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§1. Introduction and preliminaries.

We deal with the Ginzburg-Landau (GL) functional with its variational equation
(GL equation) and study the existence of many kinds of local minimizers (stable solu-
tions) in non-trivially geometrical situations. We consider the following GL functional:

A
4

(L.1) m<¢,A)=jg(~;—|(V—fA)¢|2+

(1— |qb|2)2) dx+J llrotAlzdx.
R 2

for the variable (&, 4), where & is a C-valued function in 2 and 4 is an R*-valued
function in R® and A > 0 is a parameter. This type of functional appears in the theory
of the (low-temperature) superconductivity (cf. [18]). Note that the first and second
terms correspond to the energy of the electrons in the material £2 and that of the mag-
netic field, respectively. It should be emphasized that the magnetic field occurs in the
whole space R>. The theory suggests that a physically realizable state corresponds to a
local minimizer (of such an energy functional) and hence, in our case, it becomes a solu-
tion (@, 4) to the following variational equation (1.2) (GL equation):

(V—id)’®+ A1 - @) =0 in Q,
(1.2) aa_f —iAd - v)® =0 on 02,

rot rot A + (i(PV® — dVP)/2 + |®|*4)4q =0 in R>.

Here ¢-,-) is the standard inner product of vectors in R>, v is the unit outward normal
vector on 022 and Ag is the characteristic function of Q, ie. Ap(x)=1 in 2 and
Ap(x) =0 in R*\Q. In [15], it was proved for the case of a ring-shaped (rotationally
symmetric) domain Q, that many kinds of stable steady state solutions coexist for large
A > 0. The purpose of this paper is to extend this result to a general non-trivial domain
Q2 (cf. Fig. 1). Here the general non-trivial domain means the general domain that is
not simply-connected. In [16] the GL functional and its variational equation (cf. (1.3),
(1.4)) simplified by neglecting the magnetic effect, were studied and several kinds of
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stable solutions were constructed in a certain situation. Those are obtained by putting
A=0in (1.1) and (1.2).

(13) 0@ = [ (G1ver +50 - 10 ax

(1.4) A+ i(1 — @)D =0inQ2, oD/dv =0 on dQ(P : C-valued).

To make clear the problem discussed in this paper and our approach, we briefly review
the ideas and results in [16]. Denote the set of the continuous maps from Q into
S'={zeC||z] =1} by A, ie. # = C%Q2;S'). In view of the functional (1.4), the
absolute value of a local minimizer @; may approach 1 as A grows up. It suggests that
&, approaches a certain map in .#. Actually it was proved in [16] that for any given
homotopy class in .#, there exists a stable solution @; of (1.4) for large A > 0 which
uniformly approaches the harmonic map (e.#) belonging to that homotopy class as
A — .

In certain physical situations, (1.4) is regarded as an approximate model equation of
(1.2) and so it is natural problem to compare the solutions of (1.2) with those of
(1.4). Indeed given @ we see that (P, A) is convex in the variable 4 and it admits
only global minimizers (essentially unique). This implies that when we seek for a local
minimizer, @ is more important variable than 4 because 4 is determined almost uniquely
by @. In other words, #)(®, A) can be controlled only by the variable ¢. This sug-
gests that the situation of local minimizers for 3#;(®, 4) may be similar to that of #(®)
for large 4 > 0. We will construct a solution (@, A) of (1.2) such that @ behaves like an
element with an arbitrarily prescribed homotopy type in .#. For the construction of
solutions, we first deal with the limit problem A = oo of (1.1) and (1.2) and next consider
0« A< oo as a perturbation. We consider the stability problem by investigating
asymptotic behaviors of certain linearized equations and eigenvalue problems.

We remark that a similar nice work on the existence of local minimizers of {1.1) with
their topological characterization for non-simply connected superconductors is done in-

Fig. 1: Q < R® (Doughnut with 3 holes)
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dependently by Rubinstein and Sternberg [22], recently. They are dealing with the case
that €2 has the same topological type of a solid torus (i.e. 71(£2) = Z), while their method
is also applicable to general cases such as ours. The stability inequality such as (2.3) in
our main theorem (Th. 4) is not given there. Since many years ago there have been
many important works on the solutions of Ginzburg-Landau equations with or without
magnetic effects in different situations. See [3], [4], [5], [6], [9], [10], [11], [13], [17], [21],
[23], [24] and the references therein.

We formulate the problem more precisely. We consider the functional (1.1) for
(D, A) satisfying

(1.5) AeL*(R%R%), VAeL*(R%R*3), oe¢HY(Q,0).

The conditions concerning 4 come from the following consideration. From (1.1) rot 4
should belong to L2. Taking account of the gauge transformation (which will be men-
tioned later), we can assume without loss of generality that divA4 == 0 and it leads to
VA e L2(R* R*3) (cf. Lemma 7 in §3). The last line of (1.2) can be regarded as a part
of the time stationary Maxwell equation,

rotrotA=J
(1.6)

J = —(i(BVP — dVD)/2 + |®|*A) Ag,

where J naturally corresponds to the electric current. If J is a given R>-valued function
satisfying divJ = 0 in R*, the function defined by

1 J(»)
07 =3 |
satisfies rot rot 4 = J. In our situation if there exists a C' solution (@, 4) to (1.2), J has
a compact support and satisfies divJ =0 in R? (in the distribution sense), hence A
is expressed as in (1.7) and it implies A(x) — 0 as |x| — 0. Therefore, using the
Sobolev’s inequality (cf. Lemma 7 in § 3 or [12; Gilbarg-Trudinger]) with VA € L2, we get
A e LS(R*RY).
The formulation for the stability of the solution is completely similar to that in
[15]. Note that the functional (1.1) as well as the equation (1.2) is invariant under the
following (gauge) transformation:

(@, 4)— (2", 4')
@ =e*®, A=A+ Vp (p:R-valued function in R?).

(1.8)

This transformation creates a family of solutions (denoted by C(®, 4)) from one solution
(@, 4) and C(®, A) itself corresponds to one physical state. This observation leads us to
study the variation of #) in the direction transversal to C{®, A) to see the stability of
(#,4). We note that the tangent space of C(®, A) at this point is described as

T(®,A) = {(ilD,VE) | £ : R-valued function on R*}.
We take a space N(®P,A4) which is transversal to T(®,A) with T(D, A)NN(D,4) =
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{(0,0)} and consider the second variation

d2
$1(¢,A, W, B) = E m(¢+ EW,A + 8B)|8=0

for (¥,B) e N(®,4). We precisely define several spaces appearing in the above argu-
ments and give some important properties. Let ® e C'(2;C), 4 € C'(R*R?) and
VA e L3(R* R*?). We note that the solution (&, 4) which we will construct in §4
satisfies these conditions. For convenience, we sometimes deal with &d-component in
terms of real functions by taking its real and imaginary parts. We put & = u + vi and
¥ = ¢+ yi. Hereafter we also denote #;(P, 4), ZL,(P, A, ¥,B), T(P,A) and N(P, 4)
by #3(u,v,4), Li(u,v,4,¢,¥,B), T(u,v,A) and N(u,v, A), respectively. Put

Z ={Be L5(R*R% |VBe L*(R*R*)}.
The tangent space T(P, A) is defined as follows,
(1.9) T(®,A) = T(u,v,4) = {(—v&,u&, V&) | Ee L (R?),VE e Z}.

To define a subspace N{(®P, A) = N(u,v,4) which is transversal to T(®, 4), we use the
Helmholtz decomposition (cf. [19]). It is known that L5(Q; R®) and L5(R?; R*) have the
decompositions:

LR =X ®X:, LYR;R) =YY,

where
X = {V¢|¢ e L(RQ), V¢ e L°(2; R)},
X, ={BeL5(2;R*)|divB=0inQ,{B-v> = 0 on 02},
Y1 = {V¢|¢ € L, (R%), V¢ e L°(R%; R)},
Y, = {Be L5(R* R*) |divB =0in R%}.
Let us define

]V(@,A) "—'N(M,U,A) = {(¢a‘llaB) EHI(Q)Z XZI J (U¢—ull/)dx=O,B|g€X2},
o)

N(®, 4) = N(u,v, 4) = {(¢,w,B)eH1(9)2xz|j (v — wh)dx=0,Be Yz}-
Q

For these spaces, we have the properties in the following propositions. Their proofs can
be carried out quite similarly as in §2 in [15] and so we omit them.

ProposITION 1.
(1.10) HY (Q) x H(Q) x Z = T(u,v,A) + N(u,v, A).
PRrOPOSITION 2.

(1.11) H' Q) x H(2) x Z = T(u,v,A) ® N(u,v, 4).
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FORMULA OF THE SECOND VARIATION OF ¢

d2
(112)  Zx(®P,4,¥,B) = £,(u,0,4,4,y, B) = -5 H(u+ e, 0+ e, A +¢B)),_o

= [ 4196+ AP+ 9 g - 201 - - )8 )
Q2
+2/1(u¢+m//)2}dx+J |rot B| dx
R3
+J (u2+vz)Bzdx+4J (A B)(u¢ + vip) dx
Q 2

~2 J {#{Vv-B> — y{Vu- B> + u{Vy - B> — (V¢ - B>} dx.
Q

This is calculated directly from (1.1). The following property is also proved by a direct
calculation.

PROPOSITION 3. Let (&, 4) € H(Q; C) x Z be a C'-solution of (1.2). Then
(1.13) LD, A, ¥, B) = £;(D, A4, ¥, B
provided that (¥,B), (V',B") e H(Q;C) x Z and (¥ — &' ,B— B') € T(®, A).

§2. Main results.

In this section we present the main results. Let 2 < R® be a bounded domain with
C? boundary. We impose the following topological condition on the domain £.

(A) There exists a continuous map of 2 into S! = R/2nZ which is not homotopic
to a constant valued map.

Under this assumption, there are infinitely many homotopy classes in the continuous
mappings of Q into S!. Because if 6y is a map satisfying (A), then all the maps
0o(x)?, 00(x)*,80(x)", ... belong to distinct homotopy classes of .#. Here S! is regarded
as a group. We also remark that in our situation that Q is a domain in R>, it is known
that the above condition (A) is equivalent to that Q is not simply-connected (see Appen-
dix in [16]).

We construct non-trivial solutions to (1.2) for this € and prove their stability.

We seek for a solution (@, A) in the form &(x) = W(x)e’®™ where W = W(x) > 0
and @ is a continuous map of £ into S! with an arbitrarily prescribed homotopy type.

The following theorem is the main result of this paper.

THEOREM 4. Assume (A). For any 0y € M = CO(Q;S"), there exists a o > 0 such
that (1.2) has a solution (®,, A;) for any A = Ay such that &, € C*(2), A€ ZNC(R*R?)
and

(2.1) @, (x) = Wy(x)e%™,

(2.2) lim sup|W;(x) - 1| =0,

im0 ye0
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and the map 0, : Q — S' = R/2nZ is homotopic to 0y. Moreover it is stable in the sense
that there exists a constant ¢ > 0 such that

2 2
(2.3) LDy, A ¥, B) 2 ([P 0,c) + | Bll 2o, r0) + ”VB”IZ}(R3;R3"3))
Jor (¥ B)e N(®,;,A;) and A = A.

We will prove this theorem in the following sections. In §3 we deal with the equation
for the limit case 4 = o0 and prove the existence of solutions by the variational
method. In §4 we deal with (1.2) for large 4 > 0 and construct solutions as a “pertur-
bation” from the limit case A = co. In §5 we prove the stability by the spectral analysis
on a certain linearized problem.

§3. Existence of solutions for i = 0.

We consider the limit problem of (1.1), (i.e. A = o0). By putting ®(x) = w(x)e?¥)
where w is a positive function and 6 is an S' = R/2nZ-valued function, the functional
(1.1) is rewritten as

(3.1) Jﬁ(tp,A):J 1|w(V0—A)|2dx+J L rot 42 ax
Q2 B2

1o 2, 4 22
+JQ(*2~|VW| +4(1 —w)" ) dx.
In this paper we are seeking for a local minimizer (@, 4) = (we'®, 4) of (1.1) with @ # 0
in Q and so if A is very large, w might approach 1. The order of the convergence will be

w — 1= 0O(1/2) (this turns to be true in §4). This consideration suggests us the follow-
ing functional as the limit case A = oo of (1.1).

(3.2) %w(B,A)zlJ |V0—A|2dx+—1-J |rot A|? dx,
2 Q 2 Rr?

where @ is an S'-valued function in £ and A4 is an R*-valued function in R>. Remark
that V@ can be naturally regarded as an R3-valued function. This choice of the func-
tional will turn out to be nice afterwards. The Euler-Lagrange equation of (3.2) is

div(Vl — 4) =0 in Q,
(3.3) (VB —A-v)=0 on 09,
rot rot A + (4 —V8)Ag =0 in R,

We will construct a solution (8,4) such that € is homotopic to 8y of any given
homotopy type in .# = C°(2,S'). For a technical reason, we use R-valued functions in
place of 8. We can assume without loss of generality that 8y is C> because we can
mollify 8; without changing its homotopy class. Let € be the universal covering space
of Q which is endowed with the canonical metric, i.e. the covering map 1 : @ — Q is
locally isometric. On the other hand R is the universal covering of S! = R/2nZ. Let
15: R— S! be the covering map. Fix a point pe Q and let g = Gp(p) e S'. Take
pe and §eR such that 1(p) =p, 1(§) =q. For any He C°(£2,S") such that
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0(p) = ¢, there exists a unique continuous map:

f:Q-—R= S’l,
such that
0u(z)) =n(d(z)) (Vzel), 0(p)=i.

Q —9> R=25!

PROPOSITION 5 ([16; §3]). For any 0 e C°(Q,S") such that 0 ~ 0y and 0(p) = q, the
Junction n(z) = é(z) — éo(z) in Q can be identified with an R-valued function in Q. That
is, there exists a unique R-valued function ' in Q such that n(z) =n'(11(z)). On the other
hand, for any R-valued continuous function n’' on Q2 wzth 7' (p) = 0, there exists a unique
ge CU(R,S") such that 0(p) = q and n'(11(z)) = 6(z) — by(2) in Q.

By the identification in Proposition 5, we denote 5’ also by #. Translating the
unknown function @ into 7, we can rewrite the functional (3.2) and the equation (3.3),
respectively,

(3.4) L, ) =1J |vq+X0—A|2dx+1J irot | dx,
2 Q 2 R?
div(iVp+ Xy — A4) =0 in Q,
(3.5) {(Vn+Xo—A4-v)=0 on 982,

rot rot 4 + (4 — Vy — Xp)Adg =0 in R,

where X, = VO is a C? class R3-valued function. The important point is that 7 is an R-
valued function in 2. Clearly (3.5) is the Euler-Lagrange equation of (3.4). On the
other hand, for a solution of (#, 4) of (3.5) with #(p) = 0 (this can be easily satisfied by
adding an adequate constant to #) we can get a solution (8, 4) of (3.3) by the aid of
Proposition 5.

We consider the minimizing problem for (3.4) in the space:

D ={(n,4) e H'(Q) x L5(R*;R*) |rot 4 € L*(R*; R)}.
PROPOSITION 6. There exists a minimizer (1, A ) € D of (3.4) such that
(3.6) divA, =0in R, J f, dx = 0.
Q

Moreover (7, Aw) belongs to C***(Q) x C'*'(R*; R®) for any y € [0,1) and it is a solu-
tion of (3.5).
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Hereafter in this section we will prove Proposition 6. Before that we recall some
technical tools, which will be used later in this paper.

LEMMA 7. There exists a constant C > 0 such that

”¢||L6(R3) 2 CIVollppgepry (Voe LS(R?)),
2 . 2 2
I|VB||L2(R3;R3X3) = ||d1V B“L2(R3) + ”rot.B”L2(R3;R3)

if Be L} (R*R%), VBe L*(R*; R*3).

(Proof of Lemma 7) The first one is the Sobolev’s inequality (cf. [12]). The second
identity can be proved by the Fourier transform. O

(Proof of Proposition 6) Let {(#,, 4,)},.,; be a minimizing sequence in D. Using the
Helmholtz decomposition in L® (cf. [19]), each 4, is decomposed as follows:

A, =V¢ +B, e Y1®Y, inLS(R%RY),
(3.7) divB, =0 in R®,
[ - &max=o
Q

From the boundedness of
1 1
xozl)(nmAn) = _J |V(’7n - én) + XO — Bnlzdx -+ —J ertBnIde (n g 1)1
2 Q 2 R3
the quantity
(3.8) J IVB,|* dx = J |rot B,|* dx + J |divB,|*dx (cf. Lemma7),
R} R’ R

is bounded. Therefore {B,} is bounded in L®(R*;R*) from the first inequality of
Lemma 7. At the same time, we have the boundedness of [, |V(#, — &) dx(n 2 1).
Using the Poincaré inequality and the last line of (3.7), we obtain the boundedness of
{n, — &} in H'(2). Thus we obtain a weakly convergent subsequence of {r, — ¢&,}
and {B,} (which we denote by the same notation) and their limits, (#.,4w)€
H'(Q) x L5(R*; R?), such that

Ho— En — 1y, weakly in H(Q),
(3.9) B, - Ay, weakly in L°(R>; R®),
VB, — VA,  weakly in L2(R?; R**%),

as n — o0. From the lower semi-continuity of the norm under the weak convergence,
we get

lim inf 3251, An) = #o(Ny, Aw)-
H—00

(Nepr Aw) € H' (2) x (HL.(R*; R*) N LS(R*; RY)) is the minimizer of (3.3) and satisfies
divA, = 0 in R®. Moreover from the regularity argument of weak solutions in the



Ginzburg-Landau equation 671

theory of the elliptic boundary value problem, #,, € H?(Q2) (cf. Chap.3 in [20]). Using
rot rot A, = —AA, and applying the Schauder estimate (cf. {12]) to (3.5), we obtain the
desired regularity:

(1o, Aeo) € C*7(Q) x C'*7(R% R®) for any y € [0, 1). a

By adding an adequate constant we get a solution of (3.5) with #,(p) =0 and con-
sequently, we obtain a solution (A, A, ) of (3.3) such that 8, € C*7(2; "), 0,.(p) = ¢
and ., = 6y + 1., through Proposition 5.

We can prove that a solution to (3.5) is essentially unique. Precisely we have the
following result.

PROPOSITION 8. The solution (1,,, Ax) of (3.5) is unique under the condition (3.6).

(Proof of Proposition 8) Suppose that (n,4), (', A") are two solutions of (3.5) which
satisfy (3.6) and let 1 =n—n', A = A — A'. Clearly, (7, A) satisfies

rot rot A + (4 — Vij)dp =0 in R?,
div(d — Vi) =0 in Q,
A - Vi vy=0 on 9%2.

Since 7 € C2(R) and Q2 is C* we can extend 7 to 7, € C2(R>) with a compact support.
Thus we get

rot rot(4 — V#,) + (4 — V#,) 4o = 0.
Multiplying the equation by 4 — V7, and integrating it over R>, we get

J 3 |rot(4 — V#,)|? dx +J |4 — VA, |>dx = 0.
R Q

Then, we have
(3.10) rot(A ~Vi,)=0in R, A4— Vi, =0in Q.
On the other hand 4 — V#, € LS(R?; R?), there exists & such that V& e LS(R*; R®) and
(3.11) div(4 — Vij, — V&) = 0in R
Noting rot(4 — V#j, — V&) = 0 and (3.11) with Lemma 7, we get
A=V, +&)=0.

From divd =0, we have 4 =0 in R and #, =0 in . This completes the proof of
Proposition 8. O

Remark. If we replace the condition [, 7., dx = 0 by 5, (p) = 0 in (3.6), the con-
clusion in Proposition 8 is still true.
§4. Existence of solutions for 0 « 4 < o

In this section we construct a solution (®;, 4;) to (1.2) for large A > 0. We seek for
a solution such that @-component has the form: &(x) = w(x)e’®*) where
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w:Q— (0,0), 8:Q2—S'=R/2rnZ.

The functional (1.1) is rewritten in the variable (w, 6, 4) (cf. (3.1))

(4.1) m(qb,A):J —1~|w(va_A)12dx+J -l—lrotAlzdx
o2 R 2

1o 2, 4 2y2
+L2(2|Vw| +4(l w))dx.

We consider a local minimizer (w, 8, 4) such that # is homotopic to 8y and 6(p) = q.
Note that 8y € # is a given map, which can be assumed to be C? without loss of gen-
erality. As in §3 we use the change of the unknown variable § to # by Proposition 5
(Recall 5(z,(z)) = 6(z) — Go(z) in Q). The functional #; is transformed into the follow-
ing one:

4.2) ! (w1, ) = J L\ w(Vn + Xo — ) dx + j Lirot A dx
92 R32

YT

where Xy = Vfy. The Euler-Lagrange equation of (4.2) is the following system of
equations (4.3) ~ (4.5):

Aw+ (A1 —w?) = |V +Xo— A )w=0 in Q,
(4.3)
ow =0 on 02,
ov
diviw?(Vp+Xp—A4)) =0 in Q,
(4.4) { ’
(Vp+Xo—A4-v>=0 on 0%,
(4.5) rot rot 4 + (A — Vi — Xo)w4g =0 in R>.

We recall the solution (7., 4,) of the equation (cf. §3):

div(Vyg, + X0 — 4Aw) =0 in Q,

(4.6) (Vi +Xo— Ag v =0 on dQ,
N (P) =0,
(4.7) rot rot A + (Ao — VA, — Xo)do =0, divd, =0 in R>

We construct a solution (w,#, A) to the above system (4.3)—(4.5) as a perturbation from
(4.6)-(4.7) by a fixed point theorem. More precisely, for a certain given (#,4) we find a
unique solution w = w(z, A) > 0 of (4.3). This map will be proved to be continuous and
compact. For this w(s, 4) we consider (4.4)—(4.5) and get a solution (5i(5, 4), A(n, A))
and prove that this correspondence is continuous, We denote the composition of these
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two maps by T}, to which we apply the Schauder fixed point theorem and get a solution
of the “full system” (4.3)-(4.5). From now we carry out this program. Let us define
precisely the set £ and F(J) for the definition of the map 7.

F) = {we C"*(@)] |w - Ul g S ),

E = {(5,4) e CH*Q) x (C**(@Q; RN LS(R*; R*)) |(n, A) satisfies (4.8)},

n(p) =0,lln — 15llraz S 1, divd =0 in R,
(4.8)

|4 - Aw”clw(ﬁ;m) =1, [4- AOOHLG(R3;R3) =1

Note that if 0 <J < 1, any element of F(J) is positive. Given (#,4), we can get a
solution w(4,#,4) to {4.3) with some detailed asymptotic properties for large 1 > 0.
The existence of w(4,#,A) is proved by a standard upper-lower solution method and its
asymptotic property is obtained by the Holder space estimate of the resolvent of the 2nd
order elliptic operator due to S. Campanato. An almost same arguments in this proce-
dure is found in the proof of Prop.4.2 in [16]. Hence we describe the result in our
situation without proofs.

PropPoOSITION 9. Let 0 <d < 1. There exist Ay = A9(0) >0 and cy > 0 such that
(4.3) has a solution w(A,n, A) € F(0) for any (n,A) € E, which is unigue among positive
Sfunctions (also in F(J)) and satisfies

(1-L<whmax) <1 for xeQ(2 o),

(4.9)

.

Cco 2 2
w(d, 7, 4) = Ulew < 5 (VAo + [ Xollea) + 1 4lle @),

Al:m sup ||w(4,7,4) — 1| 2wy = 0.
\ X (n,A)eE
From (4.9), there exists A} = A;(d) >0 such that w(ld,n,4)e F(J) for A= 4; and
(n,A) € E and moreover the image of this map £ — F(J) is compact. By a standard
argument we can show that the map is also continuous.

Next we consider a solution (7, A) of (4.4)—(4.5) for w € F(J). It can be constructed
by a variational method which is completely similar as that in §3. So we only state the
result.

ProrosiTiON 10. Let 6 > 0. For any w € F(J), there exists a solution (n(w), A(w)) €
HYQ) x (HL _NLS(R*R?)) to (4.4)-(4.5) with (n(w),A(w)) e C***(Q) x C'**(Q; R?).
Moreover the solution is unique if the conditions div A(w) =0 in R® and n(w;p) =0 are

imposed.

We prove that the image of the map defined in F(J) is included in E if 1 >0 is
large. Let (n,4) denote the unique solution of (4.4)—(4.5) with (p) =0 and div4d =0
in R for we F (8). Using (4.4)-(4.6) and (4.5)—(4.7), we consider the equations of
n—1, and 4 — A,, respectively.
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div(w?(V(7 — 15,) — (4 — 4)))
(4.10) +div((w? — 1)(Vn, + Xo — 4x)) =0 in &,
V(1 —15) — (A — Ax) - v> =0 on 02,

@1 { rot rot(A — Ay) + (A — Ay, — V(5 — 11,,) )W 4g

+ (W2 = 1)(de — V11, — Xp)Aa =0 in R,

From these equations we get the following integral identities,

La irot(4 — A)|>dx + JQ(A Ay — V(1 = 1)) (A — AW dx
(4.12)

=J (1= w2)(Aue — Vi — Xo) (4 — Aup) dix,
02

[ 90 = 1) = (4= A)¥00 - m)pw? s
(4.13) @
T JQ(I B wz)(AOO - V”OO - XO)V(” - noo)dx'

Adding (4.12) to (4.13), we get

JRz rot(A4 — A.)|? dx + JQ |4 — Ay — V(1 — )| *w? dx

[ =W =V~ X014 — e = V0~ )
(4.14) 4 “

1A

(J |4 — A — V(7 - Ww)lzdx+j [ e — V1750 — X0|2dx)
2 Q

X 5”1 —w ||L°0(Q)'
Using Lemma 7, we see that there exists dg > 0 such that

(4.15) |4 — Awlliﬁ(m;m) + [|[V(4 - AOO)“%,2(R3;R3*3) +([V(n - '700)”%2(9;1(3) < 70)

for and w e F(é) and 8 € (0,9). Here y,(6) > 0 is a function with lims_,y y,(d) = 0.
From (4.11) and A4, A4, € L5(R*;R®) and divd =0, divd, =0, A — A, has the
following expression by the aid of the fundamental solution of the Laplacian
1 J(y)
A(x) — A (x) = — | L
()C) OO(x) 47: JR3 |x _ y’ 1
J(x) = —(4d = A = V(1 — 155) )W Ag

+ (1 = w) (4w — Vi, — Xo) A

(4.16)

Applying the estimates of the singular integral operator (cf. [2], [7]), we have the follow-
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ing estimate,
(4.17) 14 = Ao |l 21y < a1, 8% = Emll N2,

where cpr > 0 is a constant depending on M > 0 such that Q < {|x|] < M}. We used
that J has a compact support. On the other hand J is estimated through (4.16) by
A,n,w as follows,

(4.18) 1 208 = 114 — Ao |l 20 %) + IV = 1) | 2087
+ 1w = 1l oy 140 = V11 — Xoll 200, 5%
Using (4.15), we get an estimate
|4 - Aoo||H2(|x| < MR = 72(6)

where y,(6) > 0 is a function with lims_¢ y,(5) = 0.
Next we consider the estimates of the solution # — 7, of the elliptic boundary value
problem (4.10) which can be rewritten as follows

div(w(V(1 — 1,,)))
(4.10)’ = div(w?(4 — Ax)) — div((w? — 1)(Vy,, + Xo — 4)) in Q,

0
Sy M) = <A — A - ¥) on 09,
Taking into consideration the additional condition #(p) = 0, we have the estimate
17 = B | 124y < €(lldiv((w? = 1) (Vi + Xo — Acc)) + div(w? (4 = Awo))ll 2

+ K4 = Ao - Wl preg) S ¢ (1300) + 14 = Ao || g o,p%)

Here ¢, are positive constants and y;(d) — 0 for 6 — 0. Thus we obtained that
|14 — Al z2(x < a.x%) @04 |7 — 7|l g2y are small if § > 0 is taken small. Applying
a similar regularity argument to (4.10) and (4.11), repeatedly, we get the following
estimates:

|4 - Aoo||c1+u(§;n3) <740), |- ’7wI|C2+u(§) <ys0), (0<a<l),

where y,(d), y5(d) satisfy the same conditions as y,(9), y,(9), y3(9).

Summing up these arguments, we see that if 6 > 0 is small and 4 > 0 is taken large,
then T, is well-defined and T,;(E) — E holds. The continuity of the map T, can be
proved in a similar way below. The continuity and compactness of E 3 (n,4) —
w(4,n,A) € F(6) has been already argued and so we deal with the part wi—
(n(w), A(w)) € E. Let (1;,4;) be the solution of (4.3)-(4.4) for w;e E (j=1,2). Bya
similar calculation as in (4.10) ~ (4.14), we obtain

J Irot(4; — AP dx + J (Ay — Ay — V(5 — 1)) (A1 — A2)w? dx
(4.19) . ?
+ JQ(A2 — Vi, — Xo) (41 — A2)(w} —wd)dx =0,
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L(IV(m — ) = (A1~ A2)Viny — o)Wl dx

(4.20)
+ Jg(v’h + Xo — A2)V(ny — mp)(wi — w3)dx =0,
and we get
JR3 [rot(4; — A2)|* dx + L A1 — Az — V(i — 1) |*wi dx
(4.21)

+j (A2 — Vs — Xo) (A1 — Az — V(11 — 1)) (wh — wd) dx = 0.
(2]

From this identity and Lemma 7, if w is close to wy in F(J), then [|V(12 — 1)l 12(0, g
V(42 ~ A1)l p2(g3. g3=>) and [|A2 — A1 16 (g g3y are small.  Applying the Schauder esti-
mate to the system of equations concerning 7, — %, A2 — A, (which are obtained sim-
ilarly as (4.10)-(4.11)), we can prove that ||(r; — )l carag. 3y 142 = A1l c1ea(z. 07y aTE
small.

Consequently we have proved that the map T;: E — E is well-defined for large
A > 0 and it is compact and continuous. Therefore from the Schauder fixed point theo-
rem, we have a fixed point in E and we get a solution (W,,#;, 4;) to (4.3) ~ (4.5) for
large 4 > 0. We have established the existence of a solution (®;,4;) in Theorem 4.

The obtained solution (®,, 4;) = (W,e'%, A;) satisfies the following properties, which
are verified through the above construction. The last one in (4.22) is proved by the
equation (4.3).

PROPOSITION 11. There exists a constant ¢y > 0 (independent of 1) such that
l“ VV,l - lllca(ﬁ) + Hvelucl+a(§) <cq
(4.22) fim [Ws = Uiz =0,

lim sup |A(1 — W2) —|V6,|*| =0,

A—a0 xe(

for any o€ (0,1).

§5. Stability of (&, 4;)

In this section we prove the stability of (&;, 4;), which we constructed in §3 and §4.
The procedure below is almost similar as was done in [15] (while the estimate is modified).
We estimate the second variation of the functional 5 at (®;,4;) = (u;,v;,4;). We
express @, in terms of real valued functions, i.e., we put u;(x) = W;(x)cos8,, v;(x) =
W,(x)sin8;. Let us consider .&;(u;, v;, 4;,6,¥, B) on N(®;,4,) = N(u;,v;,A4;). Here-
after we denote .Z;(u;,v,,A4,,¢,¥,B) by Zi(¢,¢,B) for simplicity. From (1.12), we
have

(51) 31(45,'//,3) :Il(¢7¢)+IZ(B)+I3(¢a¢’B)
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where

hig,¥) = L(W YA + VY — 45" — AL — 1] — 02)(@* + ¥ P) + 24 (s + va)?) dx
L(B) = J |rot B|* dx + J (u? + v2) B dx,
R’ Q

(¥, B) = 4 L (A - By + o) dx

=2 [ (4O B) — <V By iV - B = 0iV4 - B}
We change the variables ¢, § into q;, |/; by

52 $(x) 8 here R(0 cosf —sind
G2 W(x) () where R(0) = (sinH cosa)

and we express /; and I in terms ofqi I; and I are rewritten as follows,
(53)  hw) =hb i) = L(W (g = VO + V6 — (4, — V)G
— AL — W@ + %) + 2424 dx,
(54) L4y, B) = h(4,y,B)
=4 | s BYWddn—a | (WiV0;- BB~ (V- By

We used that divB =0 in Q and <B-v)> = 0 on 922 since (¢, ¥/, B) € N(u;,v;,A4,).
To investigate the coerciveness of J;, we consider the eigenvalue problem of an
elliptic operator,

( (¢ div((A4; — VO)¥) + (41— V8,) - V)
A(l/’) - (—diV((AA —VO;)¢) — (4, — V8;) - V¢>)

(5.5) ﬁ+(l(1—W?)—]A,1—VBA|2)<$)—ZA%Z(z)-l—u(i)=(g) in Q,

0p _ W _
ua_av_o on 0Q.

Let

e ama { j’;) }w < 12(0) x 1X(@)

be the eigenvalues arranged in increasing order (with counting multiplicity) and a com-
plete system of the corresponding orthonormal eigenfunctions of (5.5). We can apply
quite a similar argument as in [15] or [16] for such type of the eigenvalue problem as
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{5.5) and we get their asymptotic behaviors of the eigenvalues and eigenfunctions. So
we give the results without proofs.

Lemma 12.
(5.6) lim py() =, (12 1),
(5.7) }i_{glo(||v¢z,,1”22(g) + Ayl 2e) =0 (12 1),

where {y}2, is the set of the eigenvalues arranged in increasing order (with counting
multiplicity) of the following eigenvalue problem:

Af+uwp =0 inQ,

(5.8)

i =0 on 09Q2.

ov
We recall an auxiliary property concerning a complete orthonormal basis of the product
of two Hilbert spaces, which we use in the proof of Lemma 15.

Lemma 13 ([15]). Let H, and H> be two real Hilbert spaces with inner products
(s)y, and (,-)y,, respectively and let H be the product Hilbert space Hy x H with the
inner product:

((5)-(5)), =60+ or (5).(4) en

e 8]
If there exists an orthonormal basis { (z )} c H, then
n n=1

§(¢7 ¢n)H1 (wawn)Hz =0 fOI‘ any (:Z) € H:
(5.9) =l

2 2 2 2 = 2
“¢||Hl = 2_:1(¢: ¢")H1’ “w“Hz = z_:l(‘»l’a ltb.n)Hg'
The following result directly follows from the above lemmas.

LemMa 14.  For any (¢, ¥) € L2(Q) x L?(R2), the following equalities hold.

[« 8]
=

D (8- b)) Y1) 1) =0,

1

00 [o¢]
||¢Hiz(g) => (¢ ¢1,1)%.2(9)» ||'/’||i1(g) = Z(¢ : ‘Pl,z)iz(gy
=1 =1

~

I (¢A, l/;) is expressed in terms the Fourier coefficients of ¢, :

S

(5.10) W) =" m(gl,
=1

where

(5.11) gi= (41" (5)1:2(9) + (2 'l;)Lz(Q)
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We remark that ¢; ;(x) =0, ¥ ;(x) = eiWi(x), s(A) =p; =0, 4, >0, ¢, #0 is a
certain real number, which satisfies lim;_,, ¢ = 1/]Q|.
We have the following coercive inequality.

LemmaA 15. For any ¢ > 0 and n > 0, there exists a constant ) = Ai(c,n) > 0 and
d = (e,n) > 0 such that

(5.12) L) = C”J”izm) + (1a2(4) - 'l)“ll;“izm) — (- W,&)JZJ(Q)
for any ¢,y € H(Q) and A = A,. Equivalently,

(5.13)  L(4,¥) = cllpcos, + ¢sin0,]|72q) + (4a(A) — n)l|#sin 6; —  cos ;|72

_¢ ([g(m — ) dx) "

for any ¢,y € H'(Q) and A = 4.

(Proof of Lemma 15) In view of lim,,_.» 4, = oo and the properties of the eigenvalues of
(5.6) in Lemma 12, for given ¢ > 0, we can take a natural number N so that
w(A) 2 ¢+ 1 for I > N and for any large 4 > 0. Thus we have,

{ ‘l;l/; Zﬂl 91 +1) Z 9.?2-

Substituting (5.11) into the above inequality, we have

h$.9) 2 Zﬂz(l)((ﬁ é1.2)12@) +(c+1) Z (- é1.) 120

I=N+1

N .
2 Z (A (4 - ¢1,A)L2(Q)(W : ¢1,1)L2(9)
I=1

+2(c+1) Z (- 1,2 200V - ¥1,0) 1200) +Z (A -y A)LZ

I=N+1

+(c+1) Z (‘ﬁ"l’/,x)iz(g)

I=N+1

From Lemma 14,

N
(5.14) L($,0) 2 (c+ DIBll720) + D _(m(A) —c - (8- 401
=1

N A~ -~ -~
+ Z 2(w(A) —c—1)(¢- ¢1,,1)L2(9)('// ) l/fz,A)Ll(g) +ﬂ2(1)(||¢||22(9) —(y- l//1,1)1%2(9))-
i=1

We used 4, (1) =0, ¢, , =0, ¥; , =e; W;. Using Lemma 12-(5.7) in the right hand side
of the above inequality, we see that the terms including ¢, ;(1 </ < N) can be absorbed
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in the ones including H(Iglliz(g) and ||| iz(g) for large A > 0. We have,
Li(g ) 2 eldllf2 ) + (D) = MYl 7@ — ¢ - Wiz
for large 2 > 0. We obtain (5.12). (5.13) follows immediately. O

LemMMa 16. For any ¢ > 0 and n > 0, there exist 6 > 0, 4y > 0 and ¢ > 0 such that
(5.15) L(8,9) 2 8((1Vl1Z2i0) + IV1I720)) + el ll 20y
+ (1 (A) = M 22y — € (Wi - )12 )
for any ¢, € H(Q) and A > 1,

(5.16)  Ni(¢,¥) 2 6(I|V8lI 1) + IV¥]|720)) + clldcos B2 + ¥ sin ;] 12

2
+ (up(4) — 1) l|¢sin 6; — ¥ cos B3 120 — (L(—fﬁva + ;) dx)
for any ¢,y € H'(Q) and 1, > A,.

(Proof of Lemma 16) First recall that there exists an M > 0 independent of A > 0, such
that |V8,(x)| £ M in Q and other properties in Proposition 11. lim; .., W(x) = 1 uni-
formly in @ (cf. Prop.11). Using these facts in (5.3), we see that for any ¢ > 0 there
exist constants A4; > 0 and ¢” > 0 such that

PN 1 - A o -
(5.17) h(g.¥) 2 5(IV8 @) + IVl L) + (e + DllliZz) — <"1 220

for ¢,y € H'(Q) and A > A,.
Using Lemma 15 for ¢+ 1 in place of ¢ with (5.17), we obtain,

il(éalﬁ) = (1 - e)il(éa J}) +81A1(¢;alp)

& ~ ~ N
2 = (IV8l 72 + IV Z2igy) + (¢ + D4l 720

2
+ (1 = &) (uz(4) — 1) — &) Wil 22y — (1 — &) (W - W) [a)-

where ¢ € (0,1). By taking ¢ > 0 small, we obtain (5.15).
Next we prove (5.16). By a simple calculation we have

VG2 + |V |* = V> + |Vy|* + 2(~y V8, Ve + ¢VO,VY) + |V0,|* (4% + y?)

> (V9 + 1V P) — V8P + 4
= S(VH +VUP) — IVB,P(F + 9,

and using this inequality in (5.17) we get
o 1 -
(5.18) (¢, y) 2 Z(”V¢”i2(g) + |V ]|72)) + (e + 1= M?/2) (18]l 720

— (" + M* /)W l| 20
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for c;;, |/; e H'(Q). We apply a similar argument as (5.15). Using (5.13) (c is replaced
by ¢+ 1) and (5.18), we have

Il(¢, l,b) = (1 - 8)11(¢’ '//) +811(¢7 '//)

& .
2 2 (1V8l22) + 1V 22y} + (c + 1 = eM?/2)]|$cos 6 + yrsin 63| zq)

+ (1= &) (ia(4) — ) — e(” + M/2))|¥olI3 20

= (=0 ([ -+ ) ar) :

We complete the proof of (5.16) by taking & > 0 small. O

PROOF OF THEOREM 4. We estimate %, (@, ¥, B) from below. We first consider the
case: (¢, ¥, B) € N(uy,v;,4;). &, is expressed as follows,

Li($, ¥, B) = L($,¥) + L(B) + I(¢, 1, B),

where I}(qg, W) = K4, ¥) and ¢ = $cos O, + sinb;, Y = ¢sinb; — Y cos b;.
We estimate .%;(¢, ¥, B) by dominating |/3(,, B)| by I and I,.

(5.19) |i3($,&,3)|§4jg|<Ai—vei-B>m¢|dx+4jg|<vm-3>x&|dx

< 4sup |Wi(4; — V8,)| J (eB? + §%/4¢) dx + 2 sup vaj (B + ¢°) dx
Q xef2 0

xef

Applying Lemma 16, we obtain

$A(¢1l/’18) g il(¢§7 lﬁ) + IZ(B) - |IA3(¢;7 ll;vB)|
2 3|Vl 72 + 1V 2qy)

+{c—(1/g) sup |Wi(4; — V8,) )¢ cos 0 + ¥ sin 6]} . )
X€E
+ (up(A) — 9 — 2sug [V#)|)||¢sin6; — ¢c0561||iz(9) + J 3 |rot B|* dx
X€ R
+J (W2 — de sup |Wy(A; — V6;)| — 2 sup | W;|)B* dx
Q xef? Q
We used (1/; %)Lz(g) =0 for (@,y,B) e N(uy,v;,4;). From Prop. 11, there exist

M > 0 and A > 0 such that

sup |W(4; —VO)| = M for iz A,
xe

Hence we put 7 = /4, e = (1/16 M) + 1 and ¢ = (M /e) + 1 in Lemma 16, then we can
take a large positive number A3 > 0 such that
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L3, B) 2 5(||V8l 220y + I V¥ lIZ2()) + |6 cos b + ¥ sin b3 12 g
+ (12/2) I sin 0 — ¥ €08 ;]| 72y + lirot Bl 22 a0, + (1/2) L B’ dx

. 2
2 min(d, 1/2,ﬂ2/2)(||¢”§11(9) + ”‘//“12‘11(9) + 1Bl 120, 2% + ”rOtB“iZ(R’;RJ))

for (¢,4,B) € N(u;,v;,4;) and A > 23.
We will obtain a similar inequality on N(u;,v;,4;). Take any (¢,¥,B)€
N(uy,v;,A4;) and we have the decomposition

(6,4, B) = (—0;1&, &, VE) + (4, ¥, B) € T(u,v,4) + N(u,v,4) (cf. (1.10)).
Note that

gﬂ(q}: lllaB) = ,?;'((;,I,D,B) (Cf PI'Op. 3)

We will prove that there exists a &' > 0 which is independent of (¢, , B) and large 1 > 0
such that

12 =2 =12 =12
(5.20) I8l z1 0y + ¥l @) + I Bllz2(0. r3) + ITot Bl L2 (a3 &3

2 2 2 2
2 (19l @) + ¥l @) + 1 Bllz2 0. 5% + 10t Bl 2k £3y)-

If this is not true, there exists a sequence (g, ¥,, B,) € N(u3,v;,4;) and &,(n = 1) such
that

(521) (s Wy Bn) = (—02&n, iy VES) + (G Wy Ba) € Tz, v2, A1) + N(us,v1, 43).
with

T2 -2 5 112 = 112
(5.22) I 8allz (@) + 1¥alli @) + I1Bull L2 r%) + ITOt Bullz2(p3. 3y — 0 (m — 00),

(5.23) 18,72y + 1WallEn @) + IBallz2 g, + ITOt Ballf2popsy =1 (1 2 1).
(5.21) yields

(5.24) J (4 + v} (x)dx =0, A&, =0in Q, % = (B, v) on iR,
2

(5.25) rot B, = rot B, in R*.
There exist ¢,y € H'(£2) such that

¢, — ¢ W, — ¢ weakly in H'(R) as n — 0.

From (5.22) and (5.25) with Lemma 7 and divB, =0 in R?, VBl 2(k3 g3y — O as
n— co. Consequently, we have lim, .q||Byllzsx g% =0. Using B, = V¢, + B, and
{(B,-v)> =0 on 682, we have

j B,%dx=J |V€,,[2dx+J B dx.
Q Q Q
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This inequality and (5.24) yields |[C, | z1() — O for n — co. By considering H 1(Q2) con-

vergence of (¢,,¥,) = (=v;&,, u;&,) + (@, ¥,) for n — oo and we obtain ¢,,1, — 0 in
H'(Q), we see that (5.23) is impossible for large n. This proves the existence of a
certain & > 0 in (5.20). We have completed the proof of Theorem 4. O
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