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Abstract 27 

 28 

1. The development of multi-sensor animal-attached tags, recording data at high 29 

frequencies, has enormous potential in allowing us to define animal behaviour. 30 

2. The high volumes of data, are pushing us towards machine-learning as a powerful option 31 

for distilling out behaviours. However, with increasing parallel lines of data, systems 32 



become more likely to become processor limited and thereby take appreciable amounts 33 

of time to resolve behaviours. 34 

3. We suggest a Boolean approach whereby critical changes in recorded parameters are 35 

used as sequential templates with defined flexibility (in both time and degree) to 36 

determine individual behavioural elements within a behavioural sequence that, together, 37 

makes up a single, defined behaviour.  38 

4. We tested this approach, and compared it to a suite of other behavioural identification 39 

methods, on a number of behaviours from tag-equipped animals; sheep grazing, penguins 40 

walking, cheetah stalking prey and condors thermalling. 41 

5. Overall behaviour recognition using our new approach was better than most other 42 

methods due to; (i) its ability to deal with behavioural variation and (ii) the speed with 43 

which the task was completed because extraneous data are avoided in the process. 44 

6. We suggest that this approach is a promising way forward in an increasingly data-rich 45 

environment and that workers sharing algorithms can provide a powerful library for the 46 

benefit of all involved in such work. 47 

 48 

1 │INTRODUCTION 49 

 50 

Animal behaviour has been variously defined, but generally can be defined as ‘the way in which 51 

an animal works, functions or responds to a particular situation’ (Tinbergen 1960) with 52 

consequences for lifetime reproductive success (Birkhead, Atkin & Møller 1987; Drews 1993; 53 

Krebs, Davies & Parr 1993; Krebs & Davies 2009). As such, our ability to determine animal 54 

behaviours precisely is critically important for proper understanding of animal ecology and 55 

ecosystem functioning (Krebs, Davies & Parr 1993). Indeed, it is this that explains the large 56 

variety of methodologies developed to quantify behaviour (e.g. Tinbergen 1960; Altmann 1974; 57 

Lucas & Baras 2000; Miller & Gerlai 2007; Chastin & Granat 2010). A particularly rapidly 58 

developing field in this regard is ‘biologging’ – the deployment of autonomous tags on animals 59 

to record data (Hooker et al. 2007). Specifically, the extraordinary development of electronic 60 

technology over the last 3 decades has led the progression of sophisticated miniature sensors 61 

coupled with low power consumption and rapidly expanding  memory capacity (Ropert-Coudert 62 

& Wilson 2005) so that studies using multi-sensor technology in tags on animals are now 63 

common (Brown et al. 2013). This has led from the simple animal-attached tags of the 1990s 64 

recording data once every few seconds (Wilson et al. 1994), to systems today that may record 65 



multiple channels at thousands of Hertz (Johnson & Tyack 2003). Of particular note for defining 66 

behaviours is the role played by accelerometers, gyroscopes and magnetometers, which can 67 

resolve both animal attitude in the 3 spatial axes (Yoda et al. 1999; Williams et al. 2017) and 68 

movement (Fourati et al. 2011; Noda et al. 2014). These are primary elements used in classifying 69 

behaviours (Tinbergen 1960), and so have great potential in studies of wild animals.  70 

However, the ease with which we can now record the physical manifestation of 71 

behaviour, via metrics such as pitch, roll and ‘dynamism’ in the acceleration signature (Laich et 72 

al. 2008), is tempered by the difficulties of dealing with the complexity and volume of such data. 73 

Thus, computational solutions for processing the signals are inevitable and, accordingly, there is 74 

a rich and varied literature dealing with this (e.g. Sakamoto et al. 2009; Nathan et al. 2012; 75 

Resheff et al. 2014). This includes support vector machines (Tachibana, Oosugi & Okanoya 76 

2014), regression trees (de Weerd et al. 2015), random forests (Bidder et al. 2014), neural 77 

networks (Samarasinghe 2016), linear discriminant analysis (Anderberg 2014) and template-78 

matching (Walker et al. 2015b). Each method has advantages and disadvantages (Resheff et al. 79 

2014) but prime negative issues revolve around subjectivity, whether the data are parametric, the 80 

extent of over-fitting, and the computational time involved in the process (Nathan et al. 2012). 81 

In addition, a particular weakness of many systems is that they fail to recognise the temporal 82 

sequencing of the movements that define the fundamental unit of that behaviour and the 83 

variability within them, and thereby preclude an important discriminator. For example, walking 84 

may be defined by a cluster of acceleration metrics (Bidder et al. 2014) but the fundamental unit 85 

of walking is the single step (Moe-Nilssen & Helbostad 2004) and this has well-defined 86 

properties over time (Sabatini et al. 2005) that could, for example, be used in any decision tree-87 

based approach.  88 

In this paper, we present an approach for identifying behaviours from data derived from 89 

animal-attached tags that recognises (i) the lowest common denominator (LoCoD) defining any 90 

particular behaviour (i.e. a single step is the lowest common denominator within walking) and 91 

(ii) that this lowest common denominator can be usefully broken down into base elements (BEs) 92 

(such as an increase, followed by a drop, in dorso-ventral acceleration for walking (Rong et al. 93 

2007)), all of which have to follow each other in a defined sequence for the LoCoD to be 94 

apparent. Finally, (iii), the timing of BEs within a sequence is often constrained. Thus, this 95 

process provides a recognizable key for LoCoDs of behaviours based on measurements, 96 

sequences and timings of BEs. We appreciate that much of the essence of this is inherent in some 97 

template-matching approaches (Walker et al. 2015a) but combine this with both temporal 98 



flexibility across all BEs, together with an ability to switch between and incorporate defined, 99 

often derived, metrics that provide critical information for a powerful match. We demonstrate 100 

the utility of this approach by using it to search for behaviours that have LoCoD periods ranging 101 

between fractions of a second and several minutes using data derived from animal-attached tags 102 

and compare it briefly to other computational methods.  103 

 104 

2 │MATERIALS AND METHODS 105 

 106 

For this approach, we consider primary data derived from orthogonal, tri-axial accelerometers 107 

as well as, where helpful, information from pressure- and magnetic sensors, in addition to 108 

calculated variables obtained from acceleration data, such as Vectorial Dynamic Body 109 

Acceleration (VeDBA) (Qasem et al. 2012). 110 

 111 

2.1 │ The LoCoD Method 112 

 113 

The LoCoD method involves initial consideration of the data visually by the user, who should 114 

examine the details of the movement that makes up the behaviour and reflect how this movement 115 

is expected to affect the sensors. In this, the user should identify the patterns that make up the 116 

BEs of the LoCoD and whether they can be made more distinctive by selective smoothing, as is 117 

done in many behaviour-identifying protocols anyway (Nathan et al. 2012). In addition, it is 118 

recommended that differentials be derived for any signals of interest, since these often act as 119 

excellent thresholds in derivation of the BEs (Fig. 1). Differentials are particularly important 120 

since postural data derived from acceleration (Shepard et al. 2008) are dependent, in part, on the 121 

angle of the terrain beneath the study animal (cf. the difference in sway axis during the stationary 122 

periods at the beginning and end of the walking period in Fig. 1), as well as the tag placement. 123 

Thus, working with differentials essentially standardises the signal output. 124 

 125 



 126 

Following decisions on which channels are to be used for identification of the behaviour, 127 

the conditions describing each BE are set up in ordered sequence to describe the LoCoD. Each 128 

summary condition for the BE follows a Boolean approach. For example, summary condition 1 129 

that defines BE1 of the LoCoD for a penguin walking (Fig. 2) may be asked to recognise the 130 

moment when the differential of the smoothed sway acceleration exceeds 0.25 g/s; 131 

 132 

BE1 - RECOGNISE WHEN; dAhs/dt > 0.25 g/s                                              (1) 133 

 134 

Fig. 1 – Twenty steps (the first 4 numbered) taken by a Magellanic penguin Spheniscus

magellanicus during walking on the beach, manifest by tri-axial acceleration data at 40 Hz. The 

bird starts and ends stationary, but begins to walk, with 2 small steps before rapidly changing to 

steps with clear waveforms, particularly in the sway (lateral) axis (grey line). Within the LoCoD

framework, the user is expected to identify the most useful primary data streams for the 

process. These may be expanded by deriving secondary data streams, such as smoothed values, 

to enhance BE identification. The inset shows the first 5 steps (grey line) smoothed over 0.125 s 

(black line) in the dominant waveform (the sway axis) and the rate of change of the smoothed 

data (green line). 
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where Ahs is the smoothed heave acceleration following; 135 

 136 

 𝐴ℎ𝑠 =  1𝑛   ∑ 𝐴ℎ − 𝑖𝑛−1𝑖=0                  (2) 137 

 138 

 139 

 140 

In addition, the process should recognise multiple, cross-channel sub-conditions (for positives 141 

and negatives). Thus, equation (1) might be made of 3 sub-conditions; 142 

 143 

BE1 - RECOGNISE WHEN; dAhs/dt > 0.25 g/s  144 

Fig. 2 – The first 3 steps (numbered) of the walking period shown in Fig. 1 for the 

smoothed heave axis (black line) and the rate of change of the heave axis (green line). 

The LoCoD method first identifies a feature, or combination of features, that signify the 

initiation of the first BE of the behaviour (here a differential threshold of >0.25 g/s) 

(marked A1). There is then a defined ‘dead’ time (T1), over which the program skips 
before looking for the second BE defining the behaviour (here a differential threshold of < 

-0.25 g/s) (A2) with its ‘dead’ time (T2). If these two conditions are met (as in this case) 
the LoCoD is made of 2 BEs and describes the conditions for one left stride followed by 

one right stride. The process could, however, be used for strides from one leg only, for 

example, whereupon either just A1 and T1 or A2 and T2 would be used for left and right 

strides, respectively.
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AND;  dAs/dt > 0.05 g/s 145 

    AND NOT; D > 0 m       (3) 146 

 147 

where As is the surge acceleration and D is the depth. 148 

 149 

Importantly, each sub-condition or condition can employ a time base with three elements within 150 

it that can be specified. These are; 151 

 152 

1. Presence - that the sub-condition or condition is maintained over a specified time for the 153 

statement to be TRUE 154 

2. Range - that, following identification of a true sub-condition or condition, the program 155 

can skip a defined number of data points before looking for the next BE. This is important 156 

because it can stop the program identifying multiple adjacent points as multiples of that 157 

BE, moving directly onto a search for the next BE. 158 

3. Flexibility - that the length of time over which the next BE may occur can be defined 159 

within limits. 160 

 161 

Thus, in the example above, recognition of BE1 followed by BE2 to give a LoCoD for one left 162 

stride followed by one right stride (Fig. 2) could be; 163 

 164 

(BE1) Presence  WHEN; dAhs/dt > 0.25 g/s FOR t > 0.2 s IS TRUE 165 

(BE1) Range  SKIP DATA FOR 0.25 s 166 

(BE2) Flexibility WHEN; dAhs/dt < -0.25 g/s FOR t > 0.2 s WITHIN t = 0.3 s OF END OF 167 

BE1 168 

 169 

The value of the time-based definition is that it helps deal with variation in both amplitudes and 170 

periods of waveforms. Specifically, it allows the program to; 171 

(a) be less susceptible to outliers (cf. Presence),  172 

(b) detect the beginning of e.g. a waveform (cf. A1 in Fig. 2) and then allows flexibility in 173 

time to pass the peak of that waveform (cf. Range) 174 

(c) constrain the length of time within which the next sub-element must occur for it to be 175 

considered part of the LoCoD (cf. Flexibility).  176 



We present the computational process by which the data are treated using the LoCoD method 177 

in the supplementary material 1 but also note the following  link 178 

(http://ggluck.swan.ac.uk/ftp/DDMT%20new%20version/) where the software can be downloaded. 179 

 180 

Suggestions for defining Behavioural Elements 181 

Although behavioural elements can be defined by simple inspection, the variability in the way 182 

they are manifest and the limits set to define them by the user are critical to the success of the 183 

overall algorithm for identifying behaviours. We suggest that the user first inspects the data in 184 

the form of line graphs over time to identify which data streams change predictably with the 185 

behaviour to be isolated. At this stage, the data can also be smoothed to reduce noise. In general, 186 

we note that running means are particularly valuable for smoothing out short-term outliers, 187 

diminishing noise and highlighting the major trends in waveforms; within the program above, 188 

the user can experiment with different smoothing windows to produce the clearest waveform in 189 

the data (cf. Fig. 1). Each data line to be used in the identification of a BE can then be cut from 190 

a number of examples of the BE in the data (ideally from a number of different animals) and 191 

these examples effectively superimposed on each other to show the variability in the data (Fig. 192 

3).  The same data can then be used to work out mean (and variance) numeric values for the 193 

parameters to be used in the (sensor value-based or time-based) rules to define a BE (Fig. 3). 194 

Consideration of the spread of the distribution of values of such parameters allows users to assess 195 

the extent to which the chosen thresholds will work within a population of the BEs. 196 



 197 

In order to test the applicability of the LoCoD method over different behavioural periods, we 198 

used animal data corresponding to; 199 

 200 

(a) ‘Short-period’ LoCoDs of behaviours, manifested by actions typically lasting less than 1 201 

s: The examples used for this study were single bites of sheep and single steps by 202 

penguins walking. 203 
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(b) ‘Medium-period’ LoCoD of behaviours, typically lasting several seconds: The example 204 

used here was condors thermalling. 205 

(c) ‘Long-period’ LoCoD of behaviours, typically lasting from between 30 s up to minutes: 206 

Here, we used cheetahs stalking prey. 207 

 208 

A training dataset was created for behavioural identification for each of the above species, where 209 

all cases of the given behaviour was identified either according to known instances where the 210 

behaviour had been directly observed, or recorded, or by manual identification by an expert (see 211 

Supplementary material for behaviour descriptions and LoCoD definitions). 212 

The LoCoD method was compared to other methods, see below, by considering the 213 

following metrics to assess classification performance: (1) Processing time (in seconds), which 214 

is the time spent by our single computer (to ensure that processing capacity was the same for all 215 

tasks) to identify and classify behaviours within defined data sets, and (2) Confusion Matrix-216 

based scores: These metrics include Recall and Precision, which are routinely used in such 217 

comparisons (Resheff et al. 2014). Recall (also known as Sensitivity or True Positive rate) is 218 

estimated as: True Positives / (True Positives + False Negatives); and Precision is estimated as: 219 

True Positives / (True Positives + False Negatives). These two metrics are interesting because 220 

when Recall values increase, Precision values decrease, and we can assess the performance of a 221 

model by focusing the balance between both measures. By calculating both, we have a measure 222 

that expresses the ability of the model to find a particular behaviour in the dataset (i.e., Recall) 223 

while we have also a measure that expresses the proportion of the data points that our model 224 

classified as a particular behaviour that actually was that behaviour (i.e., Precision). We do not 225 

present Accuracy values for two reasons; i) since the LoCoD method does not consider each data 226 

point individually, quantification of the identification result of a given LoCoD case cannot give  227 

a true negative result and; ii) although true negative results can be established with the machine-228 

learning methods, Accuracy can give biased results for unbalanced data sets (i.e., when the 229 

number of true positives in the confusion matrix is very different to the true negative (Sokolova 230 

& Lapalme 2009; Stąpor 2017).  231 

 232 

2.2 │Comparator methods 233 

 234 

We compared the outputs of the LoCoD method with nine different behavioural classifier 235 

models. These were; (1) K-Nearest Neighbours (K=3), (2) Linear Support Vector machines 236 



(Linear SVM), (3) Radial Basis Function kernels for Support Vector Machines (RBF SVM), (4) 237 

Decision Trees, (5) Random Forest, (6) Naïve Bayes, (7) Linear Discriminant Analysis (LDA), 238 

(8) Quadratic Discriminant Analysis (QDA), (9) Artificial Neural Networks (ANN). These are 239 

all offered within a single piece of software as freeware (AccelerRater, http://accapp.move-ecol-240 

minerva.huji.ac.il/) (Resheff et al. 2014) which facilitates protocols and testing (see a brief 241 

description of each model in Supplementary material). When using AccelerRater, we used the 242 

‘all features’ option to construct the models (selecting the “precomputed stats, Label” option from 243 

the upload tab, to ensure that we could have available the same features employed with LoCoD) 244 

and a Train-Test split (50% for training and 50% for testing) for validation as for the LoCoD 245 

method. We note though, that machine learning methods have numerous options for fine tuning, 246 

which can have an appreciable impact on the overall accuracy (Ladds et al. 2017) so our 247 

comparison between machine learning options and the LoCoD method may have disadvantaged 248 

the machine learning process. 249 

 250 

3 │ RESULTS 251 

 252 

The overall capacity of the LoCoD method to detect specified behaviours within varied datasets 253 

from free-living animals, was comparable, and sometimes higher, to some of the best methods 254 

otherwise tested (Tables 1 and 2). However, the speed with which the LoCoD method resolved 255 

behaviours was many times faster than the more conventional methods. For instance, the time 256 

required for the LoCoD method to process sheep biting and condor thermalling was less than 257 

1% of the time required for the best machine-learning algorithm (representing 0.04% and 0.41%, 258 

respectively). In the case of the cheetah and the penguin data, the time required for the LoCoD 259 

method to classify the walking represented 6% and 20% of the total time required for the best 260 

machine-learning algorithm (Tables 1 & 2). 261 

For sheep biting, although the best machine-learning algorithm (considering shortest 262 

processing time, together with highest recall and precision) was the QDA method, none of the 263 

used machine-learning algorithms had a good overall performance for classification (Table 1). 264 

The LoCoD method was the only approach that showed good performance in all the Confusion 265 

Matrix based scores (all above 85%). 266 

For penguin walking, there were 4 machine-learning algorithms that showed similar 267 

performance for all metrics (Nearest Neighbour, RBF SVM, Decision Tree, and Random Forest). 268 



The LoCoD method showed similar performance (Recall and Precision above 95%) but with 269 

processing times that were a fraction of the best machine-learning approaches (Table 1). 270 

Although the best machine-learning method to classify condor thermalling was QDA, 271 

most of the methods resulted in poor performance, with most requiring excessive processing 272 

times and some even unable to provide a result (marked as NA in Table 2). The LoCoD method 273 

showed comparable performance to QDA, with lower Recall, higher Precision and notably lower 274 

processing times, equating to about 0.4% that of the QDA (Table 2). Although markedly slower 275 

than the LoCoD method (it took almost 250 times longer), the manual method outperformed all 276 

other options by an extended margin (Table 2). 277 

  In a manner similar to condor thermalling, most of the methods attempting to define 278 

cheetah stalking resulted in poor performance, many of them requiring excessive processing 279 

time, with the software from some systems unable to provide a result (marked as NA in Table 280 

2). The best machine-learning method was Decision Tree. The LoCoD method showed 281 

comparable performance to this, with an approximately 10% lower Recall and Precision, but 282 

with significantly lower processing times, equating to about 6% that of the Decision Tree method 283 

(Table 2). 284 

Overall, and of particular note, was that the LoCoD method dealt particularly well with 285 

behavioural identification where the temporal variability of the behaviour was high (defined by 286 

the range in duration of the different base elements of the behaviour). For example, in the case 287 

of the condor thermalling, manual labelling showed that each complete turn had a mean duration 288 

of 19.7 ± 4.9 s (SD), showing the variation in the presence, range and flexibility (cf. Fig. 3) of 289 

the two base elements used to define this behaviour (based on altitude gain and rates of change 290 

of magnetometry data - Supplementary Data, Table S3.3). Given that the sum of these three 291 

values limits the maximum duration of the LoCoD, all but one of the labelled LoCoD complete 292 

turns in thermal soaring were 15 seconds in duration. Similarly, where the machine-learning 293 

methods struggled with identification of the cheetah stalking, the LoCoD method performed 294 

well; the temporal range of this behaviour being 48.3 ± 16.2 s. 295 

 296 

TABLE 1 Performance and time taken for the different identification methods to identify all 297 

cases of the ‘short-period’ behaviour of sheep biting and penguin walking in their respective data 298 

sets (see supplementary material for further detail). For each method, the time taken for the 299 

algorithm to run through the complete data set is given, along with the measures of recall and 300 

precision.  301 



  302 
 

Sheep biting Penguin walking 

Method 
Time 

(s) 

Performance Time 

(s) 

Performance 

Recall Precision Recall Precision 

Manual 2039 1.00 1.00 2040 1.00 1.00 

LoCoD 1.5 0.89 0.87 14 0.98 0.98 

Nearest 

Neighbour 
243 0.00 0.00 77 0.97 0.96 

Linear SVM 3189 0.00 0.00 359 1.00 0.75 

RBF SVM 253 0.00 0.00 79 0.94 0.97 

Decision 

Tree 
242 0.00 0.00 80 0.97 0.96 

Random 

Forest 
281 0.00 0.00 82 0.98 0.96 

Naïve Bayes 317 0.00 0.00 75 0.99 0.76 

LDA 264 0.00 0.00 74 0.99 0.76 

QDA 353 0.99 0.01 77 0.76 0.71 

ANN 3451 0.00 0.00 405 0.92 0.97 

 303 

  304 



TABLE 2 Performance and time taken for the different identification methods to identify all 305 

cases of ‘medium-period’ behaviour, consisting of condor thermalling and the ‘long-period’ 306 

behaviour of cheetah stalking in their respective data sets (see supplementary material for further 307 

detail). For these two behaviours, a number of machine-learning methods were not run to 308 

completion due to some system error, generally after more of 20 hours of processing time 309 

(marked with NA). For each method, the time taken for the algorithm to run through the complete 310 

data set is given, along with the measures of recall, and precision.  311 

 312 
 

Condor thermalling Cheetah stalking 

Method 
Time 

(s) 

Performance Time 

(s) 

Performance 

Recall Precision Recall Precision 

Manual 2220 1.00 1.00 180 1.00 1.00 

LoCoD 9 0.87 0.73 7.2 0.89 0.89 

Nearest 

Neighbour 
2182 0.14 0.26 4045 0.99 0.98 

Linear SVM NA NA NA NA NA NA 

RBF SVM NA NA NA NA NA NA 

Decision 

Tree 
2358 0.01 0.35 3470 0.99 0.99 

Random 

Forest 
2998 0.00 0.00 4217 1.00 0.98 

Naïve Bayes NA NA NA 3179 0.19 0.03 

LDA 2152 0.01 0.01 3016 0.06 0.26 

QDA 2157 0.54 0.91 NA NA NA 

ANN NA NA NA NA NA NA 

 313 

 314 

4 │DISCUSSION 315 

 316 

4.1 │ Speed versus accessibility considerations in identifying behaviours 317 

 318 

In his seminal work on behaviour, Tinbergen (Tinbergen 1960) defined behaviours by noting 319 

prescribed changes in animal movement over time. This approach gets to the heart of behaviour 320 



description and is one that should be accessible by those using animal-attached sensors, e.g. 321 

accelerometers, magnetometers and gyroscopes (Johnson & Tyack 2003), that record body 322 

postures and movement in its various forms over time. Indeed, the precision with which 323 

movement descriptors such as angular velocity and acceleration can be measured has catalysed 324 

many studies of animal behaviour by workers using such smart tags (Yoda et al. 1999). More 325 

information about the movement from multiple sensors, many of which measure tri-axially to 326 

cover the 3 space dimensions anyway (Johnson & Tyack 2003; Wilson, Shepard & Liebsch 327 

2008), can lead to very comprehensive descriptions of movement (Yoda, Kohno & Naito 2004), 328 

something that can be further enhanced by converting primary movement data (such as 329 

acceleration) to additional derivatives (such as VeDBA (Qasem et al. 2012)). Interpretation of 330 

such diverse and complex data is not intuitive, which makes a good case for machine-learning 331 

since no specialised knowledge is required by users. Coupled with this is the expectation that 332 

machine-learning systems produce best classifications if they are provided with most data, which 333 

makes a clear case for using all possible data (Resheff et al. 2014). However, this brings with it 334 

appreciable computational challenges because every new line of information has to be 335 

considered computationally with respect to all others. Processing time therefore increases 336 

disproportionately with the inclusion of every new data stream (Murphy 2012). Indeed, although 337 

computer processing speed continues to increase roughly according to Moore’s Law, so too does 338 

our capacity to log data (Schaller 1997). Our ability to incorporate new sensors within our 339 

animal-attached tag systems (Ropert-Coudert & Wilson 2005), coupled with a proclivity to 340 

record at ever faster rates (Robert-Coudert & Wilson 2004) and derive new metrics from the 341 

base data (e.g. jerk, static- and dynamic acceleration as well as dynamic body acceleration from 342 

raw tri-axial acceleration data (Ydesen et al. 2014)) in tandem with tag deployments that may 343 

span months bringing in billions of prime data points, inevitably leads to more extended 344 

computing times.  345 

Such a compromise might be more acceptable if the performance of machine-learning 346 

approaches was exceptional, but our results show that this is not the case (Tables 1 & 2).  Our 347 

LoCoD approach requires good understanding and careful inspection of the sensor channels in 348 

order to make decisions about which data streams are most useful (and in which combination) 349 

to define the behaviour. This therefore requires some degree of specialist knowledge of the 350 

sensors used and an appreciable initial investment in time, although we would advocate that any 351 

use of sensor-acquired data ‘blind’ is not good practice anyway. Our suggestion is that the 352 

LoCoD approach specifically follows a 3 stage process; (1) where the primary data streams of 353 



interest are signal-processed to reduce noise and highlight patterns (e.g. via smoothing) over 354 

various scales, (2) where derived data streams, most notably differentials, are calculated for 355 

inclusion, if relevant (based on expectations and inspection of the behaviour in question) and (3) 356 

where conditions for sequential BEs are defined based on precise patterns in selected data 357 

streams with defined time-dependent flexibility for their execution. Such an approach is 358 

obviously more onerous for the worker than a machine-based learning technique and may be 359 

considered a disadvantage. However, this approach frees up appreciable amounts of 360 

computational time (Tables 1 & 2) by directing the machine to deal rapidly with a small fraction 361 

of the available data. This is critical for complex behaviours made up of many BEs. In the 362 

process, it allows identification of the minutia of behaviour if needed (e.g. left footsteps rather 363 

than ‘walking’) which may be important for rare, very short-lived behaviours. Indeed, the 364 

LoCoD method specifically identifies the smallest common denominator that defines a 365 

behaviour according to the sequence of BEs, for example single steps, or pairs of steps, within 366 

walking, rather than general walking per se. This leads to apparent overkill in that the approach 367 

will essentially identify every step during the tagged period, which may be more detail that many 368 

need, but steps within a defined time interval of each other can be merged without problem to 369 

produce larger bouts of walking if preferred and analysed according to behavioural type. 370 

Conversely, identification of slow, single steps, such as occur when herbivores graze, can lead 371 

to appreciable displacement over time, so their identification can be important in dead-reckoning 372 

approaches for resolving animal movement (Bidder et al. 2015). In addition, the ability to 373 

separate, for example, ‘grazing and walking’ from ‘grazing without walking’ should allow 374 

workers to recognise sub-behaviours within behaviours, something that is considered by people 375 

observing animals (Beker et al. 2010) but which are normally overlooked in tag data 376 

(Martiskainen et al. 2009). The LoCoD method performed slightly less well with our example 377 

of long-period behaviours than with short- or medium-period behaviours (Tables 1 & 2) making 378 

it apparently less useful (although the behaviour was identified in <0.5% of the time taken for 379 

the manual or machine-learning approach). Ultimately though, the absolute value of the approach 380 

depends on the extent to which the variability of the behaviour can be described by the flexibility 381 

of the algorithm used (see above). More work will be needed to determine the extent to which 382 

our results for cheetahs stalking are typical of ‘long-lived’ behaviours. 383 

 384 

4.2 │Libraries of behaviours and inter-specific interpolation 385 

 386 



An obvious advantage of explicitly defining an algorithm for a particular behaviour is that it can 387 

be stored and used for different individuals (cf. Fig. 3). However, a particular strength of the 388 

process of defining LoCoDs via BEs extends beyond this. This is because algorithms can be 389 

compared inter-specifically, and cognisance taken of changing values within the individual BEs 390 

to help predict what might be expected for new species. For example, the details of locomotion 391 

are  known to be a broad function of mammal size and leg length (Christiansen 2002) so BEs 392 

coding for this should change in their specified conditions accordingly. Indeed, such specified 393 

conditions could be regressed against e.g. body mass to make predictions. As part of this general 394 

process, we anticipate that an online library could be created, which provides effective 395 

algorithms for determination of defined behaviours, which workers may readily consult for their 396 

own applications. Success in this venture may result in researchers using such algorithms without 397 

particular comprehension or time invested so that user expertise might eventually mirror those 398 

that employ machine-learning techniques. Against this, inter-specific variation beyond simple 399 

allometric expectations may serve to reduce the performance of this proposed cross-species 400 

approach (see Campbell et al. 2013). Either way though, having access to a defined method of 401 

determining the BEs within LoCoDs for behaviours for one species should certainly serve as a 402 

very useful starting point for users wishing to examine the same behaviour in another. 403 

 404 

5 │Conclusions 405 

 406 

Although the LoCoD method described here requires appreciable investment in time and 407 

understanding for workers to be able to develop appropriate algorithms for BEs, the approach 408 

clearly has value for those wishing to extract behaviours from multi-sensor data. The approach 409 

does not require a fixed sliding time window to operate, but has built-in flexibility in both time 410 

and amplitude to recognise patterns and, in addition, can be made to be ‘blind’ for a period within 411 

BEs so as not to be confused by the vagaries of variability at certain points within waveforms. 412 

This flexible template tactic, which uses a Boolean approach on only the bare minimum of data 413 

needed to recognise behaviours (ranging from those lasting less than 1 second to minutes or even 414 

hours, (cf. Horie et al. 2017), frees up processing time, making the whole process substantially 415 

more efficient. We would hope that algorithms for defined behaviours from particular species 416 

will be shared within the community to build up a potent library for the benefit of all wishing to 417 

try the approach. 418 

 419 
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Supplementary Material 1: LoCoD method operation 575 

Each command the user selects has an opcode and possibly an operand. As the user selects various 576 

commands, a list of these opcodes/operands is stored in order of entry. This is then parsed into Reverse-577 

Polish-Notation (AKA Post-Fix): 578 

 579 

 580 

 581 

 582 

 583 

 584 

 585 

 586 

 587 

 588 

 589 

 590 

 591 

 592 

 593 

 594 

 595 

 596 
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 598 

 599 

 600 

 601 

 602 

 603 

 604 

 605 

For example: 606 

If (Accel X Smoothed < 1.5) then “Mark-event” 607 

1,3,7,8,11,1.5,15,22  608 

1: If ( 609 

3: Channel (7) “Accel X Smoothed” 610 

8: < 611 

11: Value (1.5) 612 

15: ) 613 

22: Mark-event 614 

 615 

This is simply translated to Post-fix as: 616 

Accel X Smoothed (value of), Value 1.5, < 617 

3,7,11,1.5,8 618 

i.e. Post-fix would process this by reading the value of Accel X Smoothed and pushing this onto a 619 

stack, pushing value of 1.5 onto the same stack. The “<” command requires the two previously stored 620 

values on the stack. A “<” comparison between these two values results in a True or False. 621 

Read opcode/operand 

from user-generated list 

Check precedence 

compared to stack 

Add to stack or pull from 

stack to output list 

Add to output list 

End of user-

generated list? 

Store output list as RPN 

translated list 

No 



 622 

The Time-Series algorithm: 623 

Definition: ETNE is ‘Extend To Next Event’, which is where an Element’s validity is checked beyond 624 

its stated valid range. It is checked from the starting Event number to the end of Event number + Range 625 

+ Flex i.e. as far as the next Element might exist. The point where it fails (if at all) is stored 626 

For every Event stored in memory, each Element is parsed and the result stored 627 

Once all Elements have been parsed through all in-memory data, the program checks if the TS 628 

expression passes for each Event 629 

 For all n Elements, beginning from the first Event, the program begins with Element 1 630 

 The program checks if there are Elementi (Valid) consecutive points beginning at Event n to 631 

n+Valid 632 

 If Elementi has passed, the program then checks if Elementi has ETNE enabled; if so, the 633 

program also checks from Event n to Event n+Range+Flex and stores the point of fail, or 634 

simply n+Range+Flex if no fail occurred 635 

 If parsing Element > 1, the program then checks if the previous Element had ETNE as part of its 636 

construct. If so, it checks at which datapoint the previous Element failed. If it failed before the 637 

point the current Element passed, then the current Element fails. 638 

 If the current Element failed, the program then moves onto Event n+1 and starts again with 639 

Element 1  640 

 If the current Element passed, the program then moves onto the next Element 641 

 If all Elements have passed, the program then Bookmarks from the first Element’s Event to the 642 

last Element’s Event + Valid width; it then moves point n onto the end of the Bookmark just 643 

created as this behaviour’s existence has been confirmed. 644 

 645 

646 



Supplementary Material 2: Behaviour description in terms of LoCoD 647 

 648 

Any behaviour can be described by the sequence of defined motions, each motion defining a base 649 

element of the behaviour. Each base element differs in the time over which it is performed and hence so 650 

does the entire duration of the behaviour. The examples shown here have been selected as they differ in 651 

the type and number of base elements involved as well as the duration of the behaviour.  652 

 653 

 654 
 655 

FIGURE 1 Schematic diagram of a behavior in terms of; behavioural elements, a ‘dead period’ (see 656 

text) and a flexible range of time within which behavioural elements must follow for all the behavioural 657 

elements to constitute one LoCoD 658 

 659 

Short-period behaviours 660 

 661 

Sheep biting 662 

For sheep and most herbivores, grazing is a complex behaviour that can be decomposed into smaller 663 

behaviours such as biting and chewing. Biting consists in the extraction of the foodstuff from the 664 

environment and chewing is the first stage of food processing. Herbivore bites are typically short and 665 

high frequency behaviours that can occur in periods of less than a second. Biting is commonly 666 

characterized by an abrupt head movement that typically occurs in one of two main directions; forward 667 

and backward, which is also accompanied by an increase in standard movement metrics (e.g. VeDBA). 668 

These abrupt head movements indicative of biting are well represented in the surge axis of the 669 

acceleration, and the differential of this signal can be smoothed to reduce the influence of overall 670 

motion of the animal while feeding. Although sheep biting is a short-period behaviour, the duration and 671 

frequency of bites can be variable according the type of vegetation that individuals consume. For this 672 

reason, we included a flexibility window of 10 consecutive data points (corresponding to 0.25 s if the 673 

data are recorded at 40 Hz) to be able to detect this variability (see supplementary information 2 for 674 

detail). 675 

Flexible range Element 1 Dead period 

Element 2 

Identified behaviour 



 676 
 677 

FIGURE 2 Schematic diagram to demonstrate how the single bites of a sheep can be defined within the 678 

BE and flexible search criteria (colour coding for these as in Fig. 1). For precise details, see 679 

supplementary information 2. Four single bites are shown here as performed in sequence. 680 

 681 

Walking Penguin 682 

In contrast to the dive, the signal created by a penguin as it walks is comparatively short-period and 683 

complex, yet highly stylised in its pattern of motion. As the penguin makes a double step in walking, it 684 

sways from side to side, creating peaks and troughs in the smoothed signal in the sway axis of the 685 

acceleration. The differential of this signal can be smoothed again to reduce the noise manifest in 686 

effects of style or gait on the overall motion of the behaviour and can thus be used to classify all 687 

examples of a double step in walking. Differences in speed will still be apparent however, and so the 688 

use of a time flexible algorithm to classify the behaviour is ideal (see supplementary information 2 for 689 

detail).  690 

 691 



 692 
FIGURE 3 Schematic diagram to demonstrate how walking by a penguin can be defined within various 693 

BEs, dead elements and flexible search criteria (colour coding for these as in Fig. 1). For precise details, 694 

see supplementary information 2. 695 

 696 

Working example with penguin walking 697 

 698 

We present a step-by step example of the application of the LoCoD method to label walking behaviour 699 

within a section of data recorded from the device attached to the Magellanic Penguin (penguin 700 

walking_data section.raw). This includes a video attached (penguin walking.mp4) of the precise actions 701 

undertaken during the process. [Note that the program provided can load acceleration data even if they 702 

are not derived from the ‘Daily Diary’ provided that the data are arranged in columns with TAB as a 703 

separator. In this case, the filename must be Xxx.col and under ‘file of type’, the ‘col’ section needs 704 

using. In this case, you will be asked to specify sampling rate.] 705 

Firstly, walking is identified as the signal in Figure 3 and a pattern of change identified in the smoothed 706 

y-acceleration. The specific process (mirrored in the video) is; 707 

1. Load raw data file with 40 Hz sampling frequency 708 

2. Smooth the acceleration 709 

3. Derive the differential of the smoothed y-acceleration 710 

4. Use the ‘display overlay window’ to establish thresholds from templates 711 

5. Define the base element equations based on the values in the display 712 

6. Open ‘build a time series based behaviour’ and define time series windows 713 

7. Bookmark matches to the template 714 

8. Further rules can be applied to improve classification accuracy. In this case, walking can be 715 

regarded as a continuous behaviour so we merge bookmarks that occur within 80 data points (2 716 

seconds at 40 Hz sampling) and then remove bookmarks that are fewer than 80 data points in 717 

duration.  718 

9. Note that all walking is correctly identified by this process. 719 

10. These bookmarks can be exported as a master txt file for analyses in other software.  720 

 721 

722 



Medium-period behaviour 723 

 724 

Themalling Condor 725 

During thermal soaring, a condor must make a series of complete rotations to maintain a position within 726 

the thermal and rise in the updraft. Each complete rotation can easily be seen in the magnetometer data 727 

as the bird turns through all headings in relation to magnetic north. Hence each complete turn is defined 728 

by a sine wave pattern in the x-axis of the magnetometer sensor, the length of which depends on the 729 

time it takes for the bird to complete the turn. The behaviour is also expected to increase in duration 730 

from seconds to minutes through a single climb and with increasing thermal strength and so this 731 

behaviour lends itself to classification with temporal flexibility rather than any restricted classification 732 

by pair-wise correlation, for example. In terms of classification the sine wave can be reduced to two 733 

base elements, the first and second halves of the complete turn (see supplementary information 2). 734 

 735 
FIGURE 4 Schematic diagram to demonstrate how thermal soaring by a condor can be defined within 736 

various BEs, dead elements and flexible search criteria (colour coding for these as in Fig. 1) using 737 

patterns in the output from the magnetometer and barometric pressure sensor. For precise details, see 738 

supplementary information 2. 739 

 740 

741 



Long-period behaviour 742 

Cheetah Stalking 743 

When a cheetah stalks its prey, it reduces the acceleration signal in its movement, crouching low to the 744 

ground, moving slowly closer to its prey. Thus, in terms of signal outputs, the rate of change of 745 

smoothed acceleration defines the stalk poorly as there is very little change in the animal’s postural 746 

orientation. Instead, the defining feature is a lack of variation in any of the three acceleration signals 747 

and hence a consistently low VeDBA. In this stalking phase, as the animal moves in on its prey, 748 

changes in the smoothed magnetometry signals may also be evident although the rate of change in 749 

directional orientation is not specific to the behavior. The chase follows the low VeDBA stalk 750 

immediately. This is characterized by sprinting and a dramatic increase in the dynamism of movement, 751 

resulting in an extremely high VeDBA relative to other behaviours.   Stalking behavior in the cheetah 752 

can therefore be identified using the two BEs that make up the LoCoD; i) a low VeDBA stalk, followed 753 

by ii) a high VeDBA chase, each BE lasting at least several seconds.  754 

 755 

 756 
 757 

FIGURE 5 Schematic diagram to demonstrate how stalking by a cheetah can be defined within various 758 

BEs, dead elements and flexible search criteria (colour coding for these as in Fig. 1). For precise details, 759 

see supplementary information 2. 760 
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Supplementary Material 3: LoCoD method algorithm design 763 

Table S3.1: LoCoD method algorithm design for sheep biting. The different design components showed 764 

in this table are; the variables used for processing, the base elements identified, and the time series of 765 

those base elements. Numeric values shown refer to numbers of consecutive data points recording at 40 766 

Hz so that, for example, the smoothing window is over 1 s. 767 

 768 

  769 

Sheep Biting – short-period behaviour 

Processing Signal Smoothing 

window 

Differential range 

VeDBA 40 - 

Acc y 2 5 

Base elements Bite 

 

If (VeDBA smoothed > 0.25) AND ABS(Diff_Accel y)>0.65)  then 

mark events  

(Include forward and backward head movement by using ABS()  

Time series Element Present range Flexibility 

1 Head movement 

(Forward or Backward) 

1 - 10 



Table S3.2: LoCoD method algorithm design for penguin walking. The different design components 770 

showed in this table are; the variables used for processing, the base elements identified, and the time 771 

series of those base elements. Numeric values shown refer to numbers of consecutive data points 772 

recording at 40 Hz. 773 

Penguin Walking – short-period behaviour 

Processing Signal Smoothing 

window 

Differential range 

Acc y 10 5 

Base elements Step left If (SM (Diff_Accel Y smooth, 5) < -0.1) then mark events  

Step right If (SM (Diff_Accel Y smooth, 5) > 0.1) then mark events  

 

Time series element present range Flexibility 

1 Step left 6 16 16 

2 Step right 6 - - 

 774 
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Table S3.3: LoCoD method algorithm design for condor thermalling. The different design components 776 

showed in this table are; the variables used for processing, the base elements identified, and the time 777 

series of those base elements. Numeric values shown refer to numbers of consecutive data points 778 

recording at 40 Hz. 779 

Condor Thermalling – medium-period behaviour 

Processing signal Smoothing window Differential range 

pressure 830 200 

Mag x 40 80 

Base elements ½ turn 

section 1 

if((smooth(diff_mag_x_smooth,20)>0) AND 

(diff_pressure_smooth<0))then mark events 

½ turn 

section 2 

if((smooth(diff_mag_x_smooth,20)<0) AND 

(diff_pressure_smooth<0))then mark events 

 

Time series element present range Flexibility 

1 ½ turn section 1 200 400 200 

2 ½ turn section 2 200 - - 

 780 
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Table S3.4: LoCoD method algorithm design for cheetah stalking. The different design components 782 

showed in this table are; the variables used for processing, the base elements identified, and the time 783 

series of those base elements. Numeric values shown refer to numbers of consecutive data points 784 

recording at 40 Hz. 785 

Cheetah Stalking – long-period behaviour 

Processing signal Smoothing 

window 

Differential range 

VeDBA 10 NA 

Base elements Stalk If (SM (VeDBA Smoothed, 5 ) < 0.5) then mark events 

Chase If (SM (VeDBA Smoothed, 5 ) > 0.55) then mark events  

Time series element present range Flexibility 

1 Stalk 400 600 1200 

2 Chase 340 - - 

 786 

Supplementary Material 4: LoCoD and Machine learning performance  787 

Here, we provide a brief description of each machine learning algorithm available in AccelerRater: 788 

K-Nearest neighbors: This is a non-parametric method that labels a new sample/observation using a 789 

vote between the K points in the training data set nearest to it. The method is a primitive form of 790 

machine learning that is often referred to as ‘lazy learning’ because induction occurs during run time. 791 

By default, we set K=3. For more detail, see James et al. (2013) and Bidder et al. (2014). 792 

Linear SVM: Linear support vector machines compute the maximum margin hyperplane between two 793 

classes. The multi-class extension used computes such a hyperplane between every two classes and uses 794 

a vote to determine the class for a new point quantifying the similarity of a pair of observations using 795 

Pearson correlation. More detail is provided by James et al. (2013). 796 

RBF kernel SVM: This model is similar to a Linear SVM, but instead of using Gaussian kernels 797 

employs Radial Basis Functions (RBF) kernels. The algorithm automatically determines centres, 798 

weights and thresholds that minimize an upper bound on the expected test error. See Scholkopf et al. 799 

(1996) for more detail. 800 

Decision tree: This is a probabilistic method that works on binary decisions that are constructed 801 

hierarchically. Basically, this method consists of a set of hierarchical decision rules developed to predict 802 

the class of unclassified samples. Each rule can branch into another rule or a terminal category. 803 

Random forest: This method consists of a combination of decision trees where each classifier is 804 

generated using a random vector sampled independently from the input vector. This means that the 805 

procedure is similar to a decision tree but includes introduced stochasticity. Instead of potentially using 806 

all the variables to determine the best split at each node, only a randomly selected subset of variables is 807 

used. For more detail, see Breiman (1999) and Breiman (2001). 808 

Naïve Bayes: The Naïve Bayes algorithm is a simple probabilistic classifier that calculates a set of 809 

probabilities by counting the frequency and combinations of values in a given data set. The algorithm 810 

uses Bayes theorem and has a strong assumption that all attributes are independent given the value of 811 

the class variable (i.e., features are conditionally independent). More detail is given in Patil & Sherekar 812 

(2013). 813 



LDA: The Linear Discriminant Analysis method is basically a linear model assuming Gaussian 814 

distributions with equal covariance. See James et al. (2013) for more detail. 815 

QDA: The Quadratic Discriminant Analysis method is the same as LDA, but without assuming equal 816 

covariance (i.e., assumes that each class has its own covariance matrix). For more information, see 817 

James et al. (2013). 818 

ANN: Artificial Neural Networks (ANNs) are computer-based algorithms that imitate the structure and 819 

behavior of neurons in the human brain. These algorithms can be trained to recognize and categorize 820 

complex patterns. Pattern recognition is achieved by adjusting parameters of the ANN by a process of 821 

error minimization through learning from experience. They can be calibrated using any type of input 822 

data and the output can be grouped into any given number of categories. More detail is given in Bishop 823 

(1995). 824 

825 
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Table S4.1: LoCoD and Machine learning performance for sheep biting. Where performance is 844 

measured in terms of the number of True Positive (TP), True Negative (TN), False positive (FP) and 845 

False Negative (FN) results and the performance metrics of Recall (R), Precision (P) and Accuracy (A) 846 

have been calculated. Note that for the Machine learning methods, each data point is labelled, so it is 847 

possible to assign a category of TN. However, for the LoCoD method, data is labelled within the 848 

LoCoD, so it is not possible to assign a category of TN as a non-existent LoCoD cannot be falsely 849 

identified. For the latter, an accuracy value cannot be calculated.  850 

behaviour Sheep biting 

 
Time (s) 

Performance Cases 

 R P A TP FN FP 

Manual 2039 1 1 1 171 0 0 

LoCoD 1.5 0.887 0.871 NA 156 35 29 

Nearest Neighbour 243 0.000 0.000 0.998 0 0 171 

Linear SVM 3189 0.000 0.000 0.998 0 0 171 

RBF SVM 253 0.000 0.000 0.998 0 0 171 

Decision Tree 242 0.000 0.000 0.997 0 171 0 

Random Forest 281 0.000 0.000 0.998 0 171 0 

Naïve Bayes 317 0.000 0.000 0.998 0 0.0171 171 

LDA 264 0.000 0.000 0.998 0 0 171 

QDA 353 0.988 0.002 0.977 169 3 75 

ANN 3451 0.000 0.000 0.988 0 0 171 
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Table S4.2: LoCoD and Machine learning performance for penguin walking represented by single 853 

steps. Where performance is measured in terms of the number of True Positive (TP), True Negative 854 

(TN), False positive (FP) and False Negative (FN) results and the performance metrics of Recall (R), 855 

Precision (P) and Accuracy (A) have been calculated. Note that for the Machine learning methods, each 856 

data point is labelled, so it is possible to assign a category of TN. However, for the LoCoD method, 857 

data is labelled within the LoCoD, so it is not possible to assign a category of TN as a non-existent 858 

LoCoD cannot be falsely identified. For the latter, an accuracy value cannot be calculated. 859 

behaviour Penguin walking 

 
Time (s) 

Performance Cases 
 

R P A TP FN FP 

Manual 2040 1.000 1.000 1.000 343 0 0 

LoCoD 14 0.982 0.984 NA 335 8 8 

Nearest Neighbour 77 0.971 0.965 0.973 337 6 6 

Linear SVM 359 1.000 0.752 0.862 343 0 81 

RBF SVM 79 0.939 0.973 0.964 322 21 6 

Decision Tree 80 0.965 0.964 0.971 331 12 9 

Random Forest 82 0.979 0.964 0.976 336 7 9 

Naïve Bayes 75 0.992 0.761 0.866 340 3 0 

LDA 74 0.988 0.762 0.867 343 0 78 

QDA 77 0.759 0.709 0.771 261 82 76 

ANN 405 0.925 0.966 0.947 317 26 13 
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Table S4.3: LoCoD and Machine learning performance for condor thermalling. Where performance is 863 

measured in terms of the number of True Positive (TP), True Negative (TN), False positive (FP) and 864 

False Negative (FN) results and the performance metrics of Recall (R), Precision (P) and Accuracy (A) 865 

have been calculated. Note that for the Machine learning methods, each data point is labelled, so it is 866 

possible to assign a category of TN. However, for the LoCoD method, data is labelled within the 867 

LoCoD, so it is not possible to assign a category of TN as a non-existent LoCoD cannot be falsely 868 

identified. For the latter, an accuracy value cannot be calculated. The machine learning methods 869 

presented in this table are those that could be completed within 5 hours. 870 

 871 

behaviour Condor thermalling 

 
Time (s) 

Performance Cases 
 

R P A TP FN FP 

Manual 2220 1 1 1 146 0 0 

LoCoD 9 0.87 0.73 NA 127 19 47 

Nearest Neighbour 2182 0.144 0.257 0.797 21 125 11 

Decision Tree 2358 0.006 0.355 0.838 1 145 0 

Random Forest 2998 0.000 0.000 0.840 0 146 0 
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Table S4.4: LoCoD and Machine learning performance for cheetah stalking. Where performance is 874 

measured in terms of the number of True Positive (TP), True Negative (TN), False positive (FP) and 875 

False Negative (FN) results and the performance metrics of Recall (R), Precision (P) and Accuracy (A) 876 

have been calculated. Note that for the Machine learning methods, each data point is labelled, so it is 877 

possible to assign a category of TN. However, for the LoCoD method, data is labelled within the 878 

LoCoD, so it is not possible to assign a category of TN as a non-existent LoCoD cannot be falsely 879 

identified. For the latter, an accuracy value cannot be calculated. The machine learning methods 880 

presented in this table are those that could be completed within 5 hours. 881 

 882 

behaviour Cheetah stalking 

 
Time (s) 

Performance Cases 
 

R P A TP FN FP 

Manual 180 1 1 1 10 0 0 

LoCoD 7.2 0.89 0.89 NA 8 1 1 

Nearest Neighbour 4045 0.996 0.986 0.983 10 0 9 

Decision Tree 3470 0.999 0.986 0.985 10 0 10 

Random Forest 4217 1 0.985 0.985 10 0 10 

Naïve Bayes 3179 0.189 0.030 0.897 2 8 1 

LDA 3016 0.056 0.259 0.984 9 0 9 
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