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Abstract

Background: High basin of Oum Er Rbia River, which is located in Middle Atlas Mountain region, is prone to landslide

problems due to the geological features combined with the climate change and human activities. The present work

including inventory mapping was conducted to establish landslide susceptibility map using GIS-based spatial multicriteria

approach. Eight landslide-related factors, including land cover, lithology, distance to road, distance to fault, distance to

drainage network, elevation, aspect and slope gradient, were selected for the present assessment. Weight for each factor

is assigned using Analytic Hierarchy Process (AHP) depending on its influence on the landslide occurrence. The landslide

susceptibility map was derived using weighted overlay method and categorized into five susceptible classes namely, very

low (VL), low (L), moderate (M), high (H).

Result: The results revealed that 30.16% of the study area is at very low risk, 12.66% at low risk, 25.75% of moderate risk,

22.59% of high risk and 9.11% of very high risk area coverage. The very high landslide vulnerability zones are more

common within the river valleys on steep side slopes. Most landslides also involve rocks belonging to the Triassic

weathered marl and clay-rich formation. Moreover, human activities namely the construction and the expansion of

agricultural lands into forests intervene in inducing landslides through altering the slope stability along the river banks.

Lastly, effectiveness of these results was checked by computing the area under ROC curve (AUC) that showed a

satisfactory result of 76.7%.

Conclusions: The landslide susceptibility map of the Oum Er Rbia high basin provides valuable information about

present and future landslides, which makes it viable. Such map may be helpful for planners and decision makers for

land-use planning and slope management.
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Background

Earth has a life cycle of its own, its rocks are born, grow

old, die and then re-emerge in the melting heart of our

planet. Landslides are part of this natural process. Gener-

ally, a landslide is a slow movement but an exceptional

natural event (successive torrential rains for example) or

anthropic effects accelerate it. As one of the most geological

risks in the world, the landslides caused thousands of vic-

tims and deaths, hundreds of billion dollars of damages and

environmental losses every year (Aleotti and Chowdhury

1999; Gutiérrez et al. 2015). They occur during the gravity

displacement of destabilized soils or rock by natural

climatic, geomorphological or geological phenomena or by

human activities. Landslides occur in fine scree, moraines,

or highly fractured and altered rocks, which are particularly

sensitive to landslides, such as clays, marls, gypsum or

superficial formations of alterites. Numerous natural and/or

anthropogenic parameters determine the appearance and

development of landslide movements (topography, geology,

hydrology, hydrogeology, rapid erosion of the foot of cer-

tain slopes, urbanization, etc.). Meteorological phenomena,

however, seem to cause the greatest number of events.

Several recent studies have developed several method-

ologies for assessing susceptibility to landslides showing

that damage from natural processes is increased over the

last decades (Althuwaynee and Pradhan 2016; Hong et al.
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2015, Shahabi et al. 2015). These studies of landslide sus-

ceptibility mapping have used deterministic models and

probabilistic approaches while taking account of whether

future environmental conditions will meet the require-

ments for a landslide, identified in previous landslides.

The qualitative methods are based on individual or group

expert opinions (Neaupane and Piantanakulchai 2006).

Inventory and historical information have been helped Ex-

perts to evaluate landslides, determine the main factors in-

ducing them, and identify sites that have similar geological

and geomorphological features. Some qualitative methods

become semi-quantitative by incorporating ranking and

weighting (Ayalew et al. 2005), as is the case of the Ana-

lytic Hierarchy Process (AHP) (Saaty 1980; Barredo et al.

2000; Yalcin, 2008; Kamp et al. 2008) and the weighted

linear combination (WLC) (Ayalew et al. 2005; Akgun et

al. 2010). The main disadvantage of these methods is the

involvement of many subjective judgments and fails to

quantify the weight of each factor. Therefore, the results

of these approaches are other subjective and rely on

knowledge of the experts. Based on inventorying and

heuristic analysis, qualitative or semi-quantitative methods

define the risk zones in descriptive terms and are often

used for small-scale regional studies (Soeters and van

Westen 1996; Carrara et al. 1999; Zumpano et al. 2014).

The AHP method, suggested by Saaty (1980), has become

a popular tool for multi-criteria decision-making. It sup-

ports decision-makers to make the best decision, by redu-

cing complex decisions to a series of comparative pairs

and synthesizing the results. The AHP disaggregates a

complex decision problem into different hierarchical

levels. This method allows quantifying opinions and trans-

forming them into a coherent decision model (Saaty

1980). It was widely used by many authors worldwide

(Hong et al. 2015; Shahabiet al. 2015; Sangchini et al.

2016; Althuwaynee and Pradhan 2016).

In Morocco, the areas subjected to the ground move-

ments are mostly the Rif (El-Fengour 2016; Prokos et al.

2016; Benzougagh et al. 2017) and to a lesser extent the

Middle Atlas, due to the existence of reliefs with much

contrasted geological formations (friable clays, flysch

units, marl, etc.) and difficult climatic conditions. This

study focused on producing landslide susceptibility map

of Oum Er Rbia high basin (Morocco) by combining

GIS techniques and AHP method. Besides, the result of

this approach is compared to the landslide filed inven-

tory to evaluate the accuracy of the final map with suit-

able candidate landslide sites.

Study area description

The study was conducted in the high-basin of OumEr-

Rbia River, in the Khenifra Province, in the southwest of

the Middle Atlas (Fig. 1). The studied basin is delimited to

the west by the Hercynian Central Massif, to the north by

the Causse of Ajdir and south-east by the plain of the

High Moulouya. It occupies an area of 3612.21 km2, which

lies wholly within the mountainous terrain with a diversity

of landforms, structural features, closed depressions, ra-

vines, and accumulation forms represented by alluvial ter-

races. The elevation variation of the area is between 662

and 2400m.

The Oum Er Rbia high-basin is part of Middle Atlas

Mountain and Central Massif. According to the 1:500,000

scale geological maps of Rabat (1976), the geological

formations of the region is composed dominantly of Cret-

aceous subtabular limestone formations, Liasic dolomitic

limestones, Triassic doleritic basalts and red clays, as well

as Paleozoic flyshs and quartzite. From large surface pedo-

genic alteration of these different formations in the past,

many soil types were formed such as alluvial and colluvial

soils (more frequent), vertisols, calcimagnesic soils and

very deep isohumic soils concentrated in valleys and flat

areas, and fersiallitic soils on ancient terraces or forests.

The presence of deep valleys associated with steep

slopes, exposure to high rainfall and the clayey and marly

nature of the outcropping rocks constitute important fac-

tors monitoring the subsurface soil dynamic in the area

such as landslides and erosion. Also, the study area is

characterized by a Mediterranean climate known for

warm/hot and dry summers and mild/cool and wet win-

ters. Within the wet periods experienced from October to

April, minimum temperature values are usually 5 °C, while

in the dry season experienced from May to September, an

average maximum temperature rises to 50 °C. The average

annual rainfall that is around 666mm, takes place be-

tween November and March (the winter). Thus, bare soils

without vegetation cover are exposed to high erosion rates

leading to the vulnerability of taluses in the study area to

landslides and soil erosion, in particular for the time of

year showing torrential rainfall with high intensity (El

Bouqdaoui 2007, El Jazouli et al. 2017).

The Oum Er Rbia River and its tributaries of Srou and

Chbouka, crossing Atlas mountain chain, drain the stud-

ied watershed. These rivers are usually with steep

courses and gravel beds, and present irregular regime

due to the Mediterranean climate prevailing in the re-

gion characterized by prominent seasonality. Exceptional

rainfall events combined with the presence of steep

slopes and unconsolidated rocks (clay and marls) repre-

sent the main factors affecting landslide, soil erosion and

leaching phenomena that are negative environmental

impacts on soil (Barakat et al. 2017) and slope stability

and river water quality (Barakat et al. 2016, 2018).

Materials and methods

As the susceptibility to landslides starts by the step pro-

viding the landslide inventory (Pradhan et al. 2010), this

study began with the preparation of an inventory map of
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Oum Er Rbia high-basin from the field investigation along

the road network and the interpretation of Google Earth

images. Eight landslide affecting factors namely slope,

drainage, lithology, land use, slope aspect, roads, faults,

and elevation were used for landslide analysis in the

present study. These factors selected either intervene in

the stability of slopes and rocky massifs or are exposed to

a landslide hazard risk. The various thematic layers rela-

tive to these factors were generated and then were com-

bined using weights of factors and sub-factors determined

by AHP method to generate the landslide susceptibility

map. The combination of all thematic layers in agreement

with the AHP results was carried out in a GIS environ-

ment using the Weighted Linear Combination (WLC)

method. After the landslide susceptibility identification in

the study area, the accuracy of landslide susceptibility was

evaluated by comparing between the landslide inventory

map and the landslide susceptibility map via AUC plots.

Preparing landslide factor layers

The main data required for landslide susceptibility and

risk assessment in this study were collected from various

sources (Table 1), and constructed of a spatial database.

For each of these thematic maps, the incidence of land-

slides in their classes was evaluated.

After the landslide inventory, according to our field

observations, the thematic layers of the selected factors

governing landslides, including slope value, slope aspect,

elevation, lithology, land use/cover, distance to roads,

distance to drainage network, distance to faults were

developed. All produced layers were then combined

using weights of factors and sub-factors determined by

AHP method to generate the landslide susceptibility

map. All thematic layers were integrated into GIS envir-

onment by the combination of WLC method and AHP

results. The thematic layers of distance to drainage net-

work, to faults and to roads were calculated by Euclid-

ean distance tool in spatial analyst tools of ArcGIS

10.2.2. Landsat 8 Oli image with 30 × 30m spatial reso-

lution acquired on 15/01/2016 was also used to generate

the land use/cover map after radiometric and atmos-

pheric corrections. The land use/cover map was pro-

duced by supervised classification likelihood of satellite

data using ENVI 5.0 software.

Topographic related factors such as slope degree, slope

aspect and elevation were derived from a 30-m Digital

Elevation Model of the study area. The digital layer of

Fig. 1 Location map of the high-basin of Oum Er Rbia
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drainage network was also produced from 30-m DEM

by hydrology tools in ArcGIS 10.2.2 software.

All thematic layers were converted to raster format

having a 30m × 30m cell resolution, and each raster was

classified into several classes to calculate the numbers of

landslide and non-landslide pixels. The preparation pro-

cedure for each thematic layer is summarized below.

Topographic factors

In the present study, topographic factor data were ex-

tracted from the 30-m DEM. Slope aspect referring the

direction of the slope face (Poudyal et al. 2010; Pourgha-

semi et al. 2012) is frequently used as a landslide-condi-

tioning factor. This factor was reclassified into nine

directional classes (Fig. 2a). Slope angle considered a

main causal factor, is frequently used to map the suscep-

tibility in landslides (Wei Chen et al. 2017; Nourani et

al. 2014). In the current study, the slope angle map was

reclassified into seven classes with an interval of 5° (Fig.

2b). Elevation thematic map was extracted and gener-

ated from 30-m DEM using ArcGIS software. Ranged

between 556 and 2400 m, it was reclassified into five

classes (Fig. 2c).

Land use

Land use change is influenced by factors relating to

population needs, such as converting the agricultural

and forest land to the urban areas, conversion of forest

to farmland, and reduction of the involuntary or uneth-

ical slope for infrastructure developments. Land use is a

major factor in mapping landslide susceptibility. In this

study land use was generated using Landsat 8 Oli image,

by applying a supervised classification Likelihood with

ArcGIS 10.2.2 and Envi 5.0 software, and reclassified to

six classes, namely forest, agriculture, uncultivated land,

bare land, urban, and water body (Fig. 2d).

Distance to drainage

Rivers play a major role in landslide development (Park

et al. 2013). They can lead the failure of banks because

of the sub-quotation of slopes, and the modification of

the ground caused by gully erosion may also influence

landslide initiation (Dai and Lee 2002; Bui et al. 2011).

In the present study, the drainage network was produced

from 30-m DEM by hydrology tools in ArcGIS 10.2.2.

Four different buffers were generated using Euclidean

distance method to determine the degree to which the

streams could affect the bank slopes (Fig. 3a).

Distance to roads

Distance to roads is one of the major anthropogenic fac-

tors influencing landslide occurrences (Nourani et al.

2014; Yilmaz 2010). In fact, during the field works, some

landslides owing to road construction work are detected.

In the current study, four different buffer zones were

generated with an interval of 250 m (Fig. 3b).

Distance to faults

Geological fault areas are in general, highly susceptible

to landslides because the surrounding rock strength

decreases due to tectonic breaks (Chen et al. 2017). In

this study, the fault buffers were reclassified into five cat-

egories to produce the distance to faults map at a 1000

m interval using Euclidean distance (Fig. 3c), based on

the geological map of Rabat.

Lithology

Lithology is a frequently used factor in landslide suscep-

tibility analyses (Althuwaynee and Pradhan 2016). The

lithology map extracted from 1:500000-scale geology

map of Rabat showed that the study area is covered with

various types of lithological units. These units were clas-

sified into seven classes as illustrated in Fig. 3d. Most

landslides occur on clayey and marly lands along Srou

Table 1 Sources of data used for the study

Data Description Source

Landsat 8 OLI Downloaded https://earthexplorer.usgs.gov

Aster GDEM (Digital Elevation Model DEM)
Resolution 30 m

Downloaded https://earthexplorer.usgs.gov

Slope angle and Slope aspect Derived from DEM 30m DEM 30m

Elevation (m) Derived from DEM 30m DEM 30m

Aspect Derived from DEM 30m DEM 30m

Land use Derived from Landsat 8 Oli image and field observation. Landsat 8 Oli image

Faults Digitized from 1:500.000 geological map of Rabat Geological map of Rabat 1:500.000

Roads Extracted Google Earth

Rivers Extracted DEM 30m

Landslide location Evidence of Landslide within the study area Field data/internet study and other research
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River and Oum Er Rbia River in the north and the

middle of the study area.

Susceptibility mapping

The AHP method was used to find the relative weight

and priority of individually factor and sub-factor causing

landslides in the high basin of Oum Er Rbia. AHP is an

approach to decision-making multi-objective multicriter-

ion, which allows the user to arrive at a scale rather

pulled off a set of alternative solutions (Saaty, 1980). It

helps decision makers to discover the best suits of their

objective and their understanding of the problem. This

method is widely used in landslide susceptibility analysis.

The process is implemented in some consecutive steps

such as: develop the hierarchical structure of the project,

perform binary (binary) comparisons of criteria against

the objective, establish comparative judgment matrix,

calculate priority vectors, give the Random Index value

(AI), calculate the average of the value λmax), calculate

the coherence index (IC), calculate the Coherence Ratio

(RC), establish a table of complete comparisons of criteria,

establish a sub-criteria in relation to the number of criteria

studied, establish the comparison table sub-criteria, deter-

mine the performance of the relative value of each criter-

ion by contribution to the value of the criteria, calculate

the aggregation of projects, establish the comparison by

peers of alternatives of studied, establish the table of

complete comparisons alternatives, determine the per-

formance of the relative value of each alternative by report

to project aggregation, calculate final project aggregation,

and express final decision (Table 2).

In this hierarchical classification approach, it is also pos-

sible to check the coherence of our approach by calculating

the consistency or consistency ratio (CR) expressed by Eq.

(1). The latter constitutes an acceptance test of the weights

of the various criteria (Saaty 1977). This step aims to detect

Fig. 2 Landslide contributing-factor layers produced for the study area: (a) slope aspect, (b) slope degree, (c) elevation, (d) land use
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any inconsistencies in the comparison of the importance of

each pair of criteria. The CR consistency ratio is approxi-

mately a mathematical indicator of the judgment concern-

ing a decision made randomly; it is calculated using Eq. (1).

CR ¼
CI

RI
ð1Þ

Where RI is the random consistency index, and CI is

the consistency index that is expressed as Eq. (2).

CI ¼
λmax−1

n−1
ð2Þ

Where λmax is the largest or principal Eigen value of

the matrix and is calculated from the matrix and n is the

order of the matrix. According to Saaty, the coherence ra-

tio must be ≤10% or an imprecision of less than 10%. The

principle consists in comparing the judgment with the

random weighting of the elements. Finally, the acquisitive

weights were integrated the various causative classes in a

single landslide susceptibility index using Eq. (3).

LSI ¼
X

n

i¼1
Ri �W i ð3Þ

Where Ri is the rating classes, each layer and Wi is the

weights for the each of the landslide conditioning factors.

The resulting LSI-map was classified into five classes

(very low, low, moderate, high, and very high) based on

natural breaks to define the class intervals in the land-

slide susceptibility map.

Fig. 3 Landslide contributing-factor layers produced for the study area: (a) distance to drainage network, (b) distance to roads, (c) distance to

faults, (d) Lithology
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Susceptibility mapping

After developing the landslide susceptibility map of the

Oum Er Rbia high-basin, it was necessary to verify the

accuracy of the landslide susceptibility model used in

this study. A proper validation was conducted by com-

paring between the map obtained from the AHP model

and the landslide inventory map. It was realized by

means of the Receiver Operating Characteristics (ROC)

method. The ROC method is widely used to estimate

the validity of a model, which predicts the location of

the case (occurrence) of a class by comparing an image

of adequacy illustrating the probability that this class oc-

curs, and a Boolean image shows where this class exists.

ROC supplies a diagnosis that can be used to distin-

guish two classes of events and to display the perform-

ance of the classifier ROC curves (Sweets 1988;

Gorsevski et al. 2006), typically feature true positive rate

on the Y-axis, and false positive rate on the X-axis

(Soeters and van Westen 1996; Williams et al. 1999). It

means that the top-left corner of the plot is the “ideal”

point - a positive forgery of zero and has a positive real

rate of one. It is not very realistic, where the zone under

the curve (AUC) characterizes the quality of a system of

forecast by describing the capacity of the system to be

correctly anticipated, the occurrence or non-occurrence

of pre-defined “events” (Nie et al. 2001). The ideal model

displays a curve that has the largest AUC; the AUC

varying from 0.5 (random prediction, represented by the

diagonal straight line) to 1.0 (Fawcett 2006; Nandi and

Shakoor 2010).

Results and discussion

In this study, a GIS-based AHP as a multicriteria evalu-

ation approach was used to identify the potential landslide

occurrences in the Oum Er Rbia high basin. Eight land-

slide conditioning factors i.e. slope degree, aspect, eleva-

tion, lithology, land use, distance to drainage network,

distance to roads and distance to faults, were employed

for susceptibility analysis.

The AHP model is conventionally based on a rating

system provided by expert opinion. In fact, expert opin-

ion is very useful in resolving complex problems like

landslides. However, to some extent, opinions may

change for every individual expert, and thus may be sub-

jected to cognitive limitations with uncertainty and sub-

jectivity. Therefore, it is important to analyze the spatial

relationship between the landslide conditioning factors

and landslide locations. In this study, spatial analysis of

each parameter and field observations were considered

for expert judgment. As shown in Tables 3 and 4, pair-

wise comparison matrix for the factors and sub-factors

and their relative weights are processed based on Saaty

(2001) methodology. CR was calculated for all the fac-

tors and it was less than 0.10, which means that weights

attributed were suitable and reliable. As a result, land-

slide susceptibility map was produced in GIS. The LSI

Table 2 Fundamental scale of Saaty (1977)

Value Definition Explanation

1 Equally important Two decision elements equally influence the parent decision element.

3 Moderately more important One decision element is moderately more influential than the other.

5 Much more important One decision element has more influence than the other.

7 Very much more important One decision element has significantly more influence over the other.

9 Extremely more important The difference between influences of the two decision elements is extremely significant.

2, 4, 6, 8 Intermediate judgment values Judgment values between equally, moderately, much, very much and extremely.

Table 3 Pairwise comparison matrix and normalized principal eigenvector for landslide causative factors as required for applying the

AHP method

Pair-wise comparison matrix Weight

Lithology Slope Land use /
land cover

Distance to
road

Distance
to drainage

Distance
to fault

Elevation Aspect

Lithology 1 0.363

Slope 1 1.00 0.288

Land use/land cover 1/5 1/2 1 0.136

Distance to road 1/5 1/4 1/2 1 0.710

Distance to drainage 1/9 1/8 1/4 1/2 1 0.480

Distance to fault 1/8 1/9 1/5 1/8 1/5 1 0.037

Elevation 1/8 1/7 1/5 1/2 1/2 1/5 1 0.270

Aspect 1/8 1/8 1/2 1/2 1/2 1/2 1 1 0.310
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value of the study area ranging between1.88 and 17 was

reclassified into five landslide susceptibility classes: very

low, low, moderate, high, and very high-using the

natural break classifier (Fig. 4). Based on the results of

analyses as shown in Table 5, very low, low and moder-

ate susceptible occurrences represent 30.16%, 12.66%,

and 25.75% of the total study area, respectively. The high

and very high susceptibility areas represent, respectively,

22.59% and 9.11% of the total study area (Table 5).

According to the landslide susceptibility map (Fig. 4),

areas with very high landslide vulnerability are in the

northern and eastern parts of the watershed along

valleys close the drainage network characterized by steep

slopes promoting erosion and slides. The western area

has very low vulnerability areas having flatter terrain,

dense forest cover and sparse forest cover. As well noted

in the landslide susceptibility map, landslides mainly

affect the clayey formations locating on steep riverbed

slopes. The outcropping formations characterized by the

higher percentage of clay or marls are deforested and

plowed by local farmers. The work of these lands makes

them, in addition to their leaching and erosion, less con-

solidated and more permeable, and therefore vulnerable

to landslides. The carbonate and sandstone rocks, which

have high mechanical resistance, presented valueless

landslide densities of landslides. However, they are mod-

erately involved in landslides when they form an inclined

substratum of the clayey and marly formations. Ground

truth verification, the location points of landslides were

collected using the Global Position System (GPS) device

during field visits (Fig. 4).

For instance, distance to faults, to drainage network,

slope and lithology are the most important causative fac-

tors followed by slope aspect, elevation, while causative

factors like distance to roads and land use are less import-

ant. However, sometimes some of these less important

preconditioning factors could have a triggering effect but

under specific conditions (He and Beighley, 2008). For

example, new road excavations or further construction on

the land susceptible to landslides may activate landslide

occurrence, as well as the presence of temporary water

Table 4 Weights of sub-factors using AHP pairwise matrix

Causal factors Sub-factors Weights CR

Elevation 556–1000 0.153 0.096

1000–1500 0.418

1500–2000 0.272

2000–2300 0.91

> 2300 0.051

Aspect Flat 0.319 0.043

North 0.211

Northeast 0.150

East 0.104

Southeast 0.08

South 0.056

Southwest 0.034

West 0.032

Northwest 0.013

Slope 0–5 0.256 0.060

5–10 0.297

10–15 0.186

15–25 0.112

25–35 0.870

35–50 0.440

> 50 0.180

Distance to drainage 0–250 0.221 0.006

250–500 0.124

500–750 0.37

750< 0.024

Land use Forest 0.374 0.044

Agriculture 0.251

Uncultivated land 0.160

Bare land 0.111

Urban 0.680

Dam EL HANSALI 0.360

Distance to roads 0–250 0.232 0.006

250–500 0.098

500–750 0.071

750< 0.024

Distance to Faults (1)0–200 0.319 0.006

(2)200–400 0.211

(3)400–600 0.320

(4)600–1000 0.560

(5)1000< 1.04

Lithology Alluvion,silt
Clay

0.424
0.265

0.096

Basalt 0.148

Limestone 0.790

Table 4 Weights of sub-factors using AHP pairwise matrix

(Continued)

Causal factors Sub-factors Weights CR

Carboniferous 0.05

Dolomite 0.330

Sandstone 0.16

Red marne 0.38

Marne-Blanca flit 0.154

Marno_white limestone 0.387

Shale
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rainfall. Moreover, this is the case for most of the land-

slides in our study area that are recorded mostly near

roads. Besides, the village of El Kbab located on the south

side of the Srou River having a steep slope is subject to

landslides due to lack of land use planning, construction

of houses and deforestation. To validate the precision rate

of landslide susceptibility model (map) in the current

study, using the AUC method, the total landslides

observed in the study area were divided into two groups:

70 and 30% of 50 landslide locations were used for train-

ing and validation of models, respectively. Success rate

and prediction rate curves were created on the basis of

training data and validating data, respectively. Therefore,

fifty landslide location points were collected using the

Global Position System GPS device during field visits and

compared with five levels of susceptibility map. The ROC

curve was produced by plotting cumulative percent of LSI

in descending order against cumulative percent of land-

slides on X and Y axis, respectively (Fig. 5). Area under

curve (AUC) value of accuracy curve was calculated by

simple trapezium method and its value was 0.767. The

analysis revealed that the global success rate of the land-

slide susceptibility zonation map is 76.7%.

Certainly, numerous approaches for the mapping of

the susceptibility in landslides developed for the last two

decades, i.e. that is a mapping based on the inventory,

the statistical analysis, the heuristic, semi-quantitative,

quantitative, probabilistic and multicriteria decision.

However, none of these approaches is universally ac-

cepted for effective analyses of susceptibility in the land-

slide, because their accuracies are still discussed. In this

study, a GIS-multicriteria decision-making process has

Fig. 4 Landslide susceptibility map based on AHP model

Table 5 Areas of susceptibility map classes

Susceptibility classes Area (km2) Area (%)

Very low 1089.59 30.16

Low 457.45 12.66

Moderate 930.04 25.75

High 816.10 22.59

Very high 318.50 9.11

Total 3611.68 100.00
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been applied of its utmost importance to determine the

probable landslide occurrences. This approach involves

consideration of several landslide explanatory variables

whose identification of the contribution of each of them

constitutes a challenge. Therefore, AHP was solicited to

derive priority scales of different landslide causative

factors and sub-factors, through pairwise comparisons

based on the expert judgments. From the spatial

effectiveness of the generated landslide susceptibility

map checked by AUC (76.7% of accuracy), it is seen that

the used model yielded a good result for landslide

susceptibility mapping in the study area.

Despite these encouraging results and the flexibility of

the model, the main issue is that of causality related to

landslides in our study area. This issue has been discussed

by some scientists in such worldwide cases (Chacon et al.

2006; Van Westen et al. 2006). The lack of high-resolution

images and DEMs, of large-scale geological maps, of

detailed forest maps, of soil maps, and of landslide data in

the study area, constituted the major constraints in select-

ing the parameter data related to landslides and in time.

For these reasons, especially the lack of publicly available

landslide information in the Oum Er Rbia high basin, the

AHP method was selected because it is still useful,

especially for large-scale assessments or for areas with no

available landslide inventory (Zhou et al. 2016).

Conclusions

The landslide is a vital natural hazard, and therefore, the

recognition of areas at risk of landslides and the map-

ping of the susceptibility to landslides are the interest of

responsible organizations and researchers. Landslide

susceptibility analysis can be done under the circum-

stance of having few existing data about the factors

causing landslides using AHP method, which allows fast

and practical analysis of landslides based on the collec-

tion of data and manipulation and the analysis of the ne-

cessary environmental data for landslide susceptibility.

The Oum Er Rbia high basin is prone to landslides

due to their geological and geomorphological setting. In

this study, the spatial relationship between field landslide

occurrences and causative factors, including elevation,

slope degree, slope aspect, lithology, land use/cover,

distance to drainage network, roads, and faults were

assessed using AHP and GIS techniques. The perform-

ance of the model was validated using 30% of the data of

landslides mapped by field investigations using AUC

plots. The landslide susceptibility map was classified

according to the natural break method into five classes

with an area of 30.16%, 12.66%, 25.75%, 22.59% and

9.11% of the total study area, for very low, low, moder-

ate, high and very high classes, respectively. The very

high and high susceptibility zones are shown along the

steep banks of the main rivers (Srou and Oum Er Rbia)

and their tributaries and along the main faults across the

study area. They are also controlled by clayey and marly

rocks, which have the highest landslide density.

Moreover, human activities namely the road and house

construction and the expansion of agricultural lands into

forested lands intervene in inducing landslides through

altering the slope stability along the river banks. The

AUC values of 76.7% supported the good accuracy of the

LSI-AHP model in landslide susceptibility assessment in

the study area, provided thus that field conditions and

characteristics were correctly determined by proper

expertise. Moreover, the landslide susceptibility map of

the Oum Er Rbia high basin provides more information

about present and future landslides, which makes it vi-

able. Such map may be helpful for planners and decision

makers for land-use planning and slope management in

the study area to provide prevention of landslide risks

and to take preventive and suitable security measures.
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