
G I N Z B U R G - - L A N D A U  V O R T I C E S :  W E A K  S T A B I L I T Y  

A N D  S C H R ( ) D I N G E R  E Q U A T I O N  D Y N A M I C S  

By 

J. E. COLLIANDER AND R. L. JERRA~ 

C O N T E N T S  

Chapter 1. Introductory Material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  129 

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  129 

2. Notation and the quantities j ( u ) ,  [ J u ] ,  tz~ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  132 

3. Harmonic maps and renormalized energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  137 

4. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  141 

5. Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  147 

Chapter 2. Vortex Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  14"7 

1. Evolution identifies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  147 

2. Vortex paths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  149 

3. Vortex equations o fmof ion  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  152 

Chapter 3. Vortex Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  159 

1. Background on Jacobian and degree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  159 

2, Concentration o f  energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  156 

3. Coveting arguments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  177 

4. Concentration o f  Jacobian and global structure . . . . . . . . . . . . . . . . . . . . . . . . .  184 

5. Some extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  188 

Chapter 4. Auxiliary Results on Renormalized Energy . . . . . . . . . . . . . . . . . . . .  195 

1. A technical lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  195 

2. A variational result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  200 

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  204 

C H A P T E R  1. I N T R O D U C T O R Y  M A T E R I A L  

I I n t r o d u c t i o n  

We consider the e ~ 0 behavior of the initial value problem for the Ginzburg- 

Landau Schr6dinger equation, 

GLS~ 
I u (z, o) = e 

129 
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The quantity 

( 1 . 1 . t )  I ~ [ u ] - -  E~(u)dx; E~(u)= IPul 2 + 

,s 

is the Hamiltonian for the evolution GLS~. We assume that the initial data r 

has a finite number of discrete "vortices", and that the energy of  r away from 

the vortices is O(1). We show that these vortex structures are preserved by the 

evolution and that, under further assumptions on the initial data, their motion can 

be described. Our main result is that they behave in the limit e -+ 0 exactly like 

classical fluid-dynamical point vortices on the torus T 2 . The main results of  this 

paper were announced in [7]. 

This work is motivated by both mathematical and physical considerations. 

Mathematically, it is related to recent efforts to study the asymptotic behavior of  

a number of  PDEs associated w/th the Ginzburg-Landau functional (1.1. l) in the 

limit e ~ 0. Among such PDEs, it is natural to consider the Euler-Lagrange 

equation, heat equation, and wave equation, as well as the Schr6dinger equation: 

} k~u~ - z~u + (lul ~ - 1)u = 0. 
keUtt 

k~iut 

Here k~ denotes a scaling factor, which may be different for different equations. 

The limiting behavior of  solutions of  the Euler-Lagrange equation on a set 

U C N 2 was described in great detail by Bethuel, Brezis and H61ein in [2], with later 

refinements by Struwe [23] and Lin [16], among others. These works show that, 

under appropriate assumptions, asymptotics of  solutions are completely determined 

once one knows the location of  a number of  limiting singular points, or vortices, 

and, moreover, that the vortex locations are critical points of  a renormalized energy 

which can be computed explicitly. This renormalized energy W is a function on a 

finite-dimensional space of  vortex configurations, that is, W = W(a), a e U m, for 

some integer m, which in simple cases is determined by the boundary data. 

Remarkably, the same renormalized energy governs the asymptotic behavior 

of  all the equations shown above. Limiting behavior of  the Ginzburg--Landau 

heat flow was studied by Lin [17], [18], and Jerrard and Soner [14]. These works 

demonstrate that vortices evolve on slow time scales by a gradient flow of  the 

renormalized energy. 

This paper establishes analogous results for the SchrSdinger equation, where 

the limiting ODE is now a Hamiltonian system. As far as we know, this is the 
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first proof  of  this result, although numerous formal arguments have appeared in 

the physics and applied math literature. 

Some partial results on the wave equation appear in Lin [15], and a complete 

description of  limiting behavior of  solutions of  this system is given in Jerrard [13]. 

Thus, this paper and the others cited above show that, schematically, each of  

the above PDEs converges as E ~ 0 to a finite dimensional problem of  the same 

general type as the original problem: 

5(t) ~ - DaW(a(t)) = O. 
a(t) 

J J &(t) 

In the final equation, J represents a symplectic matrix, the details o f  which depend 

upon the signs of  the vortices. 

Physically, GLS~ arises in models of  superconductivity. The Landau theory of  

second order phase transitions (see Chapter 8 in [24]) consists of  expanding the 

energy in terms of  a parameter which encodes the "order" in the phase and then 

exploiting energy properties to determine the evolution of  the "order parameter". 

This theory was applied by Ginzburg and Pitaevskii [10] and Pitaevskii [21] to 

argue that the order parameter describing superfluld helium II evolves according 

to GLS~. In this context, I r is the free energy and u r is the order parameter 

"which plays the role of  "the effective wave function" of  the superfluid part of  the 

liquid" [10]. The motion of  u ~ under the GLS~ evolution conserves Ir I f  we 

express u~(x) = p(x)e ~~ with p, 0 JR-valued, then p: represents the density of  the 

superfluid and DO is the velocity of  the superfluid. Gross [11] also derived GLS~ 

as the Schr6dinger equation for a wave function describing a system of  interacting 

bosons. The equation GLS~ is often called the Gross-Pitaevsldi equation in the 

physics literature. 

We briefly discuss the contents o f  this paper. In the rest of  Chapter 1 we 

introduce some notation and background material and state our main results. Some 

of  the background material is well-known from the work of  Bethuel et al. [2], and 

some is new in this context. In particular, a novel feature of  our approach is that 

we identify vortices as points o f  concentration of  the Jacobian Jug(t) = det Dub(t) 

of solutions of  GLS~. This is physically natural, since the Jacobian more or less 

corresponds to the vorficity of  the superfluid. 

Our main results concern not only vortex dynamics, but also some variational 

results on the renormalized energy, and a detailed characterization of  vortex struc- 

ture. An important consequence of  the latter is the topological stability of  vortices 

in weak function spaces. 
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In Chapter 2 we prove our results on vortex dynamics. The key identity is 

provided by taking the curl of  the equation for conservation of  momentum, which 

may be thought of  as writing the Euler equations for the superfluid flow in terms 

of  the vorticity. Through this equation, we are able to control dynamics of  vortices 

by studying limits of  spatial gradients Du ~. We also make essential use of  results 

on vortex structure and renormalized energy, that are established in Chapters 3 

and 4. 

Chapter 3 presents the proofs of the results on vortex structure. We present 

these results in a general n-dimensional setting, since most of  our arguments are 

quite insensitive to the dimension. We also discuss some extensions. Finally, 

Chapter 4 contains our results on the renormalized energy. 

2 Notat ion and the quantities j(u), [Ju], 

We begin by introducing some basic notation and concepts. We use the 

summation convention throughout, except where explicitly noted. We employ 

O and o notation in some of  the analysis below. We write, for example, O~,b,c(1) 

to indicate a quantity is O(1) with respect to the interesting limit e ~ 0, with the 

implicit constant depending only upon the parameters a, b, c. We normally think of  

solutions u c of  GLSc as taking values in R 2 . In particular, the symbol . . . .  denotes 

the scalar product in R 2, not multiplication of  complex numbers: 

We will, however, feel free to use notation such as iu o r  ei~u, etc. These are 

interpreted in the obvious way. 

We define a 2 by 2 matrix J by 

1 i f i = l a n d j = 2 ,  

(1.2.1) 5ij := -1  i f i  = 2 a n d j  = 1, 

0 i f / =  j ,  

that is, 

For u, v 6 IR 2 we also use the notation 

'U X V :: u l v  2 - -  U2V 1 : ~ijUiVJ~ 

V x u : =  O~u 2 -  O~u 1 = Ji~O~,u ~. 
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Note that iu  = - 5 u ,  so that ( iu)  . v = u x v. Similarly, ( iu )  . u = O, and 

u . v  = ( i u ) .  ( iv) .  

For a scalar function r we define V x r := (r - r so that (V x r = 5~j r  

For a sufficiently differentiable N 2-valued function u we define 

(1.2.2)  j ( u )  :=  (u x x e 

We also write, when convenient, j ( u )  = u x D u  or j ( u )  = ( iu)  . D u .  

In the physical model for superfluids, i f  u ~ is a solution o f  G L S ~ ,  then j ( u  ~) is 

interpreted as the current. 

I f  u is written in the form u = pe ~~ for N-valued functions p and 0, then 

j ( u )  = p~DO. In  particular, i f  [u I = 1, then j ( u )  is the phase gradient. 

We also define the signed Jacobian of  u, 

(1.2.3) J u  := det D u .  

These quantites will play a central role in our analysis. 

Note that they are related by the identity 

V x j ( u )  = 2u~: 1 x u~ 2 = 2 J u .  

For any function u such that j ( u )  E L 1, we can use this identity to make sense o f  

the signed Jacobian as a distribution, or as an element o f  the dual o f C  1. We write 

[JuJ to denote the distributional signed Jacobian of  u, defined by 

r := ~ V x r  r e C~. 

In terminology used in elasticity theory, J u  and [Ju] correspond to det D u  and 

Det D u ,  respectively. 

I f a  function u is sufficiently smooth, then [Ju] and  J u  can be naturally identified 

with each other. This is certainly true for u E HI(Tz),  and it holds more generally 

whenever [Ju] can be represented by an L 1 function; see [20]. However, it is 

not true in general. For example, i f  u ( x )  = x / I x  I, then J u  is a function which 

vanishes a.e., whereas [Ju] = 5o. We often write [Ju] even when J u  and  [Ju] can  

be identified, to emphasize that we are thinking of  the signed Jacobian in the sense 

o f  distributions. 

We mention a few properties o f j ( u )  and J u .  These are discussed in more detail 

in Chapter 3, in a more general setting. First, note that by  Hhlder and Sobolev 

inequalities, on any bounded two-dimensional set, 

(1.2.4) u E W  1',, p E [~ 2)  ==*- j ( u ) E L  q, fora l l  1 < q <  2___p__p 
' - - 4 - - p '  
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(1.2.5) u �9 H a ~ j(u) �9 L q, for all 1 < q < 2. 

The following lemma follows from basic facts about weak and strong conver- 

gence. As is mentioned in Chapter 3, an appropriate generalization remains valid 

in higher dimensions. 

L e m m a  1.2.1 (Weak continuity of  Jacobians). I f  Uk ~ ~ weakly in W 1,p, 

then 

j(uk) ~ j(~) 

weakly in L q where q is related to p as in (1.2.4) and (1.2.5) above. Also, 

[Juk] --* [J~2] 

in the sense o f  distributions. 

We use [Yr as a way o f  specifying the vortex locations in the initial data r  In 

particular, we always assume that there exist m points a l , . . ,  am E ql ~ and integers 

dl, . . . ,  dm 6 {+1} such that 

Informally, this specifies that r has a vortex o f  degree di near each point ai.  

For a given u E H 1 (ql ~ ; R 2), define the measure 

f l ' D u ' 2 + ~  ('u[2 1) 2 , 1 E'(u) dx; E'(u) = ~ 
(1.2.6) #~(A) - [loge I 

A 

for subsets A C ql "e. The renormalization factor 1/I log el appears naturally upon 

considering u = x/]x[ smoothly cutoff  in a ball o f  radius e centered at x = 0. The 

factor 1/[ log e[ will be further examined in the next section. 

Sometimes, we write #~ and [Jt'] to compactly express #~,(t) and [Ju'(t)], 

respectively. 

tn Chapter 3 we work in I~ ~ with definitions o f j ( u )  and [Ju] that generalize the 

notions given here. 

A g e o m e t r i c  n o r m  o n  m e a s u r e s  Next, we introduce some concepts which 

permit us to say when two measures are close. For an open subset U o f  a topological 

space, let Co(U) be the Banach space o f  continuous functions on U which vanish 

on aU. Let .M(U) denote the dual o f  C0(U), i.e., the space o f  finite signed Radon 

measures on U. Similarly, let .M 1 denote the dual o f  C~ (U). Each o f  these spaces 

is equipped with the appropriate dual norm. 
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The following fact is well-known and easy to prove. 

L e m m a  1.2.2. Suppose that U is a subset o f  some metric space and  0 is 

compact. A bounded sequence {#~} c .M(U) converges to a measure # in the 

weak-* topology on A4 (U) i f  and only i f  

We now specialize to the case U = 772, although versions o f  the following facts 

are true in greater generality. However, the fact that the torus has no boundary lets 

us bypass certain inessential technical issues. 

We define a seminorm 

{{u'lm.(v,) :=sup{fCd :llDr f C=0}. 
I f  # (T  2) = 0, we can compute [1#{[~ by testing # against functions r such that 

f r = 0. In this case it follows that 

(1.2.7) -< _< 

This is a consequence of  the fact that 

[{Dr _< []r _< C[}Dr176176 2) 

whenever f r = 0. 

If /z has the form 

i = I  i----1 

for some points ~1, .--, ~n, 771, ..., ~,~ E 2~, not necessarily distinct, then Brezis, Coron 

and Lieb [5] show that 

(1.2.8) [[tL[[~x = na~m~ [~i - ~(i)[ ,  

where the min imum is taken over all permutations ~- E Sn. For measures o f  this 

form we thus have 

(1.2.9) _< -< 

(It is an easy exercise to verify this directly for ~ o f  the form ~ = 8 n - 8~.) 

This demonstrates that the .M 1 norm records the geometric distance between 

the locations o f  Dirac masses. 
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The  fo l lowing  l e m m a  i l lustrates  the use fu lness  o f  the ,/~1 norm.  

L e m m a  1 .2 .3 .  Suppose that for  every t C [0, T], St is a measure o f  the form 

~1~=i ~(t) ,  for  certain points ~i (t), ..., ~ (t). 

Then #(.) is a continuous (resp. Lipschitz) function from [0, T] into A4 ~ i f  and 

only i f  the points {fi (t)} can be labelled in such a way that ~i (') is continuous (resp. 

Lipschitz) for  each i. 

P r o o f .  For  any  s, t, the  m e a s u r e  St - #s has  in tegral  zero  and  so satisfies 

(1.2.9),  so that  

The  l e m m a  fo l lows  immedia te ly .  [] 

R e m a r k s .  

1. T h e  .M 1 s e m i n o r m  can  be  in te rpre ted  as the  m i n i m u m  cos t  in a M o n g e -  

K a n t o r o v i t c h  m a s s  t ransfer  p rob l em.  Indeed ,  w h e n  #('IF s) = 0 as above ,  # 

can  be  wr i t t en  in the f o r m  # = v 1 - v 2, w h e r e  v 1 and  u s are  pos i t ive ,  m u t u a l l y  

s ingular  m e a s u r e s  and  vl('lI e )  = uS(T2). 3"hen [lulls1 is p r e c i s e l y  the  min i -  

m u m  cos t  o f " t r a n s p o r t i n g "  v 1 to u s, subjec t  to a l inear  cos t  funct ional .  See,  

fo r  examp le ,  [9] for  a m o r e  p rec i se  s t a t ement  and  m o r e  detai ls .  Equiva len t ly ,  

I lsl is a lso  k n o w n  as the  d is tance  b e t w e e n  v 1 and  u s in the  s Wasse r s t e in  

met r ic .  

. Puny r ea sonab l e  w e a k  n o r m  on m e a s u r e s  w o u l d  be  equa l ly  su i tab le  for  our  

purposes .  T h e  A/l 1 n o r m  is a conven ien t  choice ,  but  it is ce r t a in ly  no t  the 

on ly  poss ib l e  choice .  

Final ly ,  w e  no te  one  m o r e  p r o p e r t y  o f  the AA 1 norm.  

L e m m a  1 .2 .4 .  Suppose u, v E WI'P(qI~; N2) for  some p > 4/3.  Then 

I][Ju] - [Jv] l l~ l  < c l l u  - vl lwl , ,  ( l lul[w,. ,  + I lv l lg l , , ) .  

Proof~  We presen t  the p r o o f  for  p = 4/3 .  We  use  H61der  inequa l i ty  and  
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Sobolev inequalities to estimate 

sup f V  x r  ( j ( u ) - j ( v ) )  2 fJ[J~] 
P1r J 

- < /  IJ(~) - j(v)l  

] 1~, - vrID~,l + fvrID~, - D~f < dx 

<_ Ilu - vllL,~llDu]lr,/3 + [IV]lL, IIDu - DvlIz4/3 

<_ C l l u -  vllwl, , /~(llullwl , .  + Ilvllwx./~). [] 

3 H a r m o n i c  m a p s  a n d  r e n o r m a l L z e d  e n e r g y  

Bethuel, Brezis and H61ein [2] define a renormalized energy which governs 

the asymptotics o f  Ginzburg-Landau energy minimizers on bounded subsets o f  R 2 

with prescribed boundary data. Here we reformulate their definition on the toms 

T z. Since boundary terms no longer appear, the definition becomes a little simpler. 

A general reference for everything in this section is Chapter 1 of  [2]. 

Let  F solve 

(1.3.1) A F  = 2zr(5o - 1) on qr 2. 

Evidently 

A[F(x) - In [xl] - - 2 ~  

in an open ball containing the origin, so F ( x )  - In Ix] is a C a function in a 

neighborhood of  the origin. We normalize F by imposing the condition 

(1.3.2) lira (F(x) - In Ix]) = 0. 
x---~0 

T h e  c a n o n i c a l  h a r m o n i c  m a p  We define a canonical harmonic map from 

the punctured toms into S 1. This map is determined up to a phase by the location 

and degree o f  its singular points. 

Let  �9 = ~(.; a, d) solve 

Aq~ = 27r E diSa,, / q~ ---- 0 
i=-1 
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in T e . Note that 

(1.3.3) ~(x; a, d) = E diF(x  - ai), 
i 

where F is the fundamental solution defined above. 

Note that i f  u is any function in Wl,l('Lre; S 1) which is smooth away f rom a 

finite number  o f  singular points, then, writing u = e iO, 

f j(u) dz = f DO dz = 2~rk 

for some k = (kl, k2) C Z 2, by  periodicity. A theorem o f  Bethuel  and Zheng [3] 

states that such functions are dense in Wl,l(qI e , S~), so the same fact holds for all 

functions in this space. Finally, suppose that {v c} is a sequence o f  functions that 

converges weakly in Wm('iI '2,R 2) to a limit v satisfying Ivl = 1 a.e. The weak  

continuity o f j  implies that 

(1.3.4) lim f j (v  ~) dx = 2zck 
e--~0 j 

for some k E Z 2 . We will assume k = 0 as a normalization condit ion on the initial 

data, even i f  we do not assume that the initial data converges to some weak  limit. 

With this in mind we state the following proposition, which is essentially proven 

in  [21. 

P r e p o s i t i o n  1.3.1.  There is a map H C Cl~c(TJ e \ (a ) ;S  l) n Wl ' l (qIe ;S 1) 

satisfying 

(1.3.5) d iv j (H)  = 0, 

m 

(1.3.6) 2[JH] = V x j (H)  = 2zr Ed iSa~  
i = 1  

and 

f 
(1.3.7) ] j (H)  = O. 

dv 2 

The first two equations hold in 7)~ (qr 2), and they are also true pointwise away from 

the singluar points (a). Moreover, i f  ~I is any other function satisfying (1.3.5), 

(1.3.6), (1.3.7) then ~I = ei~H for  some a E N. 

We sketch the p roo f  after first making some comments.  

We refer to H as the canonical harmonic map with singularities (a) o f  degree 

(d). We have taken the name "canonical harmonic map" from the work o f  Bethuel,  
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Brezis and H61ein on the Dirichlet problem. In the periodic context it is clearly 

something of  a misnomer, since H is not unique. Nonetheless it seems easiest 

to use the familiar terminology. The fact that H is a harmonic map into S 1 is 

expressed in (1.3.5) above, and that it has singularities o f  degree d~ at points ai is 

contained in (1.3.6). 

The idea o f  the proof  is as follows: using (1.3.5), (1.3.7), and the definition o f  

�9 , we integrate (1.3.6) to obtain 

(1.3.8) j ( H )  = - V  • 

Since H takes its values in S 1, we can make the ansatz 

H(x) = exp(iO(x)), 

and (1.3.8) becomes DO = - V  x ~. One can then fix an arbitrary value for 0 at 

some point and use this equation to solve for a (multivalued) 0. One finishes by 

verifying that H = exp(i0) is well-defined and has the stated properties. 

We henceforth assume that we have selected a single H from the one-parameter 

family o f  functions satisfying (1.3.8). We will sometimes write H(x; a, d) to 

indicate the dependence of  H on the singularities. 

Given a collection o f  points al,  ..., am E ~-z and nonzero integers dl, ..., d~ such 

that ~ d~ = 0, define for p > 0 the set 

:: \ U Bp(o,) 
i 

We will normally be interested in the case 

(1.3.9) 0 < p < 1= minlai  - aj[. 
iT~j' 

Define also the renormalized energy 

(1.3.10) W(a, d) := -Tr Z didjF(ai - aj). 
ir 

The renormalized energy W describes to leading order the finite part o f  the energy 

associated with a configuration of  vortices (a), (d). We next restate this idea in 

several more precise ways. 

The following proposition comes from [2]. 

P r o p o s i t i o n  1.3.2. Let H = H (., a, d). For p satisfying (1.3.9), 

f~ l 'DH'2dx  = mlrha ( ~ )  + W(a,d) +O(P) �9 
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The proof follows by noting that tDHI 2 = IDq~I 2, and then integrating by parts 

to obtain 

f~ ]DHj2dx =_ f U O~ 

The right hand side can be estimated using the explicit representation of  ~I, 

(1.3.3). 

Following Bethuel, Brezis and Hdlein [2], we define 

(1.3.11) I (e ,p)= rain [~JfB, E~(u)dx : u E Hl (Bo) ,u (x )= ~x for x E OBp} . 

It is shown in [2] that 

as e ~ 0, for p fixed; the upper bound can be established easily by constructing an 

appropriate comparison function. 

A construction given in [2] (Lemma VillA) can be adapted to show that 

Proposition 1.3.3. Given any distinct al, ...a,~ E qI e and dl, ...,d,~ e {~:1}, 

there exists a amily offunctions v" E H 1 (~ ;  R 2) such that 

m 

[Jv ~] -~ ETrdi5~ weakly in .M, 
i=1 

/ j(~) -~ o, 

and for every p > 0 

fv2EC(ve)dx < m (~rln (~  ) + I(~,p)) + W(a,d) + Cp + o(X) 

a s  s ---+ O. 

On the other hand, we will establish later that 

P ropos i t i on  1.3.4. Given any distinct al, ,..am E ~2 and dl, ...,din E {4-1}, 

and any family o f  functions v ~ E H l (qr e ; R 2 ) such that 

[Jv ~] ~ ~ 7rdiSa~ weakly in .M 

and 

f j ( r  -~ O, 
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there exists a constant C independent o f  e, p such that 

fv2E~(v~)dx > m (Tcln ( ~ ) + I ( e , p ) ) + W ( a , d ) - C p + o ( 1 )  

as e ~ O, for  every p > O. 

4 Resu l t s  

We begin with a discussion of  our assumptions on the initial data r of  GLS,.  

We then briefly consider an extremely simple example that illustrates some of  the 

analytic issues. Then we state our main results describing the dynamics of  vortices 

of  the solution u*(t) of  GLS~. We conclude by stating results which describe 

structural properties of  functions satisfying the assumptions on the initial data. 

The structure results are fundamental to characterizing the vortex dynamics of  the 

Ginzburg-Landau SchrSdinger equation. We expect that these structure results 

will also be useful in other problems involving vortex motion. 

In i t ia l  d a t a  a s s u m p t i o n s  We impose three conditions on the initial data 

r : T2 : ; C. First, we assume 

m 

(1.4.1) [ar ~ ~rEdiaa ,  inM(]I'2), 
i= l  

where d l =  =t=1, with ~ , d i  = 0 and the ai are distinct points in "i[ e. 

The next assumption is that the energy of  r is bounded in some appropriate 

way consistent with (1.4.1). A relatively weak assumption of  this sort is that 

(1.4.2) fE (r _< rnTrln ( 1 )  + ' h  

for some "/1 > 0 and all e E (0, 1]. We will be able to get more detailed information 

about asymptotic behavior of  solutions under the assumption 

(1.4.3) fE (r (~rln ( ~ ) + I ( e , p ) ) + W ( a , d ) + C p + o ( 1 )  

as e ~ 0, for every p > 0. 

The third assumption is the normalization condition that r has an average 

phase gradient that converges to 0 as c --. 0, 

(1o4.4) lim f j(qb~)dx = O. 
e--~O JT2 



142 J. E. COLLIANDER AND R. L. JERRARD 

The rationale for this assumption is discussed following (1.3.4). 

We observed in Proposition 1.3.3 that it is possible to construct data r satisfying 

these assumptions. 

We will see later that the energy upper bound (1.4.3) forces r to converge in 

H(oc(T ~ \ (a)) to the canonical harmonic map H = H(., a,  d) (modulo a phase). 

Contrast this with the assumption (1.4.2) which allows r to converge in the 

same sense to eir where r E H l ( ' r  2) with IIr controlled by Yl. 

Thus (1.4.2) is a much weaker assumption than (1.4.3). Stated differently, the 

assumption (1.4.2) asserts that the energy of  r is within O(1) o f  the minimum 

subject to the constraint (1.4.1). The assumption (1.4.3) strengthens this condition 

to within o(1) o f  the minimum. 

A s i m p l e  e x a m p l e  Consider the simple situation where r = pe ~~ for 

constants p, 0 E R. The solution of  GLS,  is easily seen to be 

u~(x, t) = pei(~ ~[p2-1lt) 

and 

1 2 ~ J~( r  = ~jd[ p - 1] 5. 

Unless p - 1 = O(e2), the phase o f  the solution u ~ oscillates rapidly in the 

t variable for small e. The assumption (1.4.2) forces IP - 11 -< O(e) and (1.4.3) 

forces IP - 11 <- o(e). So, under both energy upper bounds we may  have rapid 

temporal oscillation in the phase o f u  ~, forcing u ~ ~ 0 weakly in LP(dxdt). These 

observations reveal that most information about u ~ is lost upon passing to weak 

limits. Therefore, to identify vortices in the e --* 0 limit requires a device insensitive 

to these oscillations. 

Note that j (u)  = j(ei~u) for any constant t3 E R, which indicates that j (u)  is 

insensitive to temporal oscillations in the phase of  u. The insensit ivity to phase 

oscillations leads us to expect j (u  ~) to retain more information under passage to 

weak limits. 

V o r t e x  d y n a m i c s  Our first result shows that, even under the weaker 

assumption (1.4.2), vortex paths exist. Moreover, knowing their location, we 

can determine the average behavior (i.e. weak limits) o f  the current j~. 

T h e o r e m  1.4.1. Let u ~ be the solution o f  GLS~ with initial data r satisfying 

(1.4.1), (1.4.4) and (1.4.2). Then, after passing to a subsequence as e --, O, there 
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exists a T > 0 (independent o f  e) and Lipschitz paths ai : [0, T)~-  

such that 

m 

( 1 . 4 . 5 )  

i = 1  

and 

m 

(1.4.5) [Ju~(t)] ~ 7 r E d i ~ a , ( t  ) 
i = l  

a (O) = a i  

(1.4.7) 

for  all t E [0, T) and 

(1.4.8) 

weakly as measures fo r  all t c [0, T). Moreover, 

]u~(t)t 2 --~ 1 in L2(dx) 

j (u  ~) ~ j (H)  weakly in LP(dxdt) 

f o r  all 1 < p < 2 where H(., t) = H(., a(t), d) is the canonical harmonic map. 

Finally, lai(t) - aj(t)l > O for  all t E [0, T), and 

(1.4.9) T ----- inf{t > 0:  [adt) - ai(t)l ~ 0 f o r some  i # j} .  

Under  the stronger assumption (1.4.3), the limiting vortex trajectories can be 

found by solving an ODE, and the weak limits in the above theorem become strong 

limits. We thus obtain a nearly complete description o f  the limiting behavior o f  

solutions u ". 

T h e o r e m  1.4.2.  

each i, 

(1.4.10) 

Suppose r satisfies (1.4.1), (1.4.4) and (1.4.3). Then for  

d 
~a~ = 2 E d~V x F ( a r  a ~ ) = - ! d d D ~ , W ( a , d ) ,  

~:j#i ai(O) = a~. n 

Also, f o r  every t E [0, T), 

( 1 . 4 . 1 1 )  1 . lU~13(u ) --+ j (H)  strongly in L~oc(~2 2 \ (a(t))), 

and for  every p > 0 and t E [0, T), 

(1.4.12) lira rain [{u'(-,t) - ei~H(.,a(t),d)ll~(r~) = O. 
e~0 aE[0,2~r) 
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Remarks.  

1. Recall that we  have arbitrarily fixed one map H from the one-parameter  

family ei~H solving (1.3.8). 

2. The above result is valid globally in time if  the trajectories (a~(-)) solving 

(1.4.10) satisfy ai(t) r aj(t) for all i r j and all t > 0. We expect that this 

condition holds for generic initial data, but not for all data. An example (in 

a slightly different context) o f  vortices that collide in finite time is given in 

Marchioro and Pulvirenti [ 19]. 

(1.4.14) 

f o r  some "/1. 

suck that 

V o r t e x  s t r u c t u r e  and topological stability In order to prove the above 

theorems, we  need to carry out a detailed analysis o f  the local structure o f  vortices. 

Perhaps the most  important consequence of  this analysis is that vortex-like objects 

in a function u = u(z, t) are locally topologically stable if  the evolution t H u(., t) 

is continuous in H 1 . 

Here we  state two results o f  this sort. The first, local structure theorem, is more  

basic. 

T h e o r e m  1.4.3 (Local Structure). Suppose that e < r < 1, u E HI(B~; 1Rz), 

71- 
( t .4.13) 1] [Ju] - 7rdSo IIzal(B~) < ~-d-~ r, 

where d = 4-1. Assume also that 

r 

Then there exists a point  ~ E B~/~ and a constant C1 = 61( ' ) ' 1 )  > 0 

(1.4.15) ~ E~(u) dx > T r l o g ( ~ )  - C 1  
~(~) 

f o r  every a E [0, r/2]. Moreover, 

C1 
(1.4.16) l[#~ - 7rS~ll~(B~) -< i lne ] , 

( t .4.17) H[Ju] - 7rdS~ll~l(B~) <_ o-n (1). 

Finally, f o r  any p e [1, 2), there exists some C v = Cp(71) such that 

(1.4.18) IIDUtlL, W.) <-- G" 
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The following result will be more directly useful for our analysis of  vortex 

dynamics. It follows easily from Theorem 1.4.3 above. 

T h e o r e m  1.4.4 (Global Structure). Suppose that u E HI(Te;IR2), and that 

there exist points  x l , . . . ,Xm E qI e, integers dl, .... dm E {+1}, and ~ < r := 

1. min i t j  lxi -- ccjl such that 
4 

m 
7r 

(1.4.19) It [JuJ - rr E di~5~ , I[~a'(v=) <- ~-6-6 r, 
i=1 

and 

(1.4.20) 

f o r  some constant71. Then there exists points ai ~ B~/z(xi), i = 1, ..., m such that 

( 1 . 4 . 2 1 )  i i / .~ _ 7 [ .E~a l  i1.g41(~2) --~ 0,.[ 1 1 , 

i=1 

m 

(1.4.22) [ l [Ju] - r r~d~5 . , l l e . , (T~ )  <_ o,.r, (1). 
i=1 

Moreover, f o r  p f i xedand  0 < p < r/2, 

(1.4.23) f E'(u)d~ < op,~,(1) ,  

(1.4.24) 

Finally, f o r  any p E [1, 2), 

IIDUtILU(T~) <-- O,~,'rl (1). 

(1.4.25) 

and 

(1.4.26) IJj(u)IILp(T2) < Op,.n (1). 

The structure results are proved in Chapter 3. Our results there are stated and 

proved in a much more general framework, one which applies to Ginzburg--Landau 

type fimcfionals in arbitrary dimensions and to a Ginzburg-Landau type functional 

arising in models of  superconductivity. Our analysis relies heavily on techniques 

introduced in [12]; similar ideas appear also in [22]. 
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R e s u l t s  o n  r e n o r m a l i z e d  e n e r g y  For the p roo f  o f  Theorem 1.4.2, we need 

some results about the renormalized energy. Before  stating the result, we  note 

some consequences o f  the definition o f  the current j (u) ,  which we recall m ay  be 

written 

j (u)  = (iu . u=~,iu . u=2) = iu . Du. 

First, since Du(x)  = 0 for a.e. x such that u(x) = 0, we can write 

(1.4.27) 

It follows that 

_ jk(u)  iu u 

(1.4.28) IDul 2 - [J(u)12 
I< 2 

In Chapter 4 we will establish 

T h e o r e m  1.4.5.  

- -  +1 Dlul 12. 

Suppose that u ~ E H 1 is a sequence such that 

m 

(1.4.29) [Ju ~] ~ 7r Z dr 
i=1 

weakly as measures, and that there exists some "Y2 C N such that 

(1.4.30) f E C [ u ~ ] d x < m @ l n ( ~ ) + I ( e , p ) ) + W ( a , d ) + C p + ' Y 2 + o ( l )  

as c --* O, f o r  every p > 0. Then there exists some universal constant C such that 

1 . , j ( H )  L 22(~20) (1.4.31) l imsup J(U ) -- < C~/2 
e--*0 ~ 

and 

(1.4.32) limsup][ D]u" I 2 llz~(v~) -< C72 
~--*0 

for  every p > O. Here H = H(.; a, d) is the canonical harmonic map. Finally, 

(1 .4 .33)  lira sup I1(1r 2 - 1)llz~(r~) _< c'r2e 2. 
6---tO 
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C H A P T E R  2. V O R T E X  D Y N A M I C S  

In this chapter we prove Theorems 1.4.1 and 1.4.2. The proofs of  both of  these 

theorems rely on the Global Structure Theorem 1.4.4. Theorem 1.4.2 also depends 

upon the result on the renormalized energy Theorem 1.4.5. We begin by deriving 

evolution equations for certain nonlinear quantities involving u ~ assuming that u ~ 

evolves according to GLS~. In fact, we work in a slightly more genera1 context for 

these derivations. Then, we present the proofs of  Theorems 1.4.1 and 1.4.2. 

1 Evolut ion  identit ies  

We first record some identities which hold for sufficiently smooth solutions of  

a general nonlinear Schr6dinger equation of the form 

(2.1.1) iu~ - Au + W' ( [u-~ ) u =O. 

Most of  these are well-known. 

First, i f u  is a smooth solution of (2.1.1), then 

d lul  2 

dt 2 
= 

(2.1.2) = ((iu).ux~)~j = div j(u). 

Let 
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Then 

-~ E = D u .  Dut  + u .  ut 

= (uxj " ut)x~ - [Au  - W '  ( lu'~P~ ) u] " ut 

(2.1.3) = (uxj .  ut)~j, 

since (Jut) �9 ut = 0. This identity implies that energy is conserved for solutions o f  

(2.1.1). A similar computation yields 

(2.1.4) E ~  = (uxj . ux~)~ - (iut) . u z  k. 

Next, for each k = 1, 2, we use (2.1.4) to compute 

d [ ( i u ) ,  u:~k] = (iut) .u~ k + ((iu) . ut)~k - (iu~k) .u t  

= + ( ( i u ) .  

(2.1.5) = 2(u~j - uxk)~ j + [2E + ( iu) .  ut]=~. 

We write this as a vector identity in the form 

d 
(2.1.6) -~ j (u )  = 2 div (Du | Du)  + D[2E + ( iu) .  ut]. 

This may  be interpreted as expressing the conservation o f  momentum.  
1 Finally, we  take the curl o f  the above identity, recalling that Ju  = ~ V  x j (u) .  

Since the curl o f  a gradient is zero, we obtain 

1-v = x 

2 

(2.1.7) = V x div (Du | Du).  

Written out in full, this means that 

d 
(2.1.8) -~ Ju  = .Dkl (u,~ . u= k )~  ~,. 

Multiply by  a smooth function fl and integrate to obtain 

(2.1.9) r] [Ju] ]~:1 = Jkzr]~zu~ j . u~ k dx dr. 
2 

h deriving this, we have assumed that u is a smooth solution o f  (2.1.1). 

However,  for certain choices o f  W in (2.1.1), in particular the choice making 

(2.1.1) into GLS , ,  the preceding calculations apply equally well to u(-) E H 1 (T e). 
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For ~ > 0 fixed, GLS~ is a defocussing nonlinear Schr6dinger equation. Bourgain 

has established [4] global weUposedness for GLS~ below H 1. We validate the 

preceding calculations for u ~ 6 H z ( ~ )  as follows using various aspects of Bour- 

gain's result. By continuous dependence on the data, a different solution ~ ( t )  is 

close to u~(t) in H 1 (2 "2) provided the corresponding initial data r and r are close 

in H 1 (~L~). Let q~ be a smooth approximator to r The preceding calculations 

apply to ~ since it remains smooth for all time. The various identities above, in 

particular (2.1.9), are then validated for u ~ 6 H ~ (T 2) by considering a sequence of  

smooth approximators. 

We comment briefly on the usefulness of  the identity (2.1.9) in our study of  the 

dynamics of  vortices of  GLS~. Suppose we knew that [Ju(t)] = 7vS,(t), that u(t) is 

smooth away from a(t) for all t E It1, t2], and that u is changing with time in some 

smooth way. We select a test function ~7 supported in the ball B~(a(tx)) which is 

linear in B,/2 (a(h)). Then, the left side of  (2.1.9) "feels" the motion of  the Dirac 

mass a(h)  --+ a(t2) while the right side is controlled by the first derivatives of  u 

inside supp D2zI = B~(a(tl)) \ B~/2(a(h)), away from the singularity. 

2 Vortex paths 

The idea of  the proof of  Theorem 1.4.1 is to use the Jacobian evolution identity 

(2.1.9) to show that vortices move with velocity at most O(1) in in the chosen time 

scale, at least for short times. It then follows that the hypotheses of  the the Global 

Structure Theorem 1.4.4 are satisfied by u'(t), the evolving solution of  GLS,,  in 

a nontrivial time interval [0, T), uniformly for all small e. As a consequence, 

the t-parametrized measures [d[] and #~ concentrate to Dirac masses at points 

ai(t) E "lI e, and these points follow Lipschitz trajectories in the interval [0, T). We 

employ some of  the notation appearing in the statement of  Theorem 1.4.4. 

We now establish Theorem 1.4.1. 

Proof .  

1. Define for r = min~j�88 - a5] with 0 < c << r _< 1 the quantity 

TO= 

Recall that Ju = det Du = u ~  2 _ u l~u 2~. The estimates 

ll[Ju ~] - [JCe]HMa < l[Ju e - JCellL~ < Cllu ~ - qSe[lua(liueilH~ + IIr 

and continuity of  the flow o f r  ~ , -~ u~(t) through H a guarantee T ~ > O. 



150 J. E. COLLIANDER AND R. L. JERRARD 

2. C l a i m .  For s, t satisfying 0 _< s, t < T ~ we have 

I I [ a ~ ( ~ ) ] -  [ a ~ ( t ) ] l l u ~ ( ~ )  -< ~ l * -  tl + o,~(1). 

P r o o f  o f  C l a i m .  The definition o f  T ~ guarantees for all t E [0, T ~) that the 

hypothesis (1.4.19) o f  Theorem 1.4.4 holds i f  e is sufficiently small. Therefore, for 

each t E [0, T~), we can find points ai(t) E B~/2(ai) ,  i = 1 , . . . ,  m,  for which 

F (2.2.1) [Ju~(t)] - 7rZdi6~,(t)  < o~ (1), 
i=1 MI(T 2) 

by (1 ~ O f  course, the ai(t) may depend upon e. So we can estimate 

II II[a~(~)} - [Ju~(t)JllM,(v~) < r E d i ( 6 a , ( s  ) - 6~,(t)) + o. n (1). 
M~(T 2) 

B y  (1.2.9), we  can estimate by  

m 

_< ~ l a , ( s )  - a,(t)l + o~,(1). 
i=1 

The claim wilt be established once we show for i = 1 , . . . ,  m, 

(2.2.2) lai(s) - a , ( t ) l  < cl* - t l  + o,~ (1). 

3. We prove (2.2.2) by  using the identity (2.1.9). Fix i and observe that 

C B~/e(ai)  for all s , t  E [0,T').  There e x i s t s  a n  ~ e C~(B~(aO) a~(~), a~(t) 
satisfying 

and 

, ( ~ )  = ~, .~  for x �9 B ~ i 4 ( a , ( O ) ) ,  ~" �9 S ~ 

f 
~ b i ( s )  - ai( t) l  = ~di J , ( ~ o , ( ~ )  - ~a,(*))- 

The conditions on , guarantee that supp(D2y) c B,.(ai) \ Ba,./4(ai). Notice  that 

depends upon the index i. 

hser~ the function y described above into (2.1.9). Using (2.2.1) and (2.1.9) 

- ai(t)I = f 77([Ju~(s)] - [Ju~(t)])dx + o(1) ~[a i ( s )  
L I  

Br(a~) 

= ~,~., Jjk u ~ k  " u ~  dx dT + o~  (1). 
~(~) 
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The support properties o f ~  x~ permit  us to replace B~ (ai)  by  B~ (ai) \ Bar/4 (ai). 
Finally, we estimate by  

<_ Is-  t I [[D2,{ILOO sup IIDu~(T)llL~(B~\B3~/4). 

The size o f  [ID2wll L~ depends upon r but is independent o f  e and (1.4.24) permits 

us to control  the Du term by a constant independent o f  e, so (2.2.2) follows and the 

claim is proven. We also note that the claim implies T ~ may be taken independently 

o f  e, so we denote this quantity by  T from now on. 

4. The remaining convergence claims follow from the bounds stated in Theorem 

1 and passing to subsequences, except for (1.4.7) which follows directly f rom 

(1.4.2). We prove (1.4.8). Fix any p C [1, 2). Since the conditions o f  Theorem 1 

hold for every t E [0, T),  we deduce from (1.4.26) that 

IlJ(u~)I[L,(T= • [0,T)) ~ Op,-rl ,T (1). 

It follows, upon passing to a subsequence as e --+ 0, that 

J(u ~) ~ 3 weakly in LP(dxdt) 

for some 3- We wish to identify 3- 

Let  r E C~( 'g  e x [0, T)).  The identity (2.1.2) implies 

f j(u~). DCdxdt = f r 

= f ct~(lu~[2-l)dxdt 

--~0 

as e ~ 0 for  every  t, by  (1.4.7). Therefore  div 3 = 0. Moreover,  f rom (1.4.6) we 

have V x 3 = 2[J] | dt= 2-x ~ d~6~(t) | dt weakly. 

Let  H(x, t) = H(x, a(t), d). I f  we define V = 3 - j(H), we have 

d i v V = V x V = O  

weakly. Let  @ be a standard mollifier and set V ~ = V �9 @. The convolution here 

is in space and time. The above considerations imply 

div V ~ = V x V ~ = 0 
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in T 2 for every t < T. Since V ~ is smooth, this implies V e ( x ,  t)  = g~(t) .  Letting 

5 --+ 0, we find that V is also constant in x for each fixed t. For any fixed t we have 

= [ t) dx  

= lira fj(u')(x,t)dx 
e~o J 

= 0  

using (1.4.4). 

5. The proof given above may be iterated until the time T given in (1.4.9). [] 

R e m a r k .  A more general Schrrdinger evolution equation associated with the 

e-dependent Hamiltonian I ~ [u] has an e-dependent time scale 

ik O,u - ZXu +  (lul 2 - 1). 

In writing G L S , ,  we have implicitly selected the time scale k, = 1. Theorem 1.4.1 

suggests that this is the proper time scale to observe vortex motion. That is, the 

mobility of  the vortices is O(1) in the time scale k, = 1. 

3 V o r t e x  e q u a t i o n s  o f  m o t i o n  

Next, we exploit the renormalized energy result Theorem 1.4.5 to describe the 

motion of  the points ai : [0, T) ~ ~ under the more stringent energy upper bound 

(1.4.3). 

The idea is to extract more information out of  the identity (2.1.9) than was used 

in the previous proof. In order to do this, we need sharper control over limits of  

quadratic terms in D u  ~ away from the vortices. Informally, we show that i f  the 

initial data converges strongly to the canonical harmonic map, then conservation 

of  energy forces the same convergence at later times. This is implemented using a 

Gronwall's inequality argument and Theorem 1.4.5. 

We present the proof of  Theorem 1.4.2. 

Proof.  

1. Let ai( t ) ,  i = 1 , . . .  , m  denote the paths selected in Theorem 1.4.1, and let 

e,~ be the corresponding subsequence. Let bi (t)  denote the solution of  the system 

_e b (2.3.1) dt  * = 2j:j#iE d j V  x F(b i  - bj), 

bdo)  = ai .  
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A calculation shows that 

D,~,W = -27r E dldjDF(ai - aj). 
j : j r  

Therefore, the ODE in (2.3. l) may  be reexpressed, as in (1.4.10), in Hamiltonian 

form showing that the renormalized energy W is conserved. This ODE system has 

a unique solution on a nontrivial time interval [0, T'). Let 

T1 = min(T, T'), 

where T is as in (1.4.9). Note that T1 is independent ofe .  We wish to show for all 

i that hi(t) coincides with ai(t) on the time interval [0,Tx). Observe that this will 

imply T1 = T'  = T. 

For t E [0, T1), let 

r  =  lb,(t) - ai(*) l .  
i 

It suffices to prove that, given any T < T1, we can find some small 6(T) > 0 and a 

constant C = C(T) such that 

(2.3.2) d ~(t) <_ C((t) 

for a.e. t E [0, T] whenever ((t)  _< 6. We will show that (2.3.2) holds at each point 

where ai(.) is differentiable for all i; by Rademacher 's  theorem, this condition is 

satisfied on a set o f  full measure. 

Fix T < 711. By  (1.4.9), there is some r = r(T) > 0 for which 

(2.3.3) rain _lai(t) - as(t)l > 4r. 
i•j ,  t < T  

2. We use the fact that bi solves (2.3.1) and the triangle inequality to estimate 

d t -  
i 

< 2 z E d j V  x F ( b i - b j ) -  E d j V  x F ( a l - a j )  
z j : j r  j : j r  

+ E ai,t - 2 E djV x F(ai - a j )  I 
i /:/r 

= Term 1 + Term 2. 

We immediately dispose of  Term 1. Fix s < T and a pair o f  indices i r j .  Let  

h = ](bi(s) - bj(s)) - (ai(s) - aj(s))]. Note that by  assumption h < ((s) _< 6. B y  
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(2.3.4) 

Since 

Taylor 's  theorem, at the fixed time s, we have 

IV x F(bi - by) - V x F(ai  - aj) I <_ h max ID2FI 
{x:lx-(a~-a~)l<_h} 

<_ 

The last inequality follows from (2.3.3) provided 6 < r. Therefore,  T e r m  I satisfies 

the desired estimate (2.3.2). 

3. We turn our attention to T e r m  2, which is a sum of  terms ( T e r m  2)i, with 

i = 1 , . . . ,  m. Suppose that each function ai(-) is different/able at s c [0, T).  Fix 

r~ c C ~  such that supp(r]) c B(~,)(ai(s))  and ~(x) = u .  x in a ne ighborhood o f  

ag(s). Here we take u ~ S 1 to satisfy 

j : j # i  

[JuC-(t)] ~ ~r ~ diSa,(t) weakly as measures 

we can rewrite 

diu" a,,t(s) = limdiu �9 l (ai(s + h) - ai(s)) 
h--+O n 

= lira lira 1 _  f (~[jue.(  s + h)] i ~ [ JU ~ ( S )] ) dx 
h'--*O n ~  ~rh JT 2 

s+h 

= lira lira 1 r l ~ x J j k u ~ . u z ,  dxdt. 
h--+0 n---~c~ 7rh 2 

8 

We used (2.1.9) in the last step. 

Let  H(x,  t) = H(x ,  a(t), d). We reexpress the remaining term in (2.3.4) using 

Le mm a  2.3.1 which is stated and proven below, 

... • a:(.))) 
j:jT~i 

s+h 

. 2 

: f " '  
s j:j=/=i 

s+h 

= lim l--- i 

8 

Therefore,  

s+h 

h-.O , - * ~ r h  17.j.,Sj~ �9 <: - j k ( H ) j l ( H ) )  dxdt. 
8 
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Inside the integral, H = H(., a(t), d) and Du e = Dub(t). 

On any set where lul > 0, using the decomposition (1.4.27), 

u~k .u~, = Jk(u~)Jl(u~) + lu~lzkI u I~- 

We will thus have proved (2.3.2) when we show 

s+h 

(2.3.5) lim l i m ~  ~]~j~,Jjk (]u~!~ [u~lx,) dxdt < C~(s), 
h---*O ~ 

8 

and 

(2.3.6) 
s+h 

8 

These estimates will follow from the tight upper bound (1.4.3) on the energy and 

energy conservation. 

4. The renormalized energy W is conserved for solutions b(.) of (2.3.1), and 

fv2E~(u~(., t))(x)dx is conserved for solutions u ~ of GLS~. Therefore, for every 

t < T and every p > 0, the upper bound (1.4.3) gives 

fv2E~(u~(',t))(x)dx= ~2E~(r 

< m ( ~ r l o g ( 1 )  + I ( e , p ) ) + W ( a ( O ) , d ) + C p + o ( 1 )  

= m (Trlog ( ~ ) + I ( e , p ) ) + W ( b ( t ) , d ) + C p + o ( 1 ) .  

Arguing as in the estimate of Term 1, we see that 

W(b(t)) - W(a(t)) < C E Ibi(t) - ai(t)l = C~(t) 

provided 5 is small enough. Therefore 

(2.3.7) 

~ Ee(u~(.,t))(x)dx < m (~rlog ~ + I(E,p)) + W(a(t),d) + Cp + C~(t) + o(1), 
2 

as e ~ 0 for every p > 0. We have from Theorem 1.4.1 that 

(2.3.8) [Ju~"(t)] ~ Ir~diS~(,)  weakly as measures. 
i = 1  



t56 J. E. COLLIANDER AND R. L. JERRARD 

The conditions (2.3.7), (2.3.8) are precisely the hypotheses o f  Theorem 1.4.5 

with "72 = C~(t). So, for every t E [s, s + hi, 

t 2 limsup[lD[ue~[( ", )[IL~(Vg) < CC(t) 
n - - ~  OO 

(2.3.9) 

and 

2L=(v•) (2.3.10) limsup ~,~,~,j(u ~=) - j(H) < C~(t). 

These estimates allow us to prove (2.3.5), (2.3.6). 

We quickly estimate (2.3.5). B y  observing that 

sA-h 

(2.3.11) (2.3.5) < lira lim IID%IIL~o(TN) IIDlu I(-,t)llL,(%~) t, 
- -  h - - + 0  n - - - ~ o o  

8 

and then applying (2.3.9), we obtain the desired upper bound. 

5. We now establish (2.3.6). First, we show that 

(~u-~,~j(u~")-j(H)) ~0  weaklyinL~(~Iepx[s,s+h]). (2.3.12) 

To see this, note that T-~-~j ~ j is uniformly bounded in L2(~o x Is, s + h]) and 

hence converges weakly  to some limit j .  We know from (1.4.8) that j (u "~ ) ~ j (H)  

weakly  in LP(dzdt) for all 1 _< p < 2. We also know from (1.4.7) that I ~ 1  ~ ~ 1 

strongly in L2(dxdt). Thus 

j(H) = weak  L 1 lira j(u") 
T$ - ' ~  OO 

weak L 1 lim (j(u~'~) ) 
/ -  

=j 

which proves (2.3.12). 

For fixed k, l, observe that the quadratic term in (2.3.6) can be reexpressed as 

Since 

(lu-~ljk(u~=)-jk(H)) ~ 0  weaklyinL2(~r2• 
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and j l (H)  does not depend upon n, the second expression contributes nothing as 

n ~ c~. The first expression is controlled using (2.3.10), 

6. Since we have appropriately bounded Term 1 and Term 2, we have proven 

(2.3.2). Gronwall 's  inequality implies ff = 0 which gives (1.4.10) o f  the Theorem. 

Since ff = 0, (2.3.10) implies (1.4.11). We conclude by proving (1.4.12). Fix t 

and p > 0. Let u ~ be a subsequence which converges in L2(q[ep) to some limit ~2. 

We may  assume, by (1.4.24), that Du ~ ~ Dfz weakly in L2(qr2;). Also, (2.3.9) and 

(2.3.10) give 

l iminf [IDuellL2(~) = lira J(u~) = 

Therefore Du" ~ Dfz strongly in L2(T~;). Finally, since j(72) = j (H) ,  Proposition 

1.3.1 implies ~ = ei~H for some a e I~. [] 

L e m m a  2,3.1. Suppose that ~l E C 2 and that 

supp(r]) rq {al, . . . ,  am} = {ai}; D2r] =- 0 in a neighborhood ofai .  

Le t  H := H(-; a, d) be the canonical harmonic map. Then 

2 j : j r  

R e m a r k .  This computation remains valid i f  dl, ..., d,,~ assume arbitrary integer 

values, that is, i f  we lift the assumption that di = =t=1 for all i. 

Proof .  

1. We reexpress the integral in the lemma. Recall that j ( H )  = - V  • r where 

satisfies 

m 

A r  = E2rcd~Sa,, 
i=1  

and, using (1.3.3), we write 

(2.3.13) 

where 

'~(x) = diF(x  - ai) + G(x) 

G ( x )  = d j F ( x  - aj ) .  

j : j # i  

Since j~(H)  = 5am~x,,, we have 

.~jkj k ( H ) j  t ( H)  = -.~t~ ~:,~'~z~ . 
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Fix any number p so small that D2~7 = 0 on Bp(a~). We have 

dx--- f ~f2 T2\Bp(al) 

~-- / ~xz~In~x,~xj~:ejdx"[- /r]xz~In~x~xjyJdH 1 

T2\Bp OBp 

where u = (u 1, u 2) is the outward unit normal to OBp. We recognize ~ j ~ j  = 

� 8 9  ~ j  ) ~  and integrate by parts again to find 

= -  / ~ x , ~ 2 l ~ j ' ~ j d x -  
T2\Bp OBp 

"-k f rlxJln~x,~ ~x~JdH 1. 
OBp 

Since 7]~,~51~ -- 0, the integral over ~ \ Bp vanishes and we are left with two 

boundary integrals I p, I I p . 
2. We calculate the boundary integrals. We begin with 

Io=-- f TlxJznl~2xj~xju~dH 1. 
OBp 

By using (2.3.13), we observe 

(2.3.14) ~ j  cb~j = F~j Fxj + 2diF~j G~j + G~j G~:j. 

Since F is even, the first term integrates to zero. We exploit the fact that G~j 

is nearly constant on Bo(ai ) to calculate the contribution to Ip arising from the 

remaining two terms in (2.3.14). The cross term contributes 

(2.3,15) 

-di~7~,(ai)G~(ai).[1,~ j F~ju"dH 1-  di~,(ai)5l, j F~,[Gxr G~(a~)]u'~dH 1. 

OBt, OB o 

Since F ~ log Ix - ad, [Fx~l ~ lip on OBp and G is C a on Bp, the second integral 

contributes O(p). The G ~  G~  term contributes O(p) as well. 

Next, we calculate 

= f rl~Jln~x,~x~ v'jdH1 IIp 
OB o 
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by expanding using (2.3.13). The F~:F,~ term again vanishes by symmetry. The 

G~, G~j term contributes O(p) and the cross terms remain to be estimated. The 

first cross term gives 

(2.3.16) d~,(~,)a~ (~)~ f F~.Pda ~ + o(p). 
OBp 

The second cross term contributes 

(2.3.17) 
t '  

(~4:h. [ ~ j  PdH ~ + O(p). 
OBp 

3, Since foB F ~ u J d H  1 = foB F~ju~dH 1, the first terms in (2.3.15) and 

(2.3.16) cancel and the only remaining contribution is (2.3.17). Finally, observe 

that 

f F~jr, JdH 1 = / A F d x  = 27r - 27r2p 2, 

OBp B o 

using (1.3,1). Therefore 

/ ~ , ~ j k j k ( H ) j Z ( H ) d x  = 2~rdvq~ (ai)SlnGx. (ai) + O(p). 

T ~ 

Since p can be taken arbitrarily small, we have proved the lemma. 

C H A P T E R  3. V O R T E X  S T R U C T U R E  

1 B a c k g r o u n d  on Jacobian and degree 

In this chapter we will prove versions of  Theorems 1.4.3 and 1.4.4. Because 

we believe that these sorts of  results are extremely useful in questions involving 

vortex dynamics, we establish them in much greater generality than we require for 

our analysis of  the Ginzburg-Lartdau Schr6dinger equation in Chapter 2. 

We start in this section by defining some notation that will be used throughout 

this chapter, and also quoting some results that we will need. The definitions that 

we give here reduce to those of  Section 2 of  Chapter 1 in the case n = 2. 

Let {dxi}~_l be an orthonormal basis for T*R '~, so that {dx~}~z~,,~ forms an 

orthonormal basis for A~(T*R'~), the space of k-covectors on IR '~. Here Ik,~ is the 

set of  all multiindices of  the form a = (al, ..., OZk) such that 1 < al  < --. < ak _< n. 

For such a mulfiindex, dz = := dx '~ A . . .  A dx '~ . 
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We let a;n denote the volume o f  the unit ball in ]R". 

For  vectors v 1, ..., v n E/R n, we let det(v 1, .... v n) denote the determinant  o f  the 

matr ix  whose  columns are the vis, arranged in the given order. 

Suppose that u E WI"~(U; R '~) for some U C IR '~ . We define an n - 1 fo rm 

(3.1.1) j(u) := ~ det(u,u~l, . . . ,u2,~_l)dx% 

Note  that det(u, u ~ l  , ..., u~,,~_ 1 ) E W I'p for every p E [1, 1 + 1in). 

For a.e. x, j(u)(x) is well-defined pointwise  as an e lement  o f  A'~-I(T*IR~). As  

such it defines a linear functional on A '~-1 (TN ~). Indeed, given r = T 1A'- -AT '~-1 E 

A'~-I(TN'~), one can check that 

(j(u),~') = d e t ( u , ( r l -  Du),..., (~_n-1. Du)) a . e . x .  

To see this, note first that the r ight-hand side o f  the above identi ty defines a 

linear functional on A "-1  (TR ~), or eqt~ivalently an alternating linear functional on 

( l ~ )  '~-1. It then suffices to ver i fy  that this linear functional agrees  with (3.1.1) 

when  applied to the standard basis o f  A'~-I(TII~'~), which is dual to the basis  for  

An-1 (T*IRn). 

We also define an n - fo rm 

du := l dj(u) 
n 

---- det(uxl,  ..., ux,~) vol 

(3.1.2) = det Du vol 

where  vol = dx ~ A . . .  A dx '~ is the standard vo lume form. We will refer  to Ju as the 

signed Jacobian o f u .  For u E WI"~(U; ~.~), we m a y  think o f  Ju as an L 1 function. 

In this context, Stokes '  Theorem asserts that for  any  bounded  open set V with 

smooth  boundary,  

(3.1.3) f Ju=fo. (j(u),r) 
Here  r is the appropr ia te ly  oriented (n - 1) vo lume  element.  The trace o f  a W 1,'~ 

function belongs to W *,n-1, so the r ight-hand side makes  sense. 

The Brouwer  degree o f  a function u can be expressed in te rms  o f  either j(u) or 

Ju. Let  u E W~'n(U;R'~), and suppose that V c U and that V is bounded,  with 

smooth  boundary.  I f  ess infovlu] > O, then the Brouwer  degree o f  u is defined b y  

(3.1.4) deg(u; OV) = f rl(u)Ju 
dv 
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where 7/E C~(N n) satisfies 

f r / = l ,  ~_>0, s p t ~ c B p ( 0 ) ,  p<es s in fov lu l .  

The degree is an integer, and it is independent of  the specific choice of  ~ and thus 

well-defined. 

I f  we write u = lutv, so that Ivl = 1, then the degree can also be defined by the 

formula 

(3.1.5) deg(u; OV) = ~ov ~nwn (j(v), T}. 

Here ~-(x) is an (n - 1) vector of  unit length, which represents the appropriately 

oriented (n - 1) tangent plane to OV at the point x E OV. 

A very nice treatment of  degree is given by Brezis and Nirenberg [6]. 

We can also define the signed Jacobian as a distribution (or as an element of  

the dual o f  C~), which we write [Yu]: 

y[Ju] := - j(u),d*rl}. 
n 

Here d* is the formal adjoint o f  the exterior derivative d. This definition makes 

sense in some spaces which are weaker that W 1'~, as all it requires is that j (u)  

be integrable. This condition holds, for example, when u E L ~ cl W 1,~-1, or 

u E W I'p for p > n2/(n + 1). Properties & t h e  distributional Jacobian (also called 

the distributional determinant) have been studied by by S. Mfiller [20] among other 

authors. 

One such well-known property is the following. 

L e m m a  3.1.1. (Weak continuity ofJacobians). I f  uk ~ f~ weakly in WI,P(U), 

then 

weaMy in L~ where p E ~ - - ~ ,  n and I < q < n2 _ p. 

J u k  -'+ Jf~ 

Also, 

in the sense o f  distributions. 

A proof  can be found in [8]. 

We will need the following lemma, which is proved in Alberti, Jerrard and 

Sorter [1]. 
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L e m m a  3.1.2. Suppose that U c I~'* and that u E WI'P(U; R~ ) f o r  p >_ n -  1. 

Suppose fur ther  that ]u[ = I a.e. and that [du] is a measure in the sense that 

f  [Ju] _< Cll llc0 

f o r  all rl E C< Then [Ju] has the fo rm 

i 

f o r  integers d{ and a loeallyfinite collection o f  points  ({ E U. 

For the reader's convenience we sketch the proof. 

The first step is to show that, given any x C U, for almost every r < d i s (x ,  OU) 

there is an integer k(r) such that 

B [Ju] : w~k(r). 

The left-hand side is interpreted as a limit o f  f ~ [Ju] for a sequence ~,~ o f  smooth 

functions converging pointwise to the characteristic function of  the ball, a limit 

which is independent of  the details o f  the approximating sequence. 

This is proved by showing that it holds for "good enough" radii, and verifying 

that a.e. radius r is good enough. 

The next step is to show that in fact the above identity holds for all but finitely 

many r (with x E U still fixed.) This follows from the assumption that [Ju] is a 

measure. 

After this it is clear that for every x we can find some r0(x) > 0 such that 

fB~ [Ju] is a constant integer multiple o f  a~,, for all r < r0. The result then follows 

easily. 

E s s e n t i a l  d e g r e e  It is convenient in places to work with an approximation 

to the degree that enable us to ingore "inessential" components o f  the set { [ul ~ 0}. 

We therefore need to introduce some more definitions. These are not standard. 

Assume that u e C n WI,~(U; R ~) and that I u] _> 1/2 on OU. 

Let S denote the set on which I~1 is small, 

(3.1.6) s : = { x  : [u(x)l 1/2}. 

By assuming that u is continuous, we have avoided any possible subtleties in the 

definition of  S, and we also know as a result that the connected components o f  

S are closed. Each component S~ of  S has a well-defined degree given by the 
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definition (3.1.4). The degree is an integer even when OSi is not smooth, as can be 

seen by approximating S~ by smooth sets. 

We may thus define the essential part of  S, 

(3.1.7) Su := U{components  Si of S :  deg(u; OSi) r 0} 

and the negligible part of S, 

SN := ~,.j{components Si of  S : deg(u; OSi) = 0} 

(3A.~) = s \ sE. 

For any subset V c U such that OV n SE ---- ~, we use the notation 

(3.1.9) 

dg(u; OV) := ~ {deg(u; OSi) : components Si of SE such that Si c c  V}. 

IfOV N SE r 0 then dg(u; OV) is left undefined. 

We will refer to dg as the "essential degree". 

The essential degree is a technical device needed to circumvent some difficulties 

in the covering arguments which are a key part of  the proof of  Theorem 1.4.3. We 

emphasize that the distinction between dg and deg can generally be ignored with 

very little loss of  understanding. 

Note in particular that 

(3.1.10) dg(u;OV) = deg(u;OV) iflu[ > 1/2 onOV. 

Devices  fo r  l o w e r  b o u n d s  We will need a number of  results which are 

woven in Jerrard [12]. We introduce the n-dimensional analog of  the Ginzburg- 

Landau energy 

1 2 
I~[u] = E~(u)dx; E~(u) = + -~,,lu[ - 1 

n 

Define 

(3.1.11) 

and 

(3.1.12) ~e[o,1] C;-'~E (1 - m ) N  ' 

where C*, N > 0 are certain constantsthat depend only on the dimension n. The 

quantity A' provides us with a useful lower bound of  the energy on a sphere as 
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(3.1.14) 

Then 

seen in Lemma 3.1.4 below. The first term in the definition o f  )~' accounts for the 

energy associated with the rotation in u while the second term accounts for the 

stretching in the length o f  u. 

Note that A c is nonincreasing. 

Further define 

fo  s CO (3.1.13) A'(s) := A'(r) A --dr, 
E 

for some sufficiently small constant co, depending on the dimension n~ 

The first result we quote is established by an interpolation argument. The point 

is that, since OB~ is an (n - 1)-dimensional surface, faB~ [DP] n controls the H61der 

1/n seminorm of  p on OBj. 

L e m m a  3.1.3.  Suppose that u E WI"~(U;~ '~) and that B~ C U with r >_ c. 

Let p := ]u I and 

L 1 2 _ dH ~-1 [0, oo]. "Y : =  IlDpp + -~-~2(P 1) 2 e 
B,. 

II1 -PllLOO(om) <_ (CE'}') 1/N 

for  some C, N > 0 depending only on the dimension n. 

The next lemma contains a basic lower bound relating the energy o f  a function 

to its degree. It is convenient to state it in terms of  the essential degree dg defined 

above.  

L e m m a  3.1 .4 .  

r > c, then 

I f  u E C rq WI'n(U;IR '~) and dg(u;OB~) # O for  B~ c U with 

L E ~ dH n-1 > A~(r) A co 
B,r s 

We briefly explain the idea. I f  ]ul < 1/2 on OBr, the result follows from L e m m a  

3.1.3. I f  not, define m := infoB. [u[, and write u = pv, ]v] = 1. Observing that 

[Dup > [Dpp + p~[Dvp, the result follows from Lemma 3.1.3 and the estimate 

faB, ]Dv] ~ >- ~ / r ,  which holds when deg(u; OBr) # O. 

We record several useful properties o f  M. The ones contained in the next 

lemma are direct consequences o f  the definition. 

L e m m a  3.1.5.  A'(.) is increasing, and moreover 

(3.1.15) A~ + 8) _< a ' ( r )  +A'(8) Vr, s ___ 0; 
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The next lemma follows by integrating Lemma 3.1.4. 

I f  u E C n Wa'~(U;R~), e <_ ro <_ r~, and dg(u;OBs) r O f o r  L e m m a  3.1 .6 .  

all s 6 [to, ri], then 

/ "  

(3.1.17) ] E 'dx  > A'(rl) - Ae(ro)" 
J B  -1 \B-o  

The final lemma asserts that it is possible to cover the set SE by balls satisfying 

a good lower bound, and such that the radius of  each ball is at least e. The latter 

condition is important in our later arguments because of  the condition ro _> e in 

Lemma 3.1.6. 

L e m m a  3.1.7. Suppose that u E C f] Wi,'~(U; 7~ ~) and that ]u] > 1/2 on OU. 

{Bi}i=i with radii r~ Then there is a collection o f  closed, pairwise disjoint balls k 

such that 

k 

(3.1.18) SE C U Bi, 
i=1 

(3.1.19) r i > ~ Vi ,  

(3.1.20) B~ N SE 7 & r fo r  each i, 

co 
(3.1.21) E~dx > --ri  > Ae(ri). 

~nu 

The idea of  the proof is as follows: Around each component Si of  S~, place a 

small ball of  radius rl = max(diam Si, e). Consider one of  these balls. If  r~ > e, 

then (3.1.21) holds as a result o f  Lemma 3.1.3. Ifr~ = e, (3.1.21) holds because 

(3.1.22) fID=l" dx > c - i f l J u l  dx >_ C - i  f J u d x  >_ c-ildeg(u;OSi)l.  

S~ S~ S~ 

If  two or more balls intersect, this can be controlled by combining them into larger 

bails and using the Besicovitch Covering Theorem to control the overlap. 

The lower bound (3.1.22) is useless if  Si has degree zero, which makes it 

impossible, in general, to cover SN with balls satisfying the stated conditions. It is 

this fact that forces us to introduce the essential degree dg. 
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2. C o n c e n t r a t i o n  o f  e n e r g y  

In this section we prove the following result: 

T h e o r e m  3.2.1.  Suppose that e < r < 1, u c WI'~(B~; IR~), 

(3.2.1) [[ [Ju] - cond~o II~I<B.) _< %r,  

where d = +1 and To = 7o(n) is a constant which will be f ixed  below. Assume also 

that 

r 

Then there exists a point  ~ E Br/2 and a constant C1 > 0 such that 

f o r  every ~ E [0, r/2]. Moreover, 

C1 
(3 .2 .4)  I1~; - ,~,~6~II~,(B.) <_ I Sn~--~' 

and f o r  any p c [1, n), there exists some Cp such that 

(3.2.5) IID~IIL.(B.) --< C~. 

R e m a r k s ~  

1. In the case n = 2, we can take 70 = ~r/200. 

2. The constants C1 and C,  above depend only on the dimension n and the 

constant -y~ in the assumed upper bound (3.2.2). In particular, they are valid 

for all u as above, uniformly for e ~ (0, 1]. Note,  however, that it suffices to 

prove the theorem only for e < eo = e0(C, n). 

3. Theorem 3.2.1 immediately implies several other estimates. Suppose that u 

satisfies the hypotheses o f  the theorem. From (3.2.2) we have 

(3.2.6) Ill~l ~ - l i lLe(m) < Co(In(rio) + 1). 

Interpolation inequalities and (3.2.5) then imply that for any p < oo we can 

find a constant C depending on p, n and ")'1, such that 

(3.2.7) IlulIL,(B.) ~ c .  
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This bound and (3.2.5) imply that for any p E [ , ~-f_~) there is a constant C 

such that 

(3.2.8) IIJ( ,)IIL,(B ) -< c. 

Recall that j is defined in (1.2.2). 

Finally, the Jacobian Ju  satisfies 

IIJullr~(m\B~(r < C (3.2.9) 

as well as 

(3.2.10) 

for any p > 

II[Ju]ll l(B ) C, II[Ju]Jlw- ,,(B.) C 

n, where the constant o f  course depends on p. Recall that 

W-I ,p(U) is by definition the dual space o f  w~'q (u ) ,  where 1/p + 1/q = 1. 

The last estimate thus follows from (3.2.8) and the fact that Ju  = -}dj(u). 

4. We also immediately see from the above theorem that i f  e < r _< 

U E w l ' n ( B r ;  ~;~n), and 

for d = 4-1, then 

(3.2.11) 

1, 

Before giving the proof, we sketch the main ideas: 

Step 1: We first show that i f  I] [Ju] - w~d6o IIz41(B,) is small and the energy is 

not too large, then the set o f  radii s _< r satisfying 

(3.2.12) dg(u; OB,) = d 

has large measure. This is carried out in Lemmas 3.2.1 and 3.2.2. The key point 

in the latter lemma is to choose an appropriate test function r in the definition o f  

the I1" I1 1 norm. 

Step 2: By a covering argument we find a collection o f  balls which cover SE 

and satisfy, for example, 

f E" dx > A~(p) ; p = radius o f  B; (3.2.13) 
JB 
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and 

(3.2.14) 

(See Figure 1 .) 

dg(u; OB) = 0 if  B n OB~ = ~. 

@ 

Figure 1. Any ball B in the collection coveting S~ not hitting OB,. has 

dg(u; OB) = O. 

These covering arguments are presented in Section 3 of  this chapter. They 

include various refinements which play a crucial role in the arguments outlined in 

Step 5 below. 

S tep  3: Condition (3.2.14) implies that every radius satisfying (3.2.12) must  

intersect one of  the balls from Step 2. (See Figure 2.) Thus Step 1 gives a lower 

estimate on the sum of  the radii of  the balls from Step 2. 

S tep  4: In general M(r)  + A~(s) is considerably larger than A~(r + s), which 

implies that a collection of  many small balls has much more energy than one large 

ball, where all balls are assumed to satisfy (3.2.13). Using this fact and the assumed 

upper bound (3.2.2), we show that the collection of  balls found above must contain 

at least one large ball, say Brl (Xl), with rl > r /8 .  
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Step 5: We now focus on the single large ball Brl (xl) found above, and we 

define the "good radii" to be those s E [0, rl] such that dg(u; OBs) r O. We know 

that a lower energy bound holds on these radii. All other radii are said to be "bad 

radii". Reasoning similar to that of  Step 4 shows that, if  the set of  bad radii is large, 

then the total energy of  the ball B~ 1 (xl) must also be large, and this possibility is 

ruled out by (3.2.2). We thus find that the set of  bad radii has measure at most Ce. 

O 

O 

O 

O 

O 

O 

O 
O 

| 

| �9 

, . �9 

�9 | 

O 

~ �9 

O 

Figure 2. The set of  radii, represented by the dashed vertical line, sweeps out 

circles which must intersect the bails in the cover. 

Step 6: At this point all the conclusions of  Theorem 3.2.1 follow quite easily. 

Step 7: There are some assertions in Theorem 1.4.3 which are not included 

in Theorem 3.2.1. These other points are proved in Section 4 of  this chapter by a 

compactness argument. 

We now present the proofs. 

L e m r n a  3.2.1. There is some number a E (0, 1), depending only on the 

dimension n, such that i f  r >_ e and e > 0 is sufficiently small, then either 

Ce -~ <_ [ E~dH n-1 (3.2.15) 
Jo B~ 
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OF 

(3.2.16) deg(u;OBr)--~n/gJu <-Cd~ (~OB, E*dHn-I + Hr'-I(OBr) ) �9 

R e m a r k .  It follows from (3.1.5) that, i f  V c U with OV smooth, and 

u E W 1'~ (0V, aB1), then 

1 Iv du deg(u;OV). 
02re 

This lemma asserts that this remains approximately true i f  we relax the constraint 

that [u[ = 1 on OV, but instead merely require that that E * is not too large on OV. 

For convenience it is proved when V is a ball, but in fact it is more  general ly true. 

Proof .  

1. As above we let v = u/lu [ and p = [u[ and we define m := ess inf0B~ p. Using 

(3.1.5) we compute 

w~ deg(u;OB~')- /B, JU= foB (J(v),'r} -- fOB (J(u),'r} 

= fOB(  1 - pn)(j(v),~-} 

_< [[1 - P~frL~(Om) fore ]J(v)[dH'~-~ 

-<  C ] ] 1  - PnIIL~(~ fOB~ ]Dv[~-XdH~-I 

< c111 - p IIs~(om)~--x=r_~ (plD~I) '~-xdHr~-~ 
B.,.. 

,~ 1 ~ (Ee + l) dHn_ 1 _< c i i1  - p Ilsoo(0B~)--;-zr_~ ~ .  

[n the last step above we have used Young's inequality. 

2. Define 7 as in (3.1.14). From Lemm a  3.1.3 we deduce that 

1 1 

~ - ~  - [1 - ( c ~ ) 1 / ~ ] ~ - ~  

Also 

I [ , o  ~ - l[IL~(o~) < min{(c~7) 1/~, (c~'r)n/~}. 

Let  a := n/(N + n). I f (3 .2 .15)  does not hold, then 7 < Ce -~  and 

ill - p n l ] s ~ ( a m ) ~  -< Cd ~(1-~)/N = C~-% 
m , o  ~ 
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if  e is sufficiently small. The conclusion follows directly from this and Step 1. [] 

In order to prove Theorem 3.2. i, it will be convenient to work with continuous 

functions which satisfy 

(3.2.17) s k 3r/4 

where 

(3.2.18) Sd(U) := {s E [0, r] : dg(u;OBs) = d}. 

Recall that dg is defined in (3.1.9), and that the definition requires that u be 

continuous. 

The next lemma shows that smooth approximators to u satisfy (3.2.17). 

L e m m a  3.2 .2 .  Let u satisfy the hypotheses of Theorem 3.2.1, and let 
u e := ~ �9 u, where ~e is a standard mollifier. If  e > 0 is sufficiently small, 
then 

liminf s > 3r/4. 
6--~0 

Proof .  

l. I f  6 is sufficiently small, then 

(3.2.19) II [ Ju~] -w~dSo [l~l(B~) _< 2"/0r. 

We will show that if  y0 is chosen to be sufficiently small (for example, 70 := wn/200 
would suffice), then (3.2.17) is satisfied whenever (3.2.19) holds. 

We may suppose without any loss of  generality that d = +1. We also omit the 

superscripts 8, and assume that u is a continuous function satisfying (3.2.19). 

First suppose that s c (e, r) satisfies 

(3.2.20) foB, EC(u)dH~-I < Ce-~/2' 

where a is the constant from Lemma 3.2.1; and 

(3.2.21) [1 1 s Ju 1 
~On . 4 

We claim that these two conditions imply that s 6 Sd(U). To see this, note that 

(3.2.20) and Lemma 3.2.1 imply that (3.2.16) holds, i.e., that 

deg(u;OBs)- -~ /B Ju <_ Ce~ (foB E~dH~-I + Hn-I(OBs) ) 

< Ce'~/2, 
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using (3.2.20) again. Since deg(u; OB~) is an integer, the above inequality and 

(3.2.21) imply that deg(u; OBs) = 1. 
Finally, (3.2.20) and Lemma 3.1.3 imply that minoB, [ul _> 3/4. By (3.1.10) 

this implies that dg(u; OB,) = deg(u; OB~) = 1, which is our claim. 

2. Define 

B1 := {s �9 (e,r) : (3.2.20) does not hold}, 

~+ = {~ �9 (~, ~) 

Then 

B2 := {s �9 (e,r) : (3.2.21) does not hold}. 

From Step 1 we see that it suffices to show that s to B2) < 1 _ gr--e. 
From (3.2.2) it is easy to see that/21(J~1) ~ e a/4.  "InilUS we only need to show 

that s < r/8. 

To do this, write B~ = B + u B~-, where 

- -  ~}. : Ju>~}  and B ~ - = { s � 9  : - -  Ju< 
t o n  s LOn s 

(3.2.22) 

for 

1 ~  1 / B J U d x d s  
5/4 < s 7 eB + co---~ 

_ 1 l f B f ~ B  X,x,<_sj~dsdx 

1 fB r ds dx 
OJn ~. 

s 1 4 9  + : s > l x l } )  

r  := LI (B+ ) 

By (3.2.19) and the definition of  the Ad 1 norm, 

(3.2.23) Iw"r J/B~ J (u) r  < 270rllr 

However, we easily check that r = 1 = I1r and II/)r = (s By 

substituting these into (3.2.23) and combining with (3.2.22) we obtain 

(./~n 
< 2rTo]lr 

4 - 

Rearranging, this becomes 

1 
+ 

8r'yo _< 8~'o r, 

~(B~+)  -< ~ - 8 ~ o  ~ - S~o 
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using our assumption that r < 1. Fixing 70 sufficiently small, we obtain 

T zl(B ) _< 

The same argument shows that s < r/16, so we are finished. [] 

R e m a r k .  In fact we have shown that i f u  E C N  WI,'~(B~;R '~) with r _< 1, i f  

(3.2.2) holds, and 

(3.2.24) [ l [ Ju] -  wndSoll.~l(B~) <_ h, 

then for any 0 < rl  < r2 < r, 

(3.2.25) s M [r~,r2]) > r2 -- r~ -- O(h) - o(1) 

a s  e - +  0.  

The other chief  technical ingredient in the proof  o f  Theorem 3.2.1 is the 

following 1emma, the proof  o f  which is deferred until the next section. 

We first introduce some notation. Suppose a function u E C N Wz,n(U; R '~) and 

e > 0 arc given. Let x 6 U and r > 0. We say that r is a good radius about x i f  

r _> e and dg(u; OB~) 7/= O. By Lemma 3.1.4, i f r  is a good radius about x, then 

(3.2.26) f EEdH n-~ >_ Ae(s) A co. 
3o 

I f r  is not a good radius, then it is said to be a bad radius. 

We define 

(3.2.27) r r) = E 1 ({s E (0, r] : s is a bad radius about x}).  

L e m m a  3.2,3.  Let U be any bounded subset o f  R ~, and suppose that 

u 6 C M WI,'~(U; IR '~) and that lul > �89 on OU. 

Then we can find a collection of  balls {Bi = B,,, (xi)}/~=l with pairwise disjoint 

interiors, such that 

(3.2.28) SE C U Bi, and B i n  S~ # 0 Vi; 
i 

(3.2.29) dg (u; OBi) = 0 for all i such that B~ c U; 

(3.2.30) 

(3.2.31 ) 

fB, n~r E~dx >- Ae(rl) + ~4A~((fl(xi' ri) - Cle) +) 
1 
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for  all i = 1, ..., k. Here C1 & a constant depending only on the dimension n. 

The difference between this lemma and the earlier Lemma 3.1.7 is that the balls 

found earlier are very small, in general of  radius ,-, e, whereas the balls found here 

are in some sense as large as possible. This is the meaning of  condition (3.2.29), 

which asserts that every ball of  nonzero degree hits the boundary. This lemma also 

gives control over the size of  the sets of  "bad radii". 

We now present the proof of  Theorem 3.2.1. 

Proof .  

1. By Lemma 3.2.2 and an approximation argument, it suffices to prove the 

theorem for u which is continuous and satisfies (3.2.17). 

We want to use Lemma 3.2.3, for which we need 

(3.2.32) [u[ > 1/2 on OBr. 

If  this condition is not satisfied, we may replace B~ by Be, where 

i : = m a x { s < r  : ]u I > 1/2 on0Bs}.  

Note that dg (u; OB~) is undefined for all s > P, so (3.2.17) remains valid on Be: 

> 3 /4, 

where Sa(u) is now redefined as {s E [0, ~] : dg(u; OB~) = d}. So we may assume 

without toss of  generaiity that (3.2.32) holds. 

2. Let {Bi}~l  be the collection of  balls found in Lemma 3.2.3. 

We claim first that 

M 

c OBs n # 0}. 
i = l  

Indeed, fix s E Sd(U), so that dg (u; OB~) = d. We must show that OBs Cl Bi r ~ for 

some i. Suppose, to the contrary, that 

OB. n Bi = 

for all i r {1 , . . . ,  M}. Then (3.2.28), (3.1.9), and (3.2.29) imply that 

dg(u;OBs) = E dg(ue;OBi) = O, 
B~cB8 

which is impossible. 
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3. We now have, using (3.2.17), 

3~/4 _< L~(Sd(~)) 

_< L1 (U{s e (o,~) : oB. n B, # 0}) 

i 

(3.2.33) _< ~ 2ri. 
i 

Let rmax := inaxj{rj} := rl,  say. We claim that rnm >_ r/8, I f  not, we can find 

some subset I := {il,..., i3-} c {1, ..., m} such that 

ri C , . 
iE I  

This follows from (3.2.33), which with our choice of  I also implies that 

T 

Then, using (3.2.31) and the subadditivity o fA ~, 

s Ecex-> 
i 

\ i~z  / 

> 2A~0-/8) 

In view of  (3.2.2) and (3.1.16), this is impossible for small e 

We will take ( to be xx, the center of  the big ball Brl(xl) .  At this stage we do 

not know that ( E B~/2; in the final step of  the proof we will show that this can be 

arranged to hold. 

4. We next show that j3(Xl, rl) is small. We note first that by (3.2.30), 

/'~n In ( [ )  "-[- C _> he( r1) [ -  aAe24 ( (~( r l '  81) --EC1)+) " 

Since rl >_ r/8,  this implies that 

C > A e ((#(?'1, 81) - eC1) -b) 

Ca) +) C 
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Thus 

(3.2.34) /~(Xl, r l )  _< Ce 

for some constant C which depends on 71 but is independent ofe .  

5. The rest is now fairly straightforward. First, fix any 0 < ~ < r < r l ,  and let 

g := {s e [~r, ~-] I s is a good radius about  xa}. 

Then 

s E~ dx = E ~ dH ~-1 ds 

> - ~ f o  E e d H n - l d s  
B. 

> f A~(s) A co ds using (3.2.26) 
Jg s 

l _> Ae(s) A co ds since A(.) is decreasing. 
_s e 

Also, from (3.2.34) we easily deduce that 

= _< 

These together imply that 

f Eedx >_ A~(r) - A~(a) - C. (3.2.35) 
JB 

in particular, taking cr = 0 and remembering (3.1.15), we  obtain (3.2.3). 

6. For any e < cr < rl/2, we have 

(3.2.35) < C 

independent of  e, using (3.2.2), (3.2.35), various properties o f  A ~, and the fact that 

rl >_ r/S. 

We use this to verify (3.2.4). To do this, fix any r E C I(B~) such that ]lr -< 1. 

We then have 

If  oa# - f S Il + I2, 
where 

~ t  1 fB ~n I1 := i ln----- 5 Ir - -~(xi) l  E~ dx and h := Ir - - -  
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We easily estimate from (3.2.2) and (3.2.3) that/2 _< C[ lne[ -1, and 

lanai I1 _< s [x-xllE~(x)dx 

K - 1  

_< o 0 )  + r12 s E 
i=0  ~i (xa) \B~i+  1 (xl)  

Here ai := 2-it1, and K is chosen so that e < aK <_ 2e. The O(1) error terms come 

from integrating over B ~ ( X l )  and B~ \ B~,(xl). Using (3.2.36) we see that the 

right-hand side is bounded independent o f  e. 

The previous few inequalities thus show that 

for any r as above, which by definition is (3.2.4). 

7. It remains to prove (3.2.5). To do this, write lB, ]Dul pdx as a sum of  integrals 

over annuli, as in Step 6 above. The stated estimate then follows by applying 

H61der's inequality on each annulus and using (3.2.36). A similar argument with 

more details included can be found in Struwe [231. 

8. Finally, by taking 70 smaller, we can assume that Sd(u) n [e, r/2] >_ 3r/8. 

Then the above arguments apply to the ball B~/2, so we can find a point ~ having 

the desired properties and such that ( c Br/2 as desired. [] 

3. Covering arguments 

In this section, we prove Lemma 3.2.3. We start by giving a relatively easy 

covering argument which contains most of  the main ideas. 

L e m m a  3.3.1 (First covering argument). Suppose that 

u e C n Wl,"(U; ~ '~) 

and that ]u[ > 1/2 on OU, where U is an open bounded subset ofR ~. 
X k Then we can find a collection of  balls {Bi = Br~ ( i )  }i=x with pairwise disjoint 

interiors, such that 

[ E~dx > A~(ri), gi = 1,. . .  ,k; (3.3.1) 
JB ~NU 

(3.3.2) SE C U B i ,  and Bi N S E r  0 Vi; 
i 
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(3.3.3) dg(u; OBi) = 0 for  all i such that Bi C U. 

P roo f .  Let M {Bi}i= t be the collection o f  balls given by Lemma 3.1.7. These 

satisfy (3.3.1) and (3.3.2) by construction. I f  (3.3.3) holds, there is nothing to 

prove. We therefore assume that it does not hold. Recall also that by  construction, 

the balls {Bi} are pairwise disjoint. 

We will successively modify the balls in such a way that after each step we 

obtain a new collection satisfying (3.3.1) and (3.3.2), and such that (3.3.3) is 

eventually satisfied. After each modification we relabel the balls, so that each 

succesive collection is called {Bi}. This makes the notation less burdensome and 

should not cause any confusion. 

Since (3.3.3) is not satisfied, we may  find a ball, say B1 := B~(z~),  such . 

that 

Let 

(3.3.4) 

B1 C U and dg(u;OBx) 7~0. 

r l  : =  i n f { p  ~> r l  : Bp(Xl )  ["1 ( 0 U  U ( U  Bi)) # 9}. 
i>2 

Our choice o f  B1 implies that ~1 > rl .  For any p E (rl, ~1), we see from (3.3.2) that 

Sp(xl) n SE = B~l(xl) n SE 

and hence that dg(u; OBp) = dg(u; OBrl) ~ O. So we may  use (3.1.17) and the fact 

that B,  satisfies (3.3.1) to estimate 

ca(x1 ) el (xl)\B-1 (xl) .1 (ml) 

_> [ * ~  - a ~  + = h (el). 

2. Relabel B1 = (B1)~ew := Be~(zl) and r l  = (rl)~ew := (~1)old. We now have 

a new collection o f  balls satisfying (3.3.1) and (3.3.2). They may  not be pairwise 

disjoint, but nonetheless their interiors are pairwise disjoint, as a result o f  (3.3.4). 

I f  the balls are not pairwise disjoint, select two balls Bi, Bj that intersect and 

replace them by a single larger ball B'  of  radius r ~ = ri + rj such that Bi U Bj C B r. 

Then 

~fqU inU j n U  

> + > 
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We have used the subadditivity (3.1.15) o f  A ". 

I f  B'  intersects some other ball, say Bk, combine as before into a larger ball B "  

containing B I u Bk and with radius r" <_ r' + rk. The same calculation then shows 

that 

fB  E~dx >- a~(ri) + + A ' ( r k )  _> h ' ( r " ) .  A~(rj) 
HV~U 

Observe that this is true even i f  B '  A B~ has nonempty  interior, since we estimate 

the energy in the new ball B "  only using balls f rom the earlier collection {Bi}, 

which have pairwise disjoint interiors. 

We can thus continue to combine balls until we achieve a pairwise disjoint 

collection satisfying (3.3.1) and (3.3.2). 

3. I f  the balls in this new collection satisfy (3.3.3), we are finished. I f  not, we  

are in exactly the situation o f  the beginning o f  Step 1, except that there are now 

fewer balls and their radii are larger. We may  thus iterate the argument as long 

as (3.3.3) does not hold. The process must eventually terminate, as the number  

o f  balls is finite and decreases with each iteration, and when it terminates the 

construction is complete.  [] 

A more careful version o f  the above argument will establish Lem m a  3.2.3. We 

witl use the fact that the estimate A'(r) + A'(8) >_ A' (r  + s) can be improved when  

either r or s is not too small. 

L e m m a  3.3.2.  There exists s o m e  C 1 : C l  (n) > I such that ire < ro <_ rl and 

rl >_ eC1, then 

h'(r0)  + A~(~I) _> A'(rl  + 2~o) + ~A' (2~o) .  

P r o o f .  

1. We first find some constant Co such that 

(3.3.5) ),~ - ),'(2s) - ),'(38) _> ~),~ '(s) 

whenever  s > eCo. 

Define 

( 1  - ~)~ 
f ( m ,  s) := rn " t ~  + 

8 C*t5 

where C*, N are in the definition (3.1.12) o f  )`', so that )`' (s) = minme[o,x] f ( m ,  s). 
d rh F i x  s and find r~ E (0, 1) such that ),'(8) = f(•, s). Then ~--~f( , s) = 0, which 

implies that 

(1 - ~ ) N  
C*e = (1 - m)m- " -n -1  Nn ~n- 

8 " 
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Also, it is clear that A~(s) _< f(1,  s) = ~ / 8 ,  so 

( _ ~ )  1/N 

(1  - -  rh) _< 

Combining these, we obtain 

( 1 -  r~)  N [e_~  1 / N  ~ 
~ _<c~] -- 

for some C. In particular, the previous two equations imply that, i f  s _> eCo for 

some sufficiently large Co, then 

(1 - ~ ) ~  < ! ~ . .  

C*e - 24 s 

When this holds we estimate 

~'(~) - ~'(2~) - A'(a~) > f ( ~ ,  ~) - y ( ~ ,  2~) - / ( ~ ,  3~) 

~ .  (1 - m)N 
rh n 

6s C*e 
> , ~  ~ + (1 - ~)N" > - - l ~ ( s ) .  

- 12s C*e - 1 2  

2. Next,  we will select a constant C~ > Co such that, i f  r l  _> Cle and e < s < rl,  

then 

(3.3.6) a ' (s)  - a'(rl  + s) - a ' ( n  + 2s) >_ ~A~ 

I f  eC0 < s < r~, this follows from (3.3.5) and the fact that ),' is nonincreasing. So 

we assume that e < s < Coe < C~e < r~. 

As before  select m = re(s) such that 1 ' (s )  = f ( m ,  s). One easily sees that 

(3.3.7) min rh(s) > O. 
s>e 

Then 

Ae(8) - Ae(rl + 8) - Ae(rl + 28) > f ( ~ ,  s) - f (1 ,  r l  -t- 8) - f (1 ,  r l  + 28) 

=(rh n s s ) ~n + (l--~n) N _  
r I + 8 r 2 + s S C*e 

--> ( rT~ n -- 2 -~ll ) ~--n-n + ( 1 -  r'n ) C * E 

view o f  (3.3.7), we can easily choose C1 large enough that (3.3.6) holds. 

3. B y  taking C1 still larger, i f  necessary, we m ay  assume that 

C0 
(3.3.8) ~ ( s )  ___ 
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whenever  s _> C1 E, where co is the constant in the definition (3.1.13) o f  A ". 

Suppose now that Cze _< ra and that e _< r0 _< rl .  Then using (3.3.6) and (3.3.8) 

and the fact that ;~' is nonincreasing, we find 

Ar + A'(rz) - h ' ( r l  + 2to) 

f 
vzW2ro 

i TMr 
= kaY(s) A - a~(rl + s) - ~ ( r a  + T0 + s) as 

~ for~ [~e(8)--~e(?~l-~8)--~e(Tl+2S)]A [C--Oc --2~e(T1)] ds 

~0 r~ 1 [Ae(s) A ~ ]  ds 

= > 

The final inequality follows from the subadditivity o f  A ~. [] 

We are now ready to establish Lemma 3.2,3. 

Proof .  

1. We follow the same strategy as in the proof  of  the Lemma 3.3.1. That is, we  

start with a collection of  pairwise disjoint balls {Bi = Br~ (xi)}/~_-a satisfying 

SE C U Bi, a n d  Bi N SEr  ~ Vi; 
i 

(3.3.9) 

and 

(3.3.10) s § 
~nv - 24 

for all i = 1,..., k. 

Recall  that/3(x, r) is defined in (3.2.27). 

We will successively modi fy  the bails to obtain new collections again satisfying 

(3.3.9) and (3.3.10), and in such a way  that (3.3.3) is eventually satisfied. As before, 

we  relabel the collections as we  proceed. 

As in the earlier proof, we start with the collection o f  balls provided by  Lemma 

3.1.7. It is immediate from (3.1.18) that (3.3.9) holds. 

We claim that (3.3.10) is also verified. For this, we  need to select Ca 

appropriately. Indeed, it is not hard to see from the definition o f  A ~ that i f  Ca is 

sufficiently large then 

co 
- - r  > 2A~(r) whenever r > Cze. 
c 
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This implies that 

1 . (  _ ) 
- , -  > + + 

e - 24 

for all r > 0. By  taking C1 large enough, we may assume that this is true, and that 

1 and e < r0 < r l .  the conclusions of  Lemma  3.3.2 hold whenever  r l  >_ 7eC1 _ _ 

Now from (3.1.21) we know that 

s c0 
E~ dx >>_ --  r i . 

The choice o f  C1 above then implies that (3.3.10) holds, since it is clear f rom the 

definition (3.2.27) o f ~  that fl(x, r) < r for all x, r. 

2. I f  (3.3.3) holds, we are finished, so we assume that it does not  hold. We m ay  

therefore find a ball, say B1 := B~ 1 (Xl), such that 

B1 c U  and dg(u;0B1) 7 ~0. 

We now expand this ball exactly as in Step 2 o f  the p roo f  o f  L e m m a  3.3. I. We 

must verify that the resulting ball, say Be 1 (Xl), satisfies (3.3.10). 

Recall that ~1 is chosen so that dg(u; OBp(xl)) = dg(u; OB,.~(xl)) 7k 0 for  all 

p ~ [r~, ~1). Thus all the radii p E [rl, r are by definition good radii, and so 

As before we use (3.1.17) and the fact that Ba satisfies (3.3.10) to estimate 

~ (z~) Ee dx = fB,~ (zD,B~ (z~) Ee dx + fB~ (xa) E~ dx 

& h e  ( ( / ~ ( z I , ~ I ) - C 1 E ) + )  �9 = A e (rl)  + 2 4  

3. Relabel B1 = (B1).ew := B~(x l )  and r l  = (rl)n~w := (r We now have 

a new collection o f  balls satisfying (3.3.1) and (3.3.2). They  m ay  not  be pairwise 

disjoint, but nonetheless their interiors are pairwise disjoint, as a result o f  (3.3.4). 

I f  the bails are not pairwise disjoint,we select two balls B~, Bi  that intersect. 

For  the sake o f  concreteness, we assume that r~ < r j ,  and we consider two different 

cases, 

C a s e  1: rj <_ �89 
In this case we combine the two balls to form a ball B ~ with radius r '  = ri + r~ 

exactly as in Step 3 o f  the p roof  o f  Lemma  3.3.1. We need to ver i fy  that (3.3.10) 
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holds for the resulting ball B'. This is clear, because in the case we are considering, 

r ~ - eC1 _< 0, so A~((r ' - eCt) +) = 0 and the desired result follows by subadditivity 

as in the earlier proof. 

C a s e  2: rj > �89 

This assumption implies that we are in a regime where Lemma 3.3.2 is 

applicable. In this case we define a new ball B'  with with center xj and radius 

r '  := rj  + 2rl. Note that Bi U Bj c B'.  It is clear from the definition (3.2.27) o f t  

that 

fl(zj ,r ' )  = p(x j , r j  + 2~) < Z(xj, ~j) + 2r~. 

Figure 3. A ' ( r l )  + A'(ro) _> h ' ( r l  + 2vo) + ~A' (2r0)  = lower bound for large 

ball + estimate o f  additional "bad radii". 

We may  thus use Lemma 3.3.2 and the fact that B~ and Bj satsify (3.3.10) to 

estimate (see Figure 3) 

fB, E~dx >_ A'(r~) + M(rj) + l A~ ((fl(xj,rj) - eC1) +) 

> n~(rj + 2~) + 

>- h~(r') + 24 

So in either case, (3.3.10) is satisfied. 

As in the proof  o f  Lemma 3.3. l ,  we can continue to combine balls as necessary 

until we achieve a collection o f  balls which is pairwise disjoint. 
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4. By alternately expanding and combining balls, we eventually arrive at a 

collection which also satisfies (3.3.3), and at this point the proof of  the lemma is 

finished. [] 

4. C o n c e n t r a t i o n  o f  J a c o b i a n  a n d  g loba l  s t r u c t u r e  

In this section we complete our proof of  the local structure theorem, and we 

prove the global structure theorem. The remaining statements to be proven concern 

the properties of  the Jacobian measure [Ju]. The main point in both proofs is that 

[Ju] vanishes away from the vortices. 

Recall that Theorem 3.2.1 applies to a function u 6 W 1,'~ (B~ ;R'~) satisfying 

(3.4.1) II [Ju]- w,~d6o [[3a1(B~) _< 7or, 

where d = • and "yo = %(n) is some constant which could in principle be 

computed explicitly, and 

(3.4.2) 

for ~ _< r. 

We will prove 

T h e o r e m  3.4.1. I f  u is a function satisfying (3.4.1) and (3.4.2) then 

(3.4.3) I] ~n[Ju]-- l#eu ll2ep(B,.) <: O'rl(1), 

whenever u is a function satisfying (3.4.1) and (3.4.2). 

R e m a r k .  Theorems 3.2.1 and 3.4.1 together make precise the statement that 

(3.4.4) d [Ju] N 11~,~,~ N 6~. 

In particular, (3.4.3) and (3.2.4) imply that under the hypotheses of  Theorem 3.4.1, 

there exists some ( 6 B~/2 such that 

wn Aa~(B~) 

Proof. 
1. Suppose, toward a contradiction, that u ~ ,  e,~ --+ 0, is a sequence satisfying 

(3.4.1), (3.4.2), and 

: = a  > 0 .  (3.4.6) liminf,__,o [Ju ~] - -~IA,, .MI(B,.) 
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(We will omit the subscripts and write e for e,~.) 

From Theorem 3.2.1 and the remarks which follow, we laaow that {u *} and 

related functions are (weakly) precompact in a variety of  senses. In particular, 

after passing to a subsequence (still denoted u0 ,  we may  assume that there is some 

point ( E B~/2 such that 

/z~~ ~ m~5~ weak-* in 3A; 

Tff71,r~ (/:~ u ' ~  weak-* in  "1oc ~ \ { ~ } ) f 3 W I ' P ( B ~ ) ,  f o r e v e r y p E  [1,n). 

It is clear from (3.2.6) that = i a.e. We further have from (3.2.8) 

[ ~  j(u ~ ) ~  weak-* inL~(B~) for e v e r y p E  1 , ~  , 

and from (3.2.9) and (3.2.10) 

[Ju ~] ~ []] weak-* in .Mloc(B~ \ {(}) N W-I'p(Br), p as above, 

where (by the weak continuity o f  Jacobians) [J] = [J(72)] = ~dj(f~). 
We will eventually show that [J] = dwng~, which will lead to a contradiction o f  

(3.4.6). Note that at this stage we do not yet know that [J] is a measure. 

2. Let  U C Br \ {(} be any open set. 

Since ]a] = 1 a.e. x E U, we have da  = 0 a.e. x E U. Indeed, it is clear that this 

holds i f  g is smooth, since Dfz(x) then has rank at most n - 1 for every x. A result 

o f  Bethuel and Zheng [3] shows that C~ S n - l )  is dense in WI,~(U; S'~-1), so 

the claim follows by an approximation argument for arbitrary ~2 E WI"~(U; S '~-1). 

Since ~2 E Wllo~ ~ away from (, it follows that [J] = 0 in U and hence that the 

support o f  [J] as a distribution is contained in {(}. 

3. Fix any n < q < cc and 1/p + 1/q = 1. The embedding C~ c W~ 'q implies 

by duality that 

[J] E W -I 'p  = [wl 'q]* C [c l ]  *. 

Since supp[J] C {~}, for any q~ E C~ we have the representation 

i=l  

for certain constants ao, ...,a,~. I f  a~ ~ 0 for any i > 1, this would not extend 

continuously to W l'q. We therefore deduce that [J] is a measure o f  the form 

[,Z] = 
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Once we know this, we immediately deduce from L e m m a  3.1.2 and (3.4.1) that 

[J] = wnd6~. 

4. Our above arguments have established that 

w~[Ju'] - #~, ~ 0 

weak-* in A4. Lemma 1.2.2 then implies that 

_d [jr 
COn ~n  

converges to zero in the A41 norm, in contradiction to (3.4.6). [] 

R e m a r k s .  

1. Once it is known that [Ju] -- ao6~, one could give a direct argument to prove 

that ao = wnd, which does not rely on Lem m a  3.t .2.  One such argument 

would use (3.2.17) and a construction similar to that o f  L e m m a  3.2.2 to 

produce a uniformly Lipschitz sequence o f  functions Ck E C~ such that 

Ck (~) = 1 for every k and 

f ck [ju~] _..+ wnd 

as k ~ oc, implying the result. 

2. It is evident that the role o f  3A ~ here is essentially to provide us with a 

convenient  way o f  making the statement that the weak-* Ad convergence o f  

to zero is uniform for all u ~ satisfying (3.4.2) with a given constant 71- 

We now prove the Global Structure Theorem 1.4.4. We first restate the theorem, 

in the general n-dimensional setting: 

T h e o r e m  3.4 .2  (Global Structure). Suppose that u c Wl'"(qI~;Rn),  and 

that there exist points  a l , . . . , a~  E qI ~, integers d l , . . . , d~  E {+1}, and e <_ r := 

�88 minir  lai - aj[ such that 

m 

(3.4.7) 1[ [Ju] -  7 r E d i 6 a  , llzal(B,) < 7or, 
i=1 

where "go(n) is the constant f rom Theorem 3.2.1; and 

(3.4.8) iT E'(u) dx<~nmln(~) +'~I 
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f o r  some 71. Then there exists points  5i C Br/2(ai), i = 1, ..., m and a constant 

C1 = C1 (71) > 0 such that 

C1 
(3.4.9) l l ~  - ,~,, ~ '~a ,  l l~ ,  < 

I in e----~' 

(3.4.10) 

Moreover, 

(3.4.11) 

[][Ju]-  ~,~ E di~a,[]~ < o7, (1). 

f v  E~dx C(a,71). _< 
"\U~ B,(aa 

Finally, there exists constants C,  and @, depending only on 71, such that 

(3.4.12) IIDulIL,(~=) ~ Cp forp e [1, n), 

and 

i ) (3.4.13) Ilj(u)llL,(Vn ) <_ c'p f o r p  6 1, ~ . 

Proof .  First note that (3.4.7) implies that 

,(ad 

for each i, by (3.2.11). Together with (3.4.8), this forces 

/. ,(aO 

for each i. In particular, the hypotheses of  Theorem 3.2.1 are satisfied on each 

ball B~(ai), i = 1, ..., m.  The conclusions of  Theorem 3.4.2 all follow easily from 

Theorem 3.2.1 and the remarks that follow, with the exception of  (3.4.10). 

This last claim follows by exactly the compactness argument used to prove 

Theorem 3.4.1. Indeed, if  (3.4.10) is false, then we can find a sequence u ~ 

satisfying (3.4.7) and (3.4.8), but with 

[Ju~] - ~" E di6a, .M1 

bounded away from zero. Arguing as in the proof of  Theorem 3.4.1, we can extract 

a subsequence such that [Yu ~] converges weakly to a limit, which is a collection 

of  point masses with weights de;n, where di is some integer. However, as in the 

earlier proof, the only possible limit is t% ~ di~a~, proving the theorem. [] 
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R e m a r k .  Clearly, a version of  the same result holds on a bounded open set 

U c 1R '~ where we now define 

1 min{la i _ aj I f o r / r  j ,  dist(ai, OU)}. r - - -~  

The proof  uses only the local structure theorem and the fact that [Ju G] ~ 0 in M 1 

away from the singularities; this last fact does not depend on any special properties 

o f  the torus ' P .  

5. S o m e  e x t e n s i o n s  

In this section we present a couple o f  extensions o f  the above results. 

We first show that an appropriate version of  Theorem 1.4.3 holds also for 

the Ginzburg-Landau functional used to model the behavior o f  certain super- 

conductors. After this, we present a brief  discussion that ilustrates that the 

techniques used above can be modified very easily to work on manifolds. 

These results are not used anywhere in this paper, but we expect that they may  

be useful in other contexts. 

M a g n e t i c  field 

where 

We define the functional 

Imag[U, A] := f E~nag(U, A)dx, 

E~ag(u,A ) := IVAU[ 2 + IV X AI 2 + ~e2(1- [u l2)  2. 

We now think o f u  as taking values in the complex plane C, and A = A1 dxl + A2dx2 

is a 1-form with coefficients A~ e H 1 (U). We will identify A with the function 

(A1, A2) E Hi(U; 7~2). We define V x A :=- A2,~1 -A1,,2 and VAU := (V -- iA)u, 

In physical models of  superconductivity, A represents the magnetic potential, 

so that V x A is the magnetic field. 

We assume throughout this discussion that u E HI(B~, C) and A e H 1 (B~; II~ 2). 

We will prove 

T h e o r e m  3.5.1.  Suppose that 

(3.5.1) ]] [Ju] - ~rd6o ]Izal(B.) <_ 7or, 

where d = • and 7o is a constant which will be fixed below. Assume also that 
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for  some ~/1. Then there exists a point  ~ ~ Br/2 and a constant C1 = C1(~/1) > 0 

such that 

(3.5.3) in E~.g(u,A) dx>>vlog(~) -C1 
o(~) 

f o r  every a E [0, r12]. Moreover, 

C1 
(3.5.4) I1#,~ - ~ S e l l . ~ , ( . . )  -< - - ~ '  l~--v, 

(3.5.5) II [Ju] - ~6dl~l(B.) ~ o.,. (1). 

In addition, for  any p c [1, 2), there exists some Cp = Cp(~/1) such that 

IID~IIL~(.,.) _< C~. (3.5.6) 

Finally, 

(3.5.7) 

and 

so that 

IIV x 411L=(B4 <-- O('~O. 

The idea is as follows: suppose we are given (% A) as above, and let 

:--IIv x AIIL=(m) 

llVau[2 + 1 Fm~g(U, A):= ~ ~ (1-  lul2) 2, 

s +/. A) 

If/3 < C(Vl), then F~ag is a small perturbation of  the energy density E ~ studied 

in previous sections; this follows from Lemma 3.5.1 below. In this case, we thus 

expect to be able to prove the same sorts of  results as before. 

To show that/3 < C(~'1), we follow our earlier arguments to establish lower 

bounds for F~ag , in which/3 appears as a parameter. By examining the dependence 

of  these bounds on/3, we find that (3.5.2) forces [3 to be O(1). 

We start by quoting some lemmas we will need from [12]. These are counter- 

parts, for this modified functional, of  the lower bounds given in Section 1 of  this 

chapter. 

Define 

{re.i( } A~(r) := rain v~- + 1 -- + ~v~ 11 - ~J~  
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where C* and N are universal constants. Note that in the case n = 2, ),~ coincides 

with >,~ for/3 = 0. 

Further define 

2 AS( ) :=  5(r) A co dr 

for some sufficiently small co. 

We define the set SE, the essential degree dg, and so on exactly as before. 

Similar to Lemma 3.1.4, we have 

l f  u E C n H I ( U ; R  2) and dg(u;OBr) r O for  B~ C U with L e m m a  3.5 .1 .  

r >_ e, then 

(3.5.8) f F~ag d H  n-1  > Ae~(r) A e--O-~ 
Jo B.  s 

The main point is that the integrand differs from that in Lemma 3.1.6 essentially 

by a term of  the form foB~ A.  -c, where T is the tangent to OBr. By Stokes' Theorem 

and H61der's inequality, this can be estimated by/3.  This leads to the new term 

involving [3 in the definition o f  A~. 

We next state some estimates which correspond to Lemma 3.1.5. These too are 

proven in [12]. 

L e m m a  3.5.2. A'(.) is increasing, and moreover 

(3.5.9) A~(r + s) < A~(r) + A~(s) W, s > 0; 

Next, along the lines of  Lemma 3.1.6 we have 

L e m m a  3.5.3. 

s e [ro, rl], then 

Vr>O. 

I f  u e C N HI(U;R2),  e <_ ro < rl, and dg(u; OB~) r O for  all 

(3.5.11) fB ~ ,~ \B,o F~nag dx >_ A~(rl) - h~(ro). 

Finally, 

L e m m a  3.5.4. Suppose that u E C h i l l ( U ;  R 2) and lul >_ 1/2 on OU. Assume 

also that 

<_ Ce-1/~, 
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where/3 = Ilv x A][r=(m) as above. Then there is a collection of  closed, pairwise 
disjoint balls {Bi}i=l with radii ri such that 

k 

(3.5.12) c V 
4=1 

(3.5.13) ri >_ e Vi, 

(3.5.14) B i n  SE r ~ for each i, 

f Fm ~ co (3.5.15) a g d x  >__ - - r l  >_ A;(ri) .  
J B~AU s 

We now give the proof of  Theorem 3.5.1. 

Proof .  

1. The main new point is to prove that/3 < C('yl). This is done as follows. 
1 As in the proof of  Theorem 3.2.1, we may assume that u is continuous, lu] > 7 

on OBr, and 

(3.5.16) s (Sd(u) n [e, r]) _> 3r/4. 

The first covering argument, Lemma 3.3.1, uses only properties of  A'(.) that 

are shared by A~(.), such as subadditivity (3.5.9) and the fact that A~ provides a 

lower bound for F~aag on annuli (3.5.11). By the first covering argument, we can 

thus find a collection of  balls {Bi} with disjoint interiors satisfying (3.3.2), (3.3.3), 

and 

f F~,g(U, A)dx for all i. > A~(ri) 

BINBr 

As in Step 3 of the proof of Theorem 3.2.1, we deduce from (3.5.16) that 

n _> 3r/8. So 

/ Emag(u,A)dx> - lfl,+ A~(3_~) 

by (3.5.8). Comparing this with (3.5.2), we easily deduce that/3 < C('yl). 

2. Once we know that/3 _< C, we can establish a version of  Lemma 3.3.2 for 

A~. After that, A~(.) has all the properties that were used to prove the covering 

Lemma 3.2.3. Everything else follows essentially without change from the proof  

of  Theorem 1.4.3. [] 
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E s t i m a t e s  o n  m a n i f o l d s  Finally, we demonstrate that the methods used 

above work equally well on manifolds. Instead of  stating a general result, we 

discuss a simple, concrete example that is used in [13]. It will be clear from our 

discussion that one could go on to establish more elaborate results on more general 

Riemannian manifolds, in higher dimensions, etc. 

Suppose that M is a 2-dimensional Lip schitz submanifold o f  some IR n, equipped 

with the induced metric and with standard 2-dimensional Hausdorffmeasure,  which 

we will write simply as dx. M can have a boundary and need not be compact. 

Given a sufficiently different/able function u on M,  we write Du to indicate the 

tangential gradient. We are only assuming that M is Lipschitz, so there may  be a 

subset of  M (of measure 0) on which tangent planes do not exist; on such a subset 

clearly Du is not defined in general. Nonetheless we can talk about Sobolev spaces 

such as H 1 (M). 

Suppose x0 e M,  and let R > 0 be a number such that dist(xo, OM) > R, and 

such that Bn(xo) : -  {y e M : dist(x, y) < R} is a topological disk. 

Given u �9 C n HI(M;]R2), we define as usual the set SE c M,  the essential 

degree dg, and so on. 

As in the discussion of  the functional with magnetic field, to use our earlier 

arguments, it suffices to verify that we can define functions, say ~ and A~, that can 

be used to give lower bounds on circles and on balls and annuli, respectively, and 

to check that these functions have certain properties such as subadditivity. 

The only point about which we need to be careful is that, given x �9 M and 

r > O, in general ttl(OB~(x)) ~ 2~rr. In order to deal with this, we define 

l(r) = inf{Hl(OB~(x)) :x  �9 BR(Xo), dist(x, OM) < r}, 

L(r) = sup{Hl(OB~(x)) : x 6 Bn(xo), dist(x, OM) < r}. 

We assume that 

(3.5.17) C-127rr < l(r) <_ L(r) < C27rr Vr e (O,R). 

We also assume that I and L are strictly increasing functions for r e [0, R]. 

Since M is Lipschitz, given any x0 E M we can always find an R such that 

these assumptions are satisfied. 

We first remark that a version o f  Lemma 3.1.3 remains tree in this context. 

L e m m a  3.5.5.  Suppose that u �9 HI(M;B2),  and let p := ]u[. Then there 

exist constants C, N such that, i f  x �9 B~(xo), e < r < dist(x, OM), and 

"~x,r := foB,(~) llDpl2 + 5 ( p 2 - 1 ) 2 d H 1 ,  
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then 

[]1- p][Loo(DB.(x)) ~ (Cs 1/N. 

The lemma is quite easy to prove directly. It also follows from Lemma 3.1.3, 

since 0B~(x0) is an isometric embedding of  a standard Euclidean circle in the 

plane, of  radius C-lr ,  for some constant C that can be bounded uniformly for 

x E BR(xo) as a result of(3.5.17). 

Next we define 

(3.5.18) ~(~) := mi. [.~2 2~ ~ 1 ] ~<o,~I k ~ + ~-~(1 - m) N 

for a suitable constant C* (which will be selected below) and N as above. 

The main point of  our present arguments is that, once we modify M by replacing 

2zrr by L(r), all our proofs follow exactly as before. 

L e m m a  3.S.6. Suppose that u E C n HI(M;I~2), x G BR(xo) with e < r < 

dist(x, OM). I f  dg(u; OB~(x) ) r 0 then 

fo llDul2 + 4-~(,ul2-1)2dH1 > A~(r)A co. 

Proof .  Fix x as above, and let m := infDB~(=o) lul. I f m  < 1/2 then 

2'Du[2 + ~---fi ( 'u '~-  l)2dHl k c~ 
B ~ ( = )  s 

for appropriately small co, as a result of  Lemma 3.5.5. 

I f m  > 1/2, write u = pe ir Note that ]Du] 2 = ]Dp] 2 + p2]D~12 , so that 

~o I[Du[2 + 3 ( l u [ 2 -  1)2dH1 > "~='~ +m2  f ]Dr 
B~.(x) ~ - -  JOB~.(x) 

Also, the assumption that dg(u; OBr(x)) • 0 implies that 

< L(r)/o1~(=)IlDr 

The last two equations and Lemma 3.5.5 give the result for suitable C*. [] 

We now define 

~o(~) := ~(~) ^ ~o d~. 



194 J. E. C O L L I A N D E R  A N D  R. L. J E R R A R D  

Now Lemmas 3.1.5, 3.1.6 and 3.1.7 follow exactly as before, except that the 

lower bound (3.1.16) in Lemma 3.1.5 is replaced by 

for 

~---+0 

27[?" 
Q := liminf - - .  

~-~o L(r) 

At this point we can easily begin to recover some of our earlier results. For 

example, suppose u ~ C N H 1 (M; R 2 ), with x0, R as above, and define 

Sd(u) : :  {r E (0, R) :  dg(u; OS~) = d}. 

We dose  this discussion with the following proposition, which is used in [ 13]. 

Proposition 3.5.1. 

Then 

In particular, i f  

for  all x ~ BR(xo), then 

a s  e --~ O, 

Suppose there exists some a such that 

Cl(Sd(U)) > ~. 

R(~o) 

2~T 
lira inf > 1 
.-~o m(OB.(x))- 

/ ,  

I ln ,I-1 / dx _> + o(1) 
JB ~(xo) 

Proof ,  The first covering argument Lemma 3.3.1 can be used with A" exactly 

as before. By  the argument from Steps 2 and 3 of  the proof of  Theorem 3.2.1, 

we verify that the bails produced by this procedure have radii that sum to at least 

cg2. Thus by subadditivity the total energy in the balls is at least i ' ( ~ / 2 ) .  The 

proposition follows. [] 
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C H A P T E R  4. 

A U X I L I A R Y  R E S U L T S  O N  R E N O R M A L I Z E D  E N E R G Y  

1. A t e c h n i c a l  l e m m a  

In this section and the next we give the p roof  o f  Theorem 1.4.5, which asserts 

that, i f  a sequence o f  functions u ' is close to minimizing the Ginzburg-Landau  

energy I ", then the functions are close to energy minimizers.  Note  that the condi- 

tion that a sequence be nearly energy minimizing depends on the limiting vortex 

configuration. This dependence is expressed through the renormalized energy. 

This may  be thought o f  as a version o f  the elementary fact that, i f u  E Hi(U) 
solves Au = 0 in U C ]R '~, and i f  v E H 1 (U) is a function such that v = u on OU, 
then 

[IDv -DuII2L= = IlDvll2~ -[[Dull22.  

The lemma in this section gives a sharp lower bound for the energy o f  vortex 

cores, under quite weak  assumptions. The p roof  o f  Theorem 1.4.5 essentially 

combines this lower bound with some results o f  Bethuel,  Brezis and H61ein [2], 

which are valid away from the vortex cores. 

L e m m a  4.1.1.  Suppose u ~ e HI(Bp) and 

weak-* in M(Bp). Then 

[Ju ~] ~ xS0 

/B Er e) dx >I(e,p)+o(1) 
P 

as s ---> O. 

R e m a r k .  Recall that l(e,  p) is defined as 

I(c,p)=min( f E~(u)dx : ucHl(Bp),u(x)= x } (JUt,  ~-~ for x E OBp . 

It is clear that rotating the boundary data through some constant angle a has no 

effect on the minimum, so that for any fixed a,  

I(e'P)=min{/BP E~(u)dx : uEHl(Bp)'u(x)=e~aXf~ ~  
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P r o o f .  

1. Fix p > 0 and suppose that u ~ is a sequence o f  functions as in the hypotheses.  

We may  assume that each u ~ is smooth. 

Suppose some small 6 > 0 is given. It suffices to show that there exists some 

e0 > 0 such that 

(4.1.1) L E~(u~)dx >- I(e, p) - 6 
p 

for all e < co. Since I(e, p) < ~r In (p/e) + C, we may  assume that 

s EXr <_ I(4,p) 
p 

(4.1.2) <_ ~rln(p/e) + C1 by  (1.3.12), 

as the conclusion is otherwise immediate.  

First we will show, in Claim 1 below, that i f  e is sufficiently small, we can find 

a radius r < ! p  on which u ' has certain good properties,  and moreover  that this 2 
radius is bounded away f rom zero. 

In Claim 2, we use these good properties to show that we can construct  a 

function ~ which agrees with u" on Br and equals ei'~ T} y on OBp for some a ,  and 

such that 

(4.1.3) f E ' ( u  "?) < ln(p/ r )  + 6/2. 
JB p\B~ 

Finally, we check in Claim 3 that for e sufficiently small, 

>_ ln(o/r) - 6/2. 
o\B~ 

This will establish (4.1.1), since 

z(e, p) _< f Eo(ff & 
JBp 

JBp J B p \ B .  

C l a i m  1. Given 61 > 0, i f  e is sufficiently small we can find r < p/2 such that 

(4.1.4) 

and 

(4.1.5) 

LB,, Ee(ue) dill <- l (Tr "t- 61) 

deg(u~; OB,.) = 1. 
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Moreover, r > ro, where ro depends only on ~1. 

2. P r o o f  o f  C l a i m  1. By taking eo sufficiently small, we may assume that 

H[ yu~] - ~O[[.~(B.) --< 7oro 

for all e < eo = eo(ro), where ro(~l) will be chosen below. Lower bounds (see 

(3.2.4)) thus yield, for small E, 

(4.1.6) fB E'(u')dx~-~rl~176 

By combining (4.1.2) and (4.1.6), we see that 

(4.1.7) fB Ee(u~)dx < ~-log (Pr--@)+C3 
p/2\B~o 

for all e N e0(ro), but with a constant C3 which is independent of  to. 

3. Fix rG so small that 

(4.1.8) 611n (@02) > 2C3, 

where C3 is the constant from (4.1.7). Then (4.1.7) readily implies that 

T1 := { r E  [ro, P] : (4.1.4)holds} 

has measure strictly greater than zero, say 

LI(T1) >C~ -1 > 0  

for some large constant C4. 
We have shown in (3.2.25) that if  

(4.1.9) II[Ju] - 1rSollz4~(B~) ___ h 

and (4.1.2) holds, then 

Zl(T ) >- !o2 - t o  - O(h)  - o(1),  

as e ~ 0, where 

T2 := {r e [ro, p/2] : (4.1.5) holds} = Sl(u) Cl [ro, p/2], 

in the notation of  Lemma 3.2.2. 

I f  e is sufficiently small, then the h in (4.1.9) can be made so small that 

s + Zl(T2) > �89 - r0. 
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It follows that for such e, there is some r ETa nT2 C [ro,p/2]. This is Claim 1o 

C l a i m  2. There exists some constant C such that, i f  (4.1.4) and (4.1.5) hold 

for some r <_ p/2 and eo is sufficiently small, then there is a function ~ E H ~ (B~,) 

such that u ~ = u ~ i n  B , . ,  

and 

on 8Bp for some a, 

o\B~ 

(4.1.11) 

as e ~ 0, and that 

Since we can select 51 in (4.1.4) to be as small as we like and p/r is bounded, this 

wilt prove (4.1.3). 

4. P r o o f  o f  C l a i m  2. We need only define ~ in the annulus Bp \ B~. 

First, from Lemma 3.1.3 and (4.1.4) we see that 

(4.1.10) Hu']- 11 <_ (G@/N 

on 8B~, for some fixed C, N. 

Let r~ := r + (G@/N for these values of  C,N, We define u ~ in the annulus 

{x I r _< lxl < r~} by stipulating that u~/luq is constant in the radial direction, and 

I~  I is linear in the radial direction, with tuq = tuft when Ixl = r, and t~1 = 1 when 

One can easily check, using (4.1.4) and (4.1.10), that 

E~(~)dx = o(1) 
~\B~ 

(4.1.12) 
U~ e 

5. We will eventually define u ~ in the annulus gp\Br,. First, since deg(~ ;  OB~,) = 
deg(~ ;  OB~) = 1, we can write 

u~ 10B~, = e~(~+~ 

where a is a constant, 0 satisfies e iO(z) = x/Ix I and 4 is single-valued with 

~o edH 1 = 0 .  
B.  

We record some properties o f  r first we have defined r only on OBr,; we 

extend it to a function on IR e \ {0} which is homogeneous o f  degree zero, still 

denoted r 
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(4.1.13) 

Next, we assert that 

Note that since r is single-valued, integrating by parts yields 

f DO-De dH 1 = f (DrO)(Drr d g  1 
ao B.~ JOB.~ 

__ _1 f D~-r dH 1 = O. 
rE ' ]0Bre  

(4.1.14) ] ID~-r 1 << 45~, 
ao By- e 

say, for all e sufficiently small. This follows from (4.1.12) by a short argument 

which uses (4.1.13) and the explicit computation ]DO(x)[ = 1~Ix]. 

By homogeneity and (4.1.14), one may compute that 

f IDr e dH 1 < CS--61 . (4.1.15) 
go B~ ~ee 

Similarly, using homogeneity and Poincar~'s inequality (which holds since r has 

integral zero) one can verify that 

fo  r dH 1 <_ Csr~51. 
B. 

(4.1.16) 

6. Next we define 

ur = ei(~+0(~)+~(l~l)r 

for x E Bp \ B~,, where A is some function which will be chosen below, with 

A(re) = i and A(p) = 0. 

We then compute 

Since 
x . D O =  x 
B7 M D~ = 0, 

we use (4.1.13), (4.1.15) and (4.1.16) to compute 

J. 'L'J. E~(uQ dx = ~ IDOl 2 + ~21Dr + (A')2r 2 dH 1 ds 
p\B.~ o Bs 

(:.) < ~I~ p + c6~ ~(~)~ + ~'(~)~ d~. 
e 
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Let  ), minimize the above integral, subject to the conditions )~(rr = 1 and 

A(p) = 0. Since re is bounded away f rom zero and p, the integral can be estimated 

independent  o f  e to yield 

p\B. ,  

Together with (4.1.11), this proves Claim 2, since r~ -~ r as e ~ 0. 

C l a i m  3. 

okB.  

for all e sufficiently small. 

P r o o f  o f  C l a i m  3. We use the machinery for proving lower bounds developed 

in Section 2 o f  Chapter 3. 

Recall  that [l[Ju'] - ~0ll~(Bo) --' 0 by hypothesis. We therefore deduce f rom 

(3.2.25) that 

where 

Then 

by  L e m m a  3.1.4. 

f rom below by 

t: l ( s )  --~ p - r, 

S := {s e [r,p] ]dg(u;OBs) --- 1}. 

fB,\B EC(ue) dx = ~P ~oB E~(ue) dHl(x) ds 

f )~(s) A co ds >_ 
J8 ES E 

Since )d(.) is nonincreasing, the right-hand side is est imated 

Lo ;~~ ^ ~ ds. 
-LI(s) e 

One easily verifies f rom the definition (3.1.12) o f  )~ that as e ~ O, ),~(s) ~ r 
uniformly  for s bounded away f rom zero. Claim 3 follows. [] 

2. A v a r i a t i o n a l  resu l t  

H a r m o n i c  m a p s  in to  S 1 Suppose we are given a col lect ion o f  points 

al ,  ...,a,~ ~ T 2 and nonzero integers dl, . . . ,d,~ such that ~ d i  = 0. For  p > 0 

such that 

p < ~ minla~ - ajl, 
i C j  
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we define 

Let 

:=  v 2 \ 

i 

.Ap := {v e HI(~I'2p;S 1) : deg(v;OBp(ai)) = di Vi}. 

In order to describe Dirichlet energy minimizers in Ap, we introduce an auxiliary 

problem. Let ~p : ~I'~ --+ I~ solve 

k~ip = 0 inT~, 

~p = const, on OBp(ai), i = 1,. . . ,m, 

fo  O~p = 27rdi, i = 1, ...,m. 
B~(~) Ou 

Such a function can be constructed by solving an appropriate minimization 

problem; see [2] and the citations therein. We will occasionally write ~o(x; a, d) 

to explicitly indicate the dependence of  ~o on the various parameters. 

The following proposition is essentially proven in Bethuel, Brezis and H61ein 

[2]. The arguments there are given on a domain with boundary, but they can easily 

be adapted to the periodic setting. 

P r o p o s i t i o n  4.2.1. There exists a function up which minimizes the Diriehlet 

energy in A o. This function is unique up to a phase, and satisfies 

j ( up )  = - V  x ~o" 

In particular, 

(4.2.1) 

I f  v E ,4 o, then 

(4.2.2) 

Finally, 

(4.2.3) 

1 ~  IDu~12=21~ ]DCp12 m~rln(~O+W(a,d)+O(p). 

[[j(v) - j(Up)IleL:(T~) = []Dv[[2:(T~) -- [IDupII~:(T=~). 

I U ( u p )  " - a(H)II~=(T~) = O(p). 

These assertions are proved in [2], Theorems I. 1, 1.6 and 1.7. 

We will prove Theorem 1.4.5. 
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R e c a l l .  It is an easy and well-known fact that, i f  u" ~ u strongly in some 

space and v e ~ v weak-* converges in the dual space, then u 'v  ~ ~ uv in the sense 

o f  distributions. We will use this several t imes in the upcoming proof.  

Proof .  
1 a 1. Fix some 0 < p < min~r ~[ ~ - aj]. The hypothesis  (1.4.29) implies that 

[Ju ~] ~ diTr6~, 

weak-* in A4(Bo(a~)), for i = 1, ..., m. Lem m a  4.1.1 and the assumed upper  bounds 

(1.4.30) thus imply that 

(4.2.4) limsup f E~(r dx m~rln ( ~ )  + W ( a , d )  + C p + % .  

1 :[,~e', B y (1.4.28) this immediately implies that the functions i-~y t ) are un i formly  

bounded in L 2 ('I['2). 

After passing to a subsequence, which for convenience we still denote u ~, we 

may  assume that 

u ~ ~ ~2 strongly in LP(q~p), 

for every p < oc. It is clear that we must have [~1 = 1 a.e, so that 

lUel --+ I 

for every p < ~ .  In addition, 

D u  ~ ~ D~z 

strongly in LP(T~) 

weakly in L2(~2~); 

~ - ~ j ( u  ~) ~ some limit, s a y j  weakly in L 2 ( ~ ) .  

Finally, since u ~ converges strongly and Du ~ converges weakly in the appropriate 

spaces, we also have 

j ( u  ~) ~ j(f~) weakly in LP('r~) for e v e r y p  E [1, 2). 

Note  also that [J~2] = 7r ~ di6~, on account o f  (1.4.29). 

2. We now claim t h a t j  = j (a ) .  This is not hard: 

j (~)  = weak  L 1 lira j ( u  e) 
e-+O 

= weakL1  ~--.01im klu I - ] - ~ )  

j(u~)) 
= (strong L 2 tim lu~l)(weak L 2 tim 

: 3 "  
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3. We next verify that ~ belongs to the class of  functions Ap defined earlier. 

We expect this to follow from (1.4.29), and indeed it does: 

Fix some ai and let r = f([x - ad) for some smooth nonincreasing function 

f such that 

1 i f r < p ,  
f(r) ----- 0 i re  > 2p. 

Then (1.4.29) implies that 

7rdl 

= 12 fSDr .j(~) 

(4.2.5) 

Also, for any r C (p, 2p), 

0 = [ Ju dx 
JB ~\Bp 

-- f g P  ft (r) foB. J u ' J ( u )  d H l d r  

= - f'(r) ~-. j ( ~ )  d H  ~ a~. 

1/o =~1 B ~  j ( ~ ) - 2  B e ~  j (~ )  

Thus (4.2.5) becomes 

di i fo = _ ~-. j(~), 
71" Bp 

which is what we want to prove; compare with the definition of  degree given in 

(3.1.5). 

4. In light of  Step 3, it follows from (4.2.4) that 

0 _< IID(~)II~2(T~) -[[D(up)l122(T~) < 2(3,2 + Cp) 

and hence, by Proposition 4.2.1, that 

(4.2.6) ilj(~) �9 2 - 3 ( u , , ) l l L = ( ~ )  _< 2(72 + Cp).  

5. Let 
1 pe := ;_.n.,j(u e) _ j(~). 
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U s i n g  (4.2.4)  and  P r o p o s i t i o n  4.2.1 ,  w e  c o m p u t e  

1 2 

. _  2 J (u~)  L2(V~) Ib(u)llL~(T~) + C ( ~  + p) > lira sup 
-- e--*0 V ~  

= lira sup Hj(~) -q- pe [I ~2 (T~)" 
e---+ 0 

Since p" ~ 0 weakly in L 2, as we have verified in Steps 1 and 2, this gives 

e 2 
limsup lip IlL, fig) - C('y2 + p). 

e--+0 

This fact, with (4.2.6) and (4.2.3), immediately imply that 

I . , j ( g )  12(T~) nmsup 3(~ ) - < c ( - ~  + p). 
e---~ 0 T ~  

With (1.4.28) and (4.2.4) this implies that 

limsup [[ Dlue[ 2 IIL~(T~) --< C('r2 + p). 
e--~0 

6. Now fix some ~3 E (0, p). Clearly To 2 c T~, so 

1 . e :2(T~) 1 . e :2('r~.) l im sup y (u  ) - j ( H )  < l im sup y (u  ) - j ( H )  

<_ c(.yz + ~). 

Letting ~ go to zero, we obtain (1.4.31). 

B y  the  s a m e  a r g u m e n t  w e  d e d u c e  (1.4 .32) .  [] 
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