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Abstract

The celebrated Gini(-Simpson) biodiversity index has found very useful applications in ecology,
bio-environmetrics, econometry, psychometry, genetics, and lately in bioinformatics as well. In such
applications, mostly, categorical data models, without possibly an ordering of the categories, crop up,
which may preempt routine use of conventional measures of quantitative diversity analysis. Further,
in real life problems, mostly, genuine multidimensional data models are encountered. The Hamming
distance incorporates the idea of Gini-Simpson diversity index in a variety of multidimensional se-
tups, without making very stringent structural regularity assumptions. In bioinformatics as well as
many other large biological system analysis studies, the curse of dimensionality (arising in multidi-
mensional purely qualitative categorical data models) is a geneuine concern. The role of Hamming
distance based analysis is appraised in this context. Subgroup or MANOVA decomposability aspects
are specially appraised in this setup.

1. Introduction

Variation (or diversity) abounds in various statistical models for quantitative as well as qualitative
response variables. For continuous or discrete random variables, the well known measures of central
tendency and variation (or dispersion) are respectively the conventional mean and standard deviation.
The popularity of these measures stems from the fact that for a normal distribution, they characterise
the location and scale parameters of the distribution. For non-normal distributions, the mean and
standard deviation may not characterise the location and scale (even if we confine ourselves to the so
called location-scale family of densitites), and as such, these measures may not have natural appeal.
This problem is more acute with the standard deviation than the mean. Their estimation may also
encounter lack of robustness and optimality properties (to a lesser or greater extent depending on
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the departure from normality). Consideration of a location-scale family of distributions provide a
basis for robust measaures, and some of these have been formulated in a greater generality in a
nonparametric fashion too. As such for conventional quantitative data models, often, robustness and
efficiency considerations prompt some alternative measures which are less sensitive to outliers, heavy
tails etc.. The median, inter-quartile range, and various M � � L � and R � estimators of location and
scale parameters have found their utility in statistical appraisal of central tentency and dispersion of
quantitative data models (viz., Jurečková and Sen 1996). There are some quasi-quantitative models
where a set of categorical responses with at least a partial ordering of the categories may be observed.
For such binary or polytomous categorical data models arising in many fields of application (viz.,
social networks, psychometry (item analysis) and biological (quantal) assays), often a continuous
underlying trait is conceived so that measures of location and variation can be formulated in terms of
such latent trait variables. This approach has been generalized to a much broader set-up under suitable
generalized linear models (GLM) (viz., McCullagh and Nelder 1989). In an intermediate scenario
there are data models relating to a set of ordered class-intervals, albeit the underlying variable may
well be continuous. Specific parametric form of the underlying continuous distribution may often
be difficult to comprehend, and for simplicity of modeling and analysis, often it is assumed to be
normal. In such setups, nonparametrics has flared up in natural ways to supplement conventional
measures with more robust and meaningful alternatives. Sans quantitative labels, the concept of an
underlying latent trait variable may not be very appealing, and hence, such conventional measures of
central tendency and dispersion are generally not meaningful.

The situtation is quite different for purely qualitative categorical data models where the categories
differ qualitatively and there may not be any implicit ordering of these categories. For example, in
a simple categorical model with the response categories being the color of eye-ball, the variation
is purely qualitative, and no ordering of them may be perceived. Similarly, in a simple (genetic)
linkage model, there are 4 genotypic categories, AA, Aa, aA and aa with dominant A and recessive
a. In genomics where the genes show up in very large numbers, for DNA (a double hellic model)
with the nucleotides A, C, G and T, at each site or position, there are the 4 categories without any
implicit ordering, albeit A pairing with T and G with C. For RNA codons there are some 20 amino
acids without any ordering in a quantitative sense. In such a case, a measure of location is not that
meaningful and therefore of much interest, albeit, there could be some distinct variation or diversity
(of purely qualitative type) in the data models that needs to be statistically addressed properly.

Gini (1912) came up with a very interesting measure of lack of concentration or diversity that
opened the avenue for further fruitful research in diversity analysis of qualitative categorical data
models. Simpson (1949), apparently being unaware of the Gini fundamental contribution (measure),
proposed the same measure for bio-diversity in an ecological context. Our main interest centers
in this Gini-Simpson index of diversity and its impact in a large class of fields of application in
many interdisciplinary fields; in this context, quite often an enormously large dimensional data set
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crops up, often with relatively smaller number of observations. In this respect, the Gini-Simpson
index has been generalized to what is known as the Hamming distance. We intend to probe into
the MANOVA (multivariate analysis of variance-) or subgroup-decomposability of such measures,
and their underlying statistical perspectives. The Shannon (1948) entropy measure, and its variants,
such as the Rao quadratic entropy measure and the utility-oriented Gini-Simpson Index also deserve
attention.

The Gini-Simpson diversity index and its ramifications are reconciled in Section 2. Along with
some natural multi-dimensional ramifications, a general form of the Hamming distance is presented in
Section 3. ANOVA or subgroup decomposability of these indexes is appraised in Section 4. Keeping
in mind the very high-dimensional models, typically, arising in bioinformatics and large biological
systems studies, the curse of dimensionality problem is critically assessed in Section 5. The conclud-
ing section deals with some general asymptotics relevant to the present set-up.

2. The Gini-Simpson Index

Keeping in mind that a measure of diversity or concentration should have a meaningful physical
interpretation, we may gather that for purely qualitative (categorical) data models, characterized by
the absence of any interpretable quantitative variation, the usual measures of variation (advoated for
quantitative data models) may not be at all suitable. Since in such qualitative data models, the in-
dividual cell (or category) frequencies (or probabilities) convey all statistical information, a suitable
measure of lack of concentration or diversity is to be based on these entities only, and they should
have good physical interpretation. There are some alternative thinking in this respect based on three
very novel ideas: (i) the Gini-Simpson index (GSI), introduced by Gini (1912), quite sometimes be-
fore the others, (ii) Wiener’s (1948) cybernetics theory, and (iii) Shannon entropy measure (SEM).
Simpson (1949) had a distinct emphasis on bio-diversity while Shannon (1948) laid down the founda-
tion of the information theory where the role of the entropy measure has been explored to a maximum
extent. A more statistical treatise of information theory is contained in Kullback (1959). Cybernetics
seems to have a very dominant role in statistical chaos theory, and it is also getting more attention in
information theory, artificial intelligence etc.. The Gini-Simpson index, as will be formulated now,
seems to have a very natural interpretation as would be detailed below.

Consider a categorical data model with C qualitative (and possibly unordered) categories, labelled
as 1 ��������� C having respective cell probabilities π1 ��������� πC. We may note then if all the cells are equally
probable, then there is no concentration so that the diversity is a maximum. In the other extreme
case where one cell has the unit probability and the others have all null probability, then there is a
maximum concentration in one of the categories (or minimum diversity). Thus, a measure of diversity
(or lack of concentration) should satisfy these two restraints, namely, that it is equal to zero if we have
a degenerate probability law with only one cell having the entire probability mass, and it is equal to
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one (if so normalized) if all the cells are equally probable. Of course, there should be some notion of
ordering of diversity in this setup, and that aspect would be elaborated as we proceed. The GSI (Gini
1912) capitalizes this idea and is expressed as

IGS
�
π �	� 1 � π 
 π� 1 � C

∑
c � 1

π2
c � (2.1)

Note that π � SC  1, where SC  1 is the
�
C � 1 � -simplex (= � x : x ��� 0 � 1 � C � ∑C

c � 1 xc � 1 � . The C vertices
of this simplex correspond to the degenerate cases π j � 1 � πk � 0 ��� k �� j; j � 1 ��������� C. At each vertex,
IGS

�
π ��� 0, so that IGS

�
π ��� 0 on the vertices of the simplex. Similarly, the centroid of the simplex

corresponds to π � C  11 where IGS attains a maximum value 1 � C  1. For this reason, a normalized
form of the IGS is defined as

I �GS
�
π ��� C

C � 1
IGS

�
π � � (2.2)

Keeping this picture in mind, we express the simplex SC  1 as the set-theoretic union of the contours
SC  1

�
p � : p ��� 0 � 1 � , where

SC  1
�
p ����� x � SC  1 : x 
 x � 1 � p � � 0 � p � 1 � (2.3)

Note that by virtue of (2.2), the upper limit for p is
�
C � 1 ��� C (and not one). This set-theoretic

union also defines an ordering in terms of diversity, and this will be termed the Gini-ordering of the
probability on a simplex. In passing we may note that if we consider a sphere of radius 1 � p and
center at the origin, then the sphere intersects the Simplex SC  1 in a contour which is SC  1

�
p � . If p � 0

this contour relates to the discrete set of C vertices of the simplex, and if p � 1 � C  1 then this contour
reduces to the single point which is the centroid of the simplex SC  1. For 1 � C  1  p � 1, the sphere
of radius 1 � p fails to intersect the simplex, while for 0  p  1 � C  1, the contour SC  1

�
p � is a C � 1

dimensional spherical surface on SC  1, either contained in the simplex or having segments that belong
to the simplex, and the ordering of the contours SC  1

�
p � is visibly based on these annular spherical

contours which are solely characterized by their radius. The following figure depicts the ordering in
the particular case of C � 3, where S2 is an equilateral triangle with the centroid with coordinates
(1/3, 1/3, 1/3) and 3 vertices (1,0,0), (0,1,0) and (0,0,1), all located on the original 3-dimensional unit
cube. A similar picture holds for any C ! 3,

Figure 1 : A display of the annular contours
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This Gini-ordering will be of genuine importance when in a later section we consider some sta-
tistical inference problems based on the GSI and its ramifications.

With the same notations as before, for the C-category qualitative data model, the Shannon (1948)
entropy measure is defined as

E
�
π ��� � C

∑
c � 1

πc logπc � (2.4)

and it is also defined on SC  1. Further note that x log x is equal to zero when x � 0 or 1, and for every
0  x  1, � logx � � log

�
1 � �

1 � x ����� ∑
j " 1

j  1 � 1 � x � j � (2.5)

so that

E
�
π ��� ∑

j " 1
j  1

C

∑
c � 1

πc
�
1 � πc � j ! IGS

�
π � � (2.6)

As a result (Sen 1999), the Entropy may have some inflationary tendency (relative to the GSI). In fact,
Rao (1982a,b,c) examined the role of the entropy measure in some genetic variation in evolutionary
studies (see also Chakraborty and rao 1992), and Rao has clearly pointed out the limitations of E

�
π �

in the context of measuring biological diversity. Rao suggested some modifications of the entropy
measure that we shall only discuss briefly.

The Gini-Simpson index has been widely used in various interdisciplinary fields. In some of these
usages, there could be additional information associated with the C categories, such as some (implicit)
ordering (not necessarily linear) or some utilty-levels which can be incorporated in a meaningful way.
Sen (1999) and Chatterjee and Sen (2000) elaborated some of these measures and their characteristics
in the context of poverty, income inequality and also in quality of life studies. We shall discuss them
briefly later on. Other developments relate to similar measures based on more sophisticated distance
function. In this respect, Rao’s quadratic entropy function and its generalizations by Nayak (1986a,
b) and Nayak and Gastwirth (1989) are especially noteworthy. Basically, they considered a C # C
matrix ∆ � ���

dcc $ ��� where the dcc $ stand for suitable distance between the category c and c 
 (so that by
definition, dcc � 0 ��� c � 1 ��������� C � . Then the Rao quadratic entropy measure is expressed as

H
�
π ��� π 
 ∆π � 2 ∑

1 % c & c $ % C
dcc $ πcπc $ � (2.7)

If we let all the dcc $ to be equal to 1 then the quadratic entropy measure reduces to the Gini-Simpson
index. In passing, we may remark that for purely qualitative categorical data models, a meaningful
choice of the dcc $ (other than all being equal to 1) may not be always feasible and hence the Gini-
Simpson index has a more natural appeal in this context. Even for some of these purely qualitative
data models, some utility scores u

�
c � � c � 1 ��������� C can be attached in a meaningful way. In such a
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case, a utility-oriented Gini-Simpson index (Sen 1999) can be defined as

IUGS
�
π ��� C

∑
c � 1

u
�
c � πc

�
1 � πc � (2.8)

Typically the utility scores are so standardized that they are nonnegative and lie in the interval � 0 � 1 � .
Again, if all these scores are equal to 1, then the IUGS reduces to the IGS. We shall find it more
convenient to work with such a utility-oriented Gini-Simpson inndex, and as such, our findings apply
to the Gini-Simpson index as well. If there is an implicit ordering (though not necessarily linear)
of the labels 1 ��������� C, so that u

�
c � is monotone in c

� � 1 ��������� C � , then it might be reasonable to let
(Chatterjee and Sen 2000) dcc $ � u

�
c ' c 
 � � for c � c 
 � 1 ��������� C. In that case the utility-oriented Gini-

Simpson index resembles a quadratic entropy measure. However, in general, neither is a particular
case of the other. For such monotone utilities, some utility-oriended Gini-Simpson Indexes have some
’tiltedness’ properties which are useful in more detailed analysis of diversity with emphasis on the
underlying ordering; we refer to Chatterjee and Sen (2000) for a detailed treatise of these properties
with emphasis on income inequality, poverty, and quality of life studies. It has been shown there that
for ordered categorical data models, the Lorenz-ordering of distributions and their’tiltedness’ are not
necessarily isomorphic. For such quasi-quantitative models, we have an implicit ordering in terms
of the ’tiltedness’ of the probability laws, providing a bit more information than the simple Gini-
ordering. However, sans such an implicit ordering, utility-scores need to be assessed with special
reference to the specific problem at hand, and may not be universally advocated.

3. The Hamming distance

Keeping in mind some genomic studies, we consider here a typical scenario where we have a
number (K) of positions or sites, where at each position or site, we have a number (C) of qualitative
(and usually unordered) categories. An object, in each position, can take on one of the C possible
labels 1 ��������� C, there being thus a totality of CK possible realisations for each object. Thus, if we
consider a two-way table with K columns and C rows, then within each column we would a (random)
row containing the number 1 while the other C � 1 rows have the number 0. It is therefore possible
that two or more positions may have the manifestation of the same level c for some c � 1 ��������� C.
Further, no column is empty, albeit, some of the rows may be empty (for a particular object).

To describe this model, we consider a set of n vectors Xi � �
Xi1 ��������� XiK � 
 � i � 1 ��������� n where Xik

stands for the particular label (1 ��������� C) for the ith observation in the kth position, for k � 1 ��������� K.
Thus, each Xi has a totality of CK possible realizations; we denote the corresponding probability law
by a multi-dimensional multinomial law with the probability elements

Π � ���
π
�
c �(��� � c � C � (3.1)
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where c � �
c1 ��������� cK � 
 with each c j taking on the labels 1 ��������� C, so that

C ��� c : c j � 1 ��������� C; j � 1 ��������� K � � (3.2)

The cardinality of C is CK . In some applications in genomics, it is tacitly assumed that the K positions
are stochastically independent (with respect to the manifestation of the labels 1 ��������� C), so that we may
then take

π
�
c ��� K

∏
k � 1

πk
�
ck � �)� c � C � (3.3)

where the πk
� � � are the marginal probability elements for the kth position. In some cases, it is even

assumed that these marginals are the same, so that the positions are then assumed to have independent
and identically distributed manifestations. In real life applications, however, neither the assumption
of independence nor homogeneity of the marginal multinomial laws may turn out to be reasonable,
and hence, we would like to deal with the general model in (3.1) allowing possible dependence as
well as heterogeneity.

One possible way to describe the probability law for Xi is to write the joint probability as

P � Xi � c �*� P � Xi1 � c1 � K

∏
k � 2

P � Xik � ck +Xi j � c j � j � k � 1 � � c � C � (3.4)

It is easily conceivable that we have a transition from the label ck  1 to ck, at the kth position, for
k � 1 ��������� K, where c0 is treated as the trivial (or unconditional) element. As such, if we could assume
a Markov chain model, then we could simplify the model (3.1) in terms of the transition probabilities
and the marginal one for the first position. In that case, the number of unknown probabilities in the
model reduces (from CK � 1) to C � 1 , �

K � 1 � C � C � 1 � , while in the stationary case, it reduces
further to C2 � 1. Again such a Markov chain assumption may not be generally tenable in genomics
and many other applications. Sans the Markov chain assumption, the number of parameters in the
model can become unmanageably large as K or C becomes large - as is typically the case in real
applications.

For diversity analysis for such high-dimensional qualitative categorical data models, we take re-
course to the Gini-Simpson index and extend it in a natural way to accomodate possible dependence
as well as heterogeneity of the marginals. For two vectors Xi � X j � i �� j, each following the probability
law in (3.1), the Hamming distance is defined as

di j � K  1
K

∑
k � 1

I
�
Xik �� X jk � � (3.5)

Thus, for the entire sample of n vectors, we have the Hamming distance

Dn � -
n
2 .  1

∑
1 % i & j % n

di j (3.6)
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Note that as in the case of the GSI, the Hamming distance based measure Dn is a U -statistic corre-
sponding to a symmetric kernel of degree 2. As such, Dn is an optimal nonparametric estimator of its
population counterpart (which is an estimable parameter in the sense of Hoeffding (1948)):

∆ � E �Dn �/� K  1
K

∑
k � 1

P � Xik �� X jk �
� K  1

K

∑
k � 1

� 1 � C

∑
c � 1

π2
k
�
c ���

� K  1
K

∑
k � 1

IGS
�
πk � � (3.7)

which is the average of the marginal Gini-Simpson indexes. Recall that for each k
� � 1 ��������� K � , the

sample counterpart of IGS is

Unk � -
n
2 .  1

∑
1 % i & j % n

I
�
Xik �� X jk �

� C

∑
c � 1

nkc
�
n � nkc �

n
�
n � 1 � � k � 1 ��������� K � (3.8)

where nkc is the number of observations in the kth position having the label c, for c � 1 ��������� C, and
n � ∑C

c � 1 nkc, for all k � 1 ��������� K. Thus,

Dn � K  1
K

∑
k � 1

∑C
c � 1 nkc

�
n � nkc �

n
�
n � 1 � � (3.9)

We have observed in the previous section that there is a nice ordering of contours on the simplex
SC  1 based on the ordered values of the GSI. In the present case, the Hamming distance Dn or its
population counterpart ∆ is an average over K GSI; though each of them has an ordering similar to that
in Section 2, their average may not have this ordering simply in terms of constant Hamming distance
values. This is not surprising as even for the continuous (multivariate) case such an ordering demands
for delicate structure on the parameters. For example, for the multi-sample multinormal dispersion
problem, instead of the variance ordering, we need a matrix-version resulting in an ordering of the
eigenvalues of the dispersion matrix, i.e., the difference of two such positive definite matrices being
positive semi-definite. In the present case, consider two probability matrices Π1 and Π2 (pertaining
to model (3.1)) with the respective marginal probability vectors π1k and π2k, for k � 1 ��������� K. Then
we define a more stringent ordering (very similar to the layer alternatives in the multivariate location
model) as : Π1 has more (layer) diversity than Π2 if

IGS
�
π1k ��! IGS

�
π2k � �0� k � 1 ��������� K � (3.10)
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with the strict inequality for at least some k
� � 1 ��������� K � . Although the ∆-constant contours are no

longer spherical, this partial ordering can be used to order the Hamming distances in a manageable
way. Of course, if all the marginal probability laws are the same, then the Hamming distance is
the same as the common Gini-Simpson index, and hence, the Gini-ordering considered in Section 2
would remain in tact.

In applications in bioinformatics (and genomics), often the different positions may have different
weights, so that we could consider an immediate generalisation of Dn to accomodate their relative
importance. We conceive of a set of nonnegative weights wk � k � 1 ��������� K and standardise them by
letting ∑K

k � 1 wk � 1. Then, a weighted version of the Hamming distance can easily be conceived as a
convex (linear) combination of the Unk as

D �n � K

∑
k � 1

wkUnk

� K

∑
k � 1

wk

C

∑
c � 1

nkc
�
n � nkc �

n
�
n � 1 � � (3.11)

It is also possible (whenever utility-score could be validly attached to the different labels) to cosider
a utility-oriented weighted Hamming distance based measure:

D �n � w � u �	� K

∑
k � 1

wkUnk
�
u �

� K

∑
k � 1

wk

C

∑
c � 1

ucnkc
�
n � nkc �

n
�
n � 1 � � (3.12)

In some applications, a natural measure of distance between two positions can be conceived; the ge-
netic distance in some multifactorial genetic models is a classical example of such a distance measure.
In such a case, for every pair

�
k � q � : 1 � k  q � K of positions, we conceive of a suitable distance

δkq. By definition, the δkq are all nonnegative. In that case, we may consider a Gini-Simpson index
for the pair

�
k � q � of positions. We define these between position GSI as Unkq, where

Unkq � n  1
n

∑
i � 1

I
�
Xik �� Xiq � � k �� q � 1 ��������� K � (3.13)

Note that the pair
�
Xik � Xiq � may not have stochastically independent coordinates, but still the Unkq

qualify for a U -statistic based on a kernel of degree 1. Further, Unkk � 1 �1� k � 1 ��������� K. We define
then

Do
n
�
δ �2� ∑

1 % k & q % K
δkqUnkq � (3.14)

Such a composite measure would be more meaningful for co-variability or co-diversity, although it
might not reflect the diversity as a whole.
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4. Decomposability Perspectives

In statistics, the classical analysis of variance (ANOVA) model provides a simple interpretation
of decomposability. In its most simple form, for a one-way layout model, if we have G samples from
G different populations, all assumed to have a common dispersion, but possibly different means, then
the total sum of squares can be decomposed into two components: the pooled within group sum of
squares and the between group sum of squres; the former is independent of any possible inter-group
differences in means while the later is sensitive to such differences. In the context of poverty and
income inequality measurement, there being some qualitative factors in addition to some quantitative
ones, it has been argued (Shorrocks 1980, Rao 1982, Sen 1997) that a measure should have the
subgroup or additively decomposability property in the sense that a combined group (nonnegative)
measure should be decomposable into two additive components representing the within group and
between group measures. This is very much in line with the ANOVA-decomposability mentioned
above. In the present context, we are primarily confronted with qualitative data models, and hence,
we would like to appraise the subgroup or additively decompsability perspectives in a meaningful
sense. The Gini-Simpson index being a measure of diversity is nonnegative and it should satisfy
a similar decomposability axiom. Indeed this has been studied in detail by Pinheiro et al. (2000,
2005) and Sen (1999,2004), among others. We are confronted here with a multi-dimensional model.
Therefore, it might be better to bring the analogy with the MANOVA- decomposability, albeit in our
purely qualitartive catergorical data models. In multi-sample multivariate models, the total sum of
product matrix can be similarly decomposed into ’within group’ and ’between group’ components,
each being a matrix of the seme order as the total. The rather discouraging aspect of this MANOVA-
decomposability is that whenever the sample size is smaller than the dimension of the above matrices,
they cease to be positive definite (p.d.) and that creates considerable difficulties for statistical analysis
(even under the conventional assumption of underlying multinormal distributions). The situation
becomes worse for nonnormal distributions, not to speak of high-dimensional categorical data models.

Motivated by the above remarks, let us first discuss the decomposability prospects for the Gini-
Simpson index, and then append a general discussion on the Hamming distance. Consider G in-
dependent groups of observations where in the gth group, there are ng independent observations
Xg1 ��������� Xgng with each Xgi taking on a categorical response labelled as 1 ��������� C with a probability
vector πg � �

πg1 ��������� πgC � 
 , for g � 1 ��������� G. As in (2.2), for the gth group, we define the sample
counterpart of the Gini-Simpson index by

U 3 g 4n � C

∑
c � 1

ngc
�
ng � ngc ���5� ng

�
ng � 1 ��� � g � 1 ��������� G � (4.1)

where the ngc stand for the number of observations in the gth group belonging to the cth category,
for c � 1 ��������� C; g � 1 ��������� G, and n � n1 , ������� nG the total sample size. Side by side, we define the
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sample measure of the Gini-Simpson index for the pair
�
g � g 
 � of groups as

U 3 gg $ 4
n � C

∑
c � 1

ngc
�
ng $ � ng $ c ���5� ngng $ � � g �� g 
6� 1 ��������� G � (4.2)

Note that by definition

δgg � EU 3 g 4n � 1 � C

∑
c � 1

π2
gc � g � 1 ��������� G � (4.3)

and similarly

δgg $ � EU 3 gg $ 4
n � 1 � C

∑
c � 1

πgcπg $ c � g �� g 
6� 1 ��������� G � (4.4)

Let us denote the pooled sample Gini-Simpson index by

Un � C

∑
c � 1

n 7 c � n � n 7 c ���5� n � n � 1 ��� � (4.5)

where n 7 c � ∑G
g � 1 ngc � c � 1 ��������� C.

Note that by construction

Un � G

∑
g � 1

ng
�
ng � 1 �

n
�
n � 1 � U 3 g 4n , ∑

g 8� g $ ngng $
n
�
n � 1 � U 3 gg $ 4

n � (4.6)

which are the some sort of within and between gropus components. However, we consider a more
refined decomposition based on the following considerations:

G

∑
g � 1

ng
�
ng � 1 �9� ∑

g � 1
Gn2

g
� n �

∑
g 8� g $ ngng $ � n2 � G

∑
g � 1

n2
g � (4.7)

and the right hand sides do not match. Further, note that by the AM-GM inequality,

C

∑
c � 1

πgcπg $ c � C

∑
c � 1

�
π2

gc , π2
g $ c ��� 2 �0� g �� g 
6� 1 ��������� G � (4.8)

where the equality sign holds only when πg � πg $ . Therefore,

δgg $ ! 1
2
� δg , δg $ � �:� g �� g 
 � 1 ��������� G � (4.9)
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Further, we write
ng
�
n � ng �

n
�
n � 1 � � ng

n
� ng

�
n � ng �

n
�
n � 1 � � g � 1 ��������� G � (4.10)

so that we can rewite the pooled sample measure as

n
�
n � 1 � Un � �

n � 1 � G

∑
g � 1

ngU 3 g 4n ,
∑

g 8� g $ ngng $ � U 3 gg $ 4
n � 1

2
� U 3 g 4n , U 3 g $ 4n � � (4.11)

Note that the denominator of U 3 gg $ 4
n and U 3 g 4n are not the same, and hence, even if δgg $ ! �

δg , δg $ ��� 2 � ,
their sample counterparts may not satisfy the same inequality. To see this, consider the null hypothesis
where the πg are all the same, so that EU 3 gg $ 4

n � δ � δg ��� g � g 
 � 1 ��������� G, and hence, under this null
hypothesis,

E � U 3 gg $ 4
n � �

U 3 g 4n , U 3 g $ 4n ��� 2 �;� 0 ��� g �� g 
 � 1 ��������� G � (4.12)

so that each of these U 3 gg $ 4
n � �

U 3 g 4n , U 3 g $ 4n ��� 2 will assume both positive and negative values under
the null hypothesis. Led by this stronger motivation, we consider the following subgroup or ANOVA
decomposability of the Gini-Simpson index:

n
�
n � 1 � Un � �

n � 1 � G

∑
g � 1

ngU 3 g 4n , ∑
1 % g & g $ % G

ngng $ � 2U 3 gg $ 4
n � U 3 g 4n � U 3 g $ 4n � � (4.13)

and designate the two terms on the right hand side as the ’within group’ and ’between group’ compo-
nents. This decomposition has been stressed in Sen(1999, 2004) and Pinheiro et al. (2005).

Based on the above decomposition and the fact that the ’between group’ component has zero ex-
pectation only under the null hypothesis, while the ’within group’ component is an unbiased estimator
of a positive quantity (a weighted average of the δg which are all nonnegative) it seems quite natural
to consider the following ANOVA-type test statistic

Ln � ∑1 % g & g $<% G ngng $ � 2U 3 gg $ 4
n � U 3 g 4n � U 3 g $ 4n �

∑G
g � 1 ngU 3 g 4n

� (4.14)

As under alternatives, the numertor has a positive expectation, we are to use a one-sided critical region
rejecting the null nypothesis for large positive values of Ln. The crus of the problem is therefore to
find a critical value of Ln.

Under the null hypothesis, all the πg being the same, all the n observations in the pooled sample
have a common multinomial law with an unknown parameter vector of rank C � 1. This makes it
naturally appealing to use the permutational distribution of the test statistic generated by all possible
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n! � � n1! =�=�= nG! � partitioning into G groups. This procedure yields a permutationally (conditionally)
distribution-free test for the null hypothesis. However, if the ng are not small, the enumeration of the
exact permutation distribution may become prohibitively laborious. Hence, there is a need to provide
asymptotic distributional results that would provide good approximations for moderate sample sizes
s well. The basic difficulty stems from the fact that the numerator of Ln is not a linear statistic, and its
denominator is not permutationally invariant. Hence, there is a need for showing that the denominator
has a nice convergence property while for the numerator, suitable permutational central limit theorems
can be used to yield the desired asymptotic results. We shall discuss this problem in a general context
in the next section.

5. The Curse of Dimensionality

To motivate the setup, let us refer back to Section 3 and the general models described in (3.1)
through (3.4). Typically, in such models, K, the number of positions or sites, is large, often, even
much larger than n, the number of observations. The curse of dimensionality problem is particularly
perceptible in this ’large dimension, small(er) sample size’ context, and the present problem is much
more acute due to the pure qualitative categorical nature of the response variables. In convensional
multinormal distributional models, granted that variation- covariation features are solely character-
ized by their dispersion matrices, various attempts have been made to strengthen standard results on
Wishart matrices under such high-dimensional, smaller sample size setups. Use of various general-
ized inverses, pertinent subset of variables selection, canonical analysis, and other related statistical
tools all rest on certain linear structures which pertains to such multinormal systems. Even for quan-
titative but nonnormal systems, such linear structures may not generally hold. The situation is worse
in the present context of purely qualitative response variables.

In the same context of subgroup or ANOVA decomposability as treated in the previous section,
we may consider G groups and use the same notations, as before, with one extension that here Xgi

stands for a K-vector of responses Xgk > i � k � 1 ��������� K, where Xgk > i refers to the categorical label for
the response of the ith observation in the gth group at the kth position, and it can take on the la-
bels 1 ��������� C. Sans any spanning linear subspace in such categorical data models, it seems logical to
consider the entire G # K matrix of Gini-Simpson indexes for each group and each position. These
Gini-Simpson indexes are denoted by Un > gk � k � 1 ��������� K � g � 1 ��������� G, and their population counter-
parts (or expectations in this case) are denoted by δgk � k � 1 ��������� K � g � 1 ��������� G. We let

∆g � �
δg1 ��������� δgK � 
 � g � 1 ��������� G � (5.1)

and basically we want to test for their homogeneity, i.e.,

H0 : ∆1 ��=�=�=?� ∆G � ∆ unknown � (5.2)
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against the composite alternatives that they are not all equal. The CATANOVA (categorical ANOVA)
tools (Anderson and Landis 1980, 1982) tools can be easily conceived to test this hypothesis. How-
ever, in view of the basic problem that when K is large (compared to n), the number of parameters
apprearing in the dispersion matrices of the Un > gk becomes so large that standard multinormality based
asymptotics (running parallel to the multinormal MANOVA case) may not be appropriate. Notwith-
standing that the Un > gk � k � 1 ��������� K are neither independent nor identically distributed, it would not
be wise to treat them as i.i.d. copies in attempting to resolve the curse of dimensionality problem, al-
though it is often done in bioinformatics! We therefore propose to proceed along the lines of Pinheiro
et al. (2000, 2005), and incorporate the Hamming distance based ANOVA tools as a direct extension
of the analysis considered in the previous two sections.

Whereas Pinheiro et al. (2000, 2005) and others (mainly to reduce the burden of nuisance pa-
rameters) assumed independence of the K positions, and some others used the classical CATANOVA
tools, we like to incorporate the subgroup-decomposabality directly prospect in the formulation of our
test procedure. We note that for each k

� � 1 ��������� K � , the Un > gk � g � 1 ��������� G, and the pooled sample
Un > 7 satisfy the same subgroup-decomposability property studied in detail in the preceding section.
Therefore, we could define the K-vectors of individual as well as pooled sample Gini-Simpson in-
dexes and adapt this subgroup-decomposability in a natural way. However, if K is large, working with
a multivariate statistic would generally involve a large dispersion matrix full of nuisance parameters
(K
�
K , 1 ��� 2 in number) which are all functions of the underlying probability elements in (3.1)-(3.2).

Therefore, unless n is large compared to K
�
K , 1 ��� 2, estimation of these nuisance parameters may

entail a loss of sample information, and as a result, multinormal approximations may not be very
plausible.

We work with a general weighted version of the Hamming distance introduced the pooled sample
utility-oriented weighted Hamming distance D �n � w � u � in (3.12). Similarly, for the gth group, we
define

D �n > g � w � u ��� K

∑
k � 1

wk

C

∑
c � 1

ucngkc
�
ng � ngkc �

ng
�
ng � 1 � � g � 1 ��������� G � (5.3)

where ngkc stands for the number of observations in the gth sample (of size ng) which show the label
c at the position k, for c � 1 ��������� C;k � 1 ��������� K. Similarly, using the notation in (4.3), as extended to
this vector case, we define

D �n > gg $ � w � u ��� K

∑
k � 1

wk

C

∑
c � 1

ngkc
�
ng $ � ng $ kc �
ngng $ � (5.4)

for every pair g �� g 
 � � 1 ��������� G � . Then, as a direct extension of (4.13), we consider the following
subgroup-decomposition of the pooled same utility oriented weighted Hamming distance :

n
�
n � 1 � D �n � w � u �9� �

n � 1 � G

∑
g � 1

ngD �n > g � w � u �
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, ∑
1 % g & g $ % G

ngng $ � 2D �n > gg $ � w � u � � D �n > g � w � u � � D �n > g $ � w � u ��� � (5.5)

We denote the left hand by SST and the two terms on the right hand side by SSW and SSB, represent-
ing the ’within group’ and ’between group’ components respectively. Here also under the hypothesis
(of homogeneity of all the G groups), SSB has null expectation, while under any alternative result-
ing in any deviation from this homogeneity, E � SSB � is positive. Thus, the subgroup (or ANOVA)-
decomposability observed for the simple Gini-Simpson index holds in a much more general context
of utility-oriented weighted Hamming distance. Having observed this characteristic decomposability
property, it seems natural to consider a test statistic of the form:

L �n � SSB � SSW � (5.6)

and rejecting the null hypypotesis for large positive values of this statistic, i.e., using a one-sided test.
The crux of the problem is therefore to find out suitable critical levels for L �n (based on its distribu-

tion under the null hypothesis) that would lead to a prespecified level of significance α : 0  α  1, at
least in a suitable asymptotic setup. We may note in passing that the ∆g all involve the marginal (multi-
nomial) distributional parameters while the covariance terms of their sample counterparts involve, in
addition, second-order joint (multinomial) distributional parameters. Even under the null hypothesis,
these large number of parameters are unspecified. Hence, the distribution of L �n (even under the null
hypothesis) involves a large number of nuisance parameters. In this respect, the situation may well be
comparable to the classical Neyman-Scott problem with many suisance parameters, and this becomes
even more acute when K is large compared to the ng � g � 1 ��������� G (even when G is not large). This
is particularly the situation marred by the curse of dimensionality problem. As such, prospects for an
exact parametric test or even a conventional likelihood ratio type test (including pseudo-, penalized-,
or quasi- likelihood tests) which allows for elimination and estimation of nuisance parameters in their
formulation) are rather bleak, even in an asymptotic setup. However, under the null hypothesis of
homogeneity, the joint distribution of all the n observations in the pooled sample remains invariant
under any permutation of them, and this permutational invariance structure (same as in the case of the
classical Gini-Simpson index) renders manageable testing procedures. Therefore, at least for small
to moderate values of the sample sizes, n1 ��������� nG, this permutation distribution can be evaluated by
considering all possible n! (equally likely) permutations of the combined sample observations among
themselves) or equivalently all possible equally likely partitioning of the n observations among the G
groups of (sizes n1 ��������� nG). Thus, conditionally (permutationally) distribution-free tests for the null
hypothesis of homogeneity against possible heterogeneity of the utility-oriented weighted Hamming
distances for the g populations can be constructed by an appeal to this permutational invariance struc-
ture. This task becomes prohibitively laborious as the group sample sizes increase. For this reason,
even if we take recourse to permutational invariance, asymptotics are necessary to provide suitable
methodological justification to suitable approximations for critical values of the test statistic. We
provide a brief outline of some of these developments in the concluding section.
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6. General Asymptotics

We may note that the within group statistics D �n > g � w � u � are all U -statistics (Hoeffding 1948) based
on a (symmteric) kernel of degree 2, and similarly, the between group D �n > gg $ � w � u � are two-sample
(generalized) U -statistics based on a kernel of degree (1,1). Therefore, SSB being a linear combination
of generalized U -statistics, is itself a generalized U -statistics. This enables us to make use of the
general asymptotics for (generalized) U -statistics for our study. Asymptotic normality results hold
for U -statistics and related functionals under very general regularity conditions; one of them being
that the kernel is stationary of order 0 (Hoeffding 1948). While this approach works out well under
alternative hypotheses, under the null hypothesis of homogeneity, we encounter a degenerate case
where the kernel is stationary of order 1. We therefore need to appraise the null hypothesis case in
more detail. We incorporate some asymptotics for degenerate pseudo-U -statistics in this context.

The basic idea is to use the Hoeffding decomposition of U -statistic in a slightly extended form,
and then to force a permutational invariance principle to yield the desired asymptotic normality re-
sults. For a kerenel φ

�
X � Y � of degree 2, we define

φ1
�
x �2� E � φ � x � Y � +X � x � � (6.1)

where the expectation is under the null hypothesis. Also, we denote by θ � E � φ � X � Y �@� , and let

ψ1
�
X �9� φ1

�
X � � θ �

ψ2
�
X � Y �9� φ

�
X �Y � � φ1

�
X � � φ1

�
Y �6, θ � (6.2)

Then, we have
φ
�
X � Y ��� θ , ψ1

�
X �5, ψ1

�
Y �5, ψ2

�
X � Y � � (6.3)

and ψ2 is the second-order term in this orthogonal representation. In our notation, SSB, under the null
hypothesis, can be expressed as

Tn � ∑
1 % r & s % n

ηrsψ2
�
Xr � Xs � � (6.4)

where the ηrs are nonstochastic elements, satisfying the two conditions that

∑
1 % r & s % n

ηrs � 0 � ∑
1 % r & s % n

η2
rs � -

n
2 . ; (6.5)

and where the Xr are i.i,d,r.v.’s. First, invoking the permutational invariance structure of the joint
distribution of the Xr, moments of Tn under the permutation measure (of order one and two) are com-
puted to estimate the variance of Tn in a natural way. Secondly, a martingale (array) construction
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enables us to use a dependent central limit theorem (Dvoretzky 1972) to derive the asymptotic nor-
mality of Tn. Finally, the permutation variance estimator is used to studentize the statistic Tn and then
use the Slutzky theorem to obtain the asymptotic normality of this studentized form. This can then be
used to derive good approximations to the critical level of L �n . The details are to be communicated in
a subsequent methodologic paper.
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