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We studied the estrogenic activity of a component of Panax
ginseng, ginsenoside-Rb1. The activity of ginsenoside-Rb1
was characterized in a transient transfection system, using
estrogen receptor isoforms and estrogen-responsive lucif-
erase plasmids, in COS monkey kidney cells. Ginsenoside-Rb1
activated both � and � estrogen receptors in a dose-dependent
manner with maximal activity observed at 100 �M, the highest
concentration examined. Activation was inhibited by the es-
trogen receptor antagonist ICI 182,780, indicating that the
effects were mediated through the estrogen receptor. Treat-

ment with 17�-estradiol or ginsenoside-Rb1 increased expres-
sion of the progesterone receptor, pS2, and estrogen receptor
in MCF-7 cells and of AP-1-driven luciferase genes in COS
cells. Although these data suggest that it is functionally very
similar to 17�-estradiol, ginsenoside-Rb1 failed to displace
specific binding of [3H]17�-estradiol from estrogen receptors
in MCF-7 whole-cell ligand binding assays. Our results indi-
cate that the estrogen-like activity of ginsenoside-Rb1 is in-
dependent of direct estrogen receptor association. (J Clin En-
docrinol Metab 89: 3510–3515, 2004)

GINSENG HAS BEEN used for over 2000 yr in oriental
countries to enhance stamina and immune function,

where it has been suggested to have pharmacological activ-
ities in the cardiovascular, endocrine, immune, and central
nervous systems (1). Its use has expanded to Western coun-
tries and continues to rise with the increasing popularity of
complementary and alternative medicine. It is one of the
best-selling herbs in the United States (2). Although many
studies have examined the pharmacological action of gin-
seng extracts, a detailed mechanism has yet to be determined.
The major pharmacologically active components of ginseng
are ginsenosides, which are steroidal saponins comprising
3–6% of ginseng (3). It has been shown that ginsenosides
decrease the levels of total cholesterol and triglyceride via
cAMP production and inhibit the accumulation of calcium
ions in liver cells (4). Ginsenosides potentiate analgesia and
inhibit analgesic tolerance (5). The cardioprotective action of
ginsenosides is because of effects on vasodilation via nitric
oxide (NO) release (6, 7). Other activities, such as anticarci-
nogenic and neurological effects, have also been reported for
ginsenosides (8, 9).

In the United States, ginseng is used to alleviate meno-
pausal symptoms, as are black cohosh (Cimicifuga racemosa),
chaste tree berry (Vitex agnus-castus), dong quai (Angelica
sinensis), evening primrose oil (Oenethera biennis), mother-
wort (Leonurus cardiaca), red clover (Trifolium pratense), and

licorice (Glycyrrhiza glabra) (10). One recent randomized con-
trolled clinical trial showed that only black cohosh had a
beneficial effect on postmenopausal hot flashes (10). Other in
vitro studies have measured estrogenic activity in red clover
and licorice, which was not demonstrated in black cohosh
(11). Various studies have indicated that ginseng has estro-
genic activity, although no clinical trials have demonstrated
real efficacy as an estrogen-replacement therapy (10). Ginseng
extracts are able to stimulate the growth of estrogen receptor
(ER)-positive cells (12). Ginsenoside-Rg1 and -Rh1 have been
shown to contain estrogen-like activity (13, 14), but more com-
prehensive data are needed to adequately evaluate this activity.

Among 26 identified ginsenosides, ginsenoside-Rb1, -Ro,
-Rg1, -Rc, and -Re are highly abundant. In particular,
ginsenoside-Rb1 makes up 0.37–0.5% of ginseng extracts,
depending on manufacturing and processing methods,
and belongs to the protopanaxadiol class of ginseno-
sides (http://www.netnam.vn/icasia/english/products/
redkogin/redkogind/redkogind.htm). We have previously
reported that ginsenoside-Rb1 has estrogenic activity (15).
In the present study, we aimed to characterize the differen-
tial activity of ginsenoside-Rb1 toward ER isoforms � and �.
We examined its ability to induce endogenous ER-
responsive genes and to act as an ER ligand. Our data show
that ginsenoside-Rb1 activates both ERs � and � in the
absence of receptor binding.

Materials and Methods
Reagents

Ginsenoside-Rb1 was provided by the Korea Ginseng and Tobacco
Research Institute (Daejeon, Korea). 17�-Estradiol (E2) was purchased
from Sigma Chemical Co. (St. Louis, MO). ICI 182,780 (ICI) was obtained
from ZENECA Pharmaceuticals (Tocris, UK). Ginsenoside-Rb1 was dis-

Abbreviations: CD-FBS, Charcoal-dextran stripped fetal bovine se-
rum; E2, 17�-estradiol; ER, estrogen receptor; ERE, estrogen-responsive
element; PR, progesterone receptor.
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solved in 20% ethanol at a concentration of 15 mg/ml. E2 was dissolved
in 100% ethanol. All the compounds were added to the medium such
that the total ethanol concentration was never higher than 0.15%. An
untreated group served as a control.

Plasmids

ERE2-tk81-luc, constructed by inserting the fragment of the herpes
simplex thymidine kinase promoter and two copies of the vitellogenin
estrogen-responsive element (ERE) into pA3luc (16), was a kind gift of
Dr. Larry Jameson. Expression vector for ERs � and � were from Dr.
Pierre Chambon and Dr. Vincent Giguere, respectively. pAP-1-LUC
plasmid was purchased from Stratagene (La Jolla, CA).

Cell cultures

ER-positive human breast adenocarcinoma, MCF-7, cells were pur-
chased from the Korea Cell Line Bank. MCF-7 cells were maintained in
phenol red-free DMEM containing 1� antibiotic/antimycotic mix (In-
vitrogen, Gaithersburg, MD), 5 mm HEPES, and 0.37% sodium bicar-
bonate, supplemented with 10% fetal bovine serum (FBS) (HyClone,
Logan, UT). COS cells were maintained under identical conditions ex-
cept that 10% calf serum was used instead of FBS. Cells were grown at
37 C in a humidified atmosphere of 95% air/5% CO2 and fed every 3–4
d. Before hormone induction, the cells were washed with PBS and
cultured in DMEM/10% charcoal-dextran stripped FBS (CD-FBS) for 2 d
to eliminate any estrogenic source before treatment. All treatments were
done with DMEM/10% CD-FBS, and 10 nm E2 was used to maximize
the response unless otherwise noted.

Transient transfection and luciferase assays

Cells were seeded in 24-well plates at a density of 7 � 104 cells per
well. After 24 h, plasmids were transiently transfected into the cell by
a calcium phosphate-DNA coprecipitation method. A total of 0.5 �g of
DNA in 25 �l of CaCl2�H2O (250 mm CaCl2) was mixed with 25 �l of 2�
HBS (280 mm NaCl, 10 mm KCl, 1.5 mm Na2HPO4�2H2O, 12 mm dex-
trose, and 50 mm HEPES) with constant bubbling, and within 5–10 min

this solution was added to each well. The next day, transfected cells were
washed with PBS and treated with compounds. Luciferase activity was
determined 24 or 48 h after drug treatments with an AutoLumaat LB953
luminometer using the luciferase assay system (Promega Corp., Mad-
ison, WI) and expressed as relative light units. The mean and ses of
triplicate or quadruplicate samples are shown for representative exper-
iments. All transfection experiments were repeated three or more times
with similar results.

RNA extraction and RT-PCR

MCF-7 cells were grown in six-well plates in phenol red-free DMEM
containing 10% CD-FBS. Near-confluent monolayers were treated with
the compounds for 24 h. The wells were rinsed in PBS, and total RNA
was isolated by lysing the cells in guanidinium isothiocyanate using the
TRIzol reagent (Invitrogen) according to the manufacturer’s instruc-
tions. After extraction, RNA was precipitated by recommended proce-
dures and dissolved in diethylpyrocarbonate-treated water. To synthe-
size first-strand cDNA, 5 �l total RNA was incubated in 0.5 �g of
oligo(dT)18 primer (Invitrogen) and 5 �l deionized water at 70 C for 5
min. RT reactions were performed using 40 U of Moloney murine leu-
kemia virus reverse transcriptase (Promega Corp.) in 5� reaction buffer
[250 mm Tris-HCl (pH 8.3) at 25 C, 375 mm KCl, 15 mm MgCl2, and 50
mm dithiothreitol] and 20 mm dNTP mixtures at 37 C for 60 min. The
reaction was terminated by heating at 70 C for 10 min, followed by
cooling at 4 C. The resulting cDNA was added to the PCR mixture
containing 10� PCR buffer [100 mm Tris-HCl (pH 8.3), 500 mm KCl, and
15 mm MgCl2], 25 U of rTaq polymerase (TaKaRa, Japan), 4 �l of 2.5 mm
dNTP mixtures, and 10 pmol of primers each. The final volume was 50
�l. The sequences for the human progesterone receptor (PR) and pS2
primers were 5�-CCA TGT GGC AGA TCC CAC AGG AGT T-3� and
5�-TGG AAA TTC AAC ACT CAG TGC CCG G-3� for PR (17) and
5�-CAT GGA GAA CAA GGT GAT CTG -3� and 5�-CAG AAG CGT GTC
TGA GGT GTC-3� for pS2 (18), and those of human �-actin were 5�-CCT
GAC CCT GAA GTA CCC CA-3� and 5�-CGT CAT GCA GCT CAT AGC
TC-3� (19). The PCR product for PR is 271 bp and 365 bp for pS2 and 550

FIG. 1. Chemical structure of ginsen-
oside-Rb1.
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bp for �-actin. The reactions were initiated by 3 min of denaturation at
94 C followed by amplification at 94 C for 45 sec, 55 C for 45 sec, and
72 C for 45 sec; 24 cycles for PR or pS2 and 20 cycles for �-actin. The PCR
was ended by elongation at 72 C for 5 min. The PCR products were
analyzed by 2% agarose gel electrophoresis and visualized by ethidium
bromide staining, quantified using a bio-imaging analyzer (Bio-Rad
Laboratories, Inc., Hercules, CA), and band intensity was normalized to
the intensity of �-actin mRNA.

Western blotting

Protein was isolated by using radioimmune precipitation buffer [con-
taining 150 mm NaCl, 50 mm Tris-HCl, 5 mm EDTA, 1% Nonidet P-40,
0.5% deoxycholate, 1% SDS with protease inhibitor cocktail (Sigma)] on
ice for 1 h and then centrifuged for 20 min at 13,000 � g. Supernatant
was collected, and protein concentrations were measured using the
Bradford method (Bio-Rad). Fifty micrograms of protein were dissolved
in sample buffer and boiled for 5 min before loading onto an 8% acryl-
amide gel. After SDS-PAGE, proteins were transferred to a polyvinyli-
dene difluoride membrane, blocked with 5% nonfat dry milk in Tris-
buffered saline/0.05% Tween, and incubated with rabbit anti-polyclonal
antibody to ER (0.4 mg/ml; Santa Cruz Biotechnology, Inc., Santa Cruz,
CA) for 2 h at 1:500. After washing with Tris-buffered saline/
0.05% Tween, blots were incubated with goat antirabbit horseradish
peroxidase-conjugated secondary antibody and visualized with en-
hanced chemiluminescence ECL kits (Amersham Bioscience, Little
Chalfont, UK).

ER binding assay

MCF-7 cells were stripped of any estrogen by keeping them in phenol
red-free DMEM supplemented with 10% CD-FBS for 2 d. Cells were
incubated with 1 nm [2,4,6,7-3H]E2 (89 Ci/mmol; Amersham Bioscience)
and a 100-fold excess of nonlabeled E2 (100 nm) or 25–50 �m ginsenoside-
Rb1 for 1 h at 37 C in a humidified atmosphere of 95% air/5% CO2.
Aliquots of the medium were measured before and after the incubation
with the cells to determine the total uptake of E2 into the cells. After
removal of the medium, cells were washed with ice-cold PBS/0.1%
methylcellulose twice, harvested by scraping and centrifugation, and
lysed with 100% ethanol, 500 �l per 60 mm dish, for 10 min at room
temperature (20). The radioactivity of extracts was measured by liquid
scintillation counting.

Statistical analysis

Values shown represent mean � sd. Statistical analysis was per-
formed by Student’s t test with a P value of less than 0.05 being con-
sidered statistically significant.

Results
Ginsenoside-Rb1 activates estrogen-responsive luciferase
genes in the presence of either ER� or ER�

We have previously demonstrated that ginsenoside-Rb1
(Fig. 1) activates ER in MCF-7 cells (15). It has been shown
that some phytoestrogens such as genistein and coumestrol

FIG. 2. Ginsenoside-Rb1-induced transactivation was assessed by cotransfection of the (ERE)-luciferase with either ER� or ER� expression
plasmids in COS cells. Cell extracts were prepared and analyzed by a luciferase assay. A, Ginsenoside-Rb1 activated both ER� and ER� in a
dose-dependent manner. Cells were exposed to E2 (10 nM), ginsenoside-Rb1 (100–0.5 �M) for 24 h. *, P � 0.05; **, P � 0.005. B, Ginsenoside-Rb1
activation was inhibited by ICI. Cells were exposed to E2 (10 nM) or ginsenoside-Rb1 (100 �M) or in combination with ICI (1 �M) for 24 h. The
data are representative of at least three independent experiments performed in triplicate with similar results, expressed as relative luciferase
units and the SEM of triplicate samples. *, P � 0.05; **, P � 0.005.
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differ in their activity on ER� and ER� (21). In the present
study, we investigated whether there is differential activa-
tion of these two receptor isoforms in response to gin-
senoside-Rb1 by examining the transcription of an ERE-
containing reporter plasmid in the presence of ER� or ER�
in ER-negative COS cells. Ginsenoside-Rb1 activated both
ER� and ER� in a dose-dependent manner (Fig. 2A). Lucif-
erase gene activation was observed over two orders of gin-
senoside-Rb1 concentration up to 100 �m, the highest con-
centration tested. Higher concentrations would have
resulted in unacceptably high concentrations of ethanol in
the cell media. In the presence of the ER� isoform, ginsen-
oside-Rb1 and E2 activated ERE-driven luciferase expression
to a similar extent (91% of E2 activity); approximately 60% of the
E2 response was seen with the ER� isoform (Fig. 2A). These
data indicate that ginsenoside-Rb1 acts as a dose-dependent
agonist, stimulating transcription through both receptors, but
that it has slightly higher affinity for ER� than for ER�.

To confirm that the activities of ginsenoside-Rb1 were ER
mediated, we coincubated the cells with the pure antiestro-
gen ICI, at a concentration sufficient to saturate almost all the
ERs in the cells (1 �m). Transcriptional activation of the
reporter plasmid by ginsenoside-Rb1 was blocked by ICI
(Fig. 2B) with either ER� or ER�, indicating that the gene
activation was estrogen-specific.

Ginsenoside-Rb1 activates AP-1 luciferase reporter
plasmids, PR and pS2 mRNA, and ER protein in an
ER-dependent manner

To further characterize the effects of ginsenoside-Rb1, the
effects on ER-mediated AP-1 responses, endogenous estro-

gen-responsive PR and pS2 mRNAs, and ER protein were
examined. Ligand-occupied ERs are known to mediate gene
transcription from AP-1 enhancer elements (22). AP-1 is im-
plicated in the inducible expression of a variety of genes
involved in the regulation of proliferation and apoptosis, as
well as in cellular stress responses and inflammation (23).
With transient ER� expression in COS cells, both ginsen-
oside-Rb1 and E2 stimulated AP-1-driven luciferase plasmid
transactivation (Fig. 3A). Ginsenoside-Rb1 did not affect lu-
ciferase production in the absence of ER (data not shown).
After treatment of MCF-7 cells with the compounds for 24 h,
steady-state mRNA levels were measured by RT-PCR of to-
tal RNA, as indicated in Fig. 3B. Constitutively expressed
human �-actin mRNA was used as an internal control.
Ginsenoside-Rb1 increased steady-state mRNA levels of the
PR and pS2 genes after 24 h of treatment, as did E2 (Fig. 3B).
Coincubation with 1 �m ICI efficiently blocked the activation
of PR and pS2 mRNA expression, indicating activation
through ER. We also have examined the ER protein levels in
MCF-7 cells by Western analysis. ER protein levels were
down-regulated after 24 h of either E2 or ginsenoside-Rb1
treatments as compared with control (Fig. 3C). These data
indicate that ginsenoside-Rb1 is capable of activating an ER-
mediated pathway.

Ginsenoside-Rb1 fails to compete with estrogen
binding to ER

To determine whether ginsenoside activation occurs via
direct binding to ER, we examined the ability of ginsenoside-
Rb1 to compete with 3H-labeled E2 for ER binding in MCF-7
cells (Fig. 4). Specific binding was calculated as total binding

FIG. 3. Effects of ginsenoside-Rb1 on AP1-
mediated activation, PR and pS2 mRNA, and
ER protein levels. A, Ginsenoside-Rb1-induced
expression of AP1-driven reporter plasmids.
COS cells were transiently transfected with an
AP1-containing reporter and ER� expression
plasmids and treated with E2 (10 nM) or gin-
senoside-Rb1 (50 �M) at the indicated concen-
trations for 24 h. Cell extracts were prepared
and analyzed by a luciferase assay. The data are
representative of at least three independent ex-
periments performed in triplicate with similar
results, expressed as relative luciferase units
and the SEM of triplicate samples. B, The semi-
quantitative RT-PCR for PR and pS2 in the
MCF-7 cells shown is a representative of three
independent experiments. Cells were exposed
to ginsenoside-Rb1 (50 �M) with and without
ICI (1 �M) for 24 h. PR amplification product
was detected at 271 bp (left) and 365 bp for pS2
(right). C, The Western blot analysis shown
is a representative of two independent experi-
ments. Cells were treated with E2 (10 nM) or
ginsenoside-Rb1 (50 �M) alone for 24 h. ER pro-
tein was detected at 62 kDa (right). Equal load-
ing of protein in each lane was confirmed by
�-actin protein (43 kDa). ER densitometry val-
ues are expressed as a percentage of the control
(left).
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minus nonspecific binding (determined in the presence of
unlabeled E2 or ginsenoside-Rb1 at the concentration as in-
dicated in the figure). At 50 �m, ginsenoside-Rb1 did not
inhibit 3H-labeled E2 binding to ER (Fig. 4). We also failed to
observe any binding in a cell line that was stably transfected
with ER (data not shown). In contrast, ginsenoside-Rh1, a
weak phytoestrogen, displaced approximately 44% of 3H-
labeled E2 binding to ER at a concentration of 50 �m in
MCF-7 cells.

Discussion

Hormone replacement therapy is used to prevent or com-
bat heart disease, stroke, osteoporosis, Alzheimer’s disease,
and postmenopausal symptoms such as hot flashes and de-
pression (24). However, such uses of estrogens are associated
with side effects, including increased risks of breast and
endometrial cancers (24). Owing to these problems, public
interest in alternative medicines for hormone replacement
therapy has increased. The most commonly used alternative
herbal medicines for estrogen replacement are soy, black
cohosh, dong quai, chastetree berry, and ginseng (10). Phy-
toestrogens that include isoflavones, lignans, and coumes-
tans are found in some of these herbs (20, 25). This is likely
to be one reason for the lower prevalence of menopausal
symptoms in countries like Korea, Japan, and China, where
consumption of soy is high (26). Although accumulating
studies suggest important potential health benefits, both the
clinical efficacies and mechanisms of action of these herbs are
still not fully known. We evaluated the estrogenic activity of
ginseng, using purified ginseng components from Panax
ginseng. Two ginsenosides with estrogenic activity, ginsen-
oside-Rb1 and -Rh1, had been identified previously by
screening a panel of ginsenosides. In this study, we charac-
terized the in vitro estrogenic activity of ginsenoside-Rb1,

providing a scientific foundation for potential clinical de-
velopment. However, it should be noted that, as with other
phytoestrogens, ginsenoside-Rb1 is likely to contain biolog-
ical activities that are independent of ER, such as antioxidant,
antiproliferative, and antiangiogenic effects (27, 28).

In Asia, ginseng has been used for thousands of years as
a tonic, to fight various aspects of stress, and to restore
homeostasis (1). In Western countries, it is being used as an
alternative herb for postmenopausal women. Accumulating
evidence suggests that ginseng contains either direct or in-
direct estrogenic activity (29). Ginseng extracts activate
estrogen-responsive genes and regulate the growth of hu-
man breast cancer cells (12). Recent studies by Chan et al. (13)
showed that picomolar ginsenoside-Rg1 from Panax noto-
ginseng activated ER-mediated transcription without direct
receptor interaction. Our group has reported estrogenic ac-
tivity of ginsenoside-Rh1 in the micromolar range (14). Al-
though ginsenosides share structural similarities with estro-
gen and may activate ERs, more detailed studies are needed
to fully characterize their activities (12, 29).

The results from other studies in different systems indi-
rectly suggest the regulation of estrogen-responsive genes by
ginsenoside-Rb1. It was shown to decrease cardiac contrac-
tion in adult rat ventricular myocytes, in part through an
increase in NO production (6). Although a correlation be-
tween the increase in NO and ER activation was not evaluated,
estrogen is known to enhance NO production (30). Ginsen-
oside-Rb1 also regulates adrenal tyrosine hydroxylase (31),
which is known to be under estrogen regulation (32).

The data presented here show that ginsenoside-Rb1 acti-
vated both ER� and ER�, leading to the transactivation of
estrogen-responsive genes. However, this activation oc-
curred in the absence of direct receptor binding, as examined
using receptor competition assays. This indicates that
ginsenoside-Rb1 activates ER via a mechanism or mecha-
nisms other than that of classical, hormone-mediated ac-
tivation. A variety of agents, including growth factors,
neurotransmitters, and cAMP, activate ER in ligand-inde-
pendent manners (33). Recent data on the pharmacoki-
netics of ginsenoside-Rb1 show that its absolute oral bio-
availability is as low as 4.35% in rats (34). Based on a
calculation using the figures in the report by Xu et al. (34),
approximately 180 mg/kg ginsenoside-Rb1 should be
taken orally to obtain a serum concentration of 50 �m, the
concentration that activated estrogen receptors in our as-
says. The ginsenoside persists for 3 d, but because of its
low absorption, initial administration or formulation
changes are necessary before clinical application (34). It
has been shown recently that ginsenoside-Rb1 is terato-
genic in the rat embryo at concentrations over 30 �m (35).
Potential toxicity should be kept in mind during the clin-
ical development of this compound. The exact cause of the
estrogenic effects of ginseng may not be ginsenside-Rb1,
because of its low serum concentration despite its in vitro
estrogenic activity. However, these approaches are essen-
tial to provide a scientific rationale for using ginseng for
estrogen-related symptoms. In this report, we have ad-
dressed the in vitro mechanism of one of the main com-
ponents of ginseng. Studies investigating the upstream
targets of ginsenoside-Rb1 that lead to ER activation and

FIG. 4. Competitive binding of ginsenside-Rb1 to ER in MCF-7 cells.
Ginsenoside-Rb1 failed to compete E2 occupancy of ER. Cells were
incubated with 1 nM 3H-labeled E2 (89 Ci/mmol) plus vehicle, non-
labeled E2 (100 nM), ginsenoside-Rb1 (25–50 �M), or ginsenoside-Rh1
(50 �M) for 1 h. Radioactivity of ethanol extracts of cell lysates was
measured by scintillation counting. Specific binding was calculated as
total binding minus nonspecific binding. Data were expressed as
percentage of ligand binding, which is (total binding – nonspecific
binding)/total binding � 100. *, P � 0.05.
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in vivo studies will improve our understanding of the
clinical application of ginseng.
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