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Abstract. Floods are one of the most common natural dis-

asters worldwide, leading to economic losses and loss of hu-

man lives. This paper highlights the hydrological effects of

multi-temporal land use changes in flood hazard within the

Yialias catchment area, located in central Cyprus. A cali-

brated hydrological model was firstly developed to describe

the hydrological processes and internal basin dynamics of the

three major subbasins, in order to study the diachronic effects

of land use changes. For the implementation of the hydrolog-

ical model, land use, soil and hydrometeorological data were

incorporated. The climatic and stream flow data were derived

from rain and flow gauge stations located in the wider area

of the watershed basin. In addition, the land use and soil data

were extracted after the application of object-oriented near-

est neighbor algorithms of ASTER satellite images. Subse-

quently, the cellular automata (CA)–Markov chain analysis

was implemented to predict the 2020 land use/land cover

(LULC) map and incorporate it to the hydrological impact

assessment. The results denoted the increase of runoff in the

catchment area due to the recorded extensive urban sprawl

phenomenon of the last decade.

1 Introduction

Land use and floods are closely related; therefore, any

changes in the land use, such as urbanization across the

catchment’s area, may trigger a sequence of flood occur-

rences (Hadjimitsis, 2010). The current and future develop-

ment in water resources is very sensitive to land use and

intensification of human activities. It is expected that flood

risk will continue to rise, as a consequence of a combina-

tion of climate change (e.g., Kundzewicz et al., 2005; Tsanis

et al., 2011; Grillakis et al., 2011) and an increase in expo-

sure vulnerability (e.g., due to increasing flood plain occu-

pancy), increase in endangered areas and changes in the ter-

restrial system (e.g., land cover changes and river regulation;

see Elmer et al., 2012). Human transformation of the Earth’s

land surface seems to have multiple consequences for bio-

physical systems at all scales (Roosmalen et al., 2009). Dur-

ing the past decades, airborne and spaceborne remote sens-

ing technologies along with geographical information sys-

tems (GISs) have been widely used for flood monitoring, in-

cluding flash floods (Taubenbock et al., 2011).

Flash floods respond to the causative storms in a short pe-

riod of time, with water levels in the drainage network reach-

ing peak levels within a few minutes or hours, allowing for

a very limited time window for warnings to be prepared and

Published by Copernicus Publications on behalf of the European Geosciences Union.



414 D. D. Alexakis et al.: GIS and remote sensing techniques for the assessment of land use

issued (Koutroulis and Tsanis, 2010; Grillakis et al., 2010).

Modeling of floods has greatly improved in recent years, with

the advent of GIS, satellite remote sensing imagery, high-

resolution digital elevation models (DEMs), distributed hy-

drologic models, and development of real time flood fore-

casting and delivery systems on the internet (Garrote and

Bras, 1995; Bedient et al., 2003). Hydrological and hydraulic

simulation models are essential tools to evaluate potential

consequences of proposed strategies and to facilitate man-

agement decisions. Nowadays satellite remote sensing has

the potential to provide extensive coverage of key variables

such as precipitation and soil moisture as well as many of

the parameters such as vegetation cover, vegetation change

and imperviousness that are important inputs to modern hy-

drological models (De Fries and Eshelman, 2004). Accord-

ing to Mao and Cherkauer (2012), human activity is one of

the major driving forces leading to changes in land cover

characteristics and subsequently hydrologic processes. Land

use influences the infiltration and soil water distribution pro-

cess because saturated hydraulic conductivity is influenced

by plant roots and pores resulting from the presence of soil

fauna (Ragab and Cooper, 1993; Fohrer et al., 2000). A char-

acteristic example is the influence of buildup areas and roads

on overland flow, flood frequency and magnitude (Nejad-

hashemi et al., 2011). Therefore, land cover plays a key role

in controlling the hydrologic regime of a catchment area

through a number of different parameters such as leaf area

index, evapotranspiration, soil moisture content and infiltra-

tion capacity, surface and subsurface flow regimes includ-

ing base-flow contributions to streams and recharge, surface

roughness, runoff as well as soil erosion through complex

interactions among vegetation, soils, geology, terrain and cli-

mate processes.

Especially urban areas are prone to flooding due to the

large proportion of impermeable surface cover such as con-

crete that increases the total volume of runoff and peak flows

and shortens the time that the floodwaters take to arrive at

peak runoff (Hall, 1984; Knebl, 2005). In various studies,

historical and present land use/land cover patterns or extreme

scenarios have been used as input in hydrologic models to

determine hydrologic responses to different scenarios in a

combined integrated approach (Moiwo et al., 2010; Hong et

al., 2010). At different watershed scales, several researchers

(Savary et al., 2009; Schilling et al., 2010; Turnbull et al.,

2012) have developed various methods aiming at quantifying

the hydrologic alterations in relation to land cover change.

This paper attempts to quantify the sensitivity of the dis-

tributed hydrological model to the land use and soil parame-

terizations, in order to simulate runoff processes in a catch-

ment area in Cyprus, namely Yialias watershed. Specifically,

the potential use of remote sensing in providing hydrologi-

cal models with adequate, reliable and updated land use data

is highlighted. The major flood event that occurred between

12 and 13 February 2003 was successively simulated with

the use of multi-temporal land use data of the specific period

(data of 2000) and data of 2010 (keeping the same meteoro-

logical parameters).

The aim of this approach was to assess the impact of land

use changes (including conversions between different land

use types and shifts in the geographic extent of those land use

types) to the runoff processes and hydrologic response. In the

following, a CA–Markov chain analysis was implemented to

calculate and predict the area’s land use/land cover (LULC)

regime for 2020 and incorporate it to the hydrological model

for assessing watershed’s basin response. The hydrological

model used is the HEC-HMS in distributed mode to utilize

the modified Clark (Clark, 1945) method of transforming the

excess rainfall to runoff. Moreover, the USDA Soil Conser-

vation Service (SCS) curve number method (SCS, 1985) was

used to account for the precipitation losses. The SCS curve

number method is amongst the more widely used methods

of assessing the effect of land use change in the hydrological

response (Defries and Eshleman, 2003).

2 Study area and resources

Located in the central part of the island of Cyprus, the catch-

ment area of the study is about 110 km2 in size with an

average slope value of 7.19 % (Fig. 1a). Specifically the

study area is situated between longitudes 33◦11′24. 28′′ and

33◦26′31. 52′′ and latitudes 34◦54′36. 74′′ and 35◦2′52. 16′′.

In the past few years, the specific catchment area has been

undergoing intensive land use change due to rapid economic

growth and urbanization. The island of Cyprus is located

in the northeasternmost corner of the Mediterranean Sea

and, therefore, has a typical eastern Mediterranean climate:

the combined temperature–rainfall regime is characterized

by cool-to-mild wet winters and warm-to-hot dry summers

(Michaelides et al., 2009).

For the purposes of the study, two ASTER images were

utilized with 10 yr time interval in order to monitor the mul-

titemporal urban spawl phenomenon. For this study, the first

three spectral bands were used (visible and near-infrared

(VNIR) and short-wavelength infrared (SWIR)) with spatial

resolution of 15 m. The exact acquisition dates of the images

were 12/05/2000 and 06/04/2010.

The meteorological data were provided from the Meteo-

rological Service of Cyprus. More specifically, time-series

rainfall data of six rain gauge stations for a period of 20 yr

(1990–2010) were provided. Flow data from three stream

gauges stations (Kotsiati, Nisou, Potamia) were provided

from the Water Development Department of Cyprus (Ta-

ble 1). From the available data, the most severe hydrological

events were used to calibrate the hydrological model. The

spatial distribution of rain and stream flow gauge stations in

the vicinity of the catchment area is shown in Fig. 1b.
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Fig. 1. (a) Study Area as indicated in the RGB-321 of ASTER image, (a) location of rain and stream gauges stations, (b) a digital elevation

model (DEM) of 10 m pixel created with the use of orthorectified stereo pairs of aerial photos (scale 1 : 5000) covering the study area.

Table 1. Characteristics of the study area’s rain and flow gauge stations.

Stations Longitude Latitude Elevation Distance from Length

easting northing the coast of records

(m) (km) (yr)

Rain gauges

1 Mantra tou Kampiou 520682 3867871 640 21.818 20

2 Analiontas 526562 3874143 360 27.124 20

3 Lythrodontas 527420 3867428 420 20.926 20

4 Lefkara 526783 3861720 420 16.28 20

5 Kionia 518269 3863820 1200 13.97 20

6 Pera Chorio 535407 3874471 250.38 24.02 20

7 Mathiatis 530615 3869030 373.78 25.23 20

Flow gauges

1 Kotsiatis 539779 3878282 195.43 27.75 34

2 Nisou 535960 3875415 239.99 24.45 46

3 Potamia 530639 3872576 298.91 22.05 14

3 Methodology

Initially, pre-processing techniques such as geometric, ra-

diometric and atmospheric corrections were applied to

both satellite images. Sophisticated classification techniques,

such as object-oriented analysis, were implemented and di-

achronic LULC maps of the study area were developed (for

the time period of 2000–2010). Using these LULC data sets,

the CA–Markov algorithm was applied and the LULC map

of 2020 time period was predicted. In addition, the area’s soil

map was developed in a GIS environment. In the following,

LULC maps, soil map, DEM, meteorological and flow data

for different time periods were incorporated in HEC-HMS

(Hydrologic Engineering Center-Hydrologic Modeling Sys-

tem) hydrological software for implementing hydrological

modeling in GIS environment. Firstly, the model was cali-

brated for three precipitation events and then was validated

for a major flood event that occurred in 2003. Finally, the

same precipitation data of 2003 were once again incorpo-

rated to estimate the updated curve number map for 2010

and 2020 and assess the watershed’s hydrological response

under different land cover conditions. The overall proposed

methodology is presented in the flowchart of Fig. 2.

3.1 Pre-processing techniques

Regarding the preprocessing of the images, geometric cor-

rections were carried out using standard techniques with sev-

eral ground control points (GCPs) and a second-order poly-

nomial fit. For this purpose, detail topographical maps (scale

1 : 5000 and 1 : 2000) were used to track the position of

GCPs in conjunction with the digital shoreline of Cyprus
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Fig. 2. Flow chart of the proposed methodology.

extracted from detail topographic maps (scale 1 : 5000). At

a next step, radiometric corrections were applied to ASTER

images. Radiometric corrections are essential for satellite im-

ages, since illumination’s changes (e.g., Earth to Sun distance

correction) and changes in viewing geometry (e.g., Sun el-

evation correction) should be minimized in multi-temporal

analysis. Thus, the DN (digital number) values were con-

verted to reflectance values.

Atmospheric correction is considered to be one of the

most difficult techniques since the distributions and inten-

sities of these effects are often inadequately known. Despite

the variety of techniques used to estimate the atmospheric

effect, atmospheric correction remains a hard task in the pre-

processing of image data. As it is shown by several stud-

ies (Hadjimitsis et al., 2004, 2010; Agapiou et al., 2011),

the darkest pixel (DP) atmospheric correction method can be

easily and accurately applied either by using dark and non-

variant targets located in the image or by conducting in situ

measurements. In the present study, water dams were used as

dark targets, and the darkest pixel correction was applied to

both images.

3.2 Object-oriented classification

According to Alexakis et al. (2012a), spectral mixing in

satellite images between marl/chalk geological formations

and urban areas was widely observed in Yialias catchment

area and especially in its downwards part. This problem is

clearly denoted in the spectral signature diagram derived

from the use of the handheld GER 1500 spectroradiome-

ter. The GER 1500 spectroradiometer can record electromag-

netic radiation between 350 nm and 1050 nm. For the pur-

poses of this study, different targets (Fig. 3) from the Yialias

watershed basin were selected and their corresponding sam-

ples were collected (soil (Marl/chalk sample) A, B, C, – roof

– tile). Laboratory spectroradiometric measurements were

consecutively carried out for each different sample. A final

mean measurement corresponding to ASTER bands was ex-

tracted from the 10 measurements, and for this transforma-

tion the relative spectral response (RSR) filters of ASTER

Fig. 3. Scatterplot for the different targets for bands 3–4.

satellite were used. RSR filters describe the relative sensi-

tivity of the satellite sensor to radiance at various parts of

the electromagnetic spectrum (Wu et al., 2010), and their

values range from 0 to 1. Band-pass filters are used in the

same way in spectroradiometers in order to transmit a certain

wavelength band and block others. Therefore, the broadband

reflectance from the spectroradiometer was calculated based

on the wavelength of ASTER sensor and the RSR filter as

follows:

Rband =

∑

(Ri ∗ RSRi)
∑

RSRi

, (1)

where Rband is the reflectance at a range of wavelength (e.g.,

Band 1), Ri the reflectance at a specific wavelength (e.g., i =

450 nm), and RSRi the relative response value at the specific

wavelength.

According to the results (see Fig. 4), there is a spectral

similarity between soil and urban signatures. This fact clearly

depicted the unavoidable need for the application of alterna-

tive classification techniques such as object-oriented classifi-

cation.

Object-based classification methodology begins with the

construction of segmented objects at multiple levels of scales

as major units for image analysis, instead of using a per pixel

basis of single scale for image classification (Stow et al.,

2007). Therefore, one of the main advantages of using ob-

jects in classification process is that, in addition to spectral

information, objects have numerous geographical and geo-

metrical features attributed to them, including shape, length

and topological entities, such as adjacency (Baatz et al.,

2004). A group of pixels having similar spectral and spatial

properties is considered as an object in the object-based clas-

sification prototype.

Initially, the object-based approach involves the segmen-

tation of image data into individual objects. According to

Willhauck et al. (2000) and Alexakis et al. (2012b), the im-

age segmentation is mainly influenced by the parameters of

scale, color and form. The size of the image object is deter-

mined according to a scale parameter, which allows for more
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Table 2. Transition probability matrix for each land cover class using the Markov chain equation.

Agricultural – Agricultural – Herbaceous Mixed Urban Olive Water

close grown generic forest trees

1 Agricultural – 0.8157 0.0340 0.0500 0.0237 0.0158 0.0606 0.00

close grown

2 Agricultural – 0.0004 0.8070 0.1551 0.0007 0.0001 0.0367 0

generic

3 Herbaceous 0.0721 0.0986 0.6058 0.0767 0.0296 0.1171 0.0001

4 Mixed 0.2963 0.1509 0.1329 0.3222 0.0568 0.0409 0

forest

5 Urban 0.1925 0.0995 0.1747 0.0485 0.3433 0.1398 0.0017

6 Olive 0.0983 0.1370 0.2084 0.1556 0.0549 0.3458 0

trees

7 Water 0 0 0.4222 0 0.0889 0.0667 0.4222

objects to be merged and fused as values become larger. The

form parameter is a combination of the smoothness and the

compactness of segment’s borders. The weighting of these

parameters establishes the homogeneity criterion for the ob-

ject patterns (Whiteside et al., 2011).

In this study, appropriate values were assigned to three key

parameters: shape, compactness and scale. The shape param-

eter, which adjusts spectral homogeneity compared to ob-

ject’s shape, was set to 0.1 in order to give less weight to

shape since urban and marl/chalk classes did not have a spe-

cific shape. The compactness parameter balances compact-

ness/smoothness and determines the object shape between

compact edges and smooth boundaries. It was set to 0.5 in

order to balance equally the compactness and smoothness of

the objects. However, the most crucial factor of segmenta-

tion process is the adjustment of scale, which controls the

object size. Thus, the higher the value of scale parameter, the

larger the extracted segmented objects. Following the evalu-

ation of several different scale parameters, a value of 10 was

selected. Thus, the images were initially segmented (Fig. 4a)

into object primitives or segments using the multi-resolution

algorithm, which according to Baatz et al. (2003) follows the

fractal net evolution algorithm.

The classification process identified and implemented

seven major different classes (agriculture generic (general

unidentified croplands), agriculture close grown (dense cul-

tivated croplands (usually wheat)), herbaceous (mixture of

grass, weeds, and low-growing brush, with brush the minor

element), mixed forest, olive trees, urban fabric, water) by

using the nearest neighbor classification algorithm (Fig. 4b,

c). The main advantage of the nearest neighbor classifica-

tion algorithm is that it allows unlimited applicability of the

classification process to other areas and requires only the ad-

ditional selection of new training samples until a satisfactory

result is obtained.

At the end, with the specific classification approach, the

kappa coefficient values were increased from the initial val-

ues of lower than 0.6 for both 2000 and 2010 images to 0.78

and 0.80, accordingly.

3.3 Soil map

The soil map was constructed in GIS environment accord-

ing to local hydrogeological maps regime, local soil data and

HEC-HMS soil classes. The final map was a three-class gen-

eralized soil map of the area (Fig. 5). Specifically, Vergennes

is a very deep, moderately well drained soil of sandy loam

composition concerning the specific area. Windsor consists

of very deep, excessively drained soil, which for the specific

area is of coarse sandy loam composition. Covington con-

sists of very deep, poorly drained soil that is formed in cal-

careous glaciolacustrine and estuarine clays mainly found in

the northeastern part of the basin.

4 Prediction of urban sprawl phenomenon

The stochastic Markov chain model was implemented to test

whether urban expansion could be predicted for 2020 us-

ing the ASTER data of both 2000 and 2010. According to

Ahmed and Ahmed (2012), this kind of predictive land cover

change modeling is appropriate when the past trend of land

cover is known.

Urban growth modeling has evolved over recent years

to capture increasingly well the details of urban morphol-

ogy and structure at a qualitative as well as a quantitative

level (Rimal, 2005). Land use change transition probability

in Markov analysis indicates the probability of making a tran-

sition from one land use class to another within two discrete

time periods. The Markov chain equation was constructed

using the land cover distributions at the beginning (Mt) and

at the end (Mt + 1) of a discrete time period, as well as a tran-

sition matrix (MLc) representing the land cover changes that

occurred during that period. In a Markov chain the probabil-

ity of the next state is only dependent upon the current state.

This is called Markov property as shown in the Eq. (2)
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Fig. 4. (a) Image segmentation of ASTER 2010 image, (b) LULC

map of the study area for 2000, and (c) LULC map of the study area

for 2010.

(Ahmed and Ahmed, 2012):

P
(

ξt+1 = Xit+1|ξ1 = Xi1, . . . ξt = Xit
)

(2)

= P (ξt+1 = Xit+1|ξt = Xit ) ,

Fig. 5. Soil map of the study area.

where the probability Markov chain ξ1, ξ2, . . . can be calcu-

lated as

P(ξ1 = Xi,...ξt = Xit ) = P(ξ1 = Xi1)

·P(ξ2 = Xi2|ξ1 = Xi1)

·P(ξt = Xit ) · P(ξt−1 = Xit−1).

(3)

Under the assumption that the sample is representative of the

region, these proportional changes become probabilities of

land cover change over the entire sample area and form the

transition matrices. However, the model is not spatially ex-

plicit and does not provide an explanation of the processes

leading to changes and overlooks the spatial distribution of

land cover in predicting land cover (Lambin et al., 1994; Ad-

hikari et al., 2012).

The transition probability matrix explains the probability

that each land cover category will change into another cat-

egory. Specifically, it refers to the number of pixels that are

expected to change from each land cover type to every other

type over the specified number of time units (Kityuttachai et

al., 2013). CA–Markov methodology underlies dynamics of

the change events based on proximity concept so that the re-

gions closer to existing areas of the same class are more prob-

able to change to a different class (Memarian et al., 2012). A

combined Markov and cellular automata (CA–Markov) was

used to predict the area’s land cover regime for the year 2020.

The CA–Markov analysis was run to test a pair of land cover

images (2000 and 2010) and output the transition probabil-

ity matrix (Table 2). As it is indicated in Table 2, the mixed

forest and olive tree classes have significant possibility to

change to urban land cover in the near future.

After the implementation of CA–Markov model, the land

use area statistics were thoroughly examined (Fig. 6a). The

results indicated a steady increase of urban land cover within

the catchment area, which is expected to range in a per-

centage of around 100 % until 2020 as well as a respective
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Fig. 6. (a) Land use statistics (AGRC: agricultural close grown, AGRL: agricultural generic, HERB: herbaceous, FRST: mixed forest, OLIV:

olive trees, URBAN: urban fabric, WATR: water). (b) Relative (%) difference diagram of land use cover.

increase of agricultural generic and olive tree classes. In ad-

dition, significant decrease of agricultural close grown land

cover is recorded for 2010 and is predicted for 2020. Those

characteristic changes are also presented in the relative dif-

ferences (%) diagram (Fig. 6b).

5 Hydrological modeling

5.1 The hydrological model HEC-HMS

The Hydrologic Modeling System (HEC-HMS) is designed

to simulate the precipitation–runoff processes of dendritic

watershed systems. It is developed to be applicable in a wide

range of geographic areas for solving the widest possible

range of problems. This includes large river basin water sup-

ply and flood hydrology and small urban or natural watershed

runoff (HEC-HMS User’s Manual, 2001).

The basic rainfall runoff processes that need to be simu-

lated in HEC-HMS for flood flow estimation using rainfall

data as input, are the rainfall losses and the transformation of

excess rainfall to runoff. For calculating rainfall losses, the

SCS curve number method was used and for the transforma-

tion of excess rainfall to runoff the ModClark method was

used both applied in GIS environment.

5.2 The ModClark method

The modified Clark (ModClark) model in HEC-HMS is a

distributed parameter model in which spatial variability of

characteristics and processes are considered explicitly (Kull

and Feldman, 1998; Peters and Easton, 1996). This model ac-

counts explicitly for variations in travel time to the watershed

outlet from all regions of a watershed. The ModClark algo-

rithm is a version of the Clark unit hydrograph transforma-

tion modified to accommodate spatially distributed precipita-

tion (Clark, 1945). Runoff computations with the ModClark

model explicitly account for translation and storage. Storage

is accounted for within the same linear reservoir model in-

corporated in the Clark model. Translation is accounted for

within a grid-based travel-time model tcell = tc × (dcell / dmax)

(HEC, 2000), where tc is the time of concentration for the

subwatershed and is a function of basin’s length and slope,

tcell is the travel distance from the cell to the outlet, and

dmax is the travel distance from the cell furthest from the

outlet. The method requires an input coefficient for storage,

R, where R accounts for both translation and attenuation of

excess precipitation as it moves over the basin toward the

outlet. Storage coefficient R is estimated as the discharge at

the inflection point on the recession limb of the hydrograph

divided by the slope at the inflection point. The translation

hydrograph is routed using the equation:

Q(t) =

[

1t

R + 0.51t
I (t)

]

+

[

1 −
1t

R + 0.51t
Q(t − 1)

]

,

(4)

where Q(t) is the outflow from storage at time t , 1t is the

time increment, R is the storage coefficient, I (t) is the av-

erage inflow to storage at time t and Q(t − 1) is the outflow

from storage at previous time (t − 1).

5.3 SCS curve number loss method

The SCS (Soil Conservation Service) curve number loss

method is a simple, widely used and efficient method for

computing excess rainfall (direct runoff) from a rainfall event

in a particular area. The curve number is based on the

area’s hydrologic soil group, land use, treatment and hy-

drologic condition, with the first two having the greatest

importance. The SCS runoff curve number (CN) method

is described in detail in National Engineering Handbook,

www.nat-hazards-earth-syst-sci.net/14/413/2014/ Nat. Hazards Earth Syst. Sci., 14, 413–426, 2014
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Table 3. List of calibration and validation events. The precipitation represents the average precipitation of the entire watershed. The return

period for each rain gauge for each event is also provided.

Return period (yr)

Start date End date Total event Lithrodontas Mantra tou Leukara Analiontas Kionia

P [mm] Kampiou

Calibration

Event 1 07 Dec 2000 18 Dec 2000 102.5 0.96 3.03 1.04 1.28 3.74

Event 2 06 Dec 2001 11 Dec 2001 82.2 0.91 3.96 1.33 4.25 21.64

Event 3 09 Jan 2004 15 Jan 2004 122.3 – 3.50 4.80 12.48 0.89

Validation Event 4 10 Feb 2003 17 Feb 2003 157.8 – 1.15 0.72 1.16 1.01

(NEH-4) (USDA-SCS, 1985). The SCS runoff equation is

Q =
(P − IA)2

(P − IA) + S
, (5)

where Q is the runoff volume, P the precipitation volume,

IA is the initial abstraction and S field capacity.

A linear relationship between IA and S was suggested by

SCS (1985), as shown in Eq. (6).

IA = λ × S, (6)

where λ = initial abstraction ratio. With λ = 0.2 in Eq. (3),

Eq. (2) is transformed into the following equation:

Q =
(P − 0,2S)2

P + 0,8S
. (7)

For convenience in practical applications, S is mapped

into a dimensionless parameter CN (i.e., the curve number),

which varies in the more appealing range between 0 and 100.

The chosen mapping equation is presented as follows, for SI

units:

S =
25400 − 254CN

CN
. (8)

5.4 Performance estimators

Nash–Sutcliffe efficiency E

The efficiency E proposed by Nash and Sutcliffe (1970) is

defined as one minus the sum of the absolute squared differ-

ences between the predicted and observed values normalized

by the variance of the observed values during the period un-

der investigation. It is estimated by equation

E = 1 −

n
∑

i=1

(Oi − Pi)
2

n
∑

i=1

(

Oi − O
)2

, (9)

where O indicates observed and P predicted values; bars in-

dicate mean values. The normalization of the variance of the

observation series results in relatively higher values of E in

catchments with higher dynamics and lower values of E in

catchments with lower dynamics. To obtain comparable val-

ues of E in a catchment with lower dynamics, the prediction

has to be better than in a basin with high dynamics. The range

of E lies between 1.0 (perfect fit) and −∞. A result lower

than zero indicates that the mean value of the observed time

series would have been a better predictor than the model.

Phase error (PE)

Phase error is defined as the difference in hours between the

peak of the observed and the simulated flow.

Peak discharge error (PDerr)

Peak discharge error is defined as the percent difference be-

tween the observed and the simulated peak discharges:

PDerr =
maxQsim − maxQobs

maxQobs
× 100. (10)

6 Case study

6.1 Model setup

The HEC-HMS model was set up in distributed mode, en-

abling the utilization of the spatial information of the land

use via the curve number coefficient. The rainfall losses com-

ponent was based solely on the SCS curve number method

(USDA SCS, 1972). This method assumes an initial abstrac-

tion before ponding that is related to curve number. Curve

numbers in this study were determined from USDA National

Engineering Handbook (USDA-SCS, 1972). The curve num-

ber method in HEC-HMS relates runoff to soil type, land use

management and antecedent soil moisture conditions. The

transformation method used was the modified Clark that con-

siders the spatial variability of characteristics and processes

explicitly. The curve number was estimated using a 10 m res-

olution digital elevation model, land use classification for

2000 and soil classification of the area.
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Yialias basin was modeled using a three subbasin setup

following the available flow gauge locations within the

basin. The outlets of the subbasins were set at Kotsiatis

(75.15 km2), Nisou (21.71 km2) and Potamia (16.29 Km2).

6.2 Hydrological data

The HEC-HMS model was calibrated using three available

rainfall–runoff events (2000, 2001, 2004), while was vali-

dated using a recorded flood event. A list of the rainfall runoff

events is given in Table 3. Four precipitation events were se-

lected for the calibration–validation of HEC-HMS hydrolog-

ical model. The calibration events were the most intense that

could be found in the recorded data. Three events were se-

lected, to calibrate the model for the flood of 2003, which

served as validation event. The specific event occurred in

the watershed’s urban area (downstream) between 12 and 13

(peak time) of February of 2003. During this event, a driver

of a school bus was killed and much damage was caused all

over the catchment area.

The hydrological characteristic of each event is presented

in Table 3. The three events (dated 2000, 2001 and 2004)

served for the calibration of the hydrological model. The

calibrated model was then evaluated for its performance on

the fourth event of 2003, which was a major flood event of

the basin. The total precipitation depths (as estimated by the

areal interpolation of the available rain gauge data for the en-

tire period of the rainfall events) are also given in Table 3,

along with the total duration of the event. It can be observed

that the flood event of 2003 had the greatest precipitation

height compared to the rest of the calibration events. To iden-

tify the driving forces of the flood event, the return period

of each maximum hourly rainfall rate was estimated for each

rainfall station and event (Table 3). It can be observed that the

flood event distinguishes from the rest of the rainfall–runoff

events mainly due to the relatively high return period that oc-

curred simultaneously at two stations (Leukara and Analion-

tas), compared to the rest of the events.

7 Result and discussion

In this study the multi-temporal land use regime of Yialias

watershed in Cyprus was thoroughly searched with the use

of object-oriented classification technique and application of

CA–Markov model. The specific model appears to have cer-

tain advantages as well as specific disadvantages in its ap-

plication. Initially, it does not require deep insight into the

mechanisms of dynamic change, but it can help to indicate

areas where such insight would be valuable and hence act as

both a guide and stimulant to further research. On the other

hand, Markov analysis ignores the forces and processes that

produced the initial land use patterns, and also it assumes that

changes will continue to do so in the future by sometimes

ignoring social, human and economic dynamics. However,

in order to give a spatial dimension to the Markov model,

we applied the CA–Markov model. Through the 2000–2010

decade’s analysis, results denote an increase in agricultural

generic, olive tree cultivation and herbaceous areas, putting

stress onto the close growth agricultural land, which is the

main decreasing land use category. The forested is shown to

occupy roughly the same land portion. The same tendency

seems to be for the next decade affecting the potential hydro-

logical response of the basin. Specifically, the simultaneous

increase of residential areas and the decrease of agricultural

close grown cover throughout the basin is expected to en-

hance the potential devastating surface runoff processes.

Regarding the hydrological modeling, the calibration of

the model was performed using the Nash–Sutcliffe estima-

tor (E), with respect to the correct representation of the peak

discharge and the correct timing of it. The calibration and

validation results are shown in Table 4.

The calibration and validation hydrographs are presented

in Fig. 7. The results of the calibration show that the dis-

tributed setup of HEC-HMS model adequately describes the

timing and the peak discharge of Yialias basin. E ranged

from 0.9 to 0.46 between the calibration events and the three

subbasins. For the validation event, the E ranged between

0.45 and 0.62. The phase error ranged between 0 and 1 h,

except for Event 2 and 3 (Table 3) simulation at Potamia in

which the phase error was 2 h. Finally, the peak discharge er-

ror was kept under 17.6 %, in all subbasins and calibration

events, while, for the validation event, it ranged between 0 %

and 6 %.

Having calibrated and validated the HEC-HMS model, the

land use map of 2010 and the projected 2020 were used to

estimate the changed curve number map for 2010 and 2020,

respectively (Fig. 8).

The changes between the 2000 curve number and the

ones of 2010 and 2020 are also demonstrated in Fig. 9.

The changes indicate that, between 2000 and 2010, 2020,

the area-weighted curve number for all the land use cate-

gories except the urban areas retains a relatively constant

value around 53 (from CN = 52.9 for year 2000, to 52.7 and

53.3 for 2010s and 2020s respectively). In contrast, the areal

weighted CNs for all the land use categories retain a more

robust increasing trend from 53.8 to 55 and then to 56.2. It

is shown here that the increase in the urban land use in 2010

(from 1.85 to 5 % of area) outweighs the slight decrease in

the CN in the rest of the basins’ land use classes. Accord-

ingly, the 2020 projected land use shows that the CN is pro-

jected to increase from 55.0 in 2010 to 56.2. This increase

by 1.2 units is both attributed to the change to non-urban

land uses and the further urbanization of the basin (from 5

to 6.5 %).

All the events that were used to calibrate and val-

idate the hydrological model were then run under

changed land use/curve number conditions. The results are

shown in Table 5.
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Table 4. Calibration and validation results of HEC-HMS. The Nash–Sutcliffe (E), phase error (PE) and peak discharge error (PDE) are

presented. Negative values of phase error (PE) indicate simulated peak before the observed event.

Kotsiatis Nisou Potamia

E PE PDE E PE PDE E PE PDE

(h) (%) (h) (%) (h) (%)

Calibration

Event 1 0.78 0 3.3 0.87 1 −0.6 0.46 1 5.6

Event 2 0.61 0 0.0 0.66 1 4.7 0.86 2 4.6

Event 3 0.67 0 −1.2 0.70 1 17.6 0.90 2 4.8

Validation Event 4 0.45 0 0.0 0.50 1 2.5 0.62 0 6.0

Table 5. Changes in Yialias simulated peak discharge due to land

cover change in 2010 and 2020 compared to the 2000 land use.

Kotsiatis Nisou Potamia

2010 2020 2010 2020 2010 2020

Event 1 39.4 % 59.4 % 32.1 % 49.1 % 56.6 % 88.2 %

Event 2 1.9 % 4.5 % 1.5 % 3.7 % 1.5 % 4.4 %

Event 3 11.1 % 20.2 % 7.1 % 12.3 % 7.7 % 12.7 %

Event 4 10.2 % 22.4 % 7.0 % 14.6 % 11.1 % 19.9 %

The results show an increase in the peak discharge. The

magnitude of the increase in peak flow is different for the

four simulated events and for each subbasin in the catchment.

Results for the validation event (which consisted a flood

event in 2003) indicate an increase in the runoff response un-

der the changed land use conditions of 2010. The changes

were estimated to be 10.2, 7 and 11.1 % (Table 4), for the

three subbasins Kotsiatis, Nisou and Potamia, respectively, in

comparison to those of 2000. The outcome indicates that the

runoff dynamics of the basin are changing due to the land use

transition among different categories. Next, the CA–Markov

chain predicted 2020 land use was used to simulate the 2003

event under future land use conditions. The results show a

noteworthy increase in the peak discharge that reached 22.4,

14.6, and 19.9 % compared to the 2000 land use runs for the

above three subbasins, respectively. The simulated changes

in the runoff are presented in Fig. 7. The changes in the sim-

ulated peak discharges can be explained by the overall in-

crease in the curve number of the basin for both 2010 and

2020 simulations. Moreover, the pattern of the CN increase

between the urban and non-urban land use classes can stand

as positive proof that the change in 2010 peak discharge is

wholly attributed to the urban area increase, while the 2020

further increase is merely attributed to urban area increase as

well as to the trade-off of non-urban land uses. It has to be

noted that the above rationale explains in general the mech-

anism of the land use change effect on the peak runoff, but

it accounts neither for the spatial distribution of the land use

changes nor the distribution of the precipitation.

8 Conclusions

This study presented an integrated methodology for search-

ing and forecasting a catchment’s area hydrologic response

with the use of HEC HMS model and satellite remote sens-

ing techniques. The preliminary results denoted the crucial

role of urban sprawl phenomenon as well as the significant

change of land cover regime in the increase of runoff rate

within the spatial limits of a catchment area and highlighted

the importance of searching land use regime with the use

of satellite remote sensing imageries. It was proved that the

incorporation of multi-temporal remote sensing data in hy-

drological models can effectively support decision making

in the areas of risk and vulnerability assessment, sustainable

development and general management before and after flood

events. In addition, the implementation of CA–Markov pro-

vided indication of the potential impact of land use change

on flood vulnerability in the near future.

The comparison of observed flow results concerning the

flood event of 2003 with the simulated flow results (with

the use of different land use data concerning 2000, 2010 and

2020 land use regimes) proved that, in the case of “2010” and

“2020“ model, the runoff rates were steadily higher due to the

expanded urban area cover that increased the phenomenon

of surface runoff. This tendency was verified after incorpo-

rating the land use data for the 2020 time period. Knowing

from past events that the area between the Nisou and Potamia

is highly prone to flooding, the already increased dynamics

of the surface runoff indicate higher flooding hazard for the

area. Moreover, the projected changes in land use, which is

simulated to increase the peak discharge by 14.6 and 19.9 %

by 2020 for the Nisou and Potamia, dictate actions have to

be taken to mitigate the flood hazard.

The results of this study can be used as a road map for

taking specific actions in land use management changes to

achieve sustainable water resources goals in the near future.

The research team will continue to study the hydrological

response of the catchment area with more updated meteoro-

logical and stream data as well as satellite images of higher

spatial resolution.
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Fig. 7. Calibration and validation hydrographs for the observed and simulated flows. The land use 2010 (green lines) and 2020 (red lines)

hydrological simulations are also presented.
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Fig. 8. Curve number estimated for different land uses.

Fig. 9. Changes between curve number of 2000–2010 (a) and 2000–2020 (b).
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