(s) = Ṽ (s)−1Ũ(s))
and an internal feedback loop. It is a kind of a extention

of the IMC(Internal Model Control) by introducing an outer

feedback controller. Note that the reference signal re f (t) in

Fig.1 enters into the stabilizing controller K in the GIMC

Q

-
y+ uref

~N

-
+

e

~V
-1

~U

~M
f

q

+

+ ~P

Fig. 1. GIMC Structure
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structure, but stability of system does not change from K(s)
because a transfer function from y(t) to u(t) is same with

K(s) = (Ṽ (s) − Q(s)Ñ(s))−1(Ũ(s) + Q(s)M̃(s)). The free-

parameter Q(s) ∈ RH∞ can be chosen within (3) and K(s)
is a set of the stabilizing controllers. We assume that Q(s)
is fixed in the following, that means K(s) is fixed by the

specified Q(s).

GIMC structure can achieve both high performance and

high robustness specifications because it can utilize both

controllers K0(s) and K(s) by switching them, it depends

on an internal signal f (s). The internal signal f (s) can be

expressed in (4) [3].

f (s) = Ñ(s)u(s)− M̃(s)y(s) (4)

This signal f (s) is an error of an estimated signal and an

actual signal. Consider two cases which are P̃(s) = P(s) and

P̃(s) 6= P(s).

P̃(s) = P(s) :

f (s) = 0 if there are no model uncertainties, distur-

bance or faults, then q(s) = 0. The control system

is controlled by K0(s) = Ṽ (s)−1Ũ(s).
P̃(s) 6= P(s) :

f (s) 6= 0 if there are either model uncertainties or

disturbance or faults, then the inner loop is active

because q(s) 6= 0. The feedback system is controlled

by K(s) = (Ṽ (s)−Q(s)Ñ(s))−1(Ũ(s)+Q(s)M̃(s)).

GIMC structure can switch two controllers which are

K0(s) and K(s) using the internal signal f (s) in the above

way. This switching characteristic gives a desired control

property to the system. The high performance controller

K0(s) is applied to the nominal model( f (s) = 0) and the

high robustness controller K(s) is applied to the perturbed

plant( f (s) 6= 0).

The design procedure of GIMC structure is given by the

following three steps.

Controller Design Step[2]

Step 1. Design a high performance controller K0(s) for the

nominal model P(s).
Step 2. Design a high robust controller K(s) for the perturbed

model P̃(s).
Step 3. Construct an internal controller Q(s) based on the
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Fig. 2. GIMC Structure with Detector and Switch

following equation.

Q(s) = Ṽ (s)(K(s)−K0(s))(Ñ(s)K(s)+ M̃(s))−1 (5)

The internal controller Q(s) is not used in the nominal

model then GIMC structure is controlled by only K0(s), and

the internal controller Q(s) is activated for the perturbed

plant. This means the GIMC structure is controlled by K(s).

Implementation of GIMC-based Switching Controller

Generally it is impossible to construct a completely accu-

rate plant model such as P̃(s) = P(s), then K(s) is applied

even for the nominal plant because P̃(s) ≃ P(s) in nominal

mode.

Consider GIMC structure with a detector and a switch in

the internal loop as shown in Fig.2. This structure makes

the high performance controller K0(s) work even if there

exists a small perturbation P̃(s) ≃ P(s). That means the

high performance controller K0 can be applied to a slightly

perturbed nominal model.

In this GIMC structure for implementation, a switching

timing and its decision is judged by a signal f̂ (s) which is

an output of a function H(s). The signal f̂ (s) is expressed

in (6) and the function H(s) is a filter of the signal f (s) to

judge a current mode of the plant.

f̂ (s) = H(s)(Ñ(s)u(s)− M̃(s)y(s)) (6)

A judgment index Jth of the nominal and the robust modal

is a magnitude of the signal f̂ (s) in (7).

The index Jth is utilized to decide a model among the

multiple candidates of the plant models. If f̂ (s) < Jth then

switch is OFF which means the candidate of the nominal

plant is selected and if f̂ (s) > Jth then the switch is ON.

Jth = max
∆=0,u

| f̂ (s)|, P̃ = P(I +∆) (7)

B. Smith Predictor

Smith Predictor may call Smith method, and this is well

known design method of time-delayed system. This system

is shown in Fig.3. P(s)e−τs is stable time-delayed system

and P(s) is stable rational transfer function.

Model plant P in the internal feedback loop predicts an

output after delay time. A control input to the plant and

delay P̃(s)e−τ̂s is decided to base on this predictive output.

In outer feedback loop, an output of the plant after delay time

P

-τs
e

-
y

+ u

ref

~P
-τs
e-

+

-
+

K

ep
ym

Fig. 3. Smith Predictor
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Fig. 4. GIMC Structure with Smith Predictor

is canceled by an output of the model plant P(s)e−τs. In other

words, this structure eliminates an effect of the output after

delay time to the predictive control.

C. GIMC Structure with Smith Predictor

The structure which can achieve both performance and

robustness specifications in the time-delayed system is shown

in Fig.4. The proposed control structure in Fig.4 is a combi-

nation of GIMC structure and Smith Predictor in Figs.2 and

3. An output of the plant after delay time is canceled by an

output of the model plant, and the system is controlled with

the predictive output. The controller of this system is GIMC

structure. So this structure can achieve both performance and

robustness specifications.

III. SYSTEM CONFIGURATION AND MODELING

The controlled plant in this research is a magnetic sus-

pension system[10] shown in Fig.5 where m: mass of iron

ball, fmag(t): electromagnetic force, x(t): displacement, v(t):
input voltage, i(t): current, respectively.

The equation of motion is expressed by (8) and an

electromagnetic force is given by (9).

m
d2x(t)

dt2
= mg− fmag(t) (8)

fmag(t) = k

(

i(t)

x(t)+ x0

)2

(9)

mg

fmag(t)

Iron ball

Electromagnet

x

v i

Sensor

Fig. 5. Magnetic Suspension System

TABLE I

MODEL PARAMETERS

m 0.357[kg]

k 11.641×10−4[Nm2/A2]

x0 4.737 ×10−3[m]

X 5×10−3[m]

I 0.53[A]

The coefficients k and x0 in (9) are determined by

identification experiments. Equation (9) is transformed into

(11) by using Taylor series expansion of (10) around the

equilibrium point. The variables in (10) are defined as,

X :steady gap between the electromagnet and the iron ball,

δx(t):displacement from the steady gap, I:steady current of

the electromagnet, δ i(t):current from steady current.

x(t) = X +δx(t), i(t) = I +δ i(t) (10)

fmag(t) ≃ k

(

I

X + x0

)2

+ kiδ i(t)− kxδx(t) (11)

kx =
2kI2

(X + x0)3
,ki =

2kI

(X + x0)2

Redefine x(t) = δx(t) and i(t) = δ i(t), then state-space

equation is given as (12), and transfer function P0 is given

as (13). P0 is an unstable system from (13). The model

parameters are shown in Table I.

ẋ =

[

0 1

Kx 0

]

x+

[

0

−Ki

]

u

y =
[

1 0
]

x (12)

P0(s) =
−Ki

s2 −Kx

(13)

x =
[

x ẋ
]T

, Kx =
kx

m
, Ki =

ki

m
, y = x, u = i

IV. CONTROL SYSTEM DESIGN

A. Stabilization of Plant

A stabilized plant P0 by a PD controller is defined as a

new augmented plant P. Because Smith Predictor cannot be

applied to unstable systems. The PD controller KPD is given

as (14), and a structure of the new stabilized augmented plant

P is shown in Fig.6.

KPD(s) = KP +
KDs

1+1/KNs
(14)

+-
+
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s
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Controller (KPD)
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+

+

Fig. 6. New Augmented Plant P
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Parameters of this controller are chosen in the following.

KP = 180, KD = 6, KN = 800 (15)

A purpose of this controller is to stabilize the plant P0, hence

the performance is not fully considered.

B. Control system Design

The design step of controllers is already mentioned in the

Section II-A. At first, we design two controllers which are a

nominal controller K0(s) and a robust controller K(s) using

H∞ mixed sensitivity problem, respectively on Step 1, 2.

The H∞ mixed problem is a design problem to find

a controller which satisfies the condition (16), where

S(s):sensitivity function, T (s):complementarity sensitivity

function, WS(s):weighting function for sensitivity function,

WT (s):weighting function for complementarity sensitivity

function.
∥

∥

∥

∥

WS(s)S(s)
WT (s)T (s)

∥

∥

∥

∥

∞

< 1 (16)

The weighting functions chosen for K0(s) and K(s) are

written in (17), (18), respectively.

WSK0
(s) =

20

s+0.01
,

WTK0
(s) = 1×10−4 × (s+0.02)(s+0.1) (17)

WSK
(s) =

10

s+0.01
,

WTK
(s) = 1×10−3 × (s+0.02)(s+80) (18)

WSK0
and WTK0

in (17) is used to design K0(s), and WSK
and

WTK
in (18) is used to design K(s), respectively. It is well-

known that there exists a constraint S(s) + T (s) = I. Then

WS(s) should be selected to have high gain if the designed

controller should have high performance, on the other hand,

WT (s) should be selected to have high gain if the controller

should have high robustness.

In these steps, K0(s) and K(s) are designed to let them

have high performance and high robustness respectively. The

frequency responses of two controllers are shown in Fig.7,

where a solid line shows K0(s), a dashed line shows K(s).

Finally, we construct the internal controller Q(s) by using

K0(s) and K(s) based on Step 3. In order to construct Q(s) by

using (5), coprime factorizations of plant P(s) and K0(s) are

necessary. Suppose that state-space representations of K0(s)
and P(s) are given as

P =
[

A B

C D

]

, K0 =
[

Ak Bk

Ck Dk

]

(19)

and (A,B) is controllable, (C,A) is observable, (Ak,Bk) is

controllable and (Ck,Ak) is observable.

The coprime factorizations of P(s) and K0(s) are given by

(20) and (21) respectively[11]. Note that L and Lk stabilize

A + LC and Ak + LkCk, respectively. The eigenvalues are in
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Fig. 7. Bode Diagram of Controllers

TABLE II

PERTURBED PARAMETERS

Nominal Perturbed
Parameters Parameters

τ[s] 0.1 0.1

τ̂[s] 0.1 0.15

(22) and (23).

[

Ñ M̃
]

=
[

A+LC B+LD L

C D I

]

(20)

[

Ṽ Ũ
]

=
[

Ak +LkCk Lk Bk +LkDk

Ck I Dk

]

(21)

λ (A+LC) = {−100,−110,−260} (22)

λ (Ak +LkCk) = {−300,−310,−400,−410} (23)

V. EXPERIMENTAL EVALUATION

A. Evaluation of Control Performance

The first objective of experiments is to evaluate a control

performance of the controller K0 = Ṽ−1Ũ and K = (Ṽ −
QÑ)−1(Ũ + QM̃) in Fig.4. Step responses of the nominal

parameters in Table II are shown in Fig.8. The scale of this

step reference signal is 1[mm], and this step is added to the

plant at 0.1[s] where a solid line shows K0(s), a dashed line

shows K(s). The transient response of K0 is better than K in

Fig.8, therefore the controller K0 has a higher performance

than K.

B. Evaluation of Stability

The time response of the controller K0 for perturbed

parameters in Table II is shown in Fig.9. This response is

gradually getting into instability which means the controller

K0 cannot keep the stability.

When the communication delay in Table II are added to

the plant at 0.1[s], Time responses of the controlled output

and the internal signal q of the proposed GIMC structure

with Smith Predictor are shown in Figs.10 and 11 GIMC
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structure with Smith Predictor is confirmed to be able to

keep the closed-loop stability. Here the filter H(s) and the

threshold value Jth in the detector is given by (24).

H(s) =
1

1+
s

2π fs

, fs = 2, Jth = 3.5×10−4. (24)

The time response in Fig.10 shows a vibration and an

instability after adding the communication delay. On the

other hand, the time response of GIMC structure with Smith

Predictor shows a stable property. The controllers is switched

about 0.63[s] from Fig.11.

From these results, GIMC structure with Smith Predictor

achieve a high performance if there is no perturbations in

model parameters. Furthermore it can keep the stability even

if there is an error of the delay between the plant and the

model.

C. Stability Limitation

Stability limitation for time delay and perturbation be-

tween τ̂ and τ are evaluated via experiments. GIMC structure

with Smith Predictor with more than 10[s] delay is still

stable if there is no error in time delay. If there exists an

error between τ̂ and τ , the maximum allowable perturbation

|τ̂−τ| is about 0.16[s]. On the other hand, stability limitation

of GIMC structure for time delay is about 0.1[s]. Therefore

GIMC structure with Smith Predictor is better than GIMC

structure itself.

VI. APPLICATION TO VIRTUAL NETWORKED CONTROL

SYSTEM

The proposed structure is applied to a virtually networked

control system as shown in Fig.12, where τ̂cp: communi-

cation delay between the controller and the plant, τ̂pc: the

communication delay between the plant and the controller,

respectively. The virtual network system is constructed in

a dSPACE digital control system. Here the communication

delay are given as τcp = τpc = 0.32[s] and τ̂cp = τ̂pc = 0.37[s].

Then time responses of the output and the internal signal q

are shown in Figs.13 and 14. Here the filter H(s) in the

detector is given by (24), and the threshold value for the

judgment is decided as Jth = 3.0×10−4. The time response

in Fig.13 shows a vibration and an instability after changing

the communication delay. But the time response shows that

the vibration is finally decreased and the stability is kept as in

Fig.10. We can see that the controllers are switched around

2.5[s] from Fig.14.

It has been shown that the proposed structure can be

applied to networked control system from these results as

same as the case of the Section V-B.

VII. CONCLUSION

We have proposed a new GIMC structure with Smith

Predictor, and the proposed structure has achieved both high

performance and high robustness for a time-delayed unstable

mechatronic system. GIMC structure is a structure which can

achieve both high performance and high robustness specifi-

cations, and Smith Predictor is a control method considering

communication delay.

The proposed structure was applied to a magnetic sus-

pension system then it was shown that the structure

could achieve high performance if the parameters were

not changed, and the structure could keep the stability if

there was an error between a plant and a model which a

nominal controller could not keep the stability. In addition,

the proposed structure was applied to the networked control

system and its effectiveness of the proposed approach was

shown by several control experiments.
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