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Abstract

Spatial transcriptomic and proteomic technologies have provided new opportunities

to investigate cells in their native microenvironment. Here we present Giotto, a

comprehensive and open-source toolbox for spatial data analysis and visualization.

The analysis module provides end-to-end analysis by implementing a wide range of

algorithms for characterizing tissue composition, spatial expression patterns, and

cellular interactions. Furthermore, single-cell RNAseq data can be integrated for

spatial cell-type enrichment analysis. The visualization module allows users to

interactively visualize analysis outputs and imaging features. To demonstrate its

general applicability, we apply Giotto to a wide range of datasets encompassing

diverse technologies and platforms.

Introduction

Most tissues consist of multiple cell types that operate together to perform their func-

tions. The behavior of each cell is in turn mediated by its tissue environment. With the

rapid development of single-cell RNAseq (scRNAseq) technologies in the last decade,

most attention has gone to unraveling the composition of cell types with each tissue.

However, recent studies have also shown that identical cell types may have tissue-

specific expression patterns [1, 2], indicating that the tissue environment plays an im-

portant role in mediating cell states. Since spatial information is lost during the process

of tissue dissociation and cell isolation, the scRNAseq technology is intrinsically lim-

ited for studying the structural organization of a complex tissue and interactions be-

tween cells and their tissue environment.

Recently, a number of technological advances have enabled transcriptomic/prote-

omic profiling in a spatially resolved manner [3–14] such that cellular features (for ex-

ample transcripts or proteins) can be assigned to single cells for which the original cell

location information is retained (Fig. 1a, inset). Applications of these technologies have

revealed distinct spatial patterns that previously are only inferred through indirect

means [15, 16]. There is an urgent need for standardized spatial analysis tools that can

facilitate comprehensive exploration of the current and upcoming spatial datasets [17,
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18]. To fill this important gap, we present the first comprehensive, standardized, and

user-friendly toolbox, called Giotto, that allows researchers to process, (re-)analyze, and

interactively visualize spatial transcriptomic and proteomic datasets. Giotto implements

a rich set of algorithms to enable robust spatial data analysis and further provides an

easy-to-use workspace for interactive data visualization and exploration. As such, the

Giotto toolbox serves as a convenient entry point for spatial transcriptomic/proteomic

data analysis and visualization. We have applied Giotto to a wide range of public data-

sets to demonstrate its general applicability.

Fig. 1 The Giotto framework to analyze and visualize spatial expression data. a Schematic representation of

the Giotto workflow to analyze and visualize spatial expression data. Giotto Analyzer requires a count matrix

and physical coordinates for the corresponding cells. It follows standard scRNAseq processing and analysis

steps to identify differentially expressed genes and cell types. In the following step, a spatial grid and

neighborhood network is created which is further used to incorporate the spatial information of the single-

cell environment and which is used for spatial analysis. b Cell coordinates, annotations, and clustering

information are utilized and incorporated in the Giotto Viewer. This interactive viewer allows users to

explore the link between cells’ physical positions and their clustering pattern in the expression space

(UMAP or tSNE). The addition of raw subcellular transcript coordinates, staining images, or cell

segmentation information is also supported. c Overview of the selected broad range of different spatial

technologies and datasets which were analyzed and visualized with Giotto. For each dataset the number of

features (genes or proteins) and number of cells are shown before filtering. The technologies depicted are

sequential fluorescence in situ hybridization plus (seqFISH+), Visium 10X (Visium), Slide-seq, cyclic-ouroboros

single-molecule fluorescence in situ hybridization (osmFISH), multiplexed error-robust fluorescent in situ

hybridization (merFISH), spatially resolved transcript amplicon readout mapping (STARmap), tissue-based

cyclic immunofluorescence (t-CyCIF), Multiplex Ion Beam Imaging (MIBI), and CO-Detection by

indexing (CODEX)
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Results

Overview of the Giotto toolbox

Giotto provides a comprehensive spatial analysis toolbox that contains two independent

yet fully integrated modules (Fig. 1a, b). The first module (Giotto Analyzer) provides

step-by-step instructions about the different steps in analyzing spatial single-cell ex-

pression data, whereas the second module (Giotto Viewer) provides a responsive and

interactive viewer of such data on the user’s local computer. These two modules can be

used either independently or iteratively.

Giotto Analyzer requires as minimal input a gene-by-cell count matrix and the spatial

coordinates for the centroid position of each cell (Fig. 1a). At the basic level, Giotto

Analyzer can be used to perform common steps often similar to scRNAseq analysis,

such as pre-processing, feature selection, dimension reduction, and unsupervised clus-

tering; on the other hand, the main strength comes from its ability to integrate gene ex-

pression and spatial information in order to gain insights into the structural and

functional organization of a tissue and its expression patterns. To this end, Giotto

Analyzer creates a spatial grid and neighborhood network connecting cells that are

physically close to each other. These objects function as the basis to perform analyses

that are associated with cell neighborhoods.

Giotto Analyzer is written in the popular language R. The core data structure is the

Giotto object, which is specifically designed for spatial expression data analysis based

on the flexible S4 object system in R. The Giotto object stores all necessary (spatial) in-

formation and is sufficient to perform all calculations and analyses (Additional file 1:

Fig. S1A). This allows the user to quickly evaluate and create their own flexible pipeline

for both spatial visualization and data analysis. The Giotto Viewer module is designed

to both interactively explore the outputs of Giotto Analyzer and to visualize additional

information such as cell morphology and transcript locations (Fig. 1b). Giotto Viewer

provides an interactive workspace allowing users to easily explore the data in both

physical and expression space and identify relationships between different data modal-

ities. Taken together, these two modules provide an integrated toolbox for spatial ex-

pression data analysis and visualization.

The spatial omics field is diverse and rapidly expanding; each technology has its

strength and weaknesses. In order to demonstrate the general applicability of Giotto,

we selected and analyzed 10 public datasets obtained from 9 state-of-the-art technolo-

gies (Fig. 1c, Additional file 2: Table S1), which differ in terms of resolution (single-cell

vs multiple cells), physical dimension (2D vs 3D), molecular modality (protein vs RNA),

number of cells and genes, and tissue of origin. Throughout this paper, we use these

datasets to highlight the rich set of analysis tools that are supported by Giotto.

Cell type identification and data visualization

Giotto Analyzer starts by identifying different cell types that are present in a spatial

transcriptomic or proteomic dataset. As an illustrating example for the first common

steps, we considered the seqFISH+ mouse somatosensory cortex dataset, which profiled

10,000 genes in hundreds of cells at single-cell resolution using super-resolved imaging

[9]. The input gene-by-cell count matrix was first pre-processed through a sequence of

steps including normalization, quality control of raw counts, and adjustment for batch
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effects or technical variations. Then downstream analyses were carried out for highly

variable gene selection (Additional file 1: Fig. S1B), dimensionality reduction (such as

PCA, tSNE [19], and UMAP [20]), and clustering (such as Louvain [21] and Leiden

clustering algorithms [22]) (Additional file 1: Fig. S1C). Cluster-specific marker genes

(Additional file 1: Fig. S1D-E) were identified through a number of algorithms (such as

Scran [23] and MAST [24]) and a new algorithm based on Gini coefficients [25].

Whereas the strongest marker genes are typically identified by all three methods, each

method has its own strength in detecting specific types of genes (Additional file 1: Fig.

S2A-G, see Methods and Additional file 3: Supplementary Notes for details). In total,

we identified 12 distinct cell types, including layer-specific excitatory neurons (eNeur-

ons) (Syt17 in layer 2/3, Grm2 in layer 4, Islr2 in layer 5/6), two types of inhibitory neu-

rons (iNeurons) (Lhx6 vs Adarb2), astrocytes (Gli3), oligodendrocytes (Plekhh),

oligodendrocyte precursors (OPCs) (Sox10), endothelial cells (Cldn5), mural (Vtn), and

microglia (Itgam) cells. The distribution of these cell types can then be visualized in

both expression and physical space (Additional file 1: Fig. S1F).

Next, we analyzed additional complex imaging-based spatial transcriptomic datasets

generated by merFISH [14], STARmap [7], and osmFISH [11]. In the merFISH dataset,

12 selected thin slices from a 3D mouse pre-optic cortex sample were imaged, resulting

in a total of roughly 75,000 cells and 155 genes. Here Giotto was used to identify 8 dis-

tinct clusters. Based on known marker genes, we were able to annotate these clusters

as microglia (Selplg), ependymal cells (Cd24a), astrocytes (Aqp4), endothelial cells

(Fn1), mature (Mbp), and immature (Pdgfra) oligodendrocytes, excitatory (Slc17a6) and

inhibitory (Gad1) neurons, respectively, which is in agreement with the original paper

[14] (Fig. 2a, b, Additional file 3: Supplementary Notes). Cells that did not fall into

these clusters were collectively assigned to an “ambiguous” group, as done in the

original paper. Next, to visualize the results, Giotto can create an interactive 3D plot

for the whole dataset or specifically highlight one or more selected 2D slices (Fig. 2c).

Together with overlaying gene expression information (Fig. 2d, e), such visualization

enables the user to explore tissue structure and concomitant gene expression variation

in a detailed manner.

In a similar manner, we analyzed the mouse visual cortex STARmap (Additional file

1: Fig. S3 A-D) and mouse somatosensory cortex osmFISH (Additional file 1: Fig. S4

A-D) datasets (see Additional file 3: Supplementary Notes for details). Both datasets

show the typical anatomical multi-layered structure of the cortex. In the 3D STARmap

analysis, we present an additional functionality that allows the user to create 2D virtual

sections of a 3D sample (Additional file 1: Fig. S3 A, C and E), which could be useful

for more refined structural analysis, as demonstrated in our analysis of the STARmap

dataset (see section “Giotto identifies distinct cellular neighborhoods and interactions”

and Additional file 3: Supplementary Notes for details).

Due to the similarity of data structure, it is straightforward to apply Giotto to analyze

large-scale spatial proteomic datasets such as CyCIF, CODEX, and MIBI (see Add-

itional file 3: Supplementary Notes for details). As an illustrating example, we analyzed

a public dataset obtained by CyCIF [10]. The dataset profiled the spatial distribution of

21 proteins and 3 cellular compartment or organelle markers at single-cell resolution

in a human pancreatic ductal adenocarcinoma (PDAC) sample that spanned across

three distinct tissues: the pancreas, small intestine, and tumor. In total, 160,000 cells
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were profiled. Giotto identified 13 coarse clusters which include mesenchymal, epithe-

lial, immune, and cancer cells (Fig. 2f, g). Next, we zoomed into each tissue to refine

the cell type structure in the pancreas and small intestine separately (Fig. 2h). For

Fig. 2 Analysis and visualization of large-scale spatial transcriptomic and proteomic datasets. a Visualization

in both expression (top) and physical (bottom) space of the cell types identified by Giotto Analyzer in the

pre-optic hypothalamic merFISH dataset, which consists of 12 slices from the same 3D sample (distance

unit = 1 μm). b Heatmap showing the marker genes for the identified cell populations in a, c Visualization

in both expression and physical space of two representative slices within the z-orientation (100 μm and

400 μm). d, e Overlay of gene expression in both expression and physical space for the selected slices in c,

f. Visualization in both expression (top) and spatial (bottom) space of the clusters identified by Giotto

Analyzer in the pancreatic ductal adenocarcinoma (PDAC) tissue-CyCIF dataset, which covers multiple

tissues, including pancreas, small intestine, and cancer cells (distance unit = 1 μm). g Heatmap showing the

marker proteins for the identified cell clusters in f, h. Visualization in both expression and physical space of

two selected windows (red squares in f) in the normal pancreas and small-intestinal regions. i, j Overlay of

gene expression in both expression and physical space for the selected windows in h
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example, we can now see clearly that the pancreas is structured in distinct zones

enriched with epithelial (E-cadherin) and mesenchymal or stromal (Vimentin) cells, re-

spectively. On the other hand, the small intestine shows a clear proliferating zone

(PCNA) and the activation of Wnt signaling (b-catenin) in intestinal epithelial cells

(Fig. 2i, j). Both observations are consistent with the original paper [10]. Applying the

same approach to analyze a mouse spleen dataset from CODEX [12] allowed us to

identify zones enriched with CD8(+) T cells (Zone 1) and enriched with erythroblasts

and F4/80 macrophages (Zone 2) (Additional file 1: Fig. S4 E-I). As such, the employ-

ment of Giotto to quickly zoom in to different regions is useful for uncovering the

organization of spatial tissues or expression levels in a hierarchical manner.

Analysis of data with lower spatial resolution

Recently, a number of lower-resolution spatial transcriptomic technologies have been

developed, such as 10X Genomics Visium [26], Slide-seq [8], and DBiT-seq [27]. Des-

pite their lower spatial resolution, these technologies are useful because they are cur-

rently more accessible. To overcome the challenge of lower resolution, Giotto

implements a number of algorithms for estimating the enrichment of a cell type in dif-

ferent regions (Fig. 3a). In this approach, a continuous value representing the likelihood

of the presence of a cell type of interest is assigned to a spatial location which contains

multiple cells. To this end, Giotto requires additional input representing the gene sig-

natures of known cell types. Currently, the input gene signatures for the known cell

types can either be provided by the user directly as cell type marker gene lists, or be

automatically inferred by Giotto based on an additional scRNAseq data matrix input.

Giotto then evaluates the match between each cell type’s gene signatures and the ex-

pression pattern at each spatial location and reports an enrichment score by using one

of the three algorithms: PAGE [28], RANK, and Hypergeometric testing (Fig. 3a, see

“Methods” for details). PAGE calculates an enrichment score based on the fold change

of cell type marker genes for each spot. RANK does not require predefined marker

genes but instead creates a full ranking of genes ordered by the cell-type specificity

score in the scRNAseq data matrix, and computes a ranking-based statistic. Hypergeo-

metric test computes a p value based on the overlap between each cell-type-specific

marker gene set and the set of spot-specific genes, i.e., those that are expressed at sig-

nificantly higher levels at certain spots than others (see “Methods”). As negative con-

trols, enrichment scores are also calculated for scrambled spatial transcriptomic data.

This allows us to evaluate the statistical significance of an observed enrichment score.

To rigorously evaluate the performance of these cell-type enrichment algorithms, we

created a simulated dataset based on the aforementioned seqFISH+ dataset, for which

the cell type annotation has been established at the single-cell resolution. To mimic the

effect of spatial barcoding, such as that being used in Visium, the merged fields of view

were divided into spot-like squares from a regular spatial grid (500 × 500 pixels, ~

51.5 μm) (Fig. 3b). For cells located in each square, their gene expression profiles were

averaged, thereby creating a new dataset with lower spatial resolution. To apply cell-

type enrichment analysis, we obtained scRNAseq data and derived marker gene lists for

somatosensory cortex associated cell types from a previous study [29]. To facilitate

cross-platform comparison, we focused on the six major cell types that were annotated
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by both studies: astrocytes, microgila, endothelial mural, excitatory neurons, inhibitory

neurons, and oligodendrocytes (Fig. 3b). For each cell type, we assigned an enrichment

score and p value for each spot by using one of the three enrichment analysis methods

mentioned above (Fig. 3c). To quantify the performance of each method, we evaluated

the area under curve (AUC) score, which was obtained by using the ranking of enrich-

ment score values to predict the presence of a cell type at each spot. Both PAGE and

RANK provide high accuracy (median AUC = 0.95 and 0.96, respectively, Fig. 3c,

Fig. 3 Cell-type enrichment analysis on spatial expression data. a Schematic of cell-type enrichment

analysis pipeline. The inputs are spatial expression data and cell-type-specific gene signatures. These two

sources of information are integrated to infer cell type enrichment scores. Giotto implements three

methods for enrichment analysis: PAGE, RANK, and Hypergeometric. b Single-cell resolution seqFISH+ data

are used to simulate coarse-resolution spatial transcriptomic data generated from spot-like squares by

projecting onto a regular spatial grid (500 × 500 pixels). Colored squares indicate those that contain cells.

External scRNAseq data are visualized by UMAP. c Comparison of cell-type enrichment scores (left, inferred

by PAGE) and observed frequency of various cell types (right, based on seqFISH+ data). The agreement

between the two is quantified by area under curve (AUC) scores (green circles). d Cell type enrichment

analysis for the mouse Visium brain dataset (distance unit = 1 pixel, 1 pixel ≈ 1.46 μm). Enrichment scores

for selected cell types are displayed (top left) and compared with the expression level of known marker

genes (bottom left). For comparison, a snapshot of the anatomic structure image obtained from mouse

Allen Brain Atlas is displayed. Known locations for the selected cell types are highlighted

Dries et al. Genome Biology           (2021) 22:78 Page 7 of 31



Additional file 1: Fig. S5 and S6A). Even if a spot contains only one cell from a given

type, it can often be identified (47 out of 67, ~ 70%). The only cell type that cannot be

well predicted by this approach is inhibitory neurons, whose gene signatures are less

distinct than others.

In comparison, the hypergeometric test and Spearman correlation methods are less

accurate (median AUC = 0.86 and 0.72, respectively, Additional file 1: Fig. S5 and S6A,

Additional file 3: Supplementary Notes). We also compared it with RCTD [30], which

is a newly developed method for deconvolution. RCTD also performed well (median

AUC value of 0.95, Additional file 1: Fig. S5. and S6A), but it was considerably slower

than the other methods (Additional file 1: Fig. S6C). The four methods that performed

well were also robust to changes in number of transcripts (UMIs) (Additional file 1:

Fig. S6B).

Next, we applied cell-type enrichment analysis to a publicly available mouse brain

Visium dataset (downloaded from https://www.10xgenomics.com/). Spatial transcrip-

tomic information was obtained by using 2698 spatially barcoded array spots, each cov-

ering a circled area with 55 μm in diameter. To comprehensively perform enrichment

analysis, cell type annotations and corresponding gene signatures were obtained from a

public scRNAseq dataset [31]. Here, we applied PAGE to identify the spatial patterns of

the major cell taxonomies identified previously [31]. We found that a number of cell

types are spatially restricted to distinct anatomical regions (Fig. 3d, Additional file 1:

Fig. S6D). The spatial patterns of the enrichment scores are consistent with the litera-

ture for a number of cell types, such as peptidergic cells, granule neurons, ependyma

astrocytes, and medium spiny neurons (Fig. 3d) [32–34]. Similar but less obvious trends

can be observed by inspecting the expression pattern of specific marker genes (Fig. 3d),

which is consistent with the fact that cell types are typically defined by the concerted

activities of multiple genes. Of note, the enrichment analysis also correctly predicted

the absence of cell types that should not be present in the sample, such as cerebellum,

olfactory bulb, and spinal cord cells (Additional file 1: Fig. S6D).

To test the general applicability of the enrichment analysis algorithms, we re-

analyzed a Slide-seq dataset [8] (see Additional file 3: Supplementary Notes for details),

where the read coverage is lower than Visium. This dataset profiles the mouse cerebel-

lum, containing 21,000 beads and 10,500 genes at a coverage of 80 UMIs per bead.

Cell-type gene signature information was obtained from a public scRNAseq dataset for

a similar region [31]. Analysis of this scRNAseq dataset identified 15 different cell

types. We applied the RANK method for enrichment analysis (Additional file 1: Fig.

S7A) and noticed distinct spatial enrichment of cell types in the Slide-seq data that are

consistent with prior knowledge. For example, the Purkinje cells were correctly mapped

to the Purkinje layer, granule cells were correctly mapped to the nuclear layer, and

GABAergic interneurons were mapped to the molecular layer (Additional file 1: Fig.

S7B). For comparison, we also applied RCTD to analyze the same dataset and obtained

similar results (Additional file 1: Fig. S7B, C).

Giotto uncovers different layers of spatial expression variability

A key component of Giotto Analyzer is the implementation of a wide range of compu-

tational methods to identify spatial patterns based on gene expression. On a
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fundamental level, Giotto Analyzer represents the spatial relationship among different

cells as a spatial grid or network (Fig. 4a). To create a spatial grid, each image field is

partitioned into regular squares and the gene expression patterns associated with cells

within each square are averaged. As such, the spatial grid is a coarse-resolution repre-

sentation of the data. A spatial network preserves single-cell resolution, and it is created

by connecting neighboring cells through a Delaunay triangulation network (see

“Methods”). As an alternative approach to create a spatial network, the user can create

a spatial network by selecting the k-nearest neighbors or using a fixed distance cut-off,

which allows the user to fine-tune the influence of neighboring cells in more down-

stream applications (Additional file 1: Fig. S8A). However, as shown in Additional file

3: Supplementary Notes, our analysis results are typically insensitive to the specific

choice of parameter values.

A basic and often first important task in spatial transcriptomic or proteomic analysis

is to identify genes whose expression displays a coherent spatial pattern. To this end,

Giotto implements a number of methods, including SpatialDE [35], Trendsceek [36],

SPARK [37], and two novel methods that are based on spatial network calculations.

More specifically, the latter two methods are based on statistical enrichment of spatial

network neighbors in the high gene expression state after binarization therefore named

as BinSpect (Binary Spatial Extraction). The two methods, called BinSpect-kmeans and

BinSpect-rank, respectively, differ in the way of binarization (Additional file 1: Fig. S8B,

Methods). To evaluate the performance of these methods, we applied each to the seq-

FISH+ dataset, where many genes are expected to display layer-specific patterns that

are consistent with the anatomical structure of the somatosensory cortex (Fig. 4b, Add-

itional file 1: Fig. S8C). For each method, we selected the top 1000 genes as candidates

for spatially coherent genes. Of note, a large subset of these genes was identified by at

least four of the methods (Fig. 4c), these include previously established layer-specific

genes such as Cux2, Grm2, and Rprm, indicating that genes with a known and strong

spatially coherent expression pattern can be found in a robust manner. On the other

hand, subsets of genes were detected by only one or a combination of specific

method(s) (Additional file 1: Fig. S8D-G, see Additional file 3: Supplementary Notes),

suggesting it may be beneficial to combine results from all methods for comprehensive-

ness. The main advantage of the BinSpect methods introduced here is that they are sig-

nificantly faster compared to SpatialDE (~ 6–8×), SPARK (~ 29–45×), and Trendsceek

(~ 816–3300×) (Additional file 1: Fig. S8H-I, see Additional file 3: Supplementary

Notes).

Next, to assess how effective each method could retrieve known spatial patterns,

we performed a quantitative evaluation based on simulated patterns. In this evalu-

ation, we excluded trendsceek since its speed inhibited its use in large-scale simu-

lation studies. Since each method was based on different assumptions or statistical

models, we established an unbiased simulation strategy based on real high-quality

data (seqFISH+), which did not rely on a simplified and arbitrary representation of

spatial expression data, but instead incorporated all known and unknown variability

factors observed in a large subset of genes (Additional file 1: Fig. S9, see Add-

itional file 3: Supplementary Notes for details). These results show that BinSpect

(kmeans and rank) perform systematically better at retrieving known spatial genes,

especially when additional noise is introduced. This observation is consistent
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Fig. 4 Layers of spatial gene expression variability. a Schematic representation of the subsequent steps

needed to dissect the different layers of spatial gene expression variability. The original cell locations, a

spatial grid, or a spatial network is required to identify individual genes with spatial coherent expression

patterns. Those spatial genes can then be used as input to compute continuous spatial co-expression

patterns or to find discrete spatial domains with HMRF. b–d Spatial gene expression analysis of the

seqFISH+ somatosensory cortex dataset (distance unit = 1 pixel, 1 pixel ≈ 103 nm). b Examples of identified

spatial genes within the somatosensory multi-layered cortex. The outer layers are on the left, while more

inner layers are on the right. c Overlap between the top 1000 spatial genes identified from the 5 methods

implemented in Giotto. d Visualization of spatial domains identified by the HMRF model. The layered

anatomical structure (L1–6) of the somatosensory cortex is indicated on top. e, f Spatial gene expression

analysis of the Visium kidney dataset (distance unit = 1 pixel, 1 pixel ≈ 1.46 μm). e Heatmap showing the

spatial gene co-expression results. Identified spatial co-expression modules are indicated with different

colors on top. f Metagene visualizations for all the identified spatial gene co-expression modules from e, g

Selected gene visualizations for each identified spatial metagene in e and f
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irrespective of the spatial expression pattern that is evaluated (Additional file 1:

Fig. S8J).

Giotto implements two approaches to systematically summarize the spatial patterns

of a large number of spatial genes (Fig. 4a). First, Giotto identifies spatial domains with

coherent gene expression patterns by implementing our recently developed hidden

Markov random field (HMRF) model [38]. An HMRF model detects spatial domains by

comparing the gene expression patterns of each cell with its neighborhood to search

for coherent patterns (see “Methods” for details). The inference is based on the joint

probability of the intrinsic factor (expression pattern of each cell) and the extrinsic fac-

tor (domain state distribution of the surrounding cells) [38]. The analysis starts with

the identification of spatial genes using one of the previously described methods. Then

we apply our HMRF model to infer the spatial domain state for each cell or spot. In ap-

plying HMRF to the seqFISH+ dataset, our analysis identified 9 distinct spatial domains

that were consistent with the anatomic layer structure (Fig. 4d). For example, Domain

D7 is similar to Layer L1, and Domain D2 is similar to Layer L2/3. Of note, such lay-

ered structure is not completely reflected by the distribution of different cell types

(Additional file 1: Fig. S1F), as numerous cell types (such as inhibitory neurons and

endothelial cells) are distributed across multiple layers.

In addition, Giotto also implements a summary view of spatial gene expression pat-

terns based on co-expression analysis. As an illustrating example, we analyzed a Visium

dataset obtained from the kidney coronal section, which has known and distinguishable

anatomic structures [39, 40]. Using the BinSpect-kmeans algorithm in Giotto, we se-

lected the top 500 spatially coherent genes. To identify spatial patterns, we created a

co-expression matrix as follows. First, we spatially smoothed the gene expression data

through spatial neighbor averaging, and then created co-expression modules by cluster-

ing the spatially smoothed data (Fig. 4e). Next, the spatial pattern of each module was

summarized by a metagene defined by averaging the expression of all associated genes,

which were stored and visualized (Fig. 4f). These spatial metagene profiles resemble the

known anatomical structures of the mouse kidney and its surrounding environment,

which is further corroborated by the spatial co-expressed genes in each module (see

Additional file 3: Supplementary Notes). Moreover, individual genes representing the

co-expression patterns were easily extracted and displayed (Fig. 4g), providing re-

searchers the opportunity to explore these spatial co-expression patterns in an unbiased

manner on a transcriptome wide level. In addition, Giotto also provides a co-

expression network based on single-cell expression data so that users can further filter

or distinguish spatial co-expression within a local neighborhood from co-expression

within the same cell. Finally, these global co-expression patterns are largely insensitive

to the characteristics of the underlying spatial network (Additional file 1: Fig. S10A-D,

see Additional file 3: Supplementary Notes for details).

Giotto identifies distinct cellular neighborhoods and interactions

Most cells reside within complex tissue structures, where they can communicate with

their neighboring cells through specific molecules and signaling pathways. Hence, gene

expression within each cell is likely driven by the combination of an intrinsic (cell-type-

specific) component and an extrinsic component mediated by cell-cell communications
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Fig. 5 (See legend on next page.)
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(Fig. 5a). Giotto Analyzer provides a number of tools to explore and extract informa-

tion related to the cell neighborhood organization, cell-cell communication, and the ef-

fect of neighboring cell types on gene expression. To identify distinct cell-type/cell-type

interacting patterns, Giotto evaluates the enrichment of the frequency that each pair of

cell types is proximal to each other. When analyzing the seqFISH+ somatosensory cor-

tex data, we observed that layer-specific neurons usually interact with each other, which

agrees with the known multi-layered organization of the cortex (Fig. 5b). Such homo-

typic (same cell types) relationships are in agreement with what has been observed by

others, including in other tissues [12, 41]. Here we also notice that astrocytes and oligo-

dendrocytes, L2/3 and L4 excitatory neurons, and L5 and L6 excitatory neurons form

frequent hetero-typic (two different cell types) interactions. This is again in line with

the expected anatomical structure of the cortex, due to positioning of the cortex layers

and the increased presence of astrocytes and oligodendrocytes close to where they ori-

ginate in the subventrical zone (Additional file 1: Fig. S1F and Additional file 3: Fig. 3F).

These observations are robust to changes in number of spatial neighbors (k) (Add-

itional file 1: Fig. S11A, see Additional file 3: Supplementary Notes) and are further-

more observed in both the seqFISH+ and osmFISH somatosensory cortex datasets

(Additional file 1: Fig. S11B, see Additional file 3: Supplementary Notes).

To extend this type of analysis to less defined tissues, we also analyzed a public MIBI

dataset profiling the spatial proteomic patterns in triple negative breast cancer (TNBC)

patients [13]. Over 200,000 cells from 41 patients were analyzed together to generate

over 20 cell populations (Additional file 1: Fig. S12A). Of note, the preferred mode of

hetero-typic cell-type interactions is highly patient specific (Additional file 1: Fig. S12B,

C). For example, in patients 4 and 5, the Keratin-marked epithelial cells and immune

cells are well segregated from each other, whereas patients 10 and 17 feature a rather

mixed environment between T cells, Keratin, and Ki67 cancer cells. (Additional file 1:

Fig. S12B, C). These observations are consistent with prior findings [13].

Giotto builds further on the concept of interacting cell types and aims to identify

which known ligand-receptor pairs show increased or decreased co-expression, as a

reasonable proxy for activity, in two cell types that spatially interact with each other

(See figure on previous page.)

Fig. 5 Cell neighborhood and cell-to-cell communication analyses. a Schematic of a multicellular tissue

with an organized cellular structure (left) and environment specific gene expression (right). b A network

representation of the pairwise interacting cell types identified by Giotto in the seqFISH+ somatosensory

cortex dataset. Enriched or depleted interactions are depicted in red and green, respectively. Width of the

edges indicates the strength of enrichment or depletion. c Visualization of the cell-to-cell communication

analysis strategy. For each ligand-receptor pair from a known database a combined co-expression score

was calculated for all cells of two interacting cell types (e.g., yellow and blue cells, left). This co-expression

score was compared with a background distribution of co-expression scores based on spatial permutations

(n = 1000). A cell-cell communication score based on adjusted p value and log2 fold change was used to

rank a ligand-receptor pair across all identified cells of interacting cell types (right). d Heatmap (left)

showing the ranking results for the ligand-receptor analysis as in c (y-axis) versus the same analysis but

without spatial information (x-axis) for all the ligand-receptor pairs. AUC plot (right) indicating the

percentage of expression ranks that need to be considered to recover all the first spatial ranks. e Dotplot

for ligand-receptor pairs that exhibit differential cell-cell communication scores due to spatial cell-cell

interactions. The size of the dot is correlated with the adjusted p value and the color indicates increased

(red) or decreased (blue) activity. Dots highlighted with a green box are used as examples in f. f Heatmaps

showing the increased expression of indicated ligand-receptor pairs between cells of two interacting cell

types. g Barplot showing gene expression changes in subsets of endothelial cells (left) stratified based on

their spatial interaction with other indicated cell types (right, schematic visualization)
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(Fig. 5c). By creating a background distribution through spatially aware permutations

(see “Methods”), Giotto can identify which ligand-receptor pairs are potentially more or

less active when cells from two cell types are spatially adjacent to each other. By

comparing with a spatially unaware permutation method, similar as previously done

[42], we can see that the predictive power is limited without spatial information

(AUC = 0.43) (Fig. 5c,d). This analysis is relatively stable to different numbers of

spatial neighbors (k) within the spatial network (Additional file 1: Fig. S11C, see

Additional file 3: Supplementary Notes) and is observed for multiple ligand-

receptor pairs spread out over multiple cell type pairs (Fig. 5e). Two potential ex-

amples of increased co-expression of a ligand-receptor pair are seen in spatially

interacting astrocytes and Lhx6+ inhibitory neurons displaying increased expression

of Ddr2-Col1a1 and Bmp6-Bmpr1b in corresponding endothelial cells and oligo-

dendrocytes, respectively (Fig. 5f).

More generally, Giotto implements a number of statistical tests (t-test, limma, Wil-

coxon, and a spatial permutation test) to identify genes whose expression level variation

within a cell type is significantly associated with an interacting cell type (see

“Methods”). After correcting for multiple hypothesis testing, we identified 73 such

genes (|log2 FC| > 2 and FDR < 0.1), which we refer to as the interaction changed genes

(ICGs). These ICGs are distributed among different interacting cell type pairs (Add-

itional file 1: Fig. S11D). For example, we noticed that endothelial cells interacting with

Lhx6 iNeuron were associated with increased expression of Jakmip1 and Golgb1,

whereas both Dact2 and Ddx27 expression levels were increased in cells from the

same cell type but interacting with L4 eNeurons (Fig. 5g). On the opposite direc-

tion, interaction with astrocytes was associated with decreased expression of Abl1

and Zswim8. Of note, all these subsets of endothelial cells do not show any differ-

ence in expression of their known marker genes, such as Pltp, Cldn5, and Apcdd1

(Fig. 5g, Additional file 1: Fig. S2D).

Giotto Viewer: interactive visualization and exploration of spatial transcriptomic data

Giotto Viewer is designed for interactive visualization and exploration of spatial tran-

scriptomic data. Compared to the figure outputs from Giotto Analyzer, the objective of

Giotto Viewer is to provide an interactive and user-friendly workspace where the user

can easily explore the data and integrate the results from various analyses from Giotto

Analyzer, and further incorporate additional information that cannot be easily quanti-

fied, such as cell staining images.

Giotto Viewer is a web-based application running in a local environment. It supports

a multi-panel view of the spatial expression data. Each panel can be configured to dis-

play either the cells in physical or the expression space and overlays gene expression in-

formation on top. Complex geometries such as the 2D cell morphology and the

associated large antibody staining images of the cells can be toggled easily within each

panel. We use a Google Map-like algorithm to facilitate efficient navigation of large

data (in terms of either images or cell numbers, see “Methods”). Importantly, panels

are interlinked and interactive through sharing of cell ID and annotation information

(see “Methods”). This allows seamless integration of different views and facilitates syn-

chronous updates across all panels. We were able to apply Giotto Viewer to display
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over 500,000 data points (or mRNA transcripts) within a group of cells on one screen

without any problem. Indicating the Giotto viewer is capable of handling large datasets.

As an illustrating example, we used Giotto Viewer to visualize the Visium brain data-

set. By default, Giotto Viewer creates two panels, representing the data in physical and

gene expression space, respectively (Fig. 6a, left). Any property that is contained in a

Giotto object, such as gene expression levels, spatial cell-type enrichment values, cell-

type or spatial domain annotations, can be selected for visualization. Additional

imaging-related information, such as cell staining and segmentation, can also be over-

laid. The size and location of field of view can be easily adjusted via the zoom and pan

functions. At one end of the spectrum, the image content at each single spot can be vi-

sualized (Fig. 6a, right), revealing the underlying H&E staining pattern. An animated

video is provided to illustrate how the user can interactively explore the data and high-

level annotations (Additional file 4: Supplementary Video).

To demonstrate the utility of Giotto Viewer for exploring and integrating a large

amount of information generated by Giotto Analyzer, we used the aforementioned

seqFISH+ dataset again. Through the analysis described above, we identified vari-

ous annotations such as cell types, spatially coherent genes, and spatial domains.

Therefore, it is of interest to compare the cell type and spatial domain annotation

to investigate their relationship. To this end, we created four interlinked panels

corresponding to cell type and spatial domain annotations represented in the phys-

ical and expression space, respectively (Fig. 6b). The view of these panels can be

synchronously updated through zoom and pan operations, enabling the user to eas-

ily explore the data and inspect any area of interest as desired. For example, as the

user zooms in to the L1–L2/3 region (Fig. 6c), it becomes apparent that domain

D7 consists of a mixture of cell types including astrocytes, microglias, and inter-

neurons. Giotto Viewer also provides a lasso tool that allows users to select cells

of interest for further analyses. The borders of the selected cells are highlighted

and can be easily traced across different panels. As an example, cells from domain

D7 are selected and highlighted (Fig. 6c). By inspecting the pattern in the inter-

linked panels, it becomes obvious that this domain contains cells from multiple cell

types. As such, both cell type and spatial domain differences contribute to cellular

heterogeneity.

To gain further insights into the difference between cell type and spatial domain an-

notations, we saved the selected cells to an output file. The corresponding information

was directly loaded into Giotto Analyzer for further analysis. This allowed us to identify

a number of additional marker genes, such as Cacng3 and Scg3 (Fig. 6d). The seamless

iteration between data analysis and visualization is a unique strength of Giotto.

In addition, Giotto Viewer also provides the functionality to explore subcellular tran-

script or protein localization patterns. As an example, we used Giotto Viewer to

visualize the exact locations of individual transcripts in selected cells from the seq-

FISH+ dataset (Fig. 6e, Additional file 1: Fig. S12). To facilitate real-time exploration of

the transcript localization data, which is much larger than other data components, we

adopted a position-based caching of transcriptomic data (see “Methods”). From the ori-

ginal staining image (Additional file 1: Fig. S13A), the users can zoom in on any specific

region or select specific cells and visualize the locations of either all detected transcripts

(Additional file 1: Fig. S13B) or selected genes of interest (Additional file 1: Fig. S13C).
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The spatial extent of all transcripts is useful for cell morphology analysis (Additional

file 1: Fig. S13B), whereas the localization pattern of individual genes may provide func-

tional insights into the corresponding genes (Additional file 1: Fig. S13C). For example,

transcripts of Snrnp70 and Car10 are preferentially localized to the cell nucleus

Fig. 6 Giotto Viewer provides an interactive workspace to visualize and compare multiple cell annotations.

a Visualization of the Visium brain dataset. Two interlinked panels are displayed, showing the data in the

physical (left) and expression space (middle). A zoomed-in view shows underlying cell staining pattern at

individual spots (right). b–e Visualization of the seqFISH+ mouse somatosensory cortex dataset. b Four

interlinked panels are displayed, showing the spatial domain (top) and cell type (bottom) distribution in

both physical (left) and expression space (right). c A zoomed-in view of b focusing on the L1–3 regions.

Cells in domain D7 are selected (indicated by red outline in left panels and highlighted in the right panels)

to enable comparison between spatial domain and cell type annotations. d Expression patterns of

representative domain-specific genes. e Subcellular transcript localization patterns of all (top) or selected

genes (middle and bottom) in a representative cell. Each dot represents an individual transcript

Dries et al. Genome Biology           (2021) 22:78 Page 16 of 31



(delineated by DAPI background), while Agap2 and Kif5a transcripts are distributed

closer to the cell periphery (Additional file 1: Fig. S13C).

Discussion

Single-cell analysis has entered a new phase—from characterizing cellular heterogeneity

to interpreting the role of spatial organization. To overcome the challenge for data ana-

lysis and visualization, we have developed Giotto as a standardized toolbox, which im-

plements a rich set of algorithms to address the common tasks for spatial

transcriptomics/proteomic data analysis, including cell-type enrichment analysis,

spatially coherent gene detection, spatial pattern recognition, and cell neighborhood

and interaction analyses. Through analyzing diverse public datasets, we have demon-

strated that Giotto can be broadly applied in conjunction with a wide range of spatial

transcriptomic and proteomic technologies.

Giotto has a number of strengths, including modularization, interactive visualization,

reproducibility, robustness, and flexibility. It differs from existing spatial data analysis

and/or visualization pipelines [8, 35, 36, 38, 43–46] and is complementary to alternative

strategies that computationally infer spatial information from single-cell RNAseq ana-

lysis [47]. To our knowledge, Giotto is the first demonstrated general-purpose toolbox

for spatial transcriptomic/proteomic data analysis, while the other methods are de-

signed for specific data types [44, 48–50] or tasks, such as the identification of cell

types [43], marker genes [35, 36], or domain patterns [38]. Although both Seurat and

Scanpy have now adopted spatial transcriptomic analysis functionalities, an important

distinction is that our design of the Giotto object is specifically targeted for spatial tran-

scriptomic data analysis, whereas the data structure in the other packages were origin-

ally designed for single-cell RNAseq analysis. The flexible design of Giotto makes it an

ideal platform for incepting new algorithms. In addition, Giotto provides a convenient

venue to integrate external information such as single-cell RNAseq data. As single-cell

multi-omics data become more available, such integration may greatly enhance mech-

anistic understanding of the cell-state variation in development and diseases.

Methods

Giotto analyzer

Giotto Analyzer is an open-source R package that at its center creates a S4 Giotto ob-

ject (Additional file 1: Fig. S1A), which stores a gene expression matrix, the accompany-

ing cell locations, and optionally any associated tissue images for visualization

purposes. It contains multiple functions that can either extract or add new information

to this object in a flexible manner. In this way users can either follow the default set-

tings or build their own stepwise pipeline to extract and visualize spatial information.

In the next part, the core steps and functions of Giotto Analyzer are explained and

names of functions are depicted in italic.

Quality control, pre-processing, and normalization

A Giotto object can be created with the function createGiottoObject, which requires as

minimum input an expression matrix and the spatial coordinates of corresponding cell

centroids. If a dataset is composed of multiple fields of view or tiles, they can be
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stitched together by using stitchFieldCoordinates or stitchTileCoordinates, respectively.

Next, this Giotto object can be filtered with filterGiotto to exclude low-quality cells or

lowly expressed or detected genes. As a guide for setting the filtering parameters, the

cell and gene distributions can be viewed with filterDistributions and the effect of mul-

tiple parameters can be tested with filterCombinations. Raw counts can further be nor-

malized with normalizeGiotto, which can adjust for library size, log transform the

matrix, and/or perform rescaling. Next the function addStatistics computes general cell

and gene statistics such as the total number of detected genes and counts per cell. To

adjust for variation due to the former technical covariates the adjustGiottoMatrix can

be applied to the normalized data. If the dataset does not have single-cell resolution,

the above steps can still proceed while treating each spatially barcoded spot as a cell.

Feature selection

To identify informative genes for clustering the calculateHVG can be used. Highly vari-

able genes can be detected in two different manners. In the first method, all genes are

divided in a predefined number (default = 20) of equal sized bins based on their expres-

sion. Within each bin the coefficient of variation for each gene is calculated and these

are subsequently converted to z-scores. Genes above a predefined z-score threshold

(default = 1.5) are selected for further analysis. For the second method, a loess

regression model is calculated to predict the coefficient of variation based on the log-

normalized expression values. Genes that show higher degree of variability than pre-

dicted are considered highly variable genes. Genes can be further filtered based on

average expression values or detection percentage, which is returned by the addStatis-

tics function.

Dimensionality reduction

To reduce dimensions of the expression dataset users can perform principal com-

ponent analysis (PCA) with runPCA. Significant PCs can be estimated with the

signPCA function using a scree plot or the jackstraw method [51]. Further nonlin-

ear dimension reduction can be performed with uniform manifold approximation

and projection (UMAP) [20] and t-distributed stochastic neighbor embedding (t-

SNE) [19] directly on the expression matrix or on the PCA space using runUMAP

and runtSNE, respectively.

Clustering

First a shared or k-nearest neighbor (sNN or kNN) network needs to be con-

structed with createNearestNetwork which uses as input either processed expression

values or their projection onto a selected dimension reduction space, such as that

obtained from PCA. Louvain and Leiden clustering [22] are implemented as doLou-

vainCluster and doLeidenCluster and can be directly applied on the created

expression-based network. Further subclustering on all or a selected set of clusters

can be performed in an analogous manner with doLouvainSubCluster or doLeiden-

SubCluster. Alternative clustering options such as kmeans and hierarchical cluster-

ing are also available as doKmeans and doHclust. To aid in further fine-tuning, the

clustering results users can compute cluster correlation scores with
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getClusterSimilarity and decide to merge clusters with mergeClusters based on a

user defined correlation threshold and cluster size parameters.

Marker gene detection

Giotto provides 3 different ways within the function findMarkers to identify marker

genes for one or more clusters: scran, mast, and gini. The first two methods have been

previously published [24, 52] and are implemented as findScranMarkers and findMast-

Markers. In addition, we also developed a novel method based on the Gini-coefficient

[25] and implemented it as findGiniMarkers, as schematically illustrated in Additional

file 1: Fig. S2B. First, we calculate the average log-normalized expression for each gene

in each cluster and represent the result as a matrix X, with X(i, j) representing the aver-

age expression of ith gene in jth cluster. Similarly, we calculate the detection fraction of

each gene in each cluster and represent the result as a matrix Y, with Y(i, j) represent-

ing the detection fraction of ith gene in jth cluster. For each gene i, we calculate two

related quantities Gexpr(i) and Gdet(i), by computing the Gini-coefficient associated

with row X(i,.) and Y(i,.), respectively. Gini-coefficient of a vector x = [x1,x2, …, xn]

is defined as:

G xð Þ ¼
Pn

i¼1

Pn
j¼1 j xi − x j j
2 n2 x

In the meantime, for each gene i, we also rank the clusters based on either gene ex-

pression X(i,.) or detection rate Y(i,.), and the corresponding ranks are denoted by

Rexpr(i,.) and Rdet(i,.), respectively. The ranks are subsequently rescaled between 0.1 and

1. Finally, an aggregated score Gfinal(i, j) is defined as follows:

Gfinal i; jð Þ ¼ Gexpr ið Þ � Gdet ið Þ � Rexpr i; jð Þ � Rdet i; jð Þ

The marker genes associated with a cluster j are then identified as those with

top values of Gfinal(., j). We have found this to be a fast and simple approach for

effectively identifying genes that are both specific and sufficiently expressed in a

particular cluster. In addition, an automated version to perform systematic pairwise

comparisons between each cluster and all other clusters is also implemented as

findMarkers_one_vs_all.

Enrichment analysis of spatial expression data

Three enrichment methods are implemented into Giotto for enrichment analysis:

Enrichment analysis by using PAGE (Parametric Analysis of Gene Set Enrichment) [28]

In this method, a known set of m cell-type-specific marker genes is used as input.

The objective is to evaluate if these genes are more highly expressed at each spot

as compared to other spots. Specifically, for each spot, we define an enrichment

score corresponding to a set of marker genes as follows. First, for each gene in the

entire genome, we calculate the expression fold change of this gene by using the

expression value in this spot versus the mean expression of all spots. Genes associ-

ated with high fold change values are annotated as spot-specific genes. The mean
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and standard deviation of these fold change values are denoted by μ and δ, re-

spectively. For comparison, we also calculated the mean fold change associated

with the set of marker genes, denoted by Sm. The enrichment score (ES) is then

defined as follows:

ES ¼ Sm − μð Þ � ffiffiffiffi

m
p

δ

A higher ES value indicates a cell type is more likely to be associated with the spot in

question. To estimate the null distribution, we repeat the analysis by using 1000 ran-

dom gene sets with the same size. The resulting values are fit by a normal distribution.

This null distribution is used to derive p values associated with the enrichment scores

for the real data. The PAGE algorithm is implemented as runPAGEEnrich.

Enrichment analysis based on rank of gene expression

In this method, a known list of marker genes is not required. Instead, an external

single-cell RNAseq dataset is used as input along with the cell-type annotation for

each cell. A schematic of this method is illustrated in Additional file 1: Fig. S7A.

The scRNAseq data matrix is used as input to define cell-type-specific gene signa-

tures. A fold-change gene ranking is computed for each cell type (scRNAseq) and

a relative gene ranking is computed for each spot or bead (Slide-seq is indicated

here as an example), which is then used to derive enrichment scores. More pre-

cisely, Giotto automatically identifies cell-type-specific gene signatures (makeSign-

MatrixRank) by computing the fold change for each gene, g, defined as the ratio

between its mean expression level within a cell type and the mean level across all

cell types, followed by evaluating its relative rank R1g among all genes. In the

meantime, genes are also ranked based on location specificity, R2g, using the spatial

expression data. This is obtained by calculating the fold change comparing its ex-

pression level at a specific spot versus the overall mean and then ranking the re-

sults. The mutual rank [53] of gene g is then computed as

Rg ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R1g � R2g
p

which is then converted to a rank-biased precision (RBP) score [54], which is defined as

follows:

RBPg ¼ 1 − pð Þ � p Rg − 1ð Þ

where p is a constant set at 0.99. Intuitively, the RBP score is used to select genes that

are highly ranked in terms of both cell-type specificity and location specificity. The tun-

ing parameter p in the above equation is introduced to control the relative weight of

highly ranked genes. In the end, the enrichment score (ES) is determined by the sum of

genes with top-ranked RBP scores:
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ES ¼
X

100

k¼1

RBPk

The RANK method is implemented as the runRankEnrich function. To estimate the

null distribution, we randomly shuffle the ranking of genes in the scRNAseq dataset for

1000 times of each cell type and then apply the above analysis to the shuffled data. The

resulting values are fit by a gamma distribution, using the “fitdistrplus” package in R.

This null distribution is used to derive p values associated with the enrichment scores

for the real data.

Enrichment analysis by using hypergeometric distribution

This method also requires a known set of m cell-type-specific marker genes as input,

but it evaluates enrichment by simply using a hypergeometric test. A contingency table

is constructed by dividing all genes into four non-overlapping categories, based on

marker gene annotation and binarization of gene expression values. The latter is deter-

mined by top 5% expression genes for each spot. Based on this contingency table, a p

value is calculated. Here the enrichment score is defined as −log10 (p value).

Simulation analysis of seqFISH+ data

We coarse grain seqFISH+ dataset to simulate spatial expression data of a multiple cel-

lular level. The dataset is gridded by 500 pixels by 500 pixels (~ 51.5 μm) length

(Fig. 3b). This length is quite similar with the diameter of spots from Visium spatial ex-

pression dataset (55 μm). Then the gene expression for each grid is calculated as the

sum of normalized single-cell expressions within the grid. After normalization of gene

expression for coarse-gridded data, we perform enrichment analysis by using somato-

sensory cortex single-cell RNAseq data from [29] (GSE60361). scRNAseq data is nor-

malized by normalizeGiotto using Giotto. Marker genes for each cell type are identified

by using findMarkers_one_vs_all with parameter: method = “scran”, expression_values =

“normalized”. We then intersect those marker genes with genes in seqFISH+ data. Top

100 intersect marker genes for each cell type are kept for further enrichment analysis.

To match the cell-type annotations between seqFISH+ and scRNAseq data, we aggre-

gated the major clusters annotated by Giotto pipeline. “L2/3 eNeuron,” “L4 eNeuron,”

“L5 eNeuron,” and “L6 eNeuron” were marked as excitatory neuron (eNeuron).

“Adarb2 iNeuron” and “Lhx6 iNeuron” were marked as inhibitory neurons (iNeuron).

“Endothelial” and “mural” were marked as “endothelial_mural”. The percentage of cell

type for each grid was calculated to evaluate the performance of enrichment methods.

Top 100 marker genes identified were used for PAGE and hypergeometric analysis by

createSpatialEnrich with parameters: enrich_method = “PAGE” and enrich_method =

“hypergeometric,” respectively. The single-cell expression matrix as well as cell labels

were used for rank matrix generation by using makeSignMatrixRank with default pa-

rameters and enrichment analysis by using createSpatialEnrich with parameter: enrich_

method = “rank.”

Spatial grid and neighborhood network

A spatial grid is defined as a Cartesian coordinate system with defined units of width

and height and is created with the function createSpatialGrid. The gene expression
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levels of cells within each grid box are averaged. Another representation of the spatial

relationship is the spatial neighborhood network (Fig. 4a), where each node represents

a cell, and each pair of neighboring cells is connected through an edge. The number of

neighbors can be defined by setting (a minimal) k and/or radial distance from the cen-

troid position of each cell, and the edge weights can be either binary or continuous. Al-

ternatively, a Delaunay network can be created, which does not require k or radial

distance to be specified and is based on Delaunay triangulation. The Delaunay triangu-

lation and its related concept of Voronoi Tessellation was previously applied to study

species distribution in the field of eco-geography with the goal to partition a space ac-

cording to certain neighborhood relations of a given set of points (e.g., cells) in this

space. It has been used and adopted in various fields of biology, including to analyze

tissue distribution at the single-cell level [12].

Spatially coherent gene detection

In total, Giotto currently has five different methods to identify spatial coherent gene ex-

pression patterns. Three previously published methods SpatialDE [35], Trendsceek

[36], and SPARK [37] can be run with the functions spatialDE, trendSceek, and spark.

The two new methods introduced here are based on statistical enrichment of binarized

expression data in neighboring cells within the spatial network, as schematically illus-

trated in Additional file 1: Fig. S8B. First, for each gene, expression values are binarized

using kmeans clustering (k = 2) or simple thresholding on rank (default = 30%), which is

the only difference between these two methods. Next, a contingency table is calculated

based on the binarized expression values between neighboring cells and used as input

for a Fisher exact test to obtain an odds ratio estimate and p value. In this way, a gene

is considered a spatial gene if it is usually found to be highly expressed in proximal or

neighboring cells. In addition to the odds ratio and p value for each gene, the average

gene expression, the number of highly expressing cells, and the number of hub cells are

computed and provided. A hub cell is considered a cell with high expression of a gene

of interest and which has multiple high expressing neighboring cells of that gene. These

features can be used by the user to further rank and explore spatial genes with different

characteristics. We have named the latter method BinSpect (Binary Spatial extract) and

implemented it as binSpect, within this function the user can choose to use kmeans or

threshold ranking to binarize the expression matrix.

Spatial pattern simulation data

Our strategy for simulating spatial patterns is schematically illustrated in Additional file

1: Fig. S9. To generate known spatial patterns based on real spatial data, we first ran-

domly select a large number of genes (n = 100) from the seqFISH+ dataset, each with

their own unique expression distribution, drop-outs, expression levels, and other un-

known factors of variation. We then create a fixed spatial pattern, ordered the cells ac-

cording to their gene expression levels, and created two groups. One group (group G)

contains all the highest expressing cells and is equal to the size of the spatial pattern

and another group (group R) contains all the other remaining cells. Cells within group

G are given a probability Pr, while cells in group R are given the probability 1 − Pr. This

probability is then used to randomly assign each cell to the fixed pattern, such that with
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Pr = 1 all the highest expressing cells are being randomly positioned into the spatial

pattern, while with Pr = 0.5 this process is completely random. This assignment is re-

peated multiple times (n = 6) so that a distribution is obtained for a range of probability

levels Pr = {0.5, 0.65. 0.8, 0.9, 0.95, 0.99, 1}. Thus, for each pattern, we create 4200 sim-

ulations (100 genes × 7 probability levels × 6 random samples). This analysis is carried

out using the function runPatternSimulation.

Spatial co-expression patterns

To identify robust patterns of co-expressed spatial genes the functions detectSpatial-

CorGenes and clusterSpatialCorGenes can be used on the identified individual spatial

genes. The first function spatially smooths gene expression through a grid averaging or

k-nearest neighbor approach and then calculates the gene-to-gene correlation (default =

Pearson) scores. In addition, it also calculates gene-to-gene correlation within the ori-

ginal single cells to distinguish between spatial and cell intrinsic correlation. The sec-

ond function performs hierarchical clustering to cluster the gene-to-gene co-expression

network into modules and creates metagene scores by averaging all the genes for each

identified co-expression module, which can subsequently be viewed using the standard

viewing options provided in Giotto.

Spatial domain detection

Spatial domains are identified with a hidden Markov random field (HMRF) model

as previously described [38]. In brief, HMRF is a graph-based model that infers the

state of each cell as the joint probability of the cell’s intrinsic state (inferred from

the cell’s own gene expression vector), and the cell’s extrinsic state, which is based

on the distribution of the states of the cell’s neighbors. The notion of state is the

spatial domain in our case. The neighborhood graph defines the extent of the

neighbor cell influence, together with the parameter beta that defines the strength

of the interaction of cells. At the end, HMRF assigns each cell to one of k spatial

domains (k to be defined by the user). This HMRF model is implemented in Py-

thon and incorporated in Giotto by using the consecutive wrapper functions

doHMRF, viewHMRF, and addHMRF to discover, visualize, and select HMRF do-

main annotations respectively.

Identification of proximal or interacting cell types

To identify cell types that are found to be preferentially located in a spatially proximal

manner, as a proxy for potential cell-cell interactions, we use a random permutation

(default n = 1000) strategy of the cell type labels within a defined spatial network. First,

we label the edges of the spatial network as homo- or hetero-typic, if they connect cells

of identical or different annotated cell types, respectively. Then we determine the ratio

of observed-over-expected frequencies between two cell types, where the expected fre-

quencies are calculated from the permutations. Associated p values are calculated by

observing how often the observed value were higher or lower than the simulated values

for respectively increased or decreased frequencies. A wrapper for this analysis is imple-

mented in Giotto Analyzer as cellProximityEnrichment.
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Gene expression changes within cellular neighborhood

Spatially informed ligand-receptor pairing

To investigate how cells communicate within their microenvironment, Giotto can in-

corporate known ligand-receptor information from existing databases [55]. By calculat-

ing the increased spatial co-expression of such gene pairs in neighboring cells from two

cell types, it estimates which ligand-receptor pairs might be used more (or less) for

communication between interacting cells from two cell types. This is implemented in

the function spatCellCellcom, which is short for spatially informed cell-to-cell commu-

nication. More specifically, for each ligand-receptor pair, a cell-cell-communication

score S is calculated for every pair of cell types. In particular, for ligand L, receptor R,

cell type A, and cell type B, S(L,R,A,B) is defined as the weighted average expression of

R and L in all the interacting A and Bs, or in other words in the subset of A and B cells

that are proximal to each other (based on spatial network).

S L;R;A;Bð Þ ¼ 1

n

Xn

i¼1
Li þ

1

m

Xm

j¼1
R j;

where n represents the number of A-type cells that interact with B-type cells, m repre-

sents the number of B-type cells that interact with A-type cells, Li represents the ex-

pression level of the ligand in the ith A-type cell, and Rj represents the expression level

of the receptor in the jth B-type cell. Next, to assess if the calculated score S is statisti-

cally significant, a random null distribution is computed. This background distribution

is created by shuffling cell locations within the same cell type for A and B for 1000 (=

default) times. In each round, a permutation score Sp is calculated using the same

formula. Associated p values were calculated as the probability of Sp to be greater

or smaller than the actual observed score S. The p values for all ligand-receptor

pairs in all cell-type pairs were subsequently adjusted for multiple hypothesis test-

ing. A final differential activity score was calculated by multiplying the log2 fold

change with the adjusted p values. The ligand-receptor pair information was re-

trieved from FANTOM5 [55].

Expression-informed ligand-receptor pairing

This analysis can be performed with exprCellCellcom, short for expression-informed

cell-to-cell communication, and is analogous to the method for “spatially informed

ligand-receptor pairing” (described above) except that no spatial information is used.

This means that ligand-receptor expression levels are calculated for all cells from two

cell types and that the background null distribution is similarly computed by reshuffling

all cell labels. This approach is used to mimic scRNAseq-based analysis.

Comparison between spatially and expression-informed ligand-receptor pairing

We perform a direct comparison between expression-informed ligand-receptor pairing

(with the function exprCellCellcom) and spatially informed ligand-receptor pairing

(with the function spatCellCellcom). For both analyses, we rank all ligand-receptor pairs

according to their interaction-induced expression changes in all pairs of cell types. This

means that for spatCellCellcom, we use the cells from two cell types that proximally

interact (based on the spatial network), and for exprCellCellcom, we use all cells from
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two cell types. Next, we compute the AUC to examine how efficient the expression

ranked ligand-receptor pairs can predict the top-ranked spatially informed ligand-

receptor pair.

Cell-type interaction mediated gene expression changes

To identify all potential gene expression changes associated with specific cell-type in-

teractions in an unbiased manner, Giotto implements 4 differential expression tests to

identify such interaction changed genes (ICG), including t-test, limma test, Wilcoxon

rank sum test, and spatial permutation test. For each cell type, we divide the annotated

cells into two complementary subgroups, with one containing the subset which neigh-

bor cells from another specific cell type. Differentially expressed genes between these

groups are identified by using each of the statistical tests mentioned above. To adjust

for multiple hypothesis testing, a background null distribution is created by reshuffling

the cells within the same cell type. This analysis is implemented as the function findIn-

teractionChangedGenes or the shorter version findICG. Additional filtering can be

achieved by using filterInteractionChangedGenes or filterICG in order to reduce errors

due to low (interacting) cell number, fold change or absolute expression differences.

Giotto viewer

Giotto Viewer is a web-based application that can be installed on any Linux-, Win-

dows-, or MAC OS-based computer. The Giotto Viewer canvas consists of a cell object

layer, containing all the differently shaped cells, an image layer corresponding to stain-

ing images, and an annotation property layer that specifies the cluster membership and

gene expression information. Below is a setup overview:

Input files

The minimal input files for Giotto Viewer contain the gene expression matrix and the

cell centroid spatial coordinates. Such information can be either provided manually in

tabular format, or directly loaded through the output files of Giotto Analyzer. If avail-

able, additional input files such as cell segmentations (ROI files), staining images (TIFF

files), and transcript locations (TXT files) can also be incorporated. Giotto Viewer pro-

vides tools to process such information for visualization (see next sections).

To streamline setup, we provide guidelines for setting up various platforms.

(i) SeqFISH/MerFISH: this applies to SeqFISH/merFISH where multi-field imaging

data, transcript locations, and cell segmentations are available. Giotto Viewer first

extracts multi-channel images (where a channel may correspond to Nissl, DAPI,

polyA) from TIFF using ImageMagick library (https://imagemagick.org/). Images

within the same channel are then stitched. For stitching, Giotto provides an option

to stitch images across multiple fields of view (FOV) with gaps in between. The lay-

out can be manually controlled by modifying a coordinate offset file specifying the

relative positions of FOVs. To automate these various actions, an initial setup is

done using “giotto_setup_image --require-stitch=y --image=y --image-multi-chan-

nel=y --segmentation=y --multi-fov=y --output-json=step1.json” which creates a

template that sets up the sequence of tasks to be performed. Details of the template
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such as specifying the image file, the stitch offset file, and tiling are next achieved

through “giotto_step1_modify_json” script. Lastly, sequence of tasks is performed

through “smfish_step1_setup”. An overview of the Giotto Viewer processing steps

is in Additional file 1: Fig. S14.

Cell boundary segmentation is a necessary step for assignment of each transcript to

its corresponding cells. However, this task is highly dependent on the specific

technology platform therefore not implemented in Giotto. On the other hand,

Giotto Viewer can accept user-provided cell boundary segmentation information as

input, in the form of Region-of-Interest (ROI) files, for visualization. Giotto Viewer

extracts information from the ROI files by adapting a JAVA program based on the

ImageJ framework.

The next step is tiling the stitched staining image. The purpose of tiling is to

support a Google Maps-like algorithm to facilitate multi-level zooming and naviga-

tion. Conceptually, this is achieved by tiling of the large image to smaller chunks at

various zoom levels to efficiently display a very large image (our stitched image fre-

quently exceeds several hundred megabytes). This is implemented in Giotto Viewer

by using the tileup package in Ruby (https://github.com/rktjmp/tileup). This cre-

ates a set of tiled images corresponding to 6 zoom levels with 1.5× increment. The

size of each tile is fixed at 256 by 256 pixels.

(ii) For the Visium platform with an accompanying image, the highest resolution

raw H&E staining image is first padded to be square dimension. Next, a

template is setup: “giotto_setup_image --require-stitch=n --image=y --image-

multi-channel=n --segmentation=n --multi-fov=n --output-json=step1.json”.

The next two steps “giotto_step1_modify_json” and “smfish_step1_setup” are

proceeded as usual.

(iii)Other platforms with no image nor cell segmentations (e.g., Slide-seq). We run

“giotto_setup_image --require-stitch=n --image=n --image-multi-channel=n --seg-

mentation=n --multi-fov=n --output-json=step1.json”, followed by the subsequent

two steps (described in ii). Giotto Viewer renders cells as circles in the physical

space, and there is not an image background overlay.

Panels

Giotto Viewer supports a multi-panel view configuration, which means that users

can load and visualize any number of panels simultaneously (default number = 2),

and add different types of data to each panel. To permit flexibility, there are four

types of panels implemented in the Giotto Viewer: PanelTsne, PanelPhysical, and

PanelPhysicalSimple, PanelPhysical10X. PanelTsne requires cell coordinates in the

expression space as input. PanelPhysical lays out the cells in the physical space in

the segmented cell shapes. PanelPhysicalSimple is a simplified version of PanelPhy-

sical except that cell segmentation and staining images are not required, and in-

stead renders cell objects as fixed size circle markers. PanelPhysical10X is unique

to Visium in that it also registers the spot-level details of the Visium platform.
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The number of panels and the panel types can be specified, for example, through:

“giotto_setup_viewer --num-panel=2 --input-preprocess-json=step1.json --panel-1=

PanelPhysical10X --panel-2=PanelTsne --output-json=step2.json --input-annotation-

list=annotation_list.txt”.

Annotations

Cell annotations, such as spatial domains and cell types, are required input for Giotto

Viewer. In brief, Giotto Viewer supports both continuous- and discrete-value annota-

tions. Annotations generated by Giotto Analyzer can be directly imported by using the

exportGiottoFunction().

Once panels, annotations, images are all prepared, then website files are created

using: “smfish_read_config -c step2.json -o test.js -p test.html -q test.css”. A python

webserver is next launched (python3 -m http.server) and the viewer can be viewed at

http://localhost:8000/test.html.

Implementation of interactive visualization of multi-layer spatial transcriptomic information

The Giotto Viewer package is written in Javascript utilizing a number of state-of-the-

art toolboxes including Leaflet.js (https://leafletjs.com/), Turf.js (https://turfjs.org/),

Bootstrap (https://getbootstrap.com/), and jQuery (https://jquery.com/). The Leaflet.js

toolbox is used to efficiently visualize and explore multiple layers of information in the

data, based on a Google Maps-like algorithm. Leaflet.js recognizes tiles prepared previ-

ously by the tileup package and implements caching of tiles and tile handling, allowing

it to display large stitched images.

As described above, Giotto Viewer contains 4 types of panels: PanelTsne, PanelPhysical,

and PanelPhysicalSimple, PanelPhysical10X. The implementation of these 4 panels fol-

lows closely the paradigm of object-oriented design in Javascript, specified by the MDN

Web Docs and ECMAScript. Briefly, the various panel types are motivated by the fact that

depending on data availability, properties of cells change from dataset to dataset, so differ-

ent ways of cell representation should be considered. In the presence of cell staining im-

ages, images should serve as background overlays to the data. If segmentation information

is available, cells should be represented in their true cell shape. Yet when neither staining

nor segmentation is available, Giotto Viewer represents cells as basic geometric shapes

(circles) so that the viewer can still run in the absence of staining or segmentation data.

We design the panel classes with these considerations in mind. Giotto Viewer makes it

easy for users to specify the number of panels, the type of each panel, and the layout con-

figuration. Users can specify such information in a JSON formatted configuration file. A

script then automatically generates the HTML, CSS, and JS files of the comparative viewer

that is ready for exploration in a standard web browser.

To enable interactivity, panels are linked to each other. This is implemented by first

defining mouseover and mouseout events for each cell object. The exact specification

of events depends on the type of panel, the action chosen by the user, and the context

in which the action is performed. Next, we maintain equivalent cell objects across

panels by creating a master look-up table to link cell IDs in different panels. This is

useful to facilitate interactive data exploration and comparison, synchronous updates of

zoom and view positions during data exploration. Finally, the order and dependency
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with which interactions are executed are enforced by constantly polling element states

and proceeding each step only when states are changed. In the API, the functions

addInteractions(), addTooltips() enable the easy specification of cross-panel interac-

tions. In the JSON configuration file, interactions between panels are simply defined by

the user using the “interact_X: [panel ids]” and “sync_X: [panel ids]” lines.

Giotto Viewer provides an intuitive utility to select a subset of cells of interest for

visualization and further analysis. The toggle lasso utility allows a user to hand-draw an

enclosed shape in any displayed panel to select cells directly. We implement this func-

tion by modifying the Leaflet-lasso.js toolbox to add support for the selection of the dy-

namic polygon-shaped markers. Giotto Viewer can also highlight Individual cells with

summary information displayed. This is achieved by using built-in functions in the

Turf.js toolbox.

Visualizing subcellular transcript localization

To visualize subcellular transcript localization information, an additional layer is cre-

ated in Leaflet.js. To efficiently handle the large amount of data, we implemented new

functions to cache only a small subset of transcripts that fall within the current viewing

area, to be rendered by the Leaflet engine and thereby saving the system resources.

Visualizing cell-type enrichment data

Continuous annotations providing cell type enrichment per spot are exported from

Giotto Analyzer to Giotto Viewer via the exportGiotto() function. Then as with all other

annotations, these are added to the setup JSON used to generate the website files. The

cell type enrichments will appear under the “Annotations” tab of the viewer panel.

Selecting and exporting cells

To encourage iterative analysis between the Giotto Viewer and Giotto Analyzer, users

may select any cells of interest with the Lasso button. Then clicking “Save” will save

the cell IDs that can be read in Giotto Analyzer within the R environment.
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