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Abstract

High-throughput single-cell technologies have great potential to discover new cell types; however, it remains

challenging to detect rare cell types that are distinct from a large population. We present a novel computational

method, called GiniClust, to overcome this challenge. Validation against a benchmark dataset indicates that

GiniClust achieves high sensitivity and specificity. Application of GiniClust to public single-cell RNA-seq datasets

uncovers previously unrecognized rare cell types, including Zscan4-expressing cells within mouse embryonic

stem cells and hemoglobin-expressing cells in the mouse cortex and hippocampus. GiniClust also correctly

detects a small number of normal cells that are mixed in a cancer cell population.
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Background

Multicellular organisms are composed of diverse cell types

with distinct morphologies and functions. Characterizing

their differences is essential for both basic developmental

biology research and clinical diagnosis and treatment of

human diseases. There has yet to be a uniformly accepted

standard for cell-type classification, but it has become

increasingly appreciated that analysis of global gene ex-

pression patterns provides a systematic and functional

basis [1]. However, traditional microarray and RNA-seq

technologies can only profile the average gene expression

level among a large cell population that often contains

significant heterogeneity. As a result, it is likely that many

cell types remain unrecognized.

The recently developed single-cell genomics and pro-

teomics technologies have provided a new opportunity.

Specialized computational methods have been developed

to identify cell types from single-cell gene expression

data [2, 3]. Applications of these technologies have led

to the discovery of many unrecognized cell types in

diverse tissues, including the hematopoietic, neural,

immune, and digestion systems, and as also to improved

characterization of cancer heterogeneity [4–10].

Cell types that play an important role in development

or disease progression often have low abundance. Exam-

ples of such rare cell types include stem and progenitor

cells [11], cancer stem cells [12], and circulating tumor

cells [13]. To date, systematic identification of rare cell

types from single-cell gene expression data remains a

major challenge. Among the aforementioned methods,

only RaceID [8] is designed specifically to identify rare

cell types.

In this paper, we develop a new algorithm, called Gini-

Clust, for rare cell type detection and show that it outper-

forms RaceID for both simulated and biological datasets.

The most important feature in GiniClust is a novel gene

selection method that is particularly suitable for rare cell

type identification, borrowing ideas from the social science

domain. We apply GiniClust to a number of public data-

sets and gain new biological insights.

Results

Overview of the GiniClust method

To motivate GiniClust, we first note that cell clustering is

dependent on the selection of genes. Traditionally one

often uses the most variable genes for clustering [14]. For

single-cell RNA-seq data, a commonly used metric for
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variability is the Fano factor, defined as the ratio between

the variance and the mean [15]. To illustrate its limitation

in identifying rare cell types, we consider the following

hypothetical example. Consider a mixed population of

1,000,000 cells containing two cell types. We examine the

expression patterns associated with two genes, X and Y,

where only X is differentially expressed. If 50 % of the

population is obtained from either cell type, then the Fano

factor of X is much higher than that of Y (Fig. 1a). This

property of differentially expressed genes is the main prem-

ise underlying variance-based gene selection methods.

However, as the cell population becomes increasingly im-

balanced, the difference between X and Y becomes much

smaller (Fig. 1c, e). When the fraction of the minor cell

type is less than 0.01 %, there is essentially no difference

between the Fano factor values for X and Y, indicating that

the Fano factor is not suitable for selecting rare cell-type-

specific genes.

To overcome this limitation, we have developed a

new approach to systematically identify genes that are

specific to rare cell types. The Gini index [16], which

was originally developed to study social inequality, has

been used to identify countries whose wealth is concen-

trated by a small number of individuals (http://data.world-

bank.org/indicator/SI.POV.GINI/) and is particularly

suitable for identifying rare cell-type-specific genes. For

each gene X, we sort cells based on its expression levels

from the lowest to the highest and then evaluate the cumu-

lated expression levels of X as more and more cells are in-

cluded from the ranked list. A plot of this functional

relationship is called the Lorenz curve (Fig. 1b, d). The

Gini index is defined as two times the area between the Lo-

renz curve and the diagonal. The value of the Gini index

varies between 0 (most uniform) and 1 (most extreme).

To demonstrate the utility of the Gini index, we reex-

amine the above simulated example. As shown in Fig. 1f,

the difference between the Gini index values associated

with X and Y increases substantially as the minor cell

type becomes less abundant, and the difference persists

over a wide range of mixing frequencies.

Figure 2 shows a schematic of the pipeline of our

method, named GiniClust, for detecting rare cell types.

We have made several modifications of the Gini index

to enhance its utility for detecting rare cell-type-specific

genes. First, we define a bidirectional Gini index to iden-

tify genes that are specifically unexpressed in a rare cell

type (this extension is used only for qPCR data analysis

but not for RNA-seq data analysis, as explained later).

Second, we normalize the Gini index values to remove a

systematic bias toward lowly expressed genes. After

normalization, the genes with highest Gini index values

are selected for further analysis and referred to as high

Gini genes. Based on the expression profile of the high

Gini genes, we identify cell clusters by using the algorithm

density-based spatial clustering of applications with noise

DBSCAN [17]. Two additional steps are added to interpret

the clustering results. First, we use t-distributed stochastic

neighbor embedding (t-SNE) [18], a nonlinear dimensional-

ity reduction method, to examine whether identified

clusters are visually distinct. Second, we use differential

gene expression analysis to identify the gene signature asso-

ciated with each detected rare cell type. The details of the

GiniClust pipeline are described in the Methods section.

GiniClust accurately identifies cell subpopulations from

qPCR data

We started by testing whether GiniClust can accurately

detect rare cell types of a known origin. To this end, we

analyzed a multiplex qPCR dataset generated from a

previous study [9]. The dataset consists of the expression

levels of 280 common cell surface markers in 1916 cells

extracted from the mouse hematopoietic system, as well

as 24 mammary gland stem cells (MASCs) and 23 intes-

tinal stem cells (ISCs). All cells were profiled by using

the same set of primers; therefore, their gene expression

patterns were directly comparable. We computed the bi-

directional Gini index values in order to identify genes

that were either upregulated (direction = 1) or downreg-

ulated (direction = –1) in rare cell populations (see

Methods for details). After normalization, we identified

107 high Gini genes (normalized Gini index value

>0.05) (Fig. 3a, Additional file 1: Table S1), including

well-known MASC markers such as MME (CD10),

FGFR1, and FGFR2, and ISC markers such as LGR5,

EPCAM, and CD133. Among this list, 46 genes

(42.59 %) were differentially expressed (fold change

>2 and p value < 1e-5, two-sample t test) between ISC

and hematopoietic cells, and 35 genes (38.9 %) were

differentially expressed between MASC and hematopoietic

cells (Fig. 3b, e, Additional file 2: Table S2), although the

enrichment was not statistically significant.

By using a correlation-based distance to compare cell

similarity, GiniClust identified five clusters (Fig. 3c,

Additional file 3: Table S3) containing two major clus-

ters and three rare clusters. To be precise, here we de-

fine rare cell clusters as those that consist of less than

5 % of the total cell population. In addition, 311 cells

were annotated as singletons that were isolated from all

other cells therefore could not be reliably assigned to

any cluster. We label each cluster simply based on its

relative size; therefore, Cluster 1 is the largest cluster,

while rare clusters are listed in the end. The two major

clusters, Cluster 1 (1452 cells) and Cluster 2 (144

cells), are all composed of hematopoietic cells, with

Cluster 2 associated with elevated CD3 and CD25 ex-

pression. Cluster 3 and Cluster 4 exactly match the

MASCs and ISCs (Fig. 3d and f ), respectively. Cluster

5 contains 8 cells and is characterized by elevated
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IL7R expression. To functionally characterize the cell type

associated with Cluster 5, we compared its gene ex-

pression pattern with that of Cluster 1 and identified

20 genes specifically expressed in Cluster 5 (fold

change >1.5). We then applied functional enrichment

analysis using DAVID (https://david.ncifcrf.gov/) and
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F

Fig. 1 Coparison between Gini index and Fano factor in detecting differentially expressed genes. a Scaled density plot of the expression levels of

genes X (red) and Y (blue). The proportion of the minor cell type is 50 %. b The Lorenz curve for genes X (red) and Y (blue). The proportion of the

minor cell type is 50 %. c, d Same as (a, b), except the proportion of the minor cell type is changed to 1e-5. e Fano factor for genes X and Y for

varying proportions of the minor cell type (1/1 M stands for one in one million). f Gini index for genes X and Y for varying proportions of the

minor cell type
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found that this gene list was highly enriched for “im-

mune systems process” (p value = 3.0e-11) and “cell-

cell adhesion” (p value = 1.5e-10), suggesting that the

cells in Cluster 5 may be involved in immune re-

sponses. t-SNE plots show that these clusters are well

separated from each other (Fig. 3c, d).

For comparison, we analyzed the same dataset by

using RaceID [8], a recently developed computational

method for rare cell type detection. RaceID identified

22 clusters, including 19 rare cell clusters. Unlike

GiniClust, with RaceID both MASCs and ISCs contain

cells from multiple clusters. In addition, each ISC- (or

MASC)-containing cluster consists of cells with

multiple cell lineages (Fig. 3f and Additional file 4:

Figure S1). These observations indicate that RaceID is

less accurate than GiniClust. We further compared the

performance of RaceID and GiniClust using a simu-

lated single-cell RNA-seq dataset, which contained

two major clusters and three rare cell clusters. Each

major cluster contained 1000 cells, whereas the rare

cell clusters contained 4, 6, and 10 cells, respectively

(see Methods for details). Again, GiniClust identified

the three rare cell clusters perfectly. On the other hand,

RaceID correctly detected the rare cells as outliers but

assigned them to incorrect clusters (Additional file 5:

Figure S2).

Fig. 2 Overview of the GiniClust pipeline. Details are described in Methods
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Taken together, the preceding results strongly indicate

that GiniClust is effective for detecting rare cell types

and outperforms existing methods. Therefore, we are in-

terested in applying GiniClust to discover novel cell

types from a number of recently published datasets, as

discussed in the following sections.

GiniClust identifies Zscan4-enriched rare cluster from

mouse embryonic stem cells

In the first dataset we analyzed, mouse embryonic stem

cells (ESCs) were assayed by using a droplet-based

high-throughput sequencing technology called inDrop

at three time points: Day 0, Day 2, and Day 4 after
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Fig. 3 GiniClust uncovers rare cell types from the qPCR dataset. a Relationship between the raw Gini index and the log2-transformed maximum

expression level. Selected genes with high normalized Gini index values are labeled as red dots. b Overlap between the selected high Gini genes

and differentially expressed genes. c t-SNE visualization of the data. Cells are color-coded based on the GiniClust cluster membership. d t-SNE visualization

of the same data as in c. Cells are color-coded based on the actual lineage. e Expression levels of representative genes for MASC (n= 24), ISC (n= 23),

and other cells (n= 1916). Gene expression levels are normalized as percentage of the corresponding maximum values. f Comparison between GiniClust

and RaceID in detection of ISC and MASCs in the mixture of cells
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leukemia inhibitory factor (LIF) removal induced differ-

entiation [19]. We focused on a subset of 2509 cells

obtained from the Day 0 stage, where the cells

remained undifferentiated. On average, about 13,000

unique molecular identifiers (UMIs) were detected in

each cell, corresponding to nearly 6000 genes. Since

single-cell RNA-seq technologies have low detection ef-

ficiency, it is possible that a gene can be undetected in

a cell simply due to technical artifacts such as dropout

[20]. Since we cannot reliably detect genes that are spe-

cifically downregulated in a rare cell type, we evaluated

one-direction Gini index values to select high Gini

genes using a standardized pipeline for parameter selec-

tion (see Methods for details). A total of 131 high Gini

genes (Fig. 4a, Additional file 6: Table S4) were selected

(p value < 0.0001). Using the Jaccard distance as the

metric for comparing cell similarity, GiniClust identi-

fied two clusters (Fig. 4b, Additional file 7: Table S5).

Nearly all (99.8 %) cells were assigned to Cluster 1,

whereas Cluster 2 contained only 3 cells. Only one cell

was annotated as a singleton. The t-SNE plot confirms

that the two clusters were well separated (Fig. 4b).

The number of cells in Cluster 2 is very small. To

exclude the possibility of technical artifacts, we

tested whether this result could be reproduced for

resampled data. To this end, we randomly sampled

from non-rare cells while keeping Cluster 2 intact

and then applied GiniClust to identify rare clusters.

We repeated this analysis five times, varying the

sampling frequency from 50–90 % in 10 % intervals.

In each case, GiniClust precisely re-identified Cluster

2 as a rare cell cluster, suggesting that the result is

highly robust.

By comparing the gene expression patterns between

the two clusters, we identified 77 differentially

expressed genes (MAST [21] likelihood ratio test p

value < 1e-5; fold change >2) (Additional file 8: Table

S6). Among these differentially expressed genes, 33

were high Gini genes (Fig. 4c). This overlap between

the two gene lists is statistically significant (Fisher

exact test, p value < 2.2e-16). Strikingly, several genes

were expressed at an extremely high level in Cluster 2,

but had very low expression in Cluster 1, including a

number of genes from the Zscan4 gene family (Fig. 4d,

Additional file 8: Table S6). Expression of these genes

has previously been observed in the two-cell embryo

stage and 2C-like cells [22], although their potential

function in pluripotency remains unknown.

In order to test whether Cluster 2 shares similar

transcriptomic profiles to those in 2C-like cells, we ex-

tracted a 2C-like gene signature from the literature

[22] and quantified its similarity with each cell in the

inDrop dataset by defining a 2C-like score (see

Methods for details). Strikingly, the 3 cells from Cluster

2 were ranked at the top and distinct from all other cells

(Additional file 9: Figure S3). This analysis suggests that

Cluster 2 may indeed have totipotent properties like those

of 2C-like cells.

GiniClust identifies rare normal cells in glioblastoma

samples

Next, we analyzed a single-cell RNA-seq dataset ob-

tained from glioblastoma (GBM) primary tumors (576

cells) [23]. We identified 51 high Gini genes (Fig. 5a,

Additional file 10: Table S7). Based on this gene list,

GiniClust identified 3 clusters (Fig. 5b, Additional file

11: Table S8). Ten cells were labeled as singletons. The

rare cluster, Cluster 3, contains 9 cells originating from

two different tumors, MGH31 and MGH29. We found

81 genes that were significantly upregulated (MAST

likelihood ratio test p value < 1e-5, fold change >2) in

Cluster 3 compared to Cluster 1 (Additional file 12:

Table S9). Again, the overlap between the two gene lists

is statistically significant (Fisher exact test, p value

1.3e-9) (Fig. 5c).

Several genes that were highly expressed in Cluster 3

were well known to be preferentially expressed in nor-

mal oligodendrocytes, including CLDN11, MBP, PLP1,

and KLK6 (Fig. 5d), indicating that these cells are not

cancer cells. Such cells were also detected in the original

study but only through using extensive biological know-

ledge [23]. Such knowledge is not required in GiniClust

analysis.

GiniClust identifies an undetected rare cell type in mouse

somatosensory cortex

Finally, we analyzed a third single-cell RNA-seq dataset

containing 3005 single cells obtained from the mouse

somatosensory cortex and hippocampus CA1 region

[4]. The authors developed a computational tool called

BackSPIN and applied it to identify 47 clusters. The

number of cells in each cluster varied from 5 to 380.

We identified 82 high Gini genes (Fig. 6a, Additional file

13: Table S10). Based on this gene list, GiniClust identified

4 cell clusters (Fig. 6b, Additional file 14: Table S11),

including two rare clusters (Cluster 3 and Cluster 4). Six

cells were annotated as singletons. Cluster 3 contains 76

cells, 74 (97.4 %) of which were annotated as interneurons

by BackSPIN. Compared to Cluster 1, Cluster 3 highly

expresses Gad2 and Gad1. On the other hand, Cluster 4,

which contains only 3 cells, overlaps with three distinct

clusters identified by BackSPIN (Additional file 15: Figure

S4). To gain functional insights, we compared its

transcriptomic profile with Cluster 1 and identified 18

upregulated genes (fold change >2; MAST likelihood

ratio test p value < 1e-5)(Additional file 16: Table S12).

The overlap with high Gini genes is statistically signifi-

cant (Fisher exact test, p value = 2.2e-6, Fig. 6c). Of
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note, there are 3 hemoglobin genes, including Hba-a2,

Hbb-bs, and Hbb-b2, that are highly expressed in Clus-

ter 4 but not expressed elsewhere (Fig. 6d), raising an

interesting question of whether hemoglobin genes play

a functional role in a subset of neurons.

Discussion and conclusions

There is a large body of literature in clustering analysis [24].

Traditional clustering methods are effective for identifying

large clusters but are not suitable for detecting rare cell

clusters, mainly because the feature selection is insensitive

to the presence of rare cell clusters. We have proposed to

use the Gini index as the basis to select rare cell-type-

specific genes and have shown that this approach is effect-

ive in all the datasets analyzed here.

Our analysis of single-cell RNA-seq datasets has iden-

tified rare cell types that were not previously recognized.

First, in mouse embryonic stem cells, we found a cluster

of 3 cells that highly expressed Zscan4 genes, indicating

that mouse ESCs contain a rare subpopulation that has

greater differentiation potential than commonly thought.

Of note, the expression of these genes was previously

A
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D

Fig. 4 GiniClust identifies a Zscan4-enriched rare cluster from mouse embryonic stem cells. a Relationship between the raw Gini index and the

log2-transformed maximum expression level. Selected genes with high normalized Gini index values are labeled as red dots. b t-SNE visualization

of the data. Cells are color-coded based on the GiniClust cluster membership. Inset shows a zoomed-in region around the rare cell cluster.

c Overlap between the selected high Gini genes and upregulated genes in Cluster 2. d Expression pattern of representative genes (Tcstv1,

Dcdc2c, Zscan4f, Zscan4d) in Cluster 2 (n = 3, left panels) compared to Cluster 1 (n = 2505, right panels). Each bar represents a single cell
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observed on Day 2 and Day 4 after LIF removal induced

differentiation, but not in undifferentiated cells. Second,

in the mouse cortex and hippocampus, we identified a

cluster (Cluster 4) of 3 cells that highly express several

hemoglobin genes, including Hba-a2, Hbb-bs, and Hbb-

b2. This cluster was not detected in the original study.

Expression of hemoglobin genes is commonly thought

to be a unique property of erythroid cells, but recent stud-

ies have found that they can also be expressed in dopa-

minergic neurons [25]. It will be interesting to investigate

the biological function of hemoglobin expression cells in

the mouse cortex in future studies. Although these

clusters contain a very small number of cells, they can be

robustly detected from resampled datasets (Methods). Of

note, it is possible that gene expression pattern differences

between clusters may be attributed to mechanisms other

than cell-type differences, such as the variation of niche.

As such, further experimental investigations are required

to functionally test computational predictions.

GiniClust differs from RaceID in a number of significant

ways. First, the gene selection method is different.

Whereas RaceID selects genes based on the variance of

expression levels, GiniClust uses the Gini index to select

genes. We have shown that the Gini index is more

A
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C

D

Fig. 5 GiniClust identifies a rare cluster in glioblastoma samples. a Relationship between the raw Gini index and the log2-transformed maximum

expression level. Selected genes with high normalized Gini index values are labeled as red dots. b t-SNE visualization of the data. Cells are

color-coded based on the GiniClust cluster membership. c Overlap between the selected high Gini genes and upregulated genes in Cluster 2.

d Expression pattern of representative genes (CLDN11, MBP, PLP1, KLK6) in Cluster 3 (n = 9, left panels) compared to Cluster 1 (n = 261, right

panels). Each bar represents a single cell
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effective for selecting cell-type-specific genes. Second,

RaceID identifies rare cell types using a two-step proced-

ure. First, the cell population is divided into a number of

large clusters by using k-means. Next, outliers are detected

within each cluster. In contrast, in GiniClust all clusters

are identified in a single step. Third, RaceID allows a

single outlier cell to be identified as a rare cell type, which

may explain why it tends to over-cluster. On the other

hand, GiniClust requires that each cluster must contain

multiple cells. Our analysis of simulated and real datasets

suggests that GiniClust is more robust and accurate than

RaceID. GiniClust is also much faster than RaceID. For

the simulated dataset analyzed in this paper, it took 42 sec-

onds to finish the GiniClust analysis, compared to

7.3 hours using RaceID on the same computer.

A major limitation of GiniClust is that it is not effective

for large cluster detection. For example, in our analysis of

the simulated data, GiniClust merged the two major

A

B

C

D

Fig. 6 GiniClust identifies a rare cell type in mouse cortex and hippocampus. a Relationship between the raw Gini index and the log2-transformed

maximum expression level. Selected genes with high normalized Gini index values are labeled as red dots. b t-SNE visualization of the data. Cells are

color-coded based on the GiniClust cluster membership. c Overlap between the selected high Gini genes and upregulated genes in Cluster 4.

d Expression pattern of representative genes (Hba-a2, Hbb-b2, Hbb-bs) in Cluster 4 (n = 3, left panels) compared to Cluster 1 (n = 1842, right

panels). Each bar represents a single cell. The expression levels of Hba-a2 shown here represent the sum of the levels of Hba-a2_loc1 and

Hba-a2_loc2 in the original paper
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clusters into a single big cluster. This occurs because dif-

ferentially expressed genes between major cell clusters are

typically not high Gini genes. One simple yet suboptimal

solution is to combine GiniClust with another traditional

clustering method, identifying rare clusters first by using

GiniClust and then applying the other method to identify

large clusters. In future work, we will extend GiniClust to

systematically address this limitation.

In summary, we have shown that GiniClust is a power-

ful tool for detecting rare cell types in normal tissues

and disease samples and will facilitate the analysis of

single-cell data.

Methods

Details of the hypothetical example

We considered a population of 1,000,000 cells consisting

of two cell types: major and minor, and two genes: X, a

differentially expressed gene, and Y, an undifferentially

expressed gene. Within each cell type, the expression

levels followed a Poisson distribution determined by a sin-

gle parameter λ. We set λX = 0.1 (and 10, respectively) for

the major (and minor, respectively) cell type, and λY = 5

for both cell types. We varied the proportion of the minor

cell type in the population from 0 to 0.5, and calculated

the corresponding Fano factor and Gini index for each

gene.

Data sources, preprocessing, and normalization

The mouse qPCR data were obtained from our previous

study [9] and processed as described previously [10].

Briefly, gene expression levels were estimated by subtract-

ing the Ct values from the background level of 28, which

approximates log2 gene expression levels. Ct values higher

than 28 are converted to zero (no expression).

The processed mouse ESC inDrop data were obtained

from GSE65525 [19]. The expression level of each gene

was represented by UMI-Count/Cell. Genes that were

expressed in less than three cells were excluded, leaving

22,830 genes for further analysis. Cells expressing less

than 2000 genes were excluded. A total of 2485 cells

passed this filter.

The GBM single-cell RNA-seq data were obtained

from GSE57872 [23]. Raw sequence reads were

mapped to the hg19 reference genome by STAR [26]

(version STAR_2.4.2a, option genomeSAindexNbases

14, genomeChrBinNbits 18, genomeSAsparseD 1, sjdbO-

verhang 75) and quantified by using htseq-count [27]

(option –format = bam –order = pos –type = exon –idattr

= gene_name). The expression level of each gene was

quantified by Raw-Read-Count/Cell. We then applied the

same filtering procedure as above to select cells and

expressed genes, resulting in a data matrix containing

17,970 genes and 477 cells in total.

The processed mouse cortex single-cell RNA-seq data

were obtained from GSE60361 [4]. The gene expression

levels were quantified by UMI-Count/Cell. After apply-

ing the aforementioned filtering process, we obtained a

data matrix containing 15,153 genes and 2545 cells.

Details of GiniClust pipeline

The GiniClust pipeline contains five steps after data pre-

processing (Fig. 2).

1. Calculate Gini index.

The Gini index is calculated based on the

normalized gene expression levels. As described in

the main text, the Gini index is defined as two times

the area between the Lorenz curve and the diagonal.

For the qPCR data, we find it useful to define a

bidirectional Gini index, which is the maximum

value of the positive and negative Gini indexes, as

defined below. First, the expression levels are

exponentially transformed; that is, a value of x is

transformed to 2x so that it is approximately linearly

proportional to the transcript level. The positive Gini

index is calculated based on the transformed data.

The negative Gini index is defined in a similar manner

but using a different transformation: x to 2−x. The

bidirectional Gini index is useful for identifying genes

that are either upregulated (direction = 1) or

downregulated (direction = –1) in rare cells. For

RNA-seq analysis, only the positive direction is used

for calculating Gini index values since most genes are

detected at low levels.

2. Normalize Gini index. Select high Gini genes.

We noticed that the Gini index values are strongly

correlated with max gene expression levels (Figs. 1a,

3a, 4a, 5a, 6a); therefore, we devised a normalizing

procedure to remove this trend. We used a two-step

curve fitting strategy [28] in order to enhance

robustness against outliers. Specifically, we first fit a

smooth curve through all data points by LOESS

regression, removed outliers (defined as those data

points for which the residues are above the 75th

percentile), and then used LOESS to refit another

smooth curve through the remaining data points.

LOESS regression was implemented by using the

loess function in R. For each gene, we calculated its

normalized Gini index value by subtracting the

original value by the fitted trend. For RNA-seq data,

we further estimated p values based on a normal

distribution approximation and used the cutoff value

(p = 0.0001) to select high Gini genes. For qPCR data

analysis, we cannot reliably estimate p values due to

the insufficient number of genes; therefore, we select

high Gini genes by thresholding the normalized Gini

index values (cutoff value = 0.05).
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3. Identify rare cell clusters by DBSCAN

A number of distance metrics may be used for

clustering, depending on the statistical property of

the gene expression data. For qPCR data, we find

that the one-minus correlation metric is suitable

because the expression levels can be accurately

measured over a wide dynamic range. For RNA-seq

data, we find that the Jaccard distance typically

generates more robust clustering results.

We use DBSCAN [17] to cluster cells, as

implemented by the dbscan function in the R

package fpc, with the method = “dist” setting. For

the qPCR dataset, we set eps = 0.25 and MinPts = 5.

We use a standardized parameter setting to analyze

all real and simulated RNA-seq datasets with

MinPts = 3, eps = 0.5. To test robustness, we varied

the parameters over a range of values and found that

the results are not significantly affected.

One unique feature of the DBSCAN is that some of

the cells, which we call singletons, are not assigned

to any cell cluster. The number of singletons

detected decreases as the value of eps increases.

While both singletons and rare cell types are

outliers, the important difference is that a rare cell

type contains multiple cells that share similar gene

expression patterns.

4. Visualize results by using t-SNE

We use t-SNE for data visualization purposes only,

as implemented in the Rtsne package in R. The high-

dimensional gene expression data are projected into

a 2D space, with the “pca = FALSE, max_iter = 3000,

and perplexity = 10” setting. The data points are

color-coded by using the clustering membership.

5. Identify rare cell-type-specific gene signature.

Rare cell-type-specific gene signatures are identified

by using differential expression analysis. For qPCR

data, differentially expressed genes are identified by

using the two-sided t test; for RNA-seq data,

differentially expressed genes are identified by using

the zlm.SingleCellAssay function in the R package

MAST [21], with setting Method = “glm”. The p

values are calculated by using the hurdle model in

the lrTest function in the MAST package.

Analysis of 2C-like gene signature

We obtained a list of genes that are differentially

expressed between 2C and ESCs from [22] and fil-

tered out those genes that were not detected by

inDrop. The remaining list contains 65 genes. We

define a 2C-like gene signature based on the gene

expression pattern of these remaining 65 genes, where

each gene is associated with a weight equal to the

fold change value between 2C and ESC (extracted

from Additional file 7: Table S5 in [22]).

In order to compare the 2C-like gene signature with the

single-cell gene expression data, we defined a 2C-like

score for each cell in the inDrop dataset as follows. First,

the UMI counts were log2-transformed and converted to

z-scores. Next, we evaluated the inner product between

the transformed z-score values corresponding to the 65

differentially expressed genes and the aforementioned 2C-

like gene signature. Since the average z-score value is

equal to zero, the mean value of the 2C-like score is also

zero for typical ESCs. On the other hand, a 2C-like cell is

associated with high 2C-like scores.

Analysis with RaceID

RaceID was applied to analyze the qPCR dataset as well

as simulated data. R scripts of RaceID were downloaded

from https://github.com/dgrun/RaceID. We set the

model parameters at default values, whereas the number

of clusters was set to be 30.

For the qPCR dataset, the Ct-based gene expression

levels were exponentially transformed so that they were

approximately proportional to the transcript counts.

RaceID was then applied to analyze the transformed data

using default parameter values.

In addition, we generated a simulated dataset containing

five cell clusters. The two major clusters contained 1000

cells each, whereas the three rare clusters contained 4, 6,

and 10 cells, respectively. The gene expression profiles

were synthesized by using a strategy similar to that in the

RaceID paper [8]. Specifically, gene expression levels

within each cell cluster were modeled as negative binomial

distributions, with the mean and standard deviation values

estimated from an intestinal single-cell RNA-seq dataset

through a background noise model [8]. To create different

gene expression profiles, for each additional cluster we

randomly selected 100 highly expressed genes (mean >10

counts) and 100 not highly expressed genes (mean <10

counts), then we shuffled the gene labels. Principal com-

ponent analysis confirmed that the five simulated cell

clusters were distinguishable, although more than two

principal components were required (Additional file 2:

Figure S2).

Additional files

Additional file 1: Table S1. Gini index related statistics for the qPCR

dataset from Guo et al. [9]. (XLSX 26 kb)

Additional file 2: Table S2. Cluster 5 differentially expressed gene

results for qPCR data from Guo et al. study. (XLSX 92 kb)

Additional file 3: Table S3. GiniClust clustering membership for Guo et

al. study. (XLSX 37 kb)

Additional file 4: Figure S1. RaceID cluster result of Guo et al. study

qPCR dataset. Each pie chart represents the cell lineage composition of

a RaceID cluster. Only the clusters that contain at least one ISC or MASC

cell are shown. The total number of cells in each cluster is indicated

above each pie chart. (PDF 138 kb)

Jiang et al. Genome Biology  (2016) 17:144 Page 11 of 13

https://github.com/dgrun/RaceID
dx.doi.org/10.1186/s13059-016-1010-4
dx.doi.org/10.1186/s13059-016-1010-4
dx.doi.org/10.1186/s13059-016-1010-4
dx.doi.org/10.1186/s13059-016-1010-4


Additional file 5: Figure S2. Comparison of GiniClust and RaceID on

the simulated dataset. (A–C) Projection of the simulated data on various

principal components; (D) GiniClust identified clusters; (E) decomposition

of each simulated rare cluster into GiniClust clusters; (F) RaceID identified

clusters; (G) decomposition of each simulated rare cluster into RaceID

clusters. (PDF 16879 kb)

Additional file 6: Table S4. Gini index related statistics for single-cell

RNA-seq data from Klein et al. study. (XLSX 1435 kb)

Additional file 7: Table S5. GiniClust clustering membership for Klein

et al. study. (XLSX 45 kb)

Additional file 8: Table S6. Cluster 2 differentially expressed gene

results for single-cell RNA-seq data from Klein et al. study. (XLSX 658 kb)

Additional file 9: Figure S3. 2C-like cell marker clustering result of

Klein et al. study. (PDF 271 kb)

Additional file 10: Table S7. Gini index related statistics for single-cell

RNA-seq data from Patel et al. study. (XLSX 1436 kb)

Additional file 11: Table S8 GiniClust clustering membership for Patel

et al. study. (XLSX 42 kb)

Additional file 12: Table S9 Cluster 3 differentially expressed gene

results for single-cell RNA-seq data from Patel et al. study. (XLSX 212 kb)

Additional file 13: Table S10 Gini index related statistics for single-cell

RNA-seq data from Zeisel et al study. (XLSX 999 kb)

Additional file 14: Table S11. GiniClust clustering membership for

Zeisel et al. study. (XLSX 76 kb)

Additional file 15: Figure S4. Expression pattern of hemoglobin genes

Hba-a2_loc1, Hba-a2_loc2, Hbb-b2, and Hbb-bs in the clusters identified

by BackSPIN. The cells that highly express these genes are assigned to

different clusters. The plot was generated by using the tool at the

Linnarson Lab website: http://linnarssonlab.org/cortex/. (PDF 669 kb)

Additional file 16: Table12. Cluster 4 differentially expressed gene

results for single-cell RNA-seq data from Zeisel et al. study. (XLSX 233 kb)
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