
This paper is included in the Proceedings of the

2016 USENIX Annual Technical Conference (USENIX ATC ’16).

June 22–24, 2016 • Denver, CO, USA

978-1-931971-30-0

Open access to the Proceedings of the

2016 USENIX Annual Technical Conference

(USENIX ATC ’16) is sponsored by USENIX.

Ginseng: Market-Driven LLC Allocation
Liran Funaro, Orna Agmon Ben-Yehuda, and Assaf Schuster,

Technion—Israel Institute of Technology

https://www.usenix.org/conference/atc16/technical-sessions/presentation/funaro

USENIX Association 2016 USENIX Annual Technical Conference 295

Ginseng : Market-Driven LLC Allocation

Liran Funaro Orna Agmon Ben-Yehuda Assaf Schuster

Technion—Israel Institute of Technology

{funaro,ladypine,assaf}@cs.technion.ac.il

Abstract

Cloud providers must dynamically allocate their phys-

ical resources to the right client to maximize the benefit

that they can get out of given hardware. Cache Alloca-

tion Technology (CAT) makes it possible for the provider

to allocate last level cache to virtual machines to prevent

cache pollution. The provider can also allocate the cache

to optimize client benefit. But how should it optimize

client benefit, when it does not even know what the client

plans to do?

We present an auction-based mechanism that dynami-

cally allocates cache while optimizing client benefit and

improving hardware utilization. We evaluate our mecha-

nism on benchmarks from the Phoronix Test Suite. Ex-

perimental results show that Ginseng for cache alloca-

tion improved clients’ aggregated benefit by up to 42.8×

compared with state-of-the-art static and dynamic algo-

rithms.

1 Introduction

Infrastructure-as-a-Service (IaaS) cloud computing

providers rent computing resources wrapped as an

infrastructure, i.e., a guest virtual machine (VM),

to their clients. To compete in the tough market of

cloud computing, providers must improve their clients’

quality-of-service (QoS) while maintaining competitive

pricing and reducing per-client management cost. Thus,

better hardware utilization is necessary. New Intel tech-

nology that supports last level cache (LLC) allocation

allows better cache utilization via cache partitioning.

Providers can utilize this new technology to guar-

antee clients’ performance requirements by preventing

applications from polluting each other’s cache [32], as

Intel intended [25]. Moreover, they can accommo-

date more clients’ performance requirements by granting

more LLC to those who benefit from it and preventing

access to those who do not. This increases the provider’s

ability to consolidate the physical host.

Without any client performance information, the

provider can only optimize guest performance accord-

ing to host-known metrics, such as instructions-per-

second (IPC), LLC hit-rate, LLC reads-count, and so

forth [19, 41, 64]. The host does not know what the

client’s real benefit from more cache is, nor can it com-

pare benefits that different clients draw from cache. For

example, higher IPC does not necessarily indicate better

performance, as the guest VM might just be polling on a

spin-lock more quickly.

Moreover, a client may be willing to settle for poorer

performance in exchange for a lower payment [5]. This

might be the case, for example, when the guest VM of

a performance-demanding client is running maintenance

work in between important workloads every few sec-

onds. Nevertheless, lacking the guests’ current workload

information, the host will try to improve its performance

despite the lack of benefit to the client. This, in turn, may

hinder the performance of other guests. It is therefore in

the interest of both provider and client that clients pay

only for the fine grained LLC they need, when they need

it [1, 3, 7, 15, 45, 49]. Client satisfaction will thus be im-

proved, as clients can pay less for the same performance

but only when it is really needed, while providers will be

able to improve hardware utilization.

However, real-world public cloud clients are selfish,

rational economic entities. They will not let the provider

know precisely how much benefit each quantity of cache

ways would bring to it. They are black-boxes, and

as such, unlike white-box clients [15, 22, 23, 47], they

will not share their true private information with their

provider unless it is in their own best interest to do so.

For example, if the host allocates cache ways to guests

who will derive the greatest benefit from it, each guest

will claim that it has the most to gain from additional

cache ways. Likewise, if the host allocates cache ways

to guests who perform poorly, each guest will claim poor

performance.

296 2016 USENIX Annual Technical Conference USENIX Association

Even passive black-box measurements taken by the

provider can be manipulated [19, 41, 64]. For example,

a guest can fake cache misses by adding random instruc-

tions in the code that access random—non-cached—

memory addresses. Such instructions will not delay the

out-of-order-execution (OOOE) CPU as they are inde-

pendent of the other instructions, and they will induce

many cache misses.

In this paper we address the problem of how cloud

providers should allocate cache among selfish black-box

clients in light of the new cache allocation technology.

Our contribution towards a solution to this problem

is Ginseng [4] for cache allocation, a market-driven auc-

tion system that maximizes the aggregated benefit of the

guests in terms of the economic value they attribute to the

desired allocation, using game-theoretic principles. This

approach encourages even a selfish guest to bid for cache

according to its true benefit. Ginseng was first introduced

for memory allocation [4], and a similar, auction-based

approach was used before for bandwidth allocation [38].

Furthermore, Amazon has been auctioning virtual ma-

chines since 2009 [2].

We evaluate Ginseng on benchmarks from the

Phoronix Test Suite [37], which we classify according to

their benefit from the cache. We show that Ginseng im-

proves the aggregated economic benefit of guests from

cache by up to 42.8× compared to the prevalent method

used by today’s cloud providers.

Our second contribution is an evaluation of the at-

tributes which differentiate dynamic cache allocation

from other resources: (1) As opposed to memory, cache

does not have to be exclusively allocated and can be

shared effectively. However, mutual trust is required

to allow benefit for the sharing participants. (2) Un-

like bandwidth—but much like memory—cache has to

be warmed up before the guest can benefit from it.

However—unlike memory pages—cache must be al-

located consecutively, which induces more cache way

transfers when the allocation is changed. Furthermore,

Intel’s allocation mechanism might fail to enforce fre-

quent transfers of cache ownership. Thus, dynamic cache

allocation might incur performance overhead. We ad-

dress the question of when it is beneficial to share cache

and when exclusive allocation is preferable, and we mea-

sure and analyze the overhead of frequently changing the

allocation.

2 System Architecture

Ginseng is a market-driven cloud mechanism that allo-

cates resources to guest virtual-machines by means of an

auction. It is implemented for cloud hosts running the

KVM hypervisor [35] but can work seamlessly on any

other hypervisor. Ginseng for cache allocation controls

Economic Agent

Cache Controller

Host Guests

Ginseng

Auctioneer
perf(cache,state)

CommunicatorCommunicator

Application

Vperf(perf)

Figure 1: Ginseng system architecture

the cache ways allocated to each guest using the cache-

driver described in §3.

Ginseng has a host component and a guest component,

as depicted in Figure 1. The host’s Auctioneer uses the

Vickrey-Clarke-Groves (VCG) auction [10,17,60], to be

described in §4. The host’s communicators communi-

cate with the guests using the auction protocol, detailed

in §5. It also instructs the cache controller how to allo-

cate cache ways among the guests. The guest’s economic

agent bids on behalf of the client by stating a valuation

for each number of cache ways. The guest component

we implemented bids with a true valuation, as that is the

best strategy for the guest [10, 17, 60], but Ginseng does

not enforce any restrictions on the implementation and

strategy of the guest’s economic agent.

3 Cache Architecture

Intel’s cache, and LLC in particular, stores data in gran-

ularity of cache lines that typically vary from 64 to 256

bytes, depending on the machine. The cache is organized

in ways, each of which is a hash table, where the key is

a hash value of the line’s memory address and the value

is the content of the cache line. Way locations that are

designated to be filled by lines with the same keys are

called a set.

When reading from a memory address or writing to

it, the CPU first computes the address’s set by using the

hash function. Then the line is stored in this set on one of

the cache ways. If the entire set is full, the least recently

used (LRU) line in the set will be evicted and replaced.

When an application uses the cache exclusively, it will

evict its own least recently used data. However, when

several applications use the same cache, one might evict

the other’s cache lines and influence its performance.

To prevent this, Intel’s new cache allocation technology

(CAT) allows cache partitioning. The API defines the no-

tion of classes-of-service (COS), which determine a set

of cache ways. When a hardware thread is assigned to

a COS, it is only allowed to store new cache lines in the

USENIX Association 2016 USENIX Annual Technical Conference 297

ways determined by the COS. However, the COS does

not limit reading from any of the ways in the cache.

Intel’s API requires that the selected ways in each

COS be consecutive. The API does not impose exclusiv-

ity, so a cache way can be used by more than one COS.

We experimented with new hardware (Haswell) that

supports the new cache allocation technology. It supports

only four COSes and requires a minimum allocation of

two cache ways for each COS. However, more advanced

architectures such as Broadwell will support a minimum

of one cache-way allocation and 16 COSes [26].

Intel has already added support for CAT to the Linux

kernel (tip) via the cgroups interface. However, at

the time we experimented with the hardware, the mod-

ification was only available as a patch and was not

stable enough. Therefore, we implemented our own

user-level driver that allows control over the COSes

and their assignment to CPUs. We implemented it in

Python by writing directly to the model-specific regis-

ters (MSR) using rdmsr/wrmsr utilities for Linux. The

driver code is available at https://bitbucket.org/

fonaro/cat-driver.

3.1 Restricting LLC Access: The Pit

Preventing LLC access to some guests will allow us

to allocate more cache ways to others who might benefit

more from it. However, the cache allocation API does

not allow LLC access to be restricted to specific guests.

Instead, we assign them to a single COS we denote the

pit. We allocate the pit the minimum number of cache

ways allowed by the hardware (two for our hardware).

4 Cache Auction

Ginseng allocates cache efficiently because it uses a

game-theoretic mechanism to elicit the guests’ true ben-

efit from cache. The host conducts rounds of cache

auctions to adapt the allocation according to the guests’

changing needs.

In Ginseng, each guest has a different, changing, pri-

vate (secret) valuation of cache, which is expressed in

dollars per second for each cache way allocation. Each

way will be allocated exclusively. The guest derives its

valuation by combining two private functions: perfor-

mance as a function of cache ways (in performance units

per second) and valuation of performance (in dollars per

performance unit). By taking into account resource allo-

cation and monetary worth, Ginseng is able to compare

valuations, while the actual performance requirements

are defined and controlled by the client [18].

As in Ginseng for memory allocation [4], we de-

fine the aggregate benefit from a cache allocation to

all guests—their satisfaction from the auction results—

using the game-theoretic measure of social welfare. The

social welfare of an allocation is defined as the sum of

all the guests’ valuations of the cache they receive in the

allocation.

Ginseng for cache allocation uses the VCG auction,

which maximizes social welfare by encouraging even

selfish participants with conflicting economic interests to

inform the auctioneer of their true valuation of the auc-

tioned goods. In VCG auctions, this is done by charging

each participant for the damage it inflicts on other partic-

ipants’ social welfare, rather than directly for the goods

it wins. VCG auctions are used, for example, in Face-

book’s repeated auctions [43], as well as in other settings.

The guest’s valuation for each allocation of cache can

be affected by its expected performance given its cur-

rent state. However, it can also be affected by variables

unrelated to performance. For example, if the guest is

a service provider without any traffic, it may value any

number of cache ways as contributing zero to its utility.

We denote the guest’s valuation by

V (cache,state) =Vper f (per f (cache,state)) ,

where Vper f (per f) describes the value derived by the

client for a given level of performance for a given guest,

and per f (cache,state) describes the performance the

guest can achieve given its current state and a certain

number of cache ways. Vper f (per f) is private for each

client; it is based on economic considerations and busi-

ness logic.

For example, two clients run a market forecasting al-

gorithm and need to evaluate 1,000 stocks on average

to find a group of stocks that are expected to yield 10%

profit. They can measure their performance in evaluated

stocks per hour. The first client is willing to invest $10K.

For this client, Vper f (per f) = $1
stock · per f . The second

client, however, is only willing to invest $1K. For this

client, Vper f (per f) = $0.1
stock · per f . Both clients will need

to know per f (cache,state): how many stocks they can

evaluate per hour when given various numbers of cache

ways and under the current conditions (e.g., server load).

In our experiments, we use an offline mapping of

performance as a function of cache and the current

server load. We found this to be sufficiently accurate,

as we demonstrate in §8.2. But performance can also

be measured online, as demonstrated in a number of

works [6, 19, 41, 58, 64, 66], and as might be required in

real-world scenarios.

5 Auction Protocol

In Ginseng, each client pays a constant hourly fee for its

guest VM while it is assigned to the pit. In each auction

round, each guest can bid for exclusive cache ways. After

each round, Ginseng calculates a new cache allocation,

298 2016 USENIX Annual Technical Conference USENIX Association

and guests exclusively rent the cache ways they won until

the next round ends.

The constant fee is not affected by the auction results.

It guarantees the lion’s share of the host’s revenues, so

that the host can utilize the auction to maximize social

welfare, thereby attracting more guests.

Clients with hard performance requirements can ver-

ify the availability of exclusive cache ways by prepay-

ing for them (and thereby removing them from the cache

ways that are up for rent). Supporting these clients will

be easier in future hardware with more COSes. These

clients are not included in our experiments, which were

performed on Haswell. Clients with very low perfor-

mance requirements are expected to pay in advance only

the constant fee and bid with low valuations or not at

all, so that they rarely pay for cache ways and manage

to stay within their budget. Clients in between those ex-

tremes are expected to choose a flexible payment scheme

that meets their needs.

Here follows the description of an auction round,

along with a numeric example. In the example, as well

as in the experiments that follow, the host’s clients are

service providers with their own customers.

Initialization. Each guest is assigned to the pit as it

enters the system.

Auction Announcement. The host informs each

guest of the number of available cache ways, the server

load (i.e., the number of active VMs) and the auction’s

closing time, after which bids are not accepted. In our

example, the physical machine has 20 cache ways, two

of which are dedicated to the pit, so the host announces

an auction for 18 cache ways.

Bidding. Interested guests bid for cache ways. A bid

is composed of a price per hour for each number of ex-

clusive cache ways that the guest is willing to rent. In our

example, 10 guests choose not to bid in this round, and

2 guests have strict performance requirements: Guest 1

is willing to pay $1 per hour when allocated 10 or more

cache ways and $0 per hour for fewer cache ways. Guest

2 is willing to pay $5 per hour for allocation of 14 or

more cache ways and $0 per hour for fewer cache ways.

Bid Collection. The host asynchronously collects

guest bids as soon as the auction is announced. It con-

siders the most recent bid from each guest, dismissing

earlier bids. Guests that do not bid lose the auction auto-

matically, and are assigned to the pit.

Allocation and Payments. The host computes the

allocation and payments according to the VCG auction

rules, using a specially designed algorithm described in

§6. For each guest, it computes how much cache it won

and at what price. The payment rule guarantees that the

guest will not pay a price that exceeds its bid. The guest’s

account is charged accordingly (and accurately, by the

second). In the example, guest 1 loses, is assigned to the

pit and pays nothing; guest 2 wins all of the cache ways

and pays $1 per hour.

Informing Guests and Assigning Cache Ways. The

host informs each guest of the auction results that are

relevant to it: its cache allocation and payment. Then,

the host takes cache ways from those who lost them and

gives them to those who won, by updating their COSes

as necessary.

6 Auction Rules

Every auction has an allocation rule—who gets the

goods?—and a payment rule—how much do they pay?

To determine who gets the goods, the VCG algorithm

calculates the optimal allocation of cache ways: the one

that maximizes social welfare—client satisfaction—as

described in §4. To determine the optimal allocation,

the VCG auction solves a constrained multi-unit allo-

cation problem, as detailed in §6.1. To determine how

each client pays, the VCG auction computes the dam-

age it inflicts on other guests, as detailed in §6.2. After

explaining the auction rules, we discuss their run-time

complexity and provide an example showing how they

are executed. The correctness proof can be found in the

full version [13].

6.1 Allocation Rule

To find the optimal allocation—the one that maxi-

mizes the social welfare—Ginseng must consider all the

allocations for the number of guests, the number of cache

ways available, the size of the pit, and the maximum

number of classes-of-service (COS) available. Since the

number of possible allocations is exponential in the num-

ber of guests and cache ways, iterating over them is im-

practical. Therefore, we introduce a simple algorithm

that finds the optimal allocation in polynomial time.

First, the algorithm combines two guests into an effec-

tive guest with a joint valuation function. For any number

of cache ways that the two guests will get, the joint func-

tion stores the optimal division of cache ways between

the two guests, and returns the sum of the valuations of

these guests for that cache way division. Then, in each

step, it continues to combine the guests and the effective

guests until a single effective guest remains. Its valuation

function returns the maximal aggregated valuation of all

the guests, which is the social welfare. The optimal allo-

cation is then reconstructed from stored division data of

the joint valuation functions.

6.2 Payment Rule

The payments follow the VCG exclusion compen-

sation principle, as formulated in [4]. Let ak denote

player’s k cache allocation, and let a′k denote the number

of cache ways that would have been allocated to guest k

USENIX Association 2016 USENIX Annual Technical Conference 299

in an auction in which guest i did not participate and the

rest of the guests bid as they bid in the current auction.

Then guest i is charged a price pi, computed as follows:

pi = ∑
k �=i

Vk(a
′
k)−Vk(ak) .

The payment reflects the damage that guest i’s bid in-

flicted on other guests.

6.3 Complexity

Let N denote the number of bidding guests. Let W

denote the total number of cache ways and let C denote

the total number of COSes.

Vcombined(w,c) is obtained by comparing O(w · c) al-

locations and summing the two valuations for each allo-

cation. That is, for W ·C values, the time complexity is

O
(

W 2C2
)

. After N − 1 reductions we will have one

combined valuation. So the total time complexity of the

allocation algorithm is O
(

W 2 ·C2 ·N
)

.

To compute the payment for a guest that is allocated

any cache ways, the allocation algorithm needs to be

computed again without this guest. Since the number of

winning guests is bounded by C, in each auction round

the allocation procedure is called up to min(C,N) + 1

times, and the time complexity of the total allocation and

payment calculation is O
(

W 2 ·C2 ·N ·min(C,N)
)

.

The algorithm runtime was reasonable: less than one

second using a single hardware thread, even when tested

with thousands of cache ways and guests, and an unlim-

ited number of COSes, in preparation for future architec-

tures.

7 Experimental Setup

In this section we describe the experimental setup in

which we evaluate Ginseng.

7.1 Machine Setup

We used a machine with two Intel(R) Xeon(R) E5-

2658 v3 @ 2.20GHz CPUs with a 30MB, 20-way LLC

that supports CAT. Each CPU had 12 cores with hyper-

threading enabled, for a total of 48 hardware threads.

One CPU was dedicated to the host and the other to the

guests. As many guests as possible were each pinned

to two exclusive hardware threads that resided on the

same core. In experiments with more than 12 guests,

some were pinned to one hardware thread each. This let

us manage cache allocation per hardware thread and not

per VM process. The machine had 32GB of RAM per

socket. Each VM got 1GB of RAM, pinned to mem-

ory from the same node. The host ran Ubuntu Linux

with kernel 4.0.9-040009-generic #201507212131, and

the guests ran 3.2.0-29-generic-#46-Ubuntu.

Each application ran exclusively on a virtual machine

(VM); hence we refer from now on to an application and

the guest VM running it interchangeably. However, this

is not compulsory; in real scenarios, the VM’s valuation

can change in each bid to cater to changing conditions

or changing applications, as is customary in the cattle

model of cloud computing.

7.2 Workloads

The Phoronix Test Suite [37] includes over 100 bench-

marks for a variety of applications. We chose a sample of

10 applications with varying cache utilization, along with

their associated benchmarks: BZIP2 (1.5.0) uses paral-

lel compression on a 256MB file. H.264 (2.0.0) encodes

a video to H.264 format on the CPU. HMMer (1.1.0)

searches the Pfam database for profile hidden Markov

models. Gcrypt (1.0.3) uses the CAMELLIA256-ECB

cipher. OpenSSL (1.9.0) uses an open-source SSL im-

plementation with 4096-bit RSA. Five of the appli-

cations were taken from the SciMark 2.0 suite [51]

(1.2.0), which is included in the Phoronix suite but ex-

ists also as a stand-alone: Fast Fourier Transform per-

forms a one-dimensional forward transform of com-

plex numbers. Dense LU Matrix Factorization com-

putes the LU factorization of a dense matrix us-

ing partial pivoting. Monte-Carlo approximates

the value of pi by using random point selection

on a circle. Jacobi Successive Over-Relaxation per-

forms Jacobi successive over-relaxation on a grid.

Composite-Scimark is comprised of several SciMark 2.0

benchmarks. The following subsection shows the perfor-

mance measurements of these benchmarks.

We also tested some larger, commonly used applica-

tions such as PostgreSQL and Memcached. However,

we eventually decided not to use them in the experi-

mental section as both require long warm-up periods and

would reduce the number of experiments we were able to

perform. The performance measurements of both these

applications are also shown in the following subsection.

We used the TPC-B benchmark with 10 clients to test

PostgreSQL, which ran on a VM with 4GM of RAM. To

test Memcached we used memslap with 64-byte values

and 90% reads, and configured Memcached to use 64MB

of RAM.

7.2.1 Classifying the Applications

We used the benchmarks to classify the above applica-

tions and demonstrate how they perform under different

cache allotments and partitioning.

Cache-utilizer applications perform better when allo-

cated more cache. The performance of such applications

is depicted in Figure 2a.

Cache-neutral applications cannot utilize the cache to

300 2016 USENIX Annual Technical Conference USENIX Association

(a) Cache-utilizer application performance increases with more ways.

(b) Cache-neutral application performance is indifferent to cache ways.

Figure 2: Performance of various applications, normal-

ized by their performance in the pit. Measured with 11

other guests assigned to the pit. All of the applications

were allocated two hardware threads.

obtain better performance. The performance of such ap-

plications is depicted in Figure 2b. However, they might

experience minor improvement as compared to being as-

signed to the pit.

Cache-polluter applications are cache-neutral applica-

tions that pollute the cache in a way that will harm the

cache-utilizer’s performance when cache is shared with

the polluter. To demonstrate this, we ran several experi-

ments, in each of which we ran one cache-utilizer and 7

cache-neutral applications simultaneously. We assigned

all of the cache to all of the guests in the shared sce-

nario. In the partitioned scenario, we assigned 2 cache

ways to all of the cache-neutral applications together and

the rest of the available cache was allocated to the cache-

utilizer. Figure 3 shows that the cache-utilizer’s perfor-

mance drops when sharing cache with a cache-polluter

application.

It is likely that partitioning the cache can bene-

fit cache-utilizer applications by protecting them from

cache polluters without affecting cache-neutral applica-

tions. Furthermore, the provider may need to decide how

to allocate the cache between several cache utilizers.

7.2.2 Living with Offline Profiling

Offline profiling is error-prone due to the dynamic nature

of the cloud. For example, a cache-utilizer may depend

(a) Composite-Scimark (cache-utilizer) performance improves when

sharing cache with OpenSSL (cache-neutral). Therefore, we consider

OpenSSL to be a non-polluter.

(b) Composite-Scimark (cache-utilizer) performance drops when shar-

ing cache with Monte-Carlo (cache-neutral, does not gain from extra

cache). Therefore, we consider Monte-Carlo to be a cache-polluter.

Figure 3: Composite-Scimark performance when sharing

the cache with cache-polluter vs. non-cache-polluter ap-

plications. The performance was normalized to the min-

imum measurement in all the experiments.

on memory bandwidth. That is, if an application can ben-

efit from faster access to the memory via cache, it will

likely suffer when memory access time increases due to

low memory bandwidth. Memory bandwidth isolation

mechanisms have been researched [27, 29, 46, 48], but

are not yet available in commercial hardware [41]. Thus,

we are compelled to accept the available memory band-

width as dependent on the number of guests in the cloud.

In a real cloud, the client might want to receive informa-

tion from the host about its available (or expected) mem-

ory bandwidth and take it into account when deriving its

valuation. In our Ginseng experiments, we consider the

number of guests in the system to be the only factor in-

fluencing memory bandwidth and report it to each guest.

The guest uses this information from the host as a factor

in its valuation, employing its offline performance pro-

filing for environments with various numbers of guests

(Figure 4).

7.2.3 Valuations

The experimental scenario consists of cloud guests who

are themselves service providers. Each guest serves one

USENIX Association 2016 USENIX Annual Technical Conference 301

of its customers at a time. Each guest’s customer shares

performance metrics but has different performance re-

quirements. Thus, when customers change, this implies

a change in the guest’s valuation function. The valuation

function is formulated as the profiled performance func-

tion, normalized to the range [0..1], and multiplied by a

scale factor that represents the amount the guest’s cus-

tomer is willing to pay for the performance. The scale

factor depends on the performance: if it is below the cus-

tomer’s required performance, then the scale factor will

be lower. Formally, we can express this as:

valuation(a) = s(per f (a)) ·
per f (a)−min per f

max per f −min per f
,

where a denotes the cache way allocation and s denotes

the scale factor. The pit is free of charge, and therefore

valuation(0) = 0.

We characterize three customer types by their scale

factors: A low-valuation customer has a constant scale

factor s = 0.05. Such a client is unconcerned with per-

formance or unwilling to pay to improve it. An medium-

valuation customer has a scale factor s = 1 when meet-

ing its performance requirements, and s = 0.05 other-

wise. A high-valuation customer has a scale factor

s = 3 when meeting its performance requirements, and

s = 0.05 otherwise. The performance requirements of

this type of customer are higher. See, for example, the

valuation functions of a customer running Composite-

Scimark (Figure 5).

In each experiment, each guest serves 10 customers

with different valuations, one after the other. We emu-

lated that by giving each guest a pool of valuations with

four customer-type distributions. The distributions are

denoted as triplets of high-valuation, medium-valuation

and low-valuation customers. We experimented with

the following distributions: (1,1,8), (1,2,7), (0,5,5), and

(3,3,4). For each guest we employed a different, ran-

domly shuffled and unique order on those valuation sets.

Hence, when we repeated an experiment but with more

guests, a guest that participated in both experiments had

the same valuation order in both. This gives us an idea

of what we could achieve if we consolidate more guests

on the same physical host.

7.3 Alternative Cache Allocation Methods

We compared Ginseng with the following cache allo-

cation methods:

Shared-cache allocation, where all of the guests share

the entire LLC. This was the prevalent method prior to

the introduction of CAT.

Uniform-static allocation, where each guest is allo-

cated a fixed and equal number of cache ways, as many as

the hardware allows. In our hardware there are 4 COSes,

so for 4 clients or fewer the cache was divided equally.

Figure 4: Example of performance profiling: Composite-

Scimark under different server loads (i.e., active VMs)

and with different numbers of allocated hardware

threads.

(a) Low-valuation customer (b) High-valuation customer

Figure 5: Composite-Scimark valuation function for dif-

ferent server-loads (i.e., active VMs) and when allocated

2 hardware threads. Note the different scale in the verti-

cal axes.

For more clients, three clients received six cache ways

each, and the rest of the clients were assigned to the pit.

Performance-maximizing allocation, where the

guests’ allocation maximizes the overall performance

of all of the applications. To this end, we employed

Ginseng’s optimization algorithm to maximize the

aggregate performance by using a constant scale factor

s = 1 for all the guests’ valuations. We did not compare

to this method when the experiment had more than one

type of application, as the aggregated performance of

different applications is meaningless. This allocation is

in practice a static allocation, as there is no provider-

observable difference in the application’s behavior

during the experiment.

Ideal-static allocation, where all the future client val-

uations are known in advance, and the static allocation

that maximizes the social welfare is chosen. It serves as

an upper bound for all the static allocations.

302 2016 USENIX Annual Technical Conference USENIX Association

7.4 Time Scales

Ginseng’s responsiveness to guest valuation changes

improves with more frequent auctions. Hence, an auction

round is conducted every 10 seconds. In each round, the

host collects guest bids for 3 seconds, and computes the

optimal allocation and payments for at most 3 seconds

(in practice it takes well under one second). Then the

host notifies the guests of their new allocation and pay-

ments and applies the new allocation. However, to gather

enough performance measurements for our experiments,

we changed the guest’s valuation every 5 minutes in the

dynamic allocation experiments. In the static allocation

experiments, where valuation changes did not affect the

guests’ state, 30 seconds were enough.

8 Evaluation

Our experiments were designed to answer the following

questions: (1) Which cache allocation method results in

guests who are most satisfied (i.e., have the highest social

welfare)? (2) How accurate is off-line profiling of guest

performance? (3) What are the limitations of a Ginseng-

based cloud?

The data presented in this paper is based on 4,287 ex-

periments, each lasting 10-50 minutes.

8.1 Comparing Social Welfare

We evaluated the social welfare achieved by Ginseng

vs. each of the four other methods listed in §7.3, for all

of the workloads and for workload mixtures (neutrals,

utilizers, and a mixture of both). We varied the number

of guests running the relevant applications. In the mixed

workload experiments we cyclically chose the new work-

load from the set.

The social welfare was calculated from the measured

performance of each application using its guest’s val-

uation function. Ginseng achieves much better social

welfare than the other allocation methods for the tested

workloads, as seen in Figure 6. It improves social wel-

fare for Dense LU Matrix Factorization by up to 42.8×

compared to shared-cache and by up to 26.3× com-

pared to ideal-static. For Fast Fourier Transform and

Composite-Scimark, Ginseng improves social welfare by

1.7× to 17.1× compared to shared-cache and ideal-

static. For a heterogeneous cloud with cache-utilizers,

Ginseng improves social welfare by up to 13.7× com-

pared to other allocation methods.

As seen in Figures 7a,7b, Ginseng increases the so-

cial welfare for an increasing number of up to 12 guests,

because more high-valuation and medium-valuation cus-

tomers can be served simultaneously. However, other

methods, including performance-maximizing, improve

the social welfare very little or not at all with more guests

because they disregard client valuation changes.

(a) Ginseng improvement factor over shared-cache allocation method.

(b) Ginseng improvement factor over ideal-static allocation method.

Figure 6: Maximum improvement factor of Ginseng

compared to the shared-cache and ideal-static meth-

ods with different assumptions on the number of high,

medium, and low valuation customers. The maximum is

over any number of guests with the application, or mix-

ture of applications.

For more than 12 guests, hardware threads become

a bottleneck, and some guests only get one hardware

thread; hence the social welfare gradually declines (Fig-

ure 7b). However, under Ginseng, some applications can

compensate for fewer hardware threads with additional

ways, so that Ginseng can maintain high social welfare

while increasing server consolidation (Figure 7a).

Nevertheless, other allocation methods can still pro-

duce results closer to Ginseng for some specific scenar-

ios. For example, when all guests run cache-neutral ap-

plications (Figure 7c), the applications are less likely to

suffer from being consigned to the pit than when some

guests run cache-utilizer applications. Although their

performance does not depend strongly on cache alloca-

tion, their performance in the pit deteriorates when more

guests are assigned to it. Thus, as the number of guests

in the cloud increases, it becomes increasingly important

to allocate cache ways to the right guests, as opposed to

assigning them to the pit.

Shared-cache can produce better results than Ginseng

when all guests use applications with a small memory

USENIX Association 2016 USENIX Annual Technical Conference 303

(a) All guests run Fast Fourier Transform with 1 high-valuation cus-

tomer, 1 medium-valuation customer and 8 low-valuation customers.

Ginseng improves social welfare by up to 4.7× over performance-

maximizing and by up to 15.8× over shared-cache.

(b) All guests run Dense LU Matrix Factorization with 1 high-

valuation customer, 2 medium-valuation customers and 7 low-

valuation customers. Ginseng improves social welfare by up to 18.6×

over performance-maximizing and by up to 24× over shared-cache.

(c) All guests run Monte-Carlo with 1 high-valuation customer, 2

medium-valuation customers and 7 low-valuation customers. Ginseng

outperforms other allocation methods as server consolidation is in-

creased, even for cache-neutral applications.

(d) All guests run H.264 with 1 high-valuation customer, 2 medium-

valuation customers and 7 low-valuation customers. This is the only

case where shared-cache outperforms Ginseng for any number of

guests.

Figure 7: Social welfare under different cache allocation methods as a function of the number of guests. The dashed

lines indicate an experiment where the clients perform identically to the profiler (artificial clients). Cache-utilizer

applications can greatly benefit from Ginseng. Cache-neutral applications can still enjoy the benefits of Ginseng,

albeit to a lesser extent. Applications with a small memory working set will prefer sharing the cache with others like

it.

working-set (Figure 7d). In such a case, cache misses

are rare (e.g., a solid 80% hit ratio for 12 H.264 with

shared-cache). Thus, because none of the applications

access the memory frequently, an application is expected

to consume the maximum memory bandwidth when it

does. Hence, memory bandwidth will not be a bottle-

neck in this case. However, when memory bandwidth

is low due to frequent memory access by other applica-

tions, even a rare memory access can dramatically affect

performance. This is illustrated in Figure 9a, where two

applications are H.264 and 10 applications are Monte-

Carlo. H.264 uses a small memory working-set but re-

lies on prefetching to improve performance. When the

cache is not shared, all the prefetched data remains in

the cache, resulting in better performance. When the two

H.264 applications share the cache, and the 10 Monte-

Carlo applications are assigned to the pit, some of the

H.264 data might be evicted from the cache. Because the

Monte-Carlo applications access the memory very fre-

quently, any memory access by the H.264 applications

will result in sharply decreased performance of the latter.

Although our primary concern is improving the social

welfare, it is interesting to monitor the commonly con-

sidered metric of aggregated performance. This metric

is only applicable in the scenario where all the guests

run the same application. In these experiments we con-

ducted, the aggregated performance improves slightly

with Ginseng in most cases. In some cases, the shared-

cache or performance-maximizing methods improve the

aggregated performance by up to 10% in comparison to

Ginseng. The only exception is H.264, which in some

cases yielded a 200% improvement in the aggregated

performance with shared-cache, due to, as we mentioned

above, its small memory working-set. This does not di-

304 2016 USENIX Annual Technical Conference USENIX Association

minish the above because the applications are not con-

sidered equal, in contrast to what standard performance

improvement methods assume.

8.2 Influence of Off-Line Profiling

We experimented with off-line performance profiling

data (e.g., Figure 4) that was measured in a controlled

environment. However, in a live environment, profiling

data should be collected on-line, so that it remains fresh

under changing conditions. To retrospectively justify the

use of off-line profiling in our experiments, we measured

the deviation of actual performance from performance

predicted by the off-line profiling (for the conditions at

the time).

In Figure 8, we see that the deviation from the ex-

pected performance was under 10% in most cases. More-

over, the median deviation for all the applications was

under 1%, and 95% of the measurements deviate from

the predicated performance by less than 12%. The ac-

curacy of the profiling is reflected in the small differ-

ence between Ginseng and the simulation (Figure 7), and

shows that a more accurate profiler would achieve only a

minor improvement.

Figure 8: Expected performance deviation for all appli-

cations in all of our experiments. The pit measurements

are excluded as the performance is expected to fluctuate

when sharing a small number of cache ways.

8.3 To Share or Not To Share

We have already seen cases where partitioning the

cache can benefit cache-utilizer applications without af-

fecting cache-neutral ones. However, in some cases, a

partitioning that includes limited sharing could greatly

improve overall performance.

We consider two possible simple partitioning schemes

where we reserve two cache ways for the pit. Hard-

partitioning allocates a set of exclusive cache ways to

each guest. A guest that values cache more than oth-

ers will be allocated more cache ways. Soft-partitioning

allocates all the cache ways to the guest that values

cache the most. The guest that values cache second-

most gets a subset of the previous guest’s ways, and so

forth. For simplicity, we only let guests bid for the right

to use fixed COSes (for example: COS1 = [1..2] (pit),

COS2 = [3..20], COS3 = [3..15], COS4 = [3..10]). Guests

will need to consider how they value these COSes, as-

suming other COSes may be occupied by at most one

application per COS.

As we have seen, guests can successfully estimate

their expected performance for a given allocation of

exclusive cache (i.e., hard-partitioning). However, it

is harder to valuate a given soft-partitioning allocation

when the cache is shared with an unknown guest, as is

common in the cloud. Even if the neighbor guest is

known, the performance and valuation still depend on

additional dimensions (quantity and share level) that fur-

ther complicate the bidding and optimization process for

guest and host alike.

Ginseng uses hard-partitioning due to its simplicity

and accuracy of estimation. In this section we as-

sess the benefit guests might have achieved from soft-

partitioning. To simplify, we tested several pairs of

cache-utilizer applications, and the pit contained 10

Monte-Carlo applications that served as cache-polluters.

We measured the performance of each pair for all possi-

ble cache allocations in the hard-partitioning and soft-

partitioning allocation schemes. Then, we compared

each pair’s performance in these settings. We used each

application’s measured performance, normalized to its

performance when assigned to the pit, as its valuation

function, and experimented with different ratios of scale

factor between each pair’s valuations.

Although soft-partitioning sometimes yields better so-

cial welfare than hard partitioning (Figure 9b), it usually

improves it by no more than 10% (Figures 10 and 9a), or

even degrades it.

8.4 Dynamic Allocation Overhead

Transferred cache ways require a warm-up period.

Moreover, they are likely to contain the previous applica-

tion’s data. If the previous application is a cache-utilizer,

it is likely to access this data soon, and have this data

marked as most-recently-used (MRU). This creates com-

petition for the other application. If it accesses its own

data too slowly, it may end up evicting that data from its

previously owned ways to store new data in the cache.

It will thus take longer (possibly forever) for the second

application to benefit from additional cache ways. We

refer to such a scenario as cache leakage.

Furthermore, any allocation change is constrained by

the need to preserve the consecutiveness of ways in a

COS. For example, let the initial allocation be COS1 =
[1..4], COS2 = [5..6] and COS3 = [7..10]. To transfer a

way from COS3 to COS1, COS2 must also change. The

least disruptive transfer moves two ways: way 7 to COS2

and way 5 to COS1. Compared with the required transfer

USENIX Association 2016 USENIX Annual Technical Conference 305

(a) Both applications are H.264. Hard-partitioning yields better social

welfare than soft-partitioning for all ratios.

(b) Both applications are Fast Fourier Transform. The maximal improve-

ment for soft-partitioning over hard-partitioning is achieved when the

applications’ scale factors are equal.

Figure 9: Social welfare under hard vs. soft-partitioning.

Striped columns indicate better social welfare under soft-

partitioning. Black indicates the opposite.

Figure 10: Social welfare improvement under soft-

partitioning compared with hard-partitioning for various

application pairs. Boxes show the middle 50% of the val-

ues over different valuation scale factor ratios. Whiskers

mark extreme values.

of a single way, this consecutiveness-constrained transfer

doubles the cache leakage effect.

We measured how dynamic allocation changes affect

application performance. In each experiment, a guest

machine ran one of the workloads listed in §7.2. At

the same time, the host natively ran an application that

repeatedly touches all its data, in parallel, using 8 hard-

ware threads and by utilizing the CPU’s out-of-order-

execution (OOOE) mechanism. We designed this appli-

cation to ensure that its data fits perfectly in its allocated

cache ways, by detecting cache lines that reside on the

same cache set [24, 63]. When an application keeps its

cache lines marked as MRU, the cache leakage effect is

amplified, and thus represents a worst-case scenario.

Each experiment ran for 10 minutes. In each exper-

iment both applications were allocated a basic set of

ways. Another set was transferred between the applica-

tions every [10..60] seconds. The numbers of basic and

transferred ways were in the range [2..10].

In the baseline experiments the cache ways were trans-

ferred once, from the application, to ensure that the ap-

plication’s performance was not affected by the cache

leakage. Half the performance measurements in these

experiments were high and half were low.

In the experiments with the frequent transfer intervals,

there is a similar performance distribution, whose val-

ues varied by up to 4% from the baseline values (high

values were lower, low values were higher). The mean

performance over the duration of the experiment varied

from the baseline by up to 1.1% for all of the workloads.

Mean performance values did not depend on the trans-

fer frequency: the effect of a single transfer is negligi-

ble, and when there are many intermittent leaks, those

that benefit an application will compensate for those that

harm it.

9 Related Work

Market Driven Resource Allocation. Lazar and Sem-

ret auctioned bandwidth [38]. Agmon Ben-Yehuda et

al. introduced Ginseng as a memory auctioning platform

[4]. Drexler and Miller [11] and Maillé and Tuffin [44]

suggested an auction to compute a market clearing price

for memory and bandwidth, respectively. Waldspurger et

al. auctioned processor time slices [61].

Cache Partitioning [56]. Many hardware solutions

detect cache pollution by non-reused data and prevent its

future insertion, or apply partitioning to prevent the ap-

plication from interfering with other applications [12,14,

28,31,40,50,52]; others rely on the user or OS to allocate

the cache, like CAT does [9,33,39,55]. However, CAT is

the first hardware implementation of such a mechanism

in commodity hardware.

A cache-polluter can prevent caching of specific data

by using Intel’s non-temporal store instruction. Cache

can be partitioned in software using page-coloring [59]

to prevent cache pollution: by the program [8, 58], by

the OS [19, 42, 65, 66], and under virtualized environ-

ments [30, 54, 62]. Some works proposed to guarantee

the applications’ performance demands via LLC man-

agement [18,20,21,41,47,53,57]; these works require the

306 2016 USENIX Annual Technical Conference USENIX Association

guests to reveal their performance requirements without

any incentive to do so.

Although page-coloring allows a finer granularity in

the cache allocation, it will not be as effective as CAT for

this work as it requires that memory be moved in order

to change the cache allocation, which will place a heavy

burden on both the clients and the provider.

Shared Cache Performance Interference. VM Per-

formance interference when sharing LLC [16,34,36] was

analyzed and predicted. Such methods can help guests

estimate their performance on shared cache and allow a

biddable soft-partitioning scheme.

10 Conclusions and Future Work

Ginseng efficiently allocates cache to selfish black-box

guests while maximizing their aggregate benefit. Gin-

seng can also benefit private clouds, where it distin-

guishes between guests that perform the same function

for different purposes, such as a test server vs. a pro-

duction server. Cache-Ginseng is the first economically-

based cache allocation method, and cache is the sec-

ond resource implemented in the Ginseng framework.

Cache-Ginseng works by hard-partitioning the cache in

short intervals according to a VCG auction in which the

guests have an incentive to bid their true valuation of the

cache.

The guests utilize their cache fast enough to allow

such rapid changes in the allocation without any sub-

stantial effect on their performance. Ginseng achieves

up to 42.8× improvement in social welfare when com-

pared with alternative cache allocation methods. Shared

cache allocation may improve on these results. Formu-

lating a bidding and valuation language for shared cache

remains as future work.

Although the VCG auction has a high computa-

tional complexity, the coarse cache allocation granu-

larity makes it suitable for cache auction. Similarly,

it can be efficiently used to allocate other small num-

bered multi-unit resources whose valuation functions are

monotonically rising: CPUs, for example. Thus, Gin-

seng is not only a platform for auctioning cache and

memory, but also a concrete step toward the Resource-

as-a-Service (RaaS) cloud [1, 3], in which all resources,

not just cache and memory, will be bought and sold on-

the-fly. Extending Ginseng to additional resources and to

their concurrent allocation remains as future work.

For Ginseng to be applicable in real public or private

clouds, further work is required to create tools for clients

to evaluate their expected performance with different re-

source allocations, where the parameters of the cloud are

dynamic (e.g., online profiling), and to assist the clients

in valuating their performance in economic terms. Fur-

thermore, to maximize the social welfare over an entire

cloud to prevent overcrowded machines, VM migration

support should be implemented in Ginseng in a way that

takes into account the economic benefit and cost to the

client and the provider.

11 Acknowledgments

We thank Sharon Kessler, Nadav Amit, Muli Ben-

Yehuda, Moshe Gabel, Avi Mendelson, Vikas Shivappa,

Priya Autee, Edwin Verplanke and Matt Fleming for

fruitful discussions. This work was partially funded by

the Hasso Platner Institute, by the Professor A. Pazi Joint

Research Foundation and by the Israeli Ministry of Sci-

ence. We thank Intel for loaning the hardware that facil-

itated the research.

References

[1] AGMON BEN-YEHUDA, O., BEN-YEHUDA, M., SCHUSTER,

A., AND TSAFRIR, D. The resource-as-a-service (RaaS) cloud.

In Proceedings of the 4th USENIX Conference on Hot Topics in

Cloud Computing (HotCloud) (2012), USENIX Association.

[2] AGMON BEN YEHUDA, O., BEN YEHUDA, M., SCHUSTER,

A., AND TSAFRIR, D. Deconstructing Amazon EC2 spot in-

stance pricing. ACM Transactions on Economics and Computa-

tion (TEAC) 1, 3 (2013).

[3] AGMON BEN-YEHUDA, O., BEN-YEHUDA, M., SCHUSTER,

A., AND TSAFRIR, D. The rise of RaaS: The resource-as-a-

service cloud. Communications of the ACM 57, 7 (2014), 76–84.

[4] AGMON BEN-YEHUDA, O., POSENER, E., BEN-YEHUDA, M.,

SCHUSTER, A., AND MU’ALEM, A. Ginseng: Market-driven

memory allocation. In Proceedings of the 10th ACM SIG-

PLAN/SIGOPS International Conference on Virtual Execution

Environments (VEE) (2014), ACM, pp. 41–52.

[5] AGMON BEN-YEHUDA, O., SCHUSTER, A., SHAROV, A., SIL-

BERSTEIN, M., AND IOSUP, A. ExPERT: Pareto-efficient task

replication on grids and a cloud. In IEEE 26th International

Parallel & Distributed Processing Symposium (IPDPS) (2012),

IEEE, pp. 167–178.

[6] ALBONESI, D. H. Selective cache ways: on-demand cache

resource allocation. In Proceedings of the 32nd Annual Inter-

national Symposium on Microarchitecture (MICRO-32) (1999),

IEEE, pp. 248–259.

[7] ARMBRUST, M., FOX, A., GRIFFITH, R., JOSEPH, A. D.,

KATZ, R., KONWINSKI, A., LEE, G., PATTERSON, D.,

RABKIN, A., STOICA, I., AND ZAHARIA, M. A view of cloud

computing. Communications of the ACM 53, 4 (2010), 50–58.

[8] BUGNION, E., ANDERSON, J. M., MOWRY, T. C., ROSEN-

BLUM, M., AND LAM, M. S. Compiler-directed page color-

ing for multiprocessors. In Proceedings of the Seventh Inter-

national Conference on Architectural Support for Programming

Languages and Operating Systems (ASPLOS) (1996), ACM,

pp. 244–255.

[9] CHIOU, D., JAIN, P., RUDOLPH, L., AND DEVADAS, S.

Application-specific memory management for embedded sys-

tems using software-controlled caches. In Proceedings of the 37th

Annual Design Automation Conference (DAC) (2000), ACM,

pp. 416–419.

[10] CLARKE, E. Multipart pricing of public goods. Public Choice

11, 1 (1971), 17–33.

USENIX Association 2016 USENIX Annual Technical Conference 307

[11] DREXLER, K. E., AND MILLER, M. S. Incentive engineering

for computational resource management. The Ecology of Com-

putation 2 (1988), 231–266.

[12] DYBDAHL, H., AND STENSTRÖM, P. Enhancing last-level cache

performance by block bypassing and early miss determination.

In Advances in Computer Systems Architecture, C. Jesshope and

C. Egan, Eds., vol. 4186 of Lecture Notes in Computer Science.

Springer Berlin Heidelberg, 2006, pp. 52–66.

[13] FUNARO, L., AGMON BEN-YEHUDA, O., AND SCHUS-

TER, A. Ginseng: Market-driven LLC allocation.

Tech. rep., Technion—Israel Institute of Technology,

2016. http://www.cs.technion.ac.il/users/wwwb/cgi-bin/tr-

info.cgi/2016/CS/CS-2016-03.

[14] GONZÁLEZ, A., ALIAGAS, C., AND VALERO, M. A data cache

with multiple caching strategies tuned to different types of local-

ity. In ACM International Conference on Supercomputing 25th

Anniversary Volume (2014), ACM, pp. 217–226.

[15] GORDON, A., HINES, M., DA SILVA, D., BEN-YEHUDA,

M., SILVA, M., AND LIZARRAGA, G. Ginkgo: Automated,

application-driven memory overcommitment for cloud comput-

ing. In 3rd IEEE International Conference on Cloud Computing

Technology and Science (CloudCom) (2011).

[16] GOVINDAN, S., LIU, J., KANSAL, A., AND SIVASUBRAMA-

NIAM, A. Cuanta: Quantifying effects of shared on-chip resource

interference for consolidated virtual machines. In Proceedings of

the 2nd ACM Symposium on Cloud Computing (SOCC) (2011),

ACM.

[17] GROVES, T. Incentives in teams. Econometrica: Journal of the

Econometric Society (1973), 617–631.

[18] GUO, F., SOLIHIN, Y., ZHAO, L., AND IYER, R. Quality of ser-

vice shared cache management in chip multiprocessor architec-

ture. ACM Transactions on Architecture and Code Optimization

(TACO) 7, 3 (2010).

[19] GUO, R., LIAO, X., JIN, H., YUE, J., AND TAN, G. Night-

Watch: Integrating lightweight and transparent cache pollution

control into dynamic memory allocation systems. In Proceedings

of the USENIX Technical Annual Conference (2015), USENIX

Association, pp. 307–318.

[20] GUPTA, D., CHERKASOVA, L., GARDNER, R., AND VAHDAT,

A. Enforcing performance isolation across virtual machines in

Xen. In Middleware (2006), M. van Steen and M. Henning, Eds.,

vol. 4290 of Lecture Notes in Computer Science, Springer Berlin

Heidelberg, pp. 342–362.

[21] HASENPLAUGH, W., AHUJA, P. S., JALEEL, A., STEELY, S.,

AND EMER, J. The gradient-based cache partitioning algo-

rithm. ACM Transactions on Architecture and Code Optimization

(TACO) 8, 4 (2012).

[22] HEO, J., ZHU, X., PADALA, P., AND WANG, Z. Memory over-

booking and dynamic control of Xen virtual machines in con-

solidated environments. In IFIP/IEEE International Symposium

on Integrated Network Management (IM) (2009), IEEE, pp. 630–

637.

[23] HINES, M. R., GORDON, A., SILVA, M., DA SILVA, D.,

RYU, K., AND BEN-YEHUDA, M. Applications know best:

Performance-driven memory overcommit with Ginkgo. In 2011

IEEE 3rd International Conference on Cloud Computing Tech-

nology and Science (CloudCom) (2011), IEEE, pp. 130–137.

[24] HUND, R., WILLEMS, C., AND HOLZ, T. Practical timing side

channel attacks against kernel space ASLR. In IEEE Symposium

on Security and Privacy (SP) (2013), IEEE, pp. 191–205.

[25] INTEL. Improving real-time performance

by utilizing cache allocation technology.

http://www.intel.com/content/www/us/en/communications/cache-

allocation-technology-white-paper.html, 2015. Accessed May,

2016.

[26] INTEL OPEN SOURCE.ORG. Cache monitoring technology,

memory bandwidth monitoring, cache allocation technol-

ogy & code and data prioritization. https://01.org/packet-

processing/cache-monitoring-technology-memory-bandwidth-

monitoring-cache-allocation-technology-code-and-data. Ac-

cessed January, 2016.

[27] IYER, R., ZHAO, L., GUO, F., ILLIKKAL, R., MAKINENI, S.,

NEWELL, D., SOLIHIN, Y., HSU, L., AND REINHARDT, S. QoS

policies and architecture for cache/memory in CMP platforms. In

Proceedings of the ACM International Conference on Measure-

ment and Modeling of Computer Systems (SIGMETRICS) (2007),

vol. 35, ACM, pp. 25–36.

[28] JAIN, P., DEVADAS, S., AND RUDOLPH, L. Controlling cache

pollution in prefetching with software-assisted cache replace-

ment. Comptation Structures Group, Laboratory for Computer

Science CSG Memo 462 (2001).

[29] JEONG, M. K., EREZ, M., SUDANTHI, C., AND PAVER, N. A

QoS-aware memory controller for dynamically balancing GPU

and CPU bandwidth use in an MPSoC. In Proceedings of the 49th

Annual Design Automation Conference (DAC) (2012), ACM,

pp. 850–855.

[30] JIN, X., CHEN, H., WANG, X., WANG, Z., WEN, X., LUO, Y.,

AND LI, X. A simple cache partitioning approach in a virtualized

environment. In IEEE International Symposium on Parallel and

Distributed Processing with Applications (ISPA) (2009), IEEE,

pp. 519–524.

[31] JOHNSON, T., CONNORS, D., MERTEN, M., AND HWU, W.

Run-time cache bypassing. IEEE Transactions on Computers 48,

12 (1999), 1338–1354.

[32] KANG, H., AND WONG, J. L. To hardware prefetch or not to

prefetch?: A virtualized environment study and core binding ap-

proach. SIGPLAN Not. 48, 4 (2013), 357–368.

[33] KASERIDIS, D., STUECHELI, J., AND JOHN, L. K. Bank-aware

dynamic cache partitioning for multicore architectures. In In-

ternational Conference on Parallel Processing (ICPP) (2009),

IEEE, pp. 18–25.

[34] KASTURE, H., AND SANCHEZ, D. Ubik: Efficient cache shar-

ing with strict QoS for latency-critical workloads. In Proceedings

of the 19th International Conference on Architectural Support

for Programming Languages and Operating Systems (ASPLOS)

(2014), ACM, pp. 729–742.

[35] KIVITY, A., KAMAY, Y., LAOR, D., LUBLIN, U., AND

LIGUORI, A. KVM: the Linux virtual machine monitor. In Pro-

ceedings of the Linux Symposium (2007), vol. 1, pp. 225–230.

[36] KOH, Y., KNAUERHASE, R., BRETT, P., BOWMAN, M., WEN,

Z., AND PU, C. An analysis of performance interference ef-

fects in virtual environments. In IEEE International Symposium

on Performance Analysis of Systems & Software (2007), IEEE,

pp. 200–209.

[37] LARABEL, M., AND TIPPETT, M. Phoronix test suite.

http://www.phoronix-test-suite.com/, 2011. Accessed May, 2015.

[38] LAZAR, A. A., AND SEMRET, N. Design and analysis of the

progressive second price auction for network bandwidth shar-

ing. Telecommunication Systems—Special issue on Network Eco-

nomics (1999).

[39] LEE, H., CHO, S., AND CHILDERS, B. R. Cloudcache: Ex-

panding and shrinking private caches. In IEEE 17th Interna-

tional Symposium on High Performance Computer Architecture

(HPCA) (2011), IEEE, pp. 219–230.

308 2016 USENIX Annual Technical Conference USENIX Association

[40] LIN, W.-F., AND REINHARDT, S. K. Predicting last-touch ref-

erences under optimal replacement. Tech. rep., University of

Michigan, 2002. CSE-TR-447-02.

[41] LO, D., CHENG, L., GOVINDARAJU, R., RANGANATHAN, P.,

AND KOZYRAKIS, C. Heracles: Improving resource efficiency

at scale. In Proceedings of the 42nd Annual International Sym-

posium on Computer Architecture (2015), ACM, pp. 450–462.

[42] LU, Q., LIN, J., DING, X., ZHANG, Z., ZHANG, X., AND

SADAYAPPAN, P. Soft-OLP: Improving hardware cache per-

formance through software-controlled object-level partitioning.

In 18th International Conference on Parallel Architectures and

Compilation Techniques (PACT) (2009), IEEE, pp. 246–257.

[43] LUCIER, B., LEME, R. P., AND TARDOS, E. On revenue in

the generalized second price auction. In Proceedings of the 21st

International Conference on the World Wide Web (WWW) (2012),

ACM, pp. 361–370.

[44] MAILLÉ, P., AND TUFFIN, B. Multi-bid auctions for band-

width allocation in communication networks. In IEEE INFO-

COM (2004).

[45] MOVSOWITZ, D., AGMON BEN-YEHUDA, O., AND SCHUS-

TER, A. Attacks in the resource-as-a-service (RaaS) cloud

context. In Distributed Computing and Internet Technology,

N. Bjørner, S. Prasad, and L. Parida, Eds., vol. 9581 of Lecture

Notes in Computer Science. Springer International Publishing,

2016, pp. 10–18.

[46] MURALIDHARA, S. P., SUBRAMANIAN, L., MUTLU, O.,

KANDEMIR, M., AND MOSCIBRODA, T. Reducing memory

interference in multicore systems via application-aware mem-

ory channel partitioning. In Proceedings of the 44th An-

nual IEEE/ACM International Symposium on Microarchitecture

(MICRO-44) (2011), ACM, pp. 374–385.

[47] NATHUJI, R., KANSAL, A., AND GHAFFARKHAH, A. Q-

clouds: Managing performance interference effects for QoS-

aware clouds. In Proceedings of the 5th European Conference

on Computer Systems (EuroSys) (2010), ACM, pp. 237–250.

[48] NESBIT, K. J., AGGARWAL, N., LAUDON, J., AND SMITH,

J. E. Fair queuing memory systems. In 39th Annual IEEE/ACM

International Symposium on Microarchitecture (MICRO-39)

(2006), IEEE, pp. 208–222.

[49] OU, Z., ZHUANG, H., NURMINEN, J. K., YLÄ-JÄÄSKI, A.,

AND HUI, P. Exploiting hardware heterogeneity within the same

instance type of Amazon EC2. In 4th USENIX Workshop on Hot

Topics in Cloud Computing (HotCloud) (2012).

[50] PIQUET, T., ROCHECOUSTE, O., AND SEZNEC, A. Exploiting

single-usage for effective memory management. In Asia-Pacific

Computer Systems Architecture Conference (2007), Springer,

pp. 90–101.

[51] POZO, R., AND MILLER, B. Scimark 2.0.

http://math.nist.gov/scimark2, 2000. Accessed January, 2016.

[52] QURESHI, M. K., JALEEL, A., PATT, Y. N., STEELY, S. C.,

AND EMER, J. Adaptive insertion policies for high performance

caching. In Proceedings of the 34th Annual International Sympo-

sium on Computer Architecture (ISCA) (2007), ACM, pp. 381–

391.

[53] RAFIQUE, N., LIM, W. T., AND THOTTETHODI, M. Archi-

tectural support for operating system-driven cmp cache man-

agement. In Proceedings of the 15th International Conference

on Parallel Architectures and Compilation Techniques (PACT)

(2006), ACM, pp. 2–12.

[54] RAJ, H., NATHUJI, R., SINGH, A., AND ENGLAND, P. Re-

source management for isolation enhanced cloud services. In

Proceedings of the ACM Workshop on Cloud Computing Secu-

rity (CCSW) (2009), ACM, pp. 77–84.

[55] SANCHEZ, D., AND KOZYRAKIS, C. Vantage: Scalable and

efficient fine-grain cache partitioning. ACM SIGARCH Computer

Architecture News 39, 3 (2011), 57–68.

[56] SCOLARI, A., SIRONI, F., SCIUTO, D., AND SANTAMBRO-

GIO, M. D. A survey on recent hardware and software-level

cache management techniques. In IEEE International Sympo-

sium on Parallel and Distributed Processing with Applications

(ISPA) (2014), IEEE, pp. 242–247.

[57] SHARIFI, A., SRIKANTAIAH, S., MISHRA, A. K., KANDEMIR,

M., AND DAS, C. R. METE: Meeting end-to-end QoS in multi-

cores through system-wide resource management. In Proceed-

ings of the ACM Joint International Conference on Measure-

ment and Modeling of Computer Systems (SIGMETRICS) (2011),

ACM, pp. 13–24.

[58] SOARES, L., TAM, D., AND STUMM, M. Reducing the

harmful effects of last-level cache polluters with an OS-level,

software-only pollute buffer. In Proceedings of the 41st Annual

IEEE/ACM International Symposium on Microarchitecture (MI-

CRO 41) (2008), IEEE Computer Society, pp. 258–269.

[59] TAYLOR, G., DAVIES, P., AND FARMWALD, M. The TLB slice

a low-cost high-speed address translation mechanism. In Pro-

ceedings of the 17th Annual International Symposium on Com-

puter Architecture (ISCA) (1990), ACM, pp. 355–363.

[60] VICKREY, W. Counterspeculation, auctions, and competitive

sealed tenders. The Journal of Finance 16, 1 (1961), 8–37.

[61] WALDSPURGER, C. A., HOGG, T., HUBERMAN, B. A.,

KEPHART, J. O., AND STORN, W. S. Spawn: A distributed

computational economy. IEEE Transactions on Software Engi-

neering 18, 2 (1992), 103–117.

[62] WANG, X., WEN, X., LI, Y., LUO, Y., LI, X., AND WANG,

Z. A dynamic cache partitioning mechanism under virtualization

environment. In IEEE 11th International Conference on Trust,

Security and Privacy in Computing and Communications (Trust-

Com) (2012), IEEE, pp. 1907–1911.

[63] YAROM, Y., GE, Q., LIU, F., LEE, R. B., AND HEISER, G.

Mapping the Intel last-level cache. Tech. rep., Cryptology ePrint

Archive, Report 2015/905, 2015.

[64] YE, C., BROCK, J., DING, C., AND JIN, H. Rochester elastic

cache utility (RECU): Unequal cache sharing is good economics.

International Journal of Parallel Programming (2015), 1–15.

[65] YE, Y., WEST, R., CHENG, Z., AND LI, Y. Coloris: A dynamic

cache partitioning system using page coloring. In Proceedings of

the 23rd International Conference on Parallel Architectures and

Compilation (PACT) (2014), ACM, pp. 381–392.

[66] ZHANG, X., DWARKADAS, S., AND SHEN, K. Towards prac-

tical page coloring-based multicore cache management. In Pro-

ceedings of the 4th ACM European Conference on Computer Sys-

tems (EuroSys) (2009), ACM, pp. 89–102.

