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The receptor tyrosine kinase AXL, activated by a complex interaction between its ligand growth arrest-specific protein 6 and

phosphatidylserine, regulates various vital cellular processes, including proliferation, survival, motility, and immunologic response.

Although not implicated as an oncogenic driver itself, AXL, a member of the TYRO3, AXL, and MERTK family of receptor tyrosine

kinases, is overexpressed in several haematologic and solid malignancies, including acute myeloid leukaemia, non-small cell lung

cancer, gastric and colorectal adenocarcinomas, and breast and prostate cancers. In the context of malignancy, evidence suggests

that AXL overexpression drives wide-ranging processes, including epithelial to mesenchymal transition, tumour angiogenesis,

resistance to chemotherapeutic and targeted agents, and decreased antitumor immune response. As a result, AXL is an attractive

candidate not only as a prognostic biomarker in malignancy but also as a target for anticancer therapies. Several AXL inhibitors are

currently in preclinical and clinical development. This article reviews the structure, regulation, and function of AXL; the role of AXL

in the tumour microenvironment; the development of AXL as a therapeutic target; and areas of ongoing and future investigation.

AXL, first isolated in 1988 in a screen for transforming genes in
patients with chronic myeloid leukaemia that progressed to ‘blast
crisis’ (Liu et al, 1988), was later characterised by two groups in 1991
(Janssen et al, 1991; O’Bryan et al, 1991). O’Bryan et al identified an
overexpressed, transforming complementary DNA (cDNA) in
human myeloid leukaemia cells that they called AXL, a name
derived from the Greek anexelekto, meaning uncontrolled. Simulta-
neously, Janssen et al independently identified the same transforming
cDNA, which they called UFO (a reference to its unidentified
function), from NIH3T3 mouse fibroblasts transfected with DNA
from a patient with a chronic myeloproliferative disorder. These
cDNAs were predicted to encode a novel receptor tyrosine kinase
(RTK), now referred to as AXL or UFO. In the years since its
identification, AXL has become an increasingly attractive target for
anticancer therapies given its implication in an ever-expanding list of
cellular processes across various normal and malignant tissue types.

STRUCTURE, SIGNALLING, AND REGULATION

The AXL protein is characterised by an extracellular structure
consisting of two fibronectin type 3-like repeats and two immunoglo-
bulin-like repeats along with its intracellular tyrosine kinase domain.
Along with the other members of the TYRO3, AXL, and MERTK

(TAM) family, AXL has a KWIAIES amino acid sequence within its
intracellular tyrosine kinase domain (Graham et al, 2014). The
KWIAIES motif, unique to TAM family members, is critical for kinase
activity and shares close homology to similar sequences in related
tyrosine kinases, including a similar motif in RET, which harbours the
M918T-activating mutation frequently found in medullary thyroid
cancer (Toledo et al, 2016). AXL also broadly shares homology with
other RTKs, including FGFR, EGFR, and PDGFR.

AXL, like the other TAM members, is activated in part via
interaction with the vitamin K-dependent protein ligand growth
arrest-specific protein 6 (GAS6; Stitt et al, 1995; Varnum et al,
1995). Studies suggest that this interaction may be constitutive and
is not sufficient for activation of downstream effectors (Fujimori
et al, 2015). Additional evidence points to GAS6-independent
mechanisms of AXL activation. In the context of AXL over-
expression, abundant AXL protein may lead to aggregation of AXL
extracellular domains on adjacent cells (Bellosta et al, 1995) or
even ligand-independent homodimerisation (Burchert et al, 1998)
with subsequent downstream activation in both cases. In addition,
AXL may heterodimerise with non-TAM RTKs and initiate AXL-
dependent programs with or without their dimerisation partner’s
ligand (Meyer et al, 2013; Vouri et al, 2016). Canonical activation
of AXL via GAS6 also requires an additional interaction between
GAS6 and the phospholipid phosphatidylserine (PtdSer; Meyer
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et al, 2015). Although ubiquitously expressed in cell membranes,
PtdSer normally is located exclusively in the inner portion of the
phospholipid bilayer. However, upon apoptotic cell death, PtdSer
flips to the external portion of the bilayer, where it is accessible to
the AXL–GAS6 complex on adjacent cells (Ravichandran, 2010).

Following activation, AXL undergoes homodimerisation, autop-
hosphorylates and transphosphorylates its intracellular tyrosine
residues, and recruits SH2 domain-containing effector molecules
and adaptor proteins to these phosphotyrosine residues (Braunger
et al, 1997; Sasaki et al, 2006). Signalling pathways activated
downstream of AXL (Figure 1) include PI3K-AKT-mTOR, MEK-
ERK, NF-kB, and JAK/STAT (Fridell et al, 1996; Tai et al, 2008;
Ruan and Kazlauskas, 2012; Paccez et al, 2013). The function of
activated AXL in normal tissues includes the efficient clearance of
apoptotic material and the dampening of TLR-dependent inflam-
matory responses and natural killer cell activity (Sharif et al, 2007;
Rothlin et al, 2007). AXL loss-of-function results in increased

inflammation and even autoimmunity (Weinger et al, 2011;
Nguyen et al, 2013; Li et al, 2015).

AXL’s role in reducing inflammation may also be exploited by
viruses that evade immune response by externalising PtdSer,
thereby activating TAM RTKs and surreptitiously gaining entry
into cells. Specifically, AXL has been proposed as a putative entry
receptor for West Nile, Ebola, and Zika viral infections (Lantin le
Boulch et al, 1991; Perera-Lecoin et al, 2014; Nowakowski et al,
2016). Further illustrating this role, AXL is upregulated in vivo
after hepatitis C virus infection, and in vitro findings suggest that
AXL inhibits interferon alpha and, therefore, antiviral response
(Read et al, 2015).

AXL protein is expressed in normal tissues, particularly in bone
marrow stroma and myeloid cells, and in tumour cells and tumour
vasculature (Neubauer et al, 1994; Shieh et al, 2005). AXL
expression in these tissues raises concern for potential haemato-
logic and/or immune side effects, including autoimmunity and
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Figure 1. Spectrum of cellular processes regulated by AXL activity. AXL, following activation by its ligand GAS6 along with an interaction between
GAS6 and phosphatidylserine (PtdSer), dimerises and cross-phosphorylates (yellow circle) its partner receptor. This activation regulates an array of
cellular pathways as illustrated at the bottom of the figure. Inset: AXL activity plays a complex role in immune regulation that includes the inhibition
of cytokine release, TLR signalling, and T-cell activation by antigen-presenting cells such as dendritic cells (above), as well as specific antitumor
killing by natural killer cells (below).
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even inflammation-induced malignancy, associated with AXL
blockade (Bosurgi et al, 2013).

The regulation of AXL/AXL expression includes both transcrip-
tional and post-transcriptional mechanisms (Figure 2A). MZF1 has
been shown to bind to the AXL promoter, to transactivate
promoter activity, and, in turn, to result in a dose-dependent
increase in AXL mRNA expression (Mudduluru et al, 2010b).
Additional transcription factors have been implicated less
definitively in AXL regulation, including HIF1a and AP1
(Mudduluru et al, 2010a; Rankin et al, 2014). Other data indicate
that AXL expression is further regulated by methylation of CpG
islands, which flank Sp1 transcription factor binding sites in the
AXL promoter (Mudduluru and Allgayer, 2008). Analyses in
dendritic cells showed that AXLmRNA is upregulated in a STAT1-
dependent manner downstream of activation of TLR signalling
(Rothlin et al, 2007). Similarly, in macrophages, AXL expression is
induced by TLR ligands and other markers of inflammation,
including tumour necrosis factor, but this effect was inhibited by
treatment with corticosteroids (Zagorska et al, 2014).

In dendritic cells, AXL expression is abundant, and in bone
marrow-derived macrophages, AXL expression is minimal; how-
ever, there is essentially no difference in AXL mRNA copy number
in these cells, suggesting a significant role for post-transcriptional
regulation of AXL expression (Zagorska et al, 2014). Supporting
the role of post-transcriptional AXL regulation, one study found
that AXL is a target for the ubiquitination activity of the E3 ligase
Cbl-B in natural killer cells (Figure 2B; Paolino et al, 2014). Other
studies have identified target sequences for microRNA (miRs)

including miR-34 and miR-199a/b in the AXL 30 untranslated
region (Figure 2C), with correlative findings confirming the
effects of miRs on AXL expression (Mackiewicz et al, 2011;
Mudduluru et al, 2011). Further supporting the role for post-
transcriptional regulation of AXL expression is the fact that, in
spite of frequent AXL overexpression in many tumour types,
genetic mutation and amplification events are relatively rare in
these malignancies. AXL mutations, fusions and/or amplifica-
tions are found in 3% or fewer of breast cancer, head and neck
squamous cell carcinoma, lung adenocarcinoma, lung squamous
cell carcinoma and acute myeloid leukaemia (Figure 2D) – each
an example of a malignancy in which AXL over-expression is
proposed to play a significant role in disease development,
progression, metastasis or treatment resistance (Cancer Genome
Atlas Research N, 2012; Cancer Genome Atlas Research N, 2013;
Cancer Genome Atlas Research N, 2014; Cancer Genome Atlas
N, 2015; Ciriello et al, 2015). One study reported a fusion gene
construct between AXL and MBIP in large-scale sequencing of
primary lung adenocarcinoma samples (Seo et al, 2012), but this
fusion event has not been reported elsewhere and is unlikely to
offer further insights into the overexpression of AXL seen in
these tumour types. Contrastingly, mRNA and protein expres-
sion analyses suggest high AXL/AXL expression in 32%
and 33–48%, respectively, of lung adenocarcinoma samples
(Shieh et al, 2005; Ishikawa et al, 2013). Similar discordance is
noted between genetic alterations and mRNA/protein expression
in head and neck squamous cell carcinoma (Lee et al, 2012), and
acute myeloid leukaemia (Ben-Batalla et al, 2013).
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Figure 2. Transcriptional and post-transcriptional regulation of AXL/AXL. (A) The promoter region upstream of the AXL transcriptional start site
(TSS) highlights binding sites for transcription factors, including hypoxia responsive element (HRE) for HIF1a, MZF1, and AP1. The promoter region
also contains numerous Sp1 binding sites, which are sites of potential repressive methylation events (red). (B) AXL is a target for Cbl-B-dependent
ubiquitination (Ub) resulting in proteasomal degradation. (C) AXL 3’ untranslated region (UTR) contains target sequences for miRs, including
miR-34 (pictured) and miR-199a/b, resulting in reduced translation via ribosomal blockade and increased RNA degradation. (D) Data adapted from
cBioPortal show the infrequency of AXL genetic alterations in selected tumour types. Frequencies are as follows: breast cancer, 2.2% (18/816);
head and neck squamous cell carcinoma, 1.4% (4/279); lung adenocarcinoma, 3% (7/230); lung squamous cell carcinoma, 2.8% (5/178); and acute
myeloid leukaemia, 0% (0/191).
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AXL EXPRESSION IN THE TUMOUR AND TUMOUR
MICROENVIRONMENT

AXL is a putative driver of diverse cellular processes that are
critical for the development, growth, and spread of tumours,
including proliferation, invasiveness and migration, EMT, stem-
ness, angiogenesis, and immune modulation.

AXL activity and its inhibition have been demonstrated to
modulate proliferation in various tissue and tumour types via
diverse downstream effectors, including AKT, MAPK, and NF-kB.
Small hairpin RNA-mediated knockdown of AXL expression in
osteosarcoma cells has been associated with decreased prolifera-
tion, as marked by Ki-67 expression, and increased expression of
apoptotic markers (Zhang et al, 2013). Similarly, in prostate cancer
cell lines, treatment with GAS6 stimulated proliferation (Sainaghi
et al, 2005), whereas AXL knockdown predictably led to decreased
proliferation (Paccez et al, 2013). Additional data suggest a similar
role for AXL in stimulating proliferation in mesothelioma, lung
adenocarcinoma, colorectal adenocarcinoma, and other malignan-
cies (Ou et al, 2011; Cui et al, 2012; Yuen et al, 2013).

Both in vitro and in vivo data implicate AXL as a driver of
invasiveness and migration. Small hairpin RNA knockdown of
AXL resulted in decreased migration and invasion in colorectal and
cervical cancer cell lines (Mudduluru et al, 2010b). AXL activity
correlates with a migratory cellular phenotype, including increased
GTP-bound forms of Rho and Rac (Koorstra et al, 2009) and
filopodial formation (Lay et al, 2007). In osteosarcoma cell lines,
AXL activation correlated with phosphorylated AKT and MMP9
expression and promoted cell migration and invasion in vitro (Han
et al, 2013). In fact, MMP9 dependence is a recurring feature in
multiple studies that highlight the role of AXL in stimulating
migration and invasion. For example, inflammatory breast cancer
cell lines depleted of TIG1, a protein predicted to stabilise and
prevent the degradation of AXL, have decreased MMP9 expression
and decreased in vitro invasion and migration (Wang et al, 2013).
MMP9 expression is also enhanced in vivo by AXL in an NF-kB-
dependent manner (Tai et al, 2008).

In light of AXL’s role in invasiveness and migration, it is
unsurprising that multiple studies have found an association
between AXL and EMT. AXL was strongly correlated with a
mesenchymal phenotype in a 76-gene EMT signature in NSCLC
(Byers et al, 2013), and this correlation subsequently has been
substantiated in additional tumour types (Mak et al, 2016). Our
data and other studies have shown that AXL knockdown leads to
downregulation of transcription factors required for EMT,
including Slug, Twist, and Zeb1, and to increased expression of
E-cadherin (Asiedu et al, 2014; Lee et al, 2014; unpublished data).
Furthermore, depletion of AXL in squamous cell carcinoma cell
lines increases cell-cell adhesion, suggesting a reversion to an
epithelial-type morphology (Cichon et al, 2014).

AXL plays an important role in stem cell maintenance. For
example, AXL expression is positively regulated by EZH2 in glioma
cells, and silencing AXL in these cell lines mimicked the effect of
EZH2 inhibition (Ott et al, 2012). EZH2 has been suggested to play
a crucial role in stem cell maintenance. Supporting AXL’s function
in stem cell maintenance, one study of cutaneous squamous cell
carcinoma cell lines showed that downregulation of AXL correlated
with loss of cell–cell adhesion and diminished TGFb-R and WNT
signalling, while AXL activity correlated with expression of stem
cell markers such as CD44 and ALDH1 (Cichon et al, 2014).
Similarly, in murine breast cancer cell lines, AXL expression
correlated with expression of stem cell markers, whereas down-
regulation of AXL resulted in loss of the capacity for self-renewal
(Asiedu et al, 2014).

AXL normally is expressed in capillary endothelium and
vascular smooth muscle cells (O’Donnell et al, 1999), and several

lines of evidence support a role for AXL in promoting angiogen-
esis. For example, Axl-null mice have a deficient angiogenic and
vascular permeability response to VEGF-A (Ruan & Kazlauskas,
2012). Findings from human endothelial cells suggest that lactate-
dependent activation of AXL, along with TIE2 and VEGFR2,
promotes PI3K/AKT activity and subsequent angiogenesis (Ruan
& Kazlauskas, 2013). The AXL ligand GAS6 also has been
proposed as a chemoattractant capable of inducing AXL-mediated
migration of vascular smooth muscle cells (Fridell et al, 1998).
Furthermore, HIF1a, a major mediator of hypoxia-induced genetic
programs known to promote angiogenesis, has a direct binding site
in the AXL promoter (Rankin et al, 2014).

However, data from other experimental models suggest a
potential antiangiogenic role for AXL. In chick chorion allantoic
membrane samples, GAS6 appears to inhibit VEGFA:VEGFR2-
dependent angiogenesis in an AXL-dependent manner (Gallicchio
et al, 2005). These data highlight a complex role for AXL signalling
in regulating both normal and tumour vasculature.

Given the recent emphasis on the role of immune evasion in
tumour development and metastasis, it is not surprising that the
well-characterised role of AXL in suppressing inflammation and
autoimmunity has emerged as a focal point in AXL research. One
study supported the capability of TAM RTKs to hijack proin-
flammatory signals to activate suppressors of cytokine and TLR
signalling, serving as a de facto feedback mechanism to prevent
autoimmunity (Rothlin et al, 2007). Several experiments have
illustrated the potential effect of AXL signalling on immune
surveillance for tumour cells. One study found that treatment of
murine melanoma or breast cancer models with a TAM inhibitor
reduced AXL activity and markedly decreased metastases; the
authors suggested that AXL (along with other TAMs) decreased
the activity of natural killer cells and their ability to eliminate
metastases (Paolino et al, 2014). Similarly, findings from murine
breast cancer xenograft models showed that treatment with a
monoclonal antibody that binds both human and murine AXL
inhibited activity of tumour-associated macrophages (Ye et al,
2010). These data support the idea that increased AXL expression
may be associated with decreased immune response to tumour
cells. Other data posit a role for AXL’s immunomodulatory
function in tumour development. For example, loss of AXL and
Mertk signalling in normal tissue was associated with increased
susceptibility to the induction of inflammatory signalling and,
ultimately, inflammation-induced malignancy in mice (Bosurgi
et al, 2013).

AXL AS DRIVER OF THERAPEUTIC RESISTANCE

AXL has been suggested to promote both intrinsic and acquired
resistance to chemotherapeutic, immunotherapeutic and molecu-
larly targeted agents in both solid and haematologic malignancies.
In the earliest example of AXL-associated drug resistance, the
expression of AXLmRNA in cisplatin-resistant ovarian cancer cells
was double that in sensitive cells (Macleod et al, 2005). Similarly,
AXL expression is induced by chemotherapy treatment and
has been correlated with Bcl2 and Twist expression and with
chemoresistance in acute myeloid leukaemia cell lines (Hong et al,
2008). Additional studies have shown comparable correlations
between AXL expression and chemoresistance in breast, colon, and
lung cancers and in other cancers (Asiedu et al, 2014; Heckmann
et al, 2014; Kim et al, 2015).

There are myriad examples of AXL activity correlating with
resistance to targeted therapies. For example, in EGFR-mutated
NSCLC, AXL was the most highly overexpressed gene in erlotinib-
resistant xenograft models, and treatment with an AXL inhibitor
restored sensitivity to erlotinib in an otherwise resistant cell line
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(Zhang et al, 2012). Further findings showed that the over-
expression of a wild-type AXL construct was sufficient to impair
response to erlotinib in vitro, whereas a kinase-impaired AXL
mutant induced no such resistance (Zhang et al, 2012).
Upregulation of AXL protein was seen in 7 of 35 patient samples
of EGFR-mutated NSCLC taken before treatment with EGFR
inhibitor and after resistance occurred, including 2 of 8 samples
with the EGFR p.Thr790Met resistance mutation (Zhang et al,
2012). Comparable data from renal cell carcinoma xenograft
models show upregulation of AXL and MET in resistance to
long-term sunitinib therapy, as well as resensitisation to
sunitinib after AXL and MET inhibition via treatment with the
tyrosine kinase inhibitor cabozantinib (Zhou et al, 2016).
Prominent upregulation of AXL was also found in gastrointest-
inal stromal tumours with resistance to imatinib (Mahadevan
et al, 2007). Selective knockdown of AXL restored sensitivity in
imatinib-resistant chronic myeloid leukaemia cell lines (Dufies
et al, 2011). Additional evidence supports a correlation between
AXL expression and resistance to HER2 inhibitors in HER2-
amplified breast cancer (Liu et al, 2009) and oesophageal
squamous cell carcinoma (Hsieh et al, 2016), as well as resistance
to cetuximab in head and neck squamous cell carcinoma (Brand
et al, 2014, 2015).

Many studies have also linked AXL expression to resistance to
targeted therapies beyond RTK targeted agents. For example, in
PIK3CA mutant or amplified head and neck squamous cell
carcinoma, resistance to PI3K inhibitors is linked to high AXL
expression (Elkabets et al, 2015). Mechanistic studies have
suggested that PI3K-independent activation of mTOR occurs as a
result of AXL-EGFR dimerisation and activation of PLCg
(Elkabets et al, 2015). Similarly, in BRAF V600E mutant
melanoma, low MITF to AXL expression ratio is associated with
resistance to BRAF inhibitors (Konieczkowski et al, 2014; Muller
et al, 2014). Recent analyses investigated AXL and MITF
expression with single cell resolution in melanoma and found
that every tumour analysed possessed both AXL-high and MITF-
high cells at baseline (Tirosh et al, 2016). However, there was a
statistically significant tendency for tumours to show predomi-
nant AXL-high transcriptomic programs upon relapse following
BRAF±MEK inhibition compared with matched pretreatment
samples (Tirosh et al, 2016). These data suggest that small
populations of AXL-high cells are preexistent within the tumour
and that their persistence and/or proliferation may drive
inherent resistance even in an apparently responding tumour
leading to inevitable relapse. This fits clinical observations
wherein appropriately targeted therapies almost invariably
generate an initial clinical response that is, unfortunately,
short-lived because of almost-as-inevitable therapeutic
resistance.

The increasing role of immune checkpoint blockade has led to
rapidly growing interest in resistance mechanisms to these agents
and, perhaps expectedly given AXL’s role in immune evasion,
emerging data show that increased AXL expression is a component
of an anti-PD-1 resistance program in non-responders (Hugo et al,
2016). Even radiation resistance has been linked to AXL
expression, as radiation-resistant HNSCC xenograft and patient-
derived xenograft models expressed increased AXL, whereas AXL
knockdown restored sensitivity to radiation in HNSCC cell lines
(Brand et al, 2015).

Unsurprisingly, AXL/AXL expression, or in some cases
overexpression, correlates with poor prognosis in multiple
tumour types including lung adenocarcinoma (Ishikawa et al,
2013), breast invasive ductal carcinoma (Tanaka et al, 2016),
high-grade ovarian cancers (Lozneanu et al, 2016), oesophageal
squamous cell carcinoma (Hsieh et al, 2016). The prognostic
implication of GAS6/GAS6 expression is less clear, with data
supporting GAS6 protein as a poor prognostic marker in lung

adenocarcinoma (Ishikawa et al, 2013), but data finding either no
significance (Ben-Batalla et al, 2013) or better prognosis
(Ishikawa et al, 2013) with increased GAS6 mRNA expression
in acute myeloid leukaemia and lung adenocarcinoma, respec-
tively. This raises the possibility that GAS6-independent
activation of AXL, as previously described, may be driving
therapeutic resistance and prognosis.

AXL AS THERAPEUTIC TARGET

Because of AXL’s crucial role in both tumour biology and
therapeutic resistance, AXL is an attractive target for antineo-
plastic therapies. Recent preclinical studies have shown benefits
of AXL inhibition in such diverse scenarios as increasing
apoptosis in glioblastoma (Onken et al, 2016), sensitising
tumours to PARP inhibition (Balaji et al, 2017), overcoming
resistance to PI3K inhibitors (Elkabets et al, 2015) and
synergising with anthracycline treatment in breast cancer models
(Wang et al, 2016), among others. Several targeted therapies in
development and already in use have nonspecific activity against
AXL (Table 1), including bosutinib, approved by the United
States Food and Drug Administration for Philadelphia chromo-
some-positive chronic myeloid leukaemia. Bosutinib targets
SRC/ABL tyrosine kinases in addition to AXL and can overcome
resistance to imatinib, which may be AXL-dependent (Khoury
et al, 2012). A similar ability to overcome imatinib resistance in
gastrointestinal stromal tumour cell lines has been shown with
amuvatinib, an inhibitor of c-Kit, FLT3, RET, PDGFRb, and
AXL (Mahadevan et al, 2015).

Cabozantinib, another multi-kinase inhibitor, targets VEGFR,
MET, FLT3, c-Kit, and AXL and has been approved by the
United States Food and Drug Administration for treating both
medullary thyroid cancer and renal cell carcinoma. Several
ongoing clinical trials (Table 1) are investigating cabozantinib as
a treatment for NSCLC (as a monotherapy: NCT01639508; in
combination with erlotinib: NCT00596648, NCT01708954, and
NCT01866410) and may highlight its activity against AXL in
overcoming or delaying resistance to EGFR inhibitors. A similar
trial is investigating cabozantinib in combination with panitu-
mumab, an EGFR-targeting monoclonal antibody, in KRAS
wild-type colorectal cancer (NCT02008383).

MET/AXL inhibitor glesatinib (MGCD265) yielded a striking
clinical response when used to treat a patient with metastatic
NSCLC with AXL amplification (Do et al, 2015). However, AXL
amplification was identified in only 0.7% of the 408 NSCLC
samples analysed as part of the lung adenocarcinoma and lung
squamous cell carcinoma TCGA projects (Cancer Genome Atlas
Research N, 2012; Cancer Genome Atlas Research N, 2014),
suggesting such an amplification event is rare. This drug is
currently in an ongoing Phase 2 trial (NCT02544633) for patients
with NSCLC expressing MET alterations.

Several specific AXL inhibitors have recently entered early-
phase clinical trials, including BGB324 (previously R428; in
combination with erlotinib in NSCLC: NCT02424617; in
combination with cytarabine in acute myeloid leukaemia:
NCT02488408) and BPI-9016M (safety in advanced solid
tumours: NCT02478866). A monoclonal antibody targeting
AXL (YW327.6S2) and an AXL decoy receptor (GL2I.T) are
currently in preclinical development. Additionally, an oral AXL
inhibitor (TP-0903) is expected to enter Phase 1 clinical trial in
November 2016 (in advanced solid tumours: NCT02729298).
These approved drugs and ongoing and pending clinical trials
highlight the potentially wide-ranging safety and efficacy of AXL
inhibition.
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AXL IN THE FUTURE

Based on our current knowledge of AXL’s role in therapy
resistance, future studies will help to determine whether AXL has
a translational application as a biomarker for predicting
therapeutic response to established drugs. Beyond this, the
growing number of AXL inhibitors, and the ongoing clinical
trials employing them, will allow us to determine the therapeutic
potential of AXL targeting. However, unlike other targeted
agents such as EGFR or ALK inhibitors, alterations at the DNA
level are uncommon and are unlikely to be the optimal
biomarkers for AXL inhibitors. It will be important to explore
in clinical trials whether AXL expression levels (either protein or
mRNA) can be used to identify those patients who get the most
benefit from AXL targeting and, if so, what the most robust
assays will be for quantifying this biomarker. AXL may also
prove important in the field of cancer immunotherapy.
Currently, even among those malignancies for which they are
approved, the majority of patients do not respond to immune
checkpoint blockade and even more develop resistance to these
drugs after initial response. In light of AXL’s role in suppressing
immune response, there is a strong rationale for pursuing AXL
inhibition in combination with immune checkpoint blockade in
a clinical trial setting to overcome this resistance and enhance
antitumor immunity. Given AXL’s putative role as a mediator of
EMT and cancer stemness, inhibiting AXL may also reveal
intriguing results regarding the role of these processes in
metastatic potential and/or chemosensitivity and chemoresis-
tance. In particular, clinical trials expanding on the preclinical
data suggesting that inhibition of AXL could reverse resistance to
conventional chemotherapies or targeted therapies, are already
being pursued with more likely to follow. Further research is also
needed to elucidate the precise downstream signalling mechan-
isms required for each of AXL’s roles to design rational
combination therapies and to determine mechanisms of
resistance. AXL has emerged as a major therapeutic target and
a potential biomarker in several cancer types, and future

investigations are warranted to develop novel and effective
treatment and diagnostic tools based on this target.
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