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GIVING MEANINGFUL INTERPRETATION TO ORDINATION AXES:
ASSESSING LOADING SIGNIFICANCE IN

PRINCIPAL COMPONENT ANALYSIS
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Abstract. Principal component analysis (PCA) is one of the most commonly used tools
in the analysis of ecological data. This method reduces the effective dimensionality of a
multivariate data set by producing linear combinations of the original variables (i.e., com-
ponents) that summarize the predominant patterns in the data. In order to provide meaningful
interpretations for principal components, it is important to determine which variables are
associated with particular components. Some data analysts incorrectly test the statistical
significance of the correlation between original variables and multivariate scores using
standard statistical tables. Others interpret eigenvector coefficients larger than an arbitrary
absolute value (e.g., 0.50). Resampling, randomization techniques, and parallel analysis
have been applied in a few cases. In this study, we compared the performance of a variety
of approaches for assessing the significance of eigenvector coefficients in terms of type I
error rates and power. Two novel approaches based on the broken-stick model were also
evaluated. We used a variety of simulated scenarios to examine the influence of the number
of real dimensions in the data; unique versus complex variables; the magnitude of eigen-
vector coefficients; and the number of variables associated with a particular dimension.
Our results revealed that bootstrap confidence intervals and a modified bootstrap confidence
interval for the broken-stick model proved to be the most reliable techniques.

Key words: bootstrap; eigenvector coefficients; multivariate analysis; numerical ecology; power;
randomization.

INTRODUCTION

The use of ordination methods to summarize and
describe patterns in multivariate data sets is a long-
standing approach employed by ecologists. These
methods are useful in reducing the effective dimen-
sionality of large data sets by generating combinations
of variables showing common trends of variation. The
ability to identify relationships and minimize the effect
of random variation may contribute substantially to the
recognition of meaningful patterns in the data. Ordi-
nation results are customarily interpreted on the fol-
lowing basis: (1) eigenvalues quantifying the amount
of variation from the original data summarized by or-
dination axes, and (2) eigenvectors that contain the
coefficients that relate the original variables (hereafter
referred to as loadings) to the ordination axes. A com-
mon approach for examining ordination results is to
establish the number of axes to be inspected, and then
determine which variables are related to each nontrivial
axis. Once these decisions are made, multivariate
scores position the observations (e.g., sites, species)
along ordination axes.

Manuscript received 10 October 2000; revised 9 December
2002; accepted 10 December 2002; final version received 14 Jan-
uary 2003. Corresponding Editor: P. Legendre.
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Determining the number of interpretable (i.e., non-
trivial) ordination axes is perhaps the greatest challenge
in both multivariate ecological and statistical literature
(e.g., Pimentel 1971, Karr and Martin 1981, Stauffer
et al. 1985, Jolliffe 1986, Zwick and Velicer 1986,
Grossman et al. 1991, D. Jackson 1991, J. Jackson
1993, Franklin et al. 1995) and has received far more
attention than the problem of deciding which variables
contribute to nontrivial axes. In part, this is due to the
fact that either relevant information can be lost or ran-
dom variation can be included if the correct number of
ordination axes is not selected. If the researcher is in-
terested only in using ordination axes as a means of
reducing dimensionality when summarizing patterns of
variation in the data (e.g., Ricklefs and Miles 1994,
Knight and Morris 1996, Arita 1997, Weiher et al.
1998, Diniz-Filho et al. 1998), then the issue of de-
termining the number of nontrivial axes is the most
relevant. Nevertheless, most ecological applications at-
tempt to provide interpretations of ordination axes (see
Legendre and Legendre 1998 for a review).

The interpretation of ordination axes is subjective
(Kendall 1980, Cadima and Jolliffe 1995). This is due,
in part, to the fact that ordination tools are used mainly
as means of data exploration rather than hypothesis
testing. Once the number of eigenvalues is established,
the interpretation of the relative contribution of vari-
ables to each ordination axis is rarely questioned. As
Jollifee (1986:51) stated: ‘‘It is remarkable how often
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it seems to be possible to interpret the first few principal
components, though it is probable that some interpre-
tations owe a lot to the analyst’s ingenuity or imagi-
nation.’’ Although a variety of heuristical and statistical
methods have been proposed to assess the degree of
association of variables with ordination axis, most re-
searchers rely on ‘‘rules of thumb’’ for assessing the
magnitude of loadings (e.g., Chatfield and Collins
1980, Richman 1988). From an ecologist’s view, Karr
(in Karr and Martin 1981) concluded, ‘‘I am confident
that most biologists could generate plausible post-facto
explanations for high loadings after randomly assign-
ing habitat names to the variables in random number
tables.’’ Alternatively, there are several statistical ap-
proaches such as jackknife (Gibson et al. 1984, Peres-
Neto and Bizerril 1994), bootstrap confidence intervals
(Jackson 1993), and randomization methods (Faith and
Norris 1989) to test if loadings differ significantly from
zero.

In this study, we compare the performance of a va-
riety of approaches for assessing the significance of
loadings in terms of type I error rates and power. In
addition, we develop and compare two novel approach-
es. We use a variety of simulated scenarios to examine
the influence of the number of dimensions in the data,
unique variables (i.e., those associated with only one
component) versus complex variables (i.e., those as-
sociated with two or more components), magnitude of
loadings and the number of variables associated with
a particular dimension on each method’s performance.
We restrict this study to principal component analysis
(PCA) because it is one of the most commonly used
tools in the description of ecological data (James and
McCulloch 1990).

STATISTICAL TESTS AND CRITERIA FOR

EIGENVECTOR ASSESSMENT

In the present study, we restricted the analysis to the
case of PCA based on correlation matrices. In this case,
variables are standardized (i.e., variables with mean 5
0.0 and standard deviation 5 1.0) and simulated sce-
narios are simpler to design because only the magnitude
of the association between pairs of variables is con-
sidered. In the case of covariance matrices (i.e., vari-
ables are only centered), one has to consider also the
variance of each variable, which would increase dra-
matically the number of possible scenarios. Nonethe-
less, when considering most fields, the majority of PCA
applications are performed on correlation matrices
(Jackson 1991:80). In the specific case of ecological
studies, correlation matrices are applied most frequent-
ly when conducting PCA on habitat or abiotic vari-
ables.

There are several alternatives for scaling eigenvec-
tors (K. Hope 1968, Jackson 1991, Peres-Neto and
Jackson 2001b. We use one that, when applied to cor-
relation matrices, produces loadings equivalent to the
Pearson product-moment correlation between the PC

scores and the individual variables. This scale is given
by multiplying unit-length eigenvectors by the square
root of their associated eigenvalues (Jackson 1991:68).
Eigenvectors scaled in this fashion are known as V
vectors (Jackson 1991:16). All methods presented in
this paper use this scaling, with the exception of two
methods that are based on the squared values of these
coefficients (i.e., V2 vectors). For simplicity, when de-
scribing each method we will refer to them as either
V vectors or V2 vectors. Our scaling choice was based
on the fact it is the one appropriate for assessing load-
ings based on certain methods applied here (see cor-
relation critical values and methods based on the bro-
ken-stick distribution). Note, however, that any trans-
formation that preserves a monotonic function between
V vectors and other scaling procedures (e.g., the ones
based on the square root of their associated eigenval-
ues; see Peres-Neto and Jackson 2001b for examples)
would provide similar results in terms of test assess-
ment.

When one is interested in evaluating the patterns
related to each principal component separately (i.e.,
interpret the positioning of observations along each
axis), it is important to evaluate which variables are
associated with the component in question. However,
one can see things also with respect to the variable,
i.e., which components summarize variation related to
any particular variable. If two or more variables are
summarized by the same or different components, it
indicates whether they share similar or different pat-
terns of covariation, thereby leading to a better inter-
pretation (e.g., structural modeling). Under the null hy-
pothesis that the correlation between a particular var-
iable and any given axis is 0, the square of a significant
loading will indicate how much of its variation is being
summarized by the particular component. Here we de-
scribe the different methods for assessing this null hy-
pothesis:

1) Cutoff rules (V vectors).—This method regards
loadings as significant when their absolute value is
larger than a certain pre-established arbitrary value. We
have considered values that were used in published
studies: 0.25 (Chatfield and Collins 1980), 0.30, and
0.50 (Richman 1988).

2) Broken-stick criterion (V2 vectors).—The broken-
stick distribution was originally applied in PCA to as-
sess the significance of eigenvalues (Frontier 1976,
Jackson 1993, Legendre and Legendre 1998). However,
the same concept can be applied to the squared loadings
of any given variable across axes in a V vector matrix.
When squaring entire rows of a V vector matrix based
on a correlation matrix, the sum of squares of any row
(i.e., variable) in a V vector matrix is unity (K. Hope
1968:48). In this way, we obtain the relative proportion
of the total variance of a variable that is accounted for
by a particular component (K. Hope 1968:49). Assum-
ing that the total variance of any particular variable is
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TABLE 1. Steps involved in the broken-stick criterion for assessing significance of loadings.

Parameter

Component

1 2 3 4 5

Step 1: obtain original loadings
Mean width
Mean depth
Current velocity
Conductivity
Suspended matter

20.458
0.741

20.786
0.931
0.645

0.788
0.559

20.003
0.252

20.448

0.162
0.231
0.510

20.049
0.542

0.374
20.238
20.338
20.118

0.297

0.045
20.169

0.087
0.231

20.002

Step 2: square loadings
Mean width
Mean depth
Current velocity
Conductivity
Suspended matter

0.210
0.549
0.618
0.867
0.416

0.621
0.312
0.000
0.064
0.201

0.026
0.053
0.260
0.002
0.294

0.140
0.057
0.114
0.014
0.088

0.002
0.029
0.008
0.053
0.000

Step 3: obtain expected values under broken-stick model
Expected values 0.457 0.257 0.157 0.090 0.040

Step 4: rank squared loadings and assess their significance according to the broken-stick model
Mean width
Mean depth
Current velocity
Conductivity
Suspended matter

0.621 (2)
0.549 (1)
0.618 (1)
0.867 (1)
0.417 (1)

0.210 (1)
0.313 (2)
0.261 (3)
0.063 (2)
0.294 (3)

0.140 (4)
0.057 (4)
0.114 (4)
0.053 (5)
0.201 (2)

0.026 (3)
0.053 (3)
0.007 (5)
0.014 (4)
0.088 (4)

0.002 (5)
0.028 (5)
0.000 (2)
0.002 (3)
0.000 (5)

Step 5: reorder loadings according to their original axes
Mean width
Mean depth
Current velocity
Conductivity
Suspended matter

20.458
0.741

20.786
0.931
0.645

0.788
0.559

20.003
0.252

20.448

0.162
0.231
0.510

20.049
0.542

0.374
20.238
20.338
20.118

0.297

0.045
20.169

0.087
0.231

20.002

Notes: The table presents original loadings (V vectors) for the stream data set, squared
loadings, ranked squared loadings (V2 vectors), and expected proportion of variance under the
broken-stick model. Values in parentheses are the original axis of a particular loading before
ranking so that they can be reordered accordingly after significance assessment. Proportions
in step 4 larger than the expected values under the broken-stick model in step 3 indicate
association of a variable with a particular component (values in bold). For instance, mean
width, mean depth, and suspended matter are associated with the second principal component.

divided randomly among all axes, it can be expected
that the distribution under the null hypothesis of the
squared loadings for a given variable along axes will
follow a broken-stick distribution. The solution for es-
timating the broken-stick distribution for any particular
variable based on a correlation matrix is simply

p1 1
b 5 Ok p ii5k

where p is the number of components (or variables)
and bk is the expected proportion of variance that the
kth component summarizes for any particular variable
under the broken-stick model. The conceptual frame-
work of the model is that if a stick is randomly broken
a large number of times into p pieces by placing (p 2
1) random points along its length, b1 would be the mean
or expected size of the largest piece in each set of
broken sticks, b2 would the mean size of the second
largest piece, and so on. Because the approach is new,
we show an example of the procedure using a data set
representing five environmental variables (stream mean
width, mean depth, current speed, conductivity, and
particulate matter) sampled across 30 sites of an East-

ern Brazilian stream (P. Peres-Neto, unpublished data).
Table 1 presents the original loadings, the squared load-
ings, and the steps involved in applying a broken stick
model to evaluate the association of a variable with a
particular component. Since expected proportions un-
der the broken-stick model are obtained in descending
order across axes, it is also necessary to rank the ob-
served squared loadings (i.e., V2 vectors) in the same
fashion. For each variable, loadings are considered to
be different from random expectation if they exceed
the values generated by the broken-stick model. Once
the process is finished, loadings and their status of re-
jection (yes/no) should be reported according to their
original axes as in step 1 (step 5, Table 1). Note that
values generated by the broken-stick model are fixed
for a particular number of variables and therefore do
not vary with sample size.

3) Correlation critical values (V vectors).—This
method simply tests loadings against the critical values
for parametric correlation from standard statistical ta-
bles. The use of standard critical values in PCA has
been criticized for two main reasons. (1) Because or-
dination axes are a composite of the original variables,
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the principal components and original variables are not
independent and thus their correlations cannot be tested
using standard statistical tables (Jackson 1993). (2)
Given that the sum of squares of eigenvectors is a func-
tion of their respective eigenvalues and that sample
eigenvalues decrease along the set of axes (even from
spherical populations, i.e., based on an identity matrix,
see Buja and Eyuboglu 1992), loadings for latter non-
trivial axes would require lower magnitudes to attain
significance than early ones. For instance, a loading
value of 0.60 may be significant on the second axis,
but not on the first. Because standard table correlation
values do not take into account the number of variables,
which is influential on the distribution of loadings,
these critical values are not suitable for assessing load-
ing significance. Appendix A contains a table showing
how 95% quantiles for sample loadings change across
components, demonstrating that standard tabled values
are in fact inappropriate.

4) Parallel analysis (V vectors).—This method was
suggested initially by Horn (1965) and reviewed in a
variety of studies (e.g., Zwick and Velicer 1986, Buja
and Eyuboglu 1992, Franklin et al. 1995). It applies a
Monte Carlo approach to generate critical values for
loadings expected under a multivariate normal popu-
lation having a spherical correlation structure. In this
population all variables are uncorrelated, and thus all
eigenvalues equal to unity, where each axis has only
one loading equal to 1.0 and the remaining ones equal
to 0.0. Note, however, that although under normality
sample eigenvalues and eigenvectors are maximum
likelihood estimators (Anderson 1984), sampling so-
lutions are quite distinct from the population values
(Buja and Eyuboglu 1992; see also Discussion). The
Monte Carlo protocol used here is as follows: (1) gen-
erate random normally distributed variables N(0,1)
consistent with the original dimensions of the data ma-
trix (i.e., number of observations by number of vari-
ables) being analyzed. Note that Buja and Eyuboglu
(1992) found that the marginal distribution of the ran-
dom variables does not influence substantially the crit-
ical values generated. (2) Perform a PCA using the
matrix generated in step 1, retaining the absolute value
of one loading for each axis based on a randomly cho-
sen variable. Given that the sum of squares of eigen-
vectors along a particular row or column is fixed (i.e.,
a loss of one degree of freedom), it may be argued that
selecting loadings at random from each axis may gen-
erate less biased estimates from a spherical population
than pooling all loadings across variables or using the
values of a fixed variable across axes. However, based
on additional simulation results (not presented here),
we found no difference between the three procedures.
(3) Perform steps 1 and 2 a total of 10 000 times; and
(4) calculate for each axis the percentile intervals (e.g.,
95% for a 5 0.05) based on absolute values of loadings,
which are then used as critical values. If observed val-
ues exceed the critical value, then we reject the null

hypothesis according to the pre-established confidence
level.

5) Randomized eigenvector (V vectors).—The ran-
domization protocol was conducted as follows: (1) ran-
domize the values within each variable independently
in the data matrix; (2) conduct a PCA on the permuted
data matrix, verifying whether the absolute value of
each loading from the randomized PCA is greater than
the absolute value of corresponding loading of the orig-
inal data (i.e., the same variable from the same axis).
If the random value is greater than the observed, in-
crement the corresponding counter; and (3) repeat steps
1 and 2 a total of 999 times. The P value is then es-
timated as the probability of obtaining a loading as
large as the observed, i.e., P 5 (number of random
loadings equal to or larger than the observed 1 1)/
(number of randomizations 1 1). The observed value
is included as one possible value of the randomized
distribution, hence the addition of 1 in the numerator
and denominator (A. C. A. Hope 1968). The random
values, plus the observed value, form the distribution
of loadings under the null hypothesis.

6) Bootstrapped eigenvector (V vectors).—Boot-
strap confidence intervals for loadings (Jackson 1993)
were based on resampling entire rows from the original
data with replacement so that the bootstrapped sample
is consistent with the original dimensions of the data
matrix. One thousand bootstrapped samples were
drawn and a PCA was conducted on each of them. The
P value is then estimated as the number of bootstrapped
loadings equal to or smaller than zero for loadings that
in the original matrix were positive, or alternatively
equal to or larger than zero for loadings that originally
were negative, divided by the number of bootstrap sam-
ples. Two major drawbacks when estimating bootstrap
confidence intervals are: (1) axis reflection, which is
the arbitrary change in the sign of the eigenvectors of
any particular axis (Mehlman et al. 1994, Jackson
1995); and (2) axis reordering (Knox and Peet 1989,
Jackson 1995) where two or more axes have very sim-
ilar eigenvalues. In the latter case, eigenvectors ob-
tained from PCA bootstrap samples may come out al-
tered in their order relative to that found from the orig-
inal sample. Under either condition, inappropriate
bootstrap values in relation to the observed coefficients
are used for estimating confidence intervals, which can
provide an incorrect estimate of the probability of re-
jection. In order to address these shortcomings, we ap-
plied the following procedure to each bootstrap sample:
(1) calculate correlations between the PCA scores for
the original data matrix and the PCA scores for the
bootstrap sample; and (2) examine whether the highest
absolute correlation is between the corresponding axis
for the original and bootstrapped samples. Whenever
that was not the case, the eigenvectors were reordered.
For example, in the case where the correlation between
the first original axis and the second bootstrapped axis
was the largest correlation, then the loadings from the
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second bootstrapped axis are used to estimate the con-
fidence interval for the original first PC axis. This pro-
cedure is equivalent to performing orthogonal rotations
and correcting for reversals in the axis ordering (Milan
and Whittaker 1995). To avoid axis reflections, once
reversals were resolved, the signs of the correlations
were inspected. A negative correlation between an orig-
inal axis and a bootstrapped axis indicates a reflection
and the coefficients were converted by multiplying
them by 21.

7) Bootstrapped broken-stick (V2 vectors).—The
procedure is as described for the bootstrapped eigen-
vector; however in the present case, we determined
whether the confidence limits generated included the
values expected under the broken-stick model instead
of zero. The estimated P value was calculated as the
number of bootstrapped samples equal to or larger than
the appropriate broken-stick value, instead of zero as
in the original procedure. Axes reflections and reversals
were corrected in all bootstrapped samples using the
procedure described above. Note that by coupling a
resampling technique with the broken-stick criterion,
unlike the broken-stick criterion, critical values be-
come dependent on sample size, possibly providing a
more reliable test.

We decided to compare the parallel analysis based
on 10 000 samples, whereas for all the other methods
also based on confidence interval estimations we used
1000 samples. This decision was based on the com-
putational time constraints that would be generated if
10 000 samples were to be used for all randomization
and resampling methods. Given that critical values for
the parallel analysis are the same for all samples, the
constraint can be relaxed for this method. There were
two points that we considered when making this de-
cision. First, given that the critical values for the par-
allel analysis is generated only once (i.e., prior to test-
ing), by chance, it could be argued that their critical
values could be more influenced by sampling variation
than the ones evaluated at each sample test (i.e., ran-
domization and bootstrap based methods). Thus, we
expect that the use of larger sample sizes for estimating
the critical values based on the parallel analysis would
compensate for this chance. Note, however, that at
10 000 observations, we found that sampling variation
around the critical values was minimal. Second, we also
felt that this decision resembles the one made when
comparing methods based on standard tabled critical
values (analytical), which are based on infinite number
of samples, with methods based on randomization or
resampling (empirical), based on a restricted number
of samples.

EXAMINING TYPE I ERROR RATES AND POWER

In this study, we follow standard Monte Carlo pro-
tocols for estimating probabilities of type I error and
power for all methods described above (e.g., Manly

1997, Anderson and Legendre 1999, Peres-Neto and
Olden 2001). In this case, one simulates population
correlation matrices and manipulates them in order to
introduce a desirable effect size (i.e., loading magni-
tude). Following this simulation, a large number of
samples are taken and the test is conducted each time.
If the effect size is manipulated to be zero (i.e., the
null hypothesis is true), the probability of committing
a type I error is estimated as the fraction of tests that
erroneously rejected the null hypothesis. If the effect
size is set different from zero, the proportion of cases
in which the null hypothesis was correctly rejected is
used as an estimate of statistical power.

The first step was to design population correlation
matrices containing loadings suitable to estimate type
I error (i.e., r 5 0.0) and power (i.e., r ± 0.0), where
r denotes the off-diagonal correlation (Fig. 1). All ma-
trices were produced with nine or 18 variables and they
were divided into groups of varying number of vari-
ables to generate data dimensionality (e.g., matrix 1
has three principal components where the first one sum-
marizes the covariation of four out of nine variables
or eight out of 18 variables, Fig. 1). Note that the be-
tween- and within-dimensions correlations were fixed
to a particular uniform value. Within-group correla-
tions were equal to 0.8, 0.5, or 0.3, whereas the be-
tween-group correlations were equal to 0.5, 0.3, 0.2,
0.1, or 0.0. These matrices were designed to account
for various combinations of the following factors: num-
ber of dimensions in the data set (1, 2, 3), loading
magnitude, number of variables per component, unique
variables which load on only one principal component
(e.g., Fig. 1, matrices 1 and 4), complex variables
which load on more than one component (e.g., Fig. 1,
matrices 2 and 3), and influence of uncorrelated vari-
ables (matrices 10 to 14). Unique variables were gen-
erated by setting between-group correlations to zero,
whereas complex variables were produced by setting
between-group correlations at a level different from
zero. Note that the between- and within-groups cor-
relations were fixed to a particular value. For instance,
matrix 5 (Fig. 1) had three dimensions and each had
within-group correlations fixed at r 5 0.5 and between-
group correlation at r 5 0.2.

The second step was to generate data sets based on
the established correlation structures which, associated
with a particular marginal distribution for their vari-
ables, were considered as statistical populations. Fol-
lowing Anderson and Legendre (1999), we considered
the normal, exponential, and (exponential)3 distribu-
tions. We used sample sizes of 30, 40, and 50 obser-
vations for populations containing nine variables and
60, 80, and 100 observations for populations with 18
variables for all simulations performed throughout this
study. These sample sizes provide a ratio larger than
3:1 of the number of observations relative to variables.
The ratio 3:1 or greater was shown to provide stable
solutions in PCA (Grossman et al. 1991). To draw sam-
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FIG. 1. Correlation matrices considered in this study. The values presented are the off-diagonal intervariable correlations.
For example, in matrix 1, variables 1–4 (9 variables) or 1–8 (18 variables) were correlated with one another at r 5 0.8.
However, correlations between these and all other variables were equal to 0.

ples from a population following any particular cor-
relation matrix, we have used the following steps (see
also Peres-Neto and Jackson 2001a): (1) generate a
matrix composed by the appropriate number of obser-
vations and number of variables containing random de-
viates with mean 5 0 and variance 5 1 following one

of the three distributions considered [i.e., normal, ex-
ponential, and (exponential)3]; given that the variance
of deviates from an (exponential)3 distribution is rather
different than unity, it was necessary to standardize the
columns of the generated matrix afterward (Legendre
2000). (2) decompose the correlation matrix using Cho-
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FIG. 2. An example illustrating the rationale behind correcting for sample PCA axis reversals in relation to the PCA
population solution: (a) a correlation matrix with four variables that presents equal amount of variation in the first two
principal component axes, so that the probability of sample reversals is 50%; (b) expected type I error rates and power
estimates for loadings on the first two components for a hypothetical indefectible method (a 5 0.05); (c) the same estimates
if a correction to record the number of rejections according to its target population axis is not performed.

lesky decomposition; and (3) postmultiply the upper
triangular matrix resulting from the matrix factoriza-
tion of step 2 by the matrix of step 1. Note that the
resultant sample data matrix in step 3 follows a mul-
tivariate distribution according to the marginal distri-
bution and particular correlation matrix chosen (Fig.
1).

The final step was to estimate empirically type I error
and power by drawing a large number of random sam-
ples from each population and then applying all the
criteria and tests described previously to each sample.
Type I error rates were measured using the correlation
matrices from which their PCA generated loadings
equal to zero (i.e., matrices 1, 4, 6, 7, 9, 10, 11, 12,
13, and 14, Fig. 1). All 14 matrices (Fig. 1) generated
PC loadings different from zero (i.e., r ± 0.0) and thus
were suitable for assessing power. As a result of com-
binations of each correlation matrix and each associ-
ated marginal distribution, a total of 42 populations
were considered. For samples based on 30 (nine var-
iables) and 60 (18 variables) observations, 2000 ran-
dom samples were drawn. Due to computational time
constraints, and expected smaller sampling variation,
for samples based on 40, 50 (nine variables), 80, and
100 (18 variables), tests were evaluated on the basis
of 1000 random samples.

For sake of simplicity, only eigenvectors from the
nontrivial dimensions in relation to the population cor-
relation matrices were assessed. For example, with
populations based on correlation matrix 1 having nine
variables (Fig. 1), a total of 27 loadings distributed
along the first three axes (nine suitable for estimating
power and 18 for type I error) were assessed by each
method, whereas for population 10 a total of 18 load-
ings (six suitable for estimating power and 12 for type
I error) were tested. For matrices containing 18 vari-
ables, these values are doubled. Because the percentage
of variation contained in each dimension is the same

when contrasting the same matrix but with different
number of variables, the effects of increasing the num-
ber of variables can be better evaluated. For methods
based on a statistical criterion, sample tests were con-
ducted with and without applying the sequential Bon-
ferroni correction developed by Holm (1979; see also
Peres-Neto 1999) in order to verify the efficiency of
this correction in minimizing type I error probabilities.

In order to minimize differences related to sampling
variation in Monte Carlo simulations, all methods were
applied to the same samples for a specific correlation
matrix population. A significance level of a 5 0.05
was used for evaluating the significance of all statistical
tests. Type I error rates were estimated as the proportion
of sample tests out of 2000 that rejected the null hy-
pothesis when the null hypothesis was true (i.e., r 5
0.0 for matrices in Fig. 1); whereas power was cal-
culated as the proportion of sample tests that correctly
rejected the null hypothesis for loadings different from
zero (i.e., r ± 0.0 for matrices in Fig. 1).

The same concerns related to axis reversals apply to
the estimation of power and type I error. Due to sam-
pling variability in PCA parameters (e.g., Cadima and
Jolliffe 1995), the order of sample axes can appear
reversed in relation to the PCA solution for the pop-
ulation, and by consequence type I error and power
may not be estimated properly. For instance, consider
the correlation matrix with four variables and two di-
mensions in Fig. 2a. After 2000 sample tests, an ap-
propriate method (i.e., power 5 100% and type I error
rates 5 5%) should present the number of rejections
per loading as shown in Fig. 2b. Nevertheless, because
the first two dimensions have equal amounts of vari-
ation (i.e., eigenvalues), the probability of sample axis
reversal is 50%. If corrections are not implemented in
order to record the number of rejections of each test
according to its population axis, power and type I error
estimates would be more likely as presented in Fig. 2c.
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In the extreme case, for populations with similar or
equal eigenvalues, sample loadings can vary widely
(Buja and Eyuboglu 1992). When comparing the per-
formance of different methods, a correction for this
problem appears necessary in order to estimate type I
error rate and power appropriately. Moreover, in prac-
tical situations there is no interest in knowing if any
particular axis is at the same position relative to its
population axis. The important issue is how efficient
are the various methods in assessing structural com-
binations of variables, as found in the original popu-
lation. Therefore, the position (i.e., axis) in which the
combination of particular variables appears in the sam-
ple when related to the population is somewhat irrel-
evant provided that they are retained and interpreted.
We adopted a similar solution as provided for the boot-
strap samples in relation to the original sample in order
to minimize this problem. We applied the following
procedure for each sample: (1) calculate PCA scores
for the sample by multiplying the standardized sample
data matrix by the sample eigenvectors; (2) calculate
another set of PCA scores by multiplying the same
standardized data matrix by the reference population
eigenvectors, generating a set of scores that better ap-
proximates the population scores. Then, as in the boot-
strap case, we compared the correlations between sam-
ple and ‘‘population’’ multivariate scores to evaluate
possible reversals. After possible axis reversals were
identified and altered, the status of rejection for the
tests based on the coefficients were saved. For all cases,
we have designed correlation matrices (Fig. 1) such
that their eigenvalues are quite distinct among dimen-
sions, lessening possible axis reversals of samples.

We estimated 95% confidence intervals for both
power and type I error rates. Because we conducted a
large number of simulations, we applied a normal ap-
proximation for a binomial confidence interval with
mean p and variance p(1 2 p)/N (Manly 1997). In this
case, a 95% confidence interval was estimated as p 6
1.96 , where p is the proportion of re-Ïp (1 2 p)/N
jections and N is the number of sample trials. All sim-
ulations were carried out using a computer routine in
Borland Pascal 7.0 developed by P. Peres-Neto.

RESULTS

Probability estimates of type I error were based on
correlation scenarios that provided null loadings (i.e.,
variables with r 5 0.0, Fig. 1). Although the sequential
Bonferroni correction resulted in type I error rates for
some tests that were closer to 5%, the correction re-
sulted in an extreme reduction in power (in most cases
a loss of 50%), and therefore outcomes based on Bon-
ferroni corrections are not reported. Although proba-
bilities of a type I error were not equal within and
between groups of variables (i.e., some dimensions
were more prone to slightly higher type I errors), we
averaged type I error estimates for all loadings as we
do not see them being influential in the differences in

terms of power between methods. For instance, cor-
relation matrix 4 with nine variables provides 18 es-
timates for type I error rates distributed along three
dimensions, with the average error rate for the normal
distribution being 0.04 (Table 2). Results are only pre-
sented for samples based on 30 (nine variables) and 60
(18 variables) observations, as estimates of type I error
rates for the other sample sizes were comparable across
all scenarios (Tables 2 and 3, respectively). Note that
the expected type I error for the statistical tests is 0.05,
whereas the expected type I error for assessments based
on the broken-stick criterion and cutoff values criterion
should be zero because they were not compared against
a confidence interval. For simplicity, in the case of type
I error assessment, we established a fixed confidence
interval around the alpha level as 0.04–0.06. In this
way, any estimated type I error rate smaller than 0.04
or larger than 0.06 can be considered as significantly
different from the expected value. No method presented
type I errors comparable to the nominal alpha across
all scenarios. Assessments based on cutoff values, bro-
ken-stick criterion and the correlation critical values
resulted in excessively high probabilities. Type I errors
from the bootstrapped broken-stick, randomized eigen-
vector and parallel analysis were typically smaller than
expected. The bootstrapped eigenvector was inconsis-
tent being either slightly lower or higher in a number
of correlation scenarios.

Because all methods that were not computer inten-
sive (i.e., correlation critical values, broken-stick cri-
teria, and cutoff values) presented large type I error
rates, with the exception of the cutoff values of 0.50
for 18 variables (Table 3), we will not report the results
in terms of power for these methods as they can be
considered as invalid tests (sensu Edgington 1995). In
addition, parallel analysis and the randomization pro-
cedure, with hardly any exceptions, always exhibited
significantly lower power when compared to the boot-
strapped eigenvector and bootstrapped broken-stick
methods. Note, however, that the relative differences
between the two group of methods decreased in certain
cases as sample size and number of variables increased
(see Appendix B). Their results are shown only for
normal populations based on 18 variables so that the
general behavior of the two methods can be observed.
In addition, the pattern based on these populations is
relatively consistent across the other distributions and
for matrices containing nine variables.

Power was defined as the proportion of rejections
out of the appropriate number of sample tests (2000
for 30 and 60 observations, and 1000 for the other
sample sizes) based on population loadings different
from 0 (i.e., the null hypothesis was false). Because
loadings within any particular dimension in the pop-
ulation matrices were uniformly set, and thus differ-
ences in power estimates are due just to chance, the
estimates were averaged within dimensions. Mean es-
timates of power were examined according to their as-
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TABLE 2. Type I error estimates for all methods considered in this study based on correlation
matrices containing nine variables based on 30 observations.

Method and
distribution

Correlation matrix

1 4 6 7 9 10 11 12 13 14

Bootstrapped eigenvector
Normal
Exponential
(Exponential)3

0.07
0.08
0.08

0.04
0.04
0.04

0.01
0.02
0.02

0.06
0.06
0.04

0.06
0.06
0.03

0.08
0.07
0.07

0.04
0.04
0.04

0.08
0.07
0.09

0.06
0.07
0.05

0.02
0.03
0.03

Bootstrapped broken-stick
Normal
Exponential
(Exponential)3

0.04
0.04
0.03

0.05
0.05
0.05

0.04
0.03
0.03

0.03
0.04
0.05

0.03
0.04
0.04

0.03
0.04
0.03

0.03
0.02
0.05

0.02
0.03
0.03

0.02
0.02
0.02

0.04
0.05
0.04

Randomized eigenvector
Normal
Exponential
(Exponential)3

0.01
0.01
0.02

0.01
0.01
0.01

0.01
0.01
0.02

0.00
0.00
0.01

0.01
0.01
0.02

0.00
0.01
0.01

0.01
0.01
0.01

0.00
0.00
0.01

0.00
0.00
0.01

0.01
0.01
0.01

Parallel analysis
Normal
Exponential
(Exponential)3

0.00
0.01
0.03

0.01
0.01
0.02

0.01
0.01
0.03

0.00
0.00
0.02

0.00
0.01
0.03

0.00
0.00
0.03

0.00
0.01
0.02

0.00
0.00
0.02

0.00
0.00
0.02

0.00
0.01
0.03

Correlation critical values
Normal
Exponential
(Exponential)3

0.27
0.28
0.27

0.32
0.31
0.29

0.35
0.33
0.32

0.15
0.16
0.17

0.30
0.31
0.29

0.34
0.34
0.32

0.37
0.36
0.35

0.21
0.22
0.21

0.32
0.32
0.33

0.40
0.39
0.37

Broken-stick criteria
Normal
Exponential
(Exponential)3

0.18
0.19
0.20

0.26
0.26
0.25

0.31
0.30
0.29

0.12
0.12
0.14

0.24
0.25
0.23

0.26
0.27
0.25

0.31
0.31
0.29

0.21
0.21
0.22

0.29
0.29
0.30

0.36
0.35
0.34

Cutoff value (0.25)
Normal
Exponential
(Exponential)3

0.47
0.47
0.48

0.50
0.49
0.47

0.52
0.52
0.51

0.31
0.31
0.32

0.49
0.50
0.47

0.54
0.53
0.51

0.55
0.55
0.53

0.41
0.41
0.42

0.52
0.51
0.49

0.58
0.57
0.56

Cutoff value (0.30)
Normal
Exponential
(Exponential)3

0.37
0.38
0.36

0.42
0.41
0.43

0.44
0.43
0.41

0.23
0.23
0.24

0.40
0.41
0.38

0.44
0.44
0.45

0.47
0.46
0.45

0.31
0.32
0.33

0.43
0.42
0.41

0.50
0.49
0.48

Cutoff value (0.50)
Normal
Exponential
(Exponential)3

0.12
0.12
0.14

0.15
0.15
0.12

0.17
0.16
0.15

0.05
0.06
0.07

0.13
0.14
0.15

0.14
0.15
0.14

0.18
0.17
0.15

0.07
0.07
0.08

0.13
0.13
0.12

0.20
0.20
0.18

Notes: Estimates are based on the mean proportion of rejections (a 5 0.05) per 2000 tests
for all null loadings, for normal [first row within each method], exponential [second row], and
(exponential)3 [third row] populations. Confidence limits for estimates based on a 5 0.05 are
0.04–0.06.

sociated loading in the corresponding population cor-
relation matrix (Fig. 1). For the sake of simplicity,
results are only presented for tests based on sample
sizes of 30 (nine variables) and 60 (18 variables) ob-
servations. Results for the other sample sizes are pre-
sented in Appendix B. Figs. 3 and 4 show these mean
estimates for normal and (exponential)3 distributions
based on nine and 18 variables, respectively. Results
for the exponential distribution were omitted, as their
power was comparable to the normal distribution across
all scenarios. Results for the randomized eigenvector
and parallel analysis based on 18 variables are shown
in Fig. 5. Examining these results lead to several con-
clusions: (1) As expected, greater power was achieved
for loadings associated with larger eigenvalues for all

methods. This result was consistent for all correlation
matrices. Thus, variables related to the first principal
component are more likely to be deemed significant
than variables related to the second component and so
on. (2) Increasing sample size and the number of var-
iables resulted in a large increase in power for all ma-
trices. (3) The bootstrapped broken-stick method
showed higher power largely for correlation structures
exclusively composed of unique variables (but see next
result) that load on only one component (e.g., corre-
lation matrices 1, 4, 6, 7, 9, 10, 11), whereas the boot-
strapped eigenvector method showed higher power for
correlation structures composed of complex variables
which load multiple components (i.e., correlation ma-
trices 2, 3, 5, and 8). Randomized eigenvector and par-
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TABLE 3. Type I error estimates for all methods considered in this study based on correlation
matrices containing 18 variables based on 50 observations.

Method and
distribution

Correlation matrix

1 4 6 7 9 10 11 12 13 14

Bootstrapped eigenvector
Normal
Exponential
(Exponential)3

0.09
0.11
0.08

0.03
0.03
0.02

0.01
0.02
0.02

0.06
0.07
0.06

0.06
0.06
0.05

0.10
0.10
0.11

0.05
0.06
0.06

0.11
0.12
0.11

0.10
0.10
0.09

0.04
0.05
0.04

Bootstrapped broken-stick
Normal
Exponential
(Exponential)3

0.01
0.01
0.01

0.02
0.03
0.02

0.03
0.05
0.04

0.02
0.00
0.03

0.02
0.02
0.04

0.01
0.01
0.02

0.02
0.02
0.03

0.00
0.00
0.02

0.00
0.00
0.01

0.01
0.01
0.01

Randomized eigenvector
Normal
Exponential
(Exponential)3

0.01
0.01
0.02

0.01
0.01
0.01

0.01
0.01
0.01

0.00
0.00
0.01

0.00
0.01
0.01

0.00
0.01
0.01

0.00
0.00
0.00

0.00
0.00
0.01

0.00
0.00
0.00

0.00
0.00
0.01

Parallel analysis
Normal
Exponential
(Exponential)3

0.01
0.01
0.02

0.01
0.01
0.01

0.01
0.01
0.00

0.00
0.00
0.01

0.00
0.00
0.02

0.00
0.00
0.02

0.00
0.00
0.01

0.00
0.00
0.00

0.00
0.00
0.01

0.00
0.00
0.02

Correlation critical values
Normal
Exponential
(Exponential)3

0.31
0.32
0.14

0.32
0.33
0.28

0.37
0.35
0.32

0.26
0.27
0.30

0.26
0.27
0.31

0.24
0.25
0.23

0.26
0.28
0.27

0.12
0.11
0.09

0.16
0.17
0.18

0.25
0.24
0.23

Broken-stick criteria
Normal
Exponential
(Exponential)3

0.14
0.16
0.19

0.19
0.20
0.21

0.13
0.25
0.27

0.14
0.16
0.18

0.14
0.16
0.19

0.11
0.13
0.16

0.16
0.17
0.21

0.08
0.08
0.07

0.12
0.12
0.08

0.18
0.18
0.13

Cutoff value (0.25)
Normal
Exponential
(Exponential)3

0.32
0.33
0.27

0.33
0.34
0.31

0.18
0.16
0.17

0.27
0.28
0.29

0.27
0.28
0.33

0.24
0.26
0.27

0.27
0.29
0.26

0.12
0.12
0.10

0.17
0.17
0.12

0.26
0.25
0.25

Cutoff value (0.30)
Normal
Exponential
(Exponential)3

0.23
0.24
0.21

0.24
0.25
0.23

0.13
0.16
0.14

0.18
0.19
0.18

0.18
0.19
0.21

0.16
0.17
0.15

0.18
0.20
0.21

0.06
0.06
0.05

0.01
0.00
0.03

0.17
0.16
0.13

Cutoff value (0.50)
Normal
Exponential
(Exponential)3

0.04
0.05
0.02

0.04
0.05
0.03

0.02
0.04
0.03

0.02
0.03
0.02

0.02
0.03
0.04

0.01
0.02
0.04

0.02
0.00
0.04

0.00
0.00
0.01

0.00
0.00
0.01

0.01
0.01
0.04

Notes: Estimates are based on the mean proportion of rejections (a 5 0.05) per 2000 tests
for all null loadings, for normal [first row within each method], exponential [second row], and
(exponential)3 [third row] populations. Confidence limits for estimates based on a 5 0.05 are
0.04–0.06.

allel analysis were also more sensitive to complex var-
iables (Fig. 5). Interestingly, it seems that the boot-
strapped broken-stick presented larger power in certain
matrices containing complex variables for later dimen-
sions (i.e., beyond the first component). For example,
with matrices 5 and 8 the bootstrapped broken-stick
method was more powerful in detecting a loading re-
lated to the last two dimensions (Tables 2 and 3). This
was mainly the case for the most important loadings
within a particular axis. (4) For correlation structures
exclusively composed of unique variables, but con-
taining uncorrelated variables, (i.e., matrices 10 to 14),
the bootstrapped eigenvector method presented in some
instances larger power (matrices with nine variables
and sample sizes 40 and 50, see Appendix B) than the

bootstrapped broken-stick method. Note that this result
is more evident for matrices containing a larger number
of uncorrelated variables (i.e., matrices 12, 13, and 14)
and also for larger sample sizes (see results in Appen-
dix B). (5) Comparable power was found for normal
and exponential data, whereas (exponential)3 data pre-
sented lower levels especially for latter nontrivial di-
mensions. For the (exponential)3 distribution, which
generates variables with radically non-normal distri-
bution, the bootstrapped broken-stick was less affected
than bootstrapped eigenvector. (6) The randomized ei-
genvector and parallel analysis provided very similar
power, especially for larger sample sizes (Appendix B).
The bootstrapped eigenvector and the bootstrapped
broken-stick methods are more powerful than the ran-
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FIG. 3. Mean power estimates for each correlation structure considered containing nine variables (Fig. 1) based on samples
containing 30 observations, measured as the mean proportion of rejections (a 5 0.05) per 2000 tests, for normal and
(exponential)3 populations. Estimates are presented according to their associated loading in the corresponding population
correlation matrix. Upper values within each block of loadings represent estimates for the bootstrapped eigenvector, whereas
lower values represent values for the bootstrapped broken-stick model. For example, for correlation matrix 2 the loadings
for variables 5–7 are the same within the first dimension; therefore their power estimates were averaged out. Values in bold
indicate that a particular method showed significantly larger power based on the confidence interval for the estimate (see
Examining type I error rates and power for details).
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FIG. 4. Mean power estimates for each correlation structure considered containing 18 variables (Fig. 1) based on samples
containing 50 observations, measured as the mean proportion of rejections (a 5 0.05) per 2000 tests, for normal and
(exponential)3 populations. Estimates are presented according to their associated loading in the corresponding population
correlation matrix. Upper values within each block of loadings represent estimates for the bootstrapped eigenvector, whereas
lower values represent values for the bootstrapped broken-stick model. For example, for correlation matrix 2 the loadings
for variables 9–14 are the same within the first dimension; therefore their power estimates were averaged out. Values in bold
indicate that a particular method showed significantly larger power based on the confidence interval for the estimate (see
Examining type I error rates and power for details).
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FIG. 5. Mean power estimates for each correlation structure considered containing 18 variables (Fig. 1) based on samples
containing 50 observations, measured as the mean proportion of rejections (a 5 0.05) per 2000 tests, for normal populations.
Estimates are presented according to their associated loading in the corresponding population correlation matrix. Upper values
within each block of loadings represent estimates for the randomized eigenvector, whereas lower values represent values for
the parallel analysis. For example, for correlation matrix 2 the loadings for variables 9–14 are the same within the first
dimension; therefore their power estimates were averaged out. Values in bold indicate that a particular method showed
significantly larger power based on the confidence interval for the estimate (see Examining type I error rates and power for
details).



2360 PEDRO R. PERES-NETO ET AL. Ecology, Vol. 84, No. 9

domized eigenvector and parallel analysis methods,
though the difference is moderate with increased sam-
ple size and number of variables. It is interesting to
note that the latter methods are extremely low in power
when matrices contain complex variables. In these cas-
es, significant power was only achieved for either var-
iables associated with the first axis or for the most
important variables within each axis. However, given
that the randomized eigenvector and parallel analysis
are similar in this respect to the bootstrapped broken-
stick method, the latter method can substitute the for-
mers even in cases of matrices containing complex var-
iables.

DISCUSSION

When analyzing the effectiveness of different deci-
sion methods there is always the question of whether
simulated data, rather than real data, represent plausible
ecological scenarios and how applicable the conclu-
sions are. The use of simulated data is preferable be-
cause their characteristics are known (e.g., dimension-
ality, correlation structure, underlying distribution) and
can be kept simple in order to understand the main
features of the tests being evaluated (Fava and Velicer
1992). One can argue that sample correlation matrices
from ecological studies can be used as input in simu-
lation protocols in order to mimic more relevant eco-
logical scenarios. However, sample correlation matri-
ces from ecological variables never present features
such as known dimensionality and correlation values
at r 5 0, so type I error rates can not be evaluated.
Therefore, the use of simulated data, rather than eco-
logical data, is the only option that permits an exam-
ination of the properties and robustness of the different
methods compared here. Thus, we assume that if any
particular test demonstrates reasonable performance in
a large number of scenarios, one can consider that it
will exhibit similar abilities when applied to data of
interest. It is important to reiterate that our results may
be applicable only to standardized data (i.e., mean 5
0.0 and variance 5 1.0) because we only used corre-
lation matrices. However we believe that this case cov-
ers a large number of cases in ecological applications,
especially the ones involving environmental data. Fu-
ture simulation studies should consider also the case
of covariance matrices (i.e., for variables centered at
mean 5 0.0), especially when considering their use in
direct gradient analysis (Legendre and Legendre 1998:
582).

Our simulation results revealed that the bootstrapped
eigenvector and bootstrapped broken-stick methods are
most suitable for assessing the significance of loadings.
Because the performances of the two methods are de-
pendent on the correlation structure of the population
from which the sample data were drawn, the decision
about which method to apply is not straightforward.
The bootstrapped eigenvector method was preferable
in the presence of complex variables whose variation

is expressed on more than one component, and often
in cases of matrices with nine variables containing a
larger number of independent variables (e.g., matrices
12 to 14, Fig. 1). On the other hand, the bootstrapped
broken-stick method was more appropriate where data
structure was based on unique variables in the absence
of uncorrelated variables. Note, however, that the latter
often presented larger power than the bootstrapped ei-
genvector for the highest loadings within a dimension
for complex matrices. This contrast between these two
methods in terms of power is clearly not related to their
differences in type I error probabilities (Tables 2 and
3). The choice between the two methods is not as sim-
ple as it will depend on prior knowledge about the
ecological complexity of variables. Since we did not
have any expectation about differences in performance
of these two methods, we have only considered sce-
narios where either all variables were complex (Fig. 1,
matrices 2, 3, 5, and 8) or unique (Fig. 1, matrices 1,
4, 6, 7, 9, 10, 11, 12, 13, and 14). Nevertheless, in
applied situations, principal components containing
both unique and complex variables are to be expected
(Tucker et al. 1969). Future simulation studies should
take into account a mix of these two types of variables.
This could be accomplished by constructing population
matrices based on samples from ecological studies,
where lower values of correlation (e.g., #0.20) can be
converted to 0 in order to generate nontrivial axes. The
loss in power of the bootstrapped broken-stick model
for scenarios where there are complex variables is un-
derstandable. Values under the broken-stick model are
calculated assuming that variation associated with any
particular variable is partitioned independently (i.e., at
random) among multivariate dimensions, which is
clearly not the case for complex variables that share
variation with more than one principal component axis.
However, when analyzing five data sets in order to
observe the performance of methods in real ecological
situations, both methods largely agreed (Appendix C),
indicating that perhaps in real situations, where there
is a mix of unique and complex variables, the two
methods may be similarly efficient.

It seems that the bootstrapped eigenvector and boot-
strapped broken-stick methods were quite robust
against departure from normality as they were not af-
fected greatly by an exponential marginal distribution
of the variables. Nevertheless, they showed significant
reduction in power for the (exponential)3 distribution,
which is extremely skewed. In this case, the boot-
strapped broken-stick was less sensitive even for data
sets composed of complex variables and its use appears
suitable where data depart from normality. Another im-
portant finding was that the sequential Bonferroni cor-
rection for controlling inflated probabilities of type I
error was not appropriate for statistical tests conducted
on PCA loadings. However, because the dimensions of
our correlation matrices were not too large, it might be
advisable to determine whether some control over fam-
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ily-wise type I error is necessary when larger matrices
are used. Another consideration may be to discard a
number of redundant variables (Krzanowski 1987,
King and Jackson 1999) so that a smaller number of
tests are conducted. In addition, it may be desirable to
eliminate variables that only load in one component as
their variation may be better evaluated separately. In
the latter case, the procedures presented here may be
used as well.

Although the parallel analysis and the randomization
eigenvector approach presented lower power when
compared to the two methods discussed above, it is
worthwhile to explore some possible reasons for their
behavior. There are two possible, and complementary,
explanations. One possibility is that, under the null
hypothesis, all components are independent and only
one variable is related to each eigenvector, whose ab-
solute loading is maximum at 1.0. Due to random axis
reorderings during the process of estimating the null
distribution for both methods, every variable has the
same probability of being related to any axis. There-
fore, it can be expected that the null distribution for
each coefficient should contain a percentage of values,
proportional to the number of variables, that are ex-
pected to be larger than the observed value under the
alternative hypothesis. As a consequence, both meth-
ods become too conservative in rejecting the null hy-
pothesis. In fact, they showed lower type I error when
compared to the predetermined alpha significance level
and lower power (Tables 2 and 3, Fig. 5). Even if we
were able to solve the problem of reorderings, another
aspect contributing to the inflation of the confidence
intervals of these two methods is that samples from
nearly identical or degenerate (equal) population ei-
genvalues suffer from great sampling variability (Cliff
and Hamburguer 1967). Spherical populations have
only degenerate eigenvalues (i.e., equal to 1.0) so that
their eigenvectors can assume any direction and by
consequence, their loadings are arbitrary (note, how-
ever, that their sums of squares are kept as a function
of their eigenvalues and orthogonality is maintained).
An inevitable consequence of this behavior is that any
particular variable could have high loadings for more
than one axis in any given sample solution. In that case,
confidence intervals are inflated, thereby decreasing
power. See Seber (1984:198) for further discussion on
the subject of sampling from degenerate eigenvalues.
However, the two methods were not always so con-
servative that the null hypothesis was never rejected.
This is because accuracy and sampling variation of
loadings seem to be inversely related to their eigen-
values (P. Peres-Neto, unpublished data) so that con-
fidence intervals based on random matrices will also
experience the greatest bias. For instance, 10 000 sam-
ples based on 30 observations from an identity cor-
relation matrix with nine variables provided a mean
absolute loading for the first variable on PC-1 of 0.41
(standard deviation of 0.22), whereas the expected is

1.0. On the other hand, the mean corresponding loading
obtained from 10 000 PCA samples from correlation
matrix 1 (Fig. 1) was 0.85 (standard deviation of 0.07)
whereas the expected is 0.92. Thus, although confi-
dence intervals based on random matrices are conser-
vative, due to the large bias in their estimation, the null
hypothesis is in fact rejected in many cases.

We are unaware of any other simulation study that
attempted to evaluate and contrast different statistical
and heuristical methods for assessing the significance
of loadings in principal component analysis. Our main
goal was to conduct a comparative study so that dif-
ferences in performance and behavior of available and
novel methods could be revealed. The most promising
approaches were based on bootstrap techniques. For
variables sharing variation with different principal
component axes, the bootstrapped broken-stick method
is preferable; whereas variables whose variation is par-
titioned among different components, should be ana-
lyzed by the bootstrapped eigenvector method. Because
this knowledge is not known a priori and in our real
ecological applications these two approaches provided
similar outcomes, the choice between approaches may
become arbitrary. Ultimately, the ability to assess the
loading significance is essential in the process of in-
terpreting the association among ecological variables
and their contribution to each non-trivial component,
thereby leading to the separation of meaningful patterns
(i.e., variables that covary) from sources of random
variation (i.e., independent variables). Consequently,
the use of more appropriate analytical tools in this as-
sessment provides a more rigorous analysis, aiding in
the interpretation of the possible processes involved in
pattern definition.
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APPENDIX A

Values of the 95% quantiles for absolute loadings of the first variable in the first five principal components for each
correlation structure considered in this study and a spherical correlation matrix are available in ESA’s Electronic Data Archive:
Ecological Archives E084-056-A1.
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APPENDIX B

Power estimates for larger sample size are available in ESA’s Electronic Data Archive: Ecological Archives E084-056-A2.

APPENDIX C

An examination of real ecological data using these methods is available in ESA’s Electronic Data Archive: Ecological
Archives E084-056-A3.
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APPENDIX A 

ECOLOGICAL ARCHIVES E084-056-A1 
 

Table A.1. Values are the 95% quantiles for absolute loadings of the first variable in the first five principal components for 
each correlation structure considered in this study (Fig. 1) and a spherical correlation matrix.  Note that values across 
components would change according to the chosen variable.  Samples were based on normally distributed samples 
containing N observations.  1000 samples were used in each case.  Parametric correlation coefficients r (α=0.05) are shown 
according to sample size.  First, note that in all cases, values change along axes.  Second, values in the spherical population 
are always larger than the correspondent tabled correlation value, indicating that the latter may be too liberal.  Our results 
(Table 2 and 3) show that this is in fact the case. 

   N=30 (r=0.361) N=40 (r=0.312) 

   component component 

correlation 
matrix 

  
1 2 3 4 5 1 2 3 4 5 

9 variables             
spherical   0.763 0.730 0.709 0.644 0.600 0.735 0.717 0.685 0.665 0.635 

1   0.936 0.493 0.323 0.397 0.342 0.937 0.493 0.292 0.391 0.331 
2   0.903 0.588 0.372 0.396 0.332 0.889 0.570 0.351 0.403 0.339 
3   0.911 0.533 0.361 0.385 0.343 0.900 0.520 0.341 0.380 0.334 
4   0.867 0.660 0.480 0.574 0.513 0.846 0.593 0.422 0.580 0.516 
5   0.839 0.655 0.515 0.539 0.513 0.822 0.605 0.482 0.568 0.503 
6   0.810 0.706 0.626 0.610 0.563 0.799 0.691 0.572 0.613 0.580 
7   0.941 0.612 0.383 0.238 0.226 0.936 0.516 0.358 0.196 0.193 
8   0.949 0.361 0.250 0.232 0.258 0.946 0.325 0.223 0.195 0.222 
9   0.945 0.399 0.251 0.228 0.262 0.944 0.362 0.230 0.195 0.205 

10   0.939 0.572 0.275 0.247 0.240 0.941 0.504 0.245 0.209 0.210 
11   0.874 0.708 0.478 0.427 0.449 0.864 0.680 0.429 0.406 0.420 
12   0.952 0.306 0.267 0.244 0.224 0.949 0.251 0.234 0.206 0.206 
13   0.883 0.546 0.446 0.458 0.419 0.875 0.449 0.401 0.382 0.373 
14   0.822 0.726 0.591 0.582 0.507 0.818 0.663 0.555 0.549 0.514 

   N=60 (r=0.254) N=80 (r=0.220) 

18 variables             
spherical   0.603 0.587 0.573 0.575 0.538 0.581 0.548 0.552 0.532 0.506 

1   0.925 0.410 0.241 0.303 0.293 0.924 0.384 0.213 0.297 0.266 
2   0.866 0.533 0.307 0.317 0.277 0.856 0.513 0.278 0.279 0.272 
3   0.886 0.485 0.290 0.299 0.279 0.876 0.460 0.276 0.296 0.271 
4   0.817 0.471 0.297 0.480 0.422 0.814 0.435 0.278 0.442 0.407 
5   0.770 0.523 0.341 0.476 0.408 0.761 0.510 0.317 0.435 0.435 
6   0.729 0.529 0.395 0.536 0.485 0.728 0.502 0.346 0.496 0.464 
7   0.931 0.380 0.233 0.146 0.148 0.927 0.340 0.211 0.134 0.127 
8   0.935 0.236 0.150 0.145 0.156 0.933 0.216 0.129 0.122 0.134 
9   0.932 0.313 0.158 0.151 0.156 0.927 0.292 0.148 0.122 0.132 

10   0.933 0.366 0.160 0.141 0.142 0.931 0.346 0.127 0.130 0.130 
11   0.836 0.426 0.315 0.282 0.304 0.824 0.370 0.269 0.252 0.271 
12   0.938 0.154 0.138 0.146 0.141 0.937 0.124 0.125 0.129 0.124 
13   0.839 0.289 0.281 0.283 0.280 0.829 0.249 0.255 0.253 0.261 
14   0.762 0.422 0.398 0.393 0.406 0.750 0.398 0.393 0.394 0.367 
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POWER ESTIMATES FOR LARGER SAMPLE SIZES  

 
normal - 9 variables - sample size = 40
1 2 3 4 5 6 7

0.90 1.00 0.59 0.21 1.00 0.77 0.14 0.68 0.92 0.09 0.00 0.37 1.00
1.00 0.99 0.01 0.00 1.00 0.00 0.00 0.69 0.64 0.04 0.00 0.22 1.00

0.78 0.86 0.70 0.21 1.00 0.69 0.15 0.32 0.76 0.17 0.01 0.03 0.89
0.91 0.60 0.39 0.00 0.95 0.05 0.00 0.44 0.37 0.16 0.01 0.09 0.67

0.92 0.82 0.18 0.75 1.00 0.24 0.58 0.27 0.66 0.05 0.06 0.00 0.48
0.96 0.33 0.08 0.66 0.88 0.02 0.12 0.48 0.21 0.06 0.20 0.03 0.34

8 9 10 11 12 13 14

1.00 0.06 0.03 0.83 0.87 0.64 1.00 0.82 0.31
1.00 0.00 0.00 1.00 1.00 0.60 1.00 0.63 0.13
0.12 0.88 0.04 0.50 0.69 0.15
0.01 0.74 0.01 0.42 0.47 0.08
0.11 0.10 0.61 0.31
0.00 0.02 0.43 0.13

exponential3 - 9 variables - sample size = 40
1 2 3 4 5 6 7
0.82 0.94 0.32 0.05 0.95 0.40 0.02 0.59 0.83 0.06 0.01 0.33 0.95
0.98 0.97 0.01 0.00 0.96 0.00 0.00 0.62 0.55 0.03 0.00 0.20 0.97

0.64 0.93 0.30 0.04 0.96 0.26 0.01 0.20 0.74 0.07 0.00 0.02 0.59
0.92 0.56 0.44 0.00 0.99 0.01 0.00 0.45 0.28 0.21 0.01 0.13 0.74

0.65 0.84 0.05 0.25 0.96 0.08 0.11 0.15 0.63 0.01 0.03 0.00 0.28
0.93 0.25 0.03 0.72 0.89 0.00 0.11 0.58 0.19 0.04 0.44 0.12 0.58

8 9 10 11 12 13 14

0.95 0.07 0.02 0.68 0.75 0.57 0.95 0.76 0.32
0.97 0.00 0.00 0.94 0.94 0.46 0.95 0.53 0.17
0.17 0.68 0.04 0.29 0.53 0.11
0.02 0.74 0.01 0.46 0.57 0.14
0.16 0.08 0.41 0.17
0.01 0.04 0.55 0.27

 
 
 
Fig. B.1.  Average power estimates for each correlation structure considered containing 9 variables (Fig. 1) based on samples containing 40 observations, 
measured as the average proportion of rejections (α=0.05) per 1000 tests, for normal and exponential3 populations.  Estimates are presented according to their 
associated loading in the corresponding population correlation matrix.  Upper values within each block of loadings represent estimates for the bootstrapped 
eigenvector, whereas lower values represent values for the bootstrapped broken-stick.  For example, for correlation matrix 2 the loadings for variables 5-7 are the 
same within the first dimension, therefore their power estimates were averaged out. Values in bold indicate that a particular method showed significantly larger 
power based on the confidence interval for the estimate (see methods section for details) 



 
 
 

normal - 9 variables - sample size = 50
1 2 3 4 5 6 7

0.95 1.00 0.75 0.23 1.00 0.84 0.17 0.75 0.96 0.18 0.01 0.96 1.00
1.00 1.00 0.00 0.00 1.00 0.00 0.00 0.70 0.65 0.03 0.00 0.65 1.00

0.89 0.90 0.81 0.27 1.00 0.73 0.20 0.46 0.83 0.28 0.01 0.28 0.95
0.94 0.62 0.38 0.00 0.97 0.05 0.00 0.44 0.33 0.16 0.01 0.16 0.71

0.96 0.91 0.23 0.78 1.00 0.26 0.64 0.44 0.75 0.08 0.11 0.11 0.65
0.98 0.37 0.07 0.73 0.92 0.02 0.14 0.53 0.15 0.04 0.21 0.21 0.42

8 9 10 11 12 13 14

1.00 0.06 0.04 0.87 0.91 0.70 1.00 0.93 0.42
1.00 0.00 0.00 1.00 1.00 0.65 1.00 0.74 0.16
0.12 0.94 0.05 0.57 0.83 0.22
0.01 0.82 0.00 0.39 0.53 0.08
0.11 0.10 0.77 0.44
0.00 0.01 0.55 0.13

exponential3 - 9 variables - sample size = 50
1 2 3 4 5 6 7
0.90 0.96 0.42 0.06 0.98 0.52 0.05 0.69 0.88 0.11 0.01 0.39 0.98
0.98 0.98 0.00 0.00 0.97 0.00 0.00 0.66 0.54 0.02 0.00 0.19 0.98

0.72 0.96 0.40 0.05 0.98 0.37 0.01 0.29 0.84 0.13 0.00 0.04 0.73
0.94 0.56 0.44 0.00 1.00 0.00 0.00 0.51 0.27 0.19 0.01 0.13 0.80

0.78 0.90 0.04 0.32 0.98 0.07 0.18 0.28 0.74 0.02 0.05 0.01 0.43
0.96 0.22 0.01 0.78 0.92 0.00 0.09 0.70 0.16 0.04 0.47 0.14 0.63

8 9 10 11 12 13 14

0.95 0.07 0.03 0.74 0.82 0.63 0.98 0.81 0.42
0.98 0.00 0.00 0.96 0.97 0.51 0.97 0.59 0.16
0.17 0.75 0.05 0.36 0.61 0.20
0.02 0.82 0.01 0.51 0.65 0.15
0.17 0.10 0.54 0.23
0.01 0.03 0.67 0.32

 
 
 
Fig. B.2.  Average power estimates for each correlation structure considered containing 9 variables (Fig. 1) based on samples containing 50 observations, 
measured as the average proportion of rejections (α=0.05) per 1000 tests, for normal and exponential3 populations.  Estimates are presented according to their 
associated loading in the corresponding population correlation matrix.  Upper values within each block of loadings represent estimates for the bootstrapped 
eigenvector, whereas lower values represent values for the bootstrapped broken-stick.  For example, for correlation matrix 2 the loadings for variables 5-7 are the 
same within the first dimension, therefore their power estimates were averaged out. Values in bold indicate that a particular method showed significantly larger 
power based on the confidence interval for the estimate (see methods section for details). 
 
 
 
 



 
 

normal - 18 variables - sample size = 80
1 2 3 4 5 6 7

0.96 1.00 0.90 0.27 1.00 0.84 0.14 0.84 0.99 0.14 0.00 0.64 0.98
1.00 1.00 0.07 0.00 1.00 0.02 0.00 0.96 0.94 0.05 0.00 0.77 1.00

0.96 0.99 0.88 0.38 1.00 0.76 0.22 0.40 0.96 0.18 0.00 0.01 0.89
0.98 0.85 0.74 0.02 1.00 0.18 0.01 0.91 0.69 0.40 0.04 0.69 0.96

0.99 0.98 0.24 0.85 1.00 0.19 0.57 0.16 0.95 0.02 0.02 0.00 0.60
1.00 0.71 0.05 0.95 0.99 0.03 0.54 0.97 0.45 0.07 0.69 0.76 0.76

8 9 10 11 12 13 14

1.00 0.37 0.05 1.00 0.99 0.91 1.00 1.00 0.90
1.00 0.00 0.00 1.00 1.00 0.99 1.00 1.00 0.87
0.36 1.00 0.09 1.00 0.98 0.68
0.03 0.98 0.00 0.99 0.98 0.83
0.34 0.30 0.55 0.71
0.01 0.04 0.78 0.82

exponential3 - 18 variables - sample size = 80
1 2 3 4 5 6 7
0.95 0.99 0.65 0.10 1.00 0.59 0.04 0.82 0.96 0.05 0.00 0.53 1.00
1.00 1.00 0.01 0.00 1.00 0.00 0.00 0.99 0.97 0.02 0.00 0.76 1.00

0.81 0.99 0.62 0.11 1.00 0.50 0.03 0.18 0.97 0.06 0.00 0.00 0.88
0.97 0.87 0.64 0.01 1.00 0.07 0.00 0.95 0.70 0.45 0.02 0.68 0.99

0.84 0.99 0.06 0.53 1.00 0.06 0.16 0.04 0.96 0.00 0.00 0.00 0.37
0.99 0.48 0.01 0.89 0.99 0.01 0.26 0.97 0.35 0.05 0.77 0.78 0.77

8 9 10 11 12 13 14

0.99 0.33 0.05 0.94 0.96 0.87 1.00 0.98 0.85
1.00 0.00 0.00 1.00 1.00 1.00 1.00 1.00 0.87
0.42 0.87 0.07 0.71 0.88 0.43
0.02 0.98 0.00 0.98 0.98 0.79
0.40 0.24 0.42 0.26
0.03 0.03 0.70 0.69

 
 
 
Fig. B.3.  Average power estimates for each correlation structure considered containing 18 variables (Fig. 1) based on samples containing 80 observations, 
measured as the average proportion of rejections (α=0.05) per 1000 tests, for normal and exponential3 populations.  Estimates are presented according to their 
associated loading in the corresponding population correlation matrix.  Upper values within each block of loadings represent estimates for the bootstrapped 
eigenvector, whereas lower values represent values for the bootstrapped broken-stick.  For example, for correlation matrix 2 the loadings for variables 9-14 are 
the same within the first dimension, therefore their power estimates were averaged out. Values in bold indicate that a particular method showed significantly 
larger power based on the confidence interval for the estimate (see methods section for details). 
 
 
 
 
 



 
 
 
 

normal - 18 variables - sample size = 100
1 2 3 4 5 6 7

0.99 1.00 0.95 0.28 1.00 0.95 0.26 0.92 1.00 0.33 0.00 0.75 1.00
1.00 1.00 0.08 0.00 1.00 0.02 0.00 0.98 0.98 0.04 0.00 0.81 1.00

1.00 0.99 0.95 0.46 1.00 0.92 0.46 0.71 0.99 0.38 0.00 0.00 1.00
1.00 0.85 0.83 0.02 1.00 0.21 0.00 0.96 0.73 0.43 0.02 0.74 1.00

1.00 1.00 0.27 0.92 1.00 0.24 0.86 0.46 0.98 0.06 0.03 0.00 0.92
1.00 0.74 0.05 0.98 1.00 0.03 0.77 0.99 0.48 0.05 0.81 0.83 0.86

8 9 10 11 12 13 14

1.00 0.44 0.11 1.00 1.00 0.97 1.00 1.00 0.97
1.00 0.00 0.00 1.00 1.00 1.00 1.00 1.00 0.91
0.43 1.00 0.17 0.96 1.00 0.88
0.02 1.00 0.00 0.99 1.00 0.87
0.37 0.36 0.86 0.86
0.01 0.02 0.83 0.84

exponential3 - 18 variables - sample size = 100
1 2 3 4 5 6 7
0.96 1.00 0.79 0.16 1.00 0.71 0.07 0.85 0.98 0.11 0.00 0.64 0.99
1.00 1.00 0.01 0.00 1.00 0.00 0.00 1.00 0.99 0.02 0.00 0.80 1.00

0.85 1.00 0.75 0.17 1.00 0.63 0.08 0.29 0.98 0.12 0.00 0.01 0.91
0.97 0.94 0.69 0.00 1.00 0.07 0.00 0.98 0.78 0.48 0.02 0.74 0.99

0.86 1.00 0.07 0.68 1.00 0.05 0.34 0.13 0.98 0.01 0.01 0.00 0.57
0.98 0.52 0.01 0.94 0.99 0.00 0.31 0.98 0.38 0.03 0.83 0.85 0.94

8 9 10 11 12 13 14

1.00 0.42 0.07 0.95 0.97 0.90 1.00 0.99 0.92
1.00 0.00 0.00 1.00 1.00 1.00 1.00 1.00 0.89
0.51 0.90 0.12 0.78 0.89 0.58  
0.03 0.97 0.00 0.98 0.98 0.81  
0.48 0.30 0.53 0.40
0.02 0.03 0.74 0.73

 
 
 
Fig. B.4.  Average power estimates for each correlation structure considered containing 18 variables (Fig. 1) based on samples containing 100 observations, 
measured as the average proportion of rejections (α=0.05) per 1000 tests, for normal and exponential3 populations.  Estimates are presented according to their 
associated loading in the corresponding population correlation matrix.  Upper values within each block of loadings represent estimates for the bootstrapped 
eigenvector, whereas lower values represent values for the bootstrapped broken-stick.  For example, for correlation matrix 2 the loadings for variables 9-14 are 
the same within the first dimension, therefore their power estimates were averaged out. Values in bold indicate that a particular method showed significantly 
larger power based on the confidence interval for the estimate (see methods section for details). 
 
 
 



 
 
 
 
 
 
 
 

normal - 18 variables - sample size = 100
1 2 3 4 5 6 7

1.00 1.00 0.01 0.00 1.00 0.00 0.00 0.95 0.87 0.01 0.00 0.60 1.00
1.00 1.00 0.00 0.00 1.00 0.00 0.00 0.97 0.90 0.00 0.00 0.59 1.00

1.00 0.85 0.63 0.00 1.00 0.05 0.00 0.92 0.42 0.23 0.00 0.54 1.00
1.00 0.89 0.62 0.00 1.00 0.05 0.00 0.93 0.47 0.21 0.00 0.47 1.00

1.00 0.44 0.02 0.95 0.99 0.00 0.39 0.99 0.16 0.02 0.63 0.74 0.91
1.00 0.50 0.02 0.96 0.99 0.00 0.40 0.99 0.16 0.01 0.61 0.58 0.91

8 9 10 11 12 13 14

1.00 0.00 0.00 1.00 1.00 0.99 1.00 1.00 0.78
1.00 0.00 0.00 1.00 1.00 0.99 1.00 1.00 0.81
0.00 0.97 0.00 0.96 0.99 0.70
0.00 0.98 0.00 0.97 0.99 0.73
0.00 0.00 0.79 0.75
0.00 0.00 0.80 0.74  

 
 
Fig. B.5.  Average power estimates for each correlation structure considered containing 18 variables (Fig. 1) based on samples containing 100 observations, 
measured as the average proportion of rejections (α=0.05) per 1000 tests, for normal populations.  Estimates are presented according to their associated loading 
in the corresponding population correlation matrix.  Upper values within each block of loadings represent estimates for the randomized eigenvector, whereas 
lower values represent values for the parallel analysis.  For example, for correlation matrix 2 the loadings for variables 9-14 are the same within the first 
dimension, therefore their power estimates were averaged out. Values in bold indicate that a particular method showed significantly larger power based on the 
confidence interval for the estimate (see methods section for details). 



APPENDIX C 

ECOLOGICAL ARCHIVES E084-056-A3 
 

EXAMINING REAL ECOLOGICAL DATA  

We selected five data sets representing a gradient from weak to strong correlation structures in order to observe the 
performance of methods in real ecological situations. These data sets were chosen because in each case the raw data were 
available in the original publication, with the exception of the stream data set used to construct Table 1.  Data set Morph1 
represents 7 morphological variables for 38 bird species from Burgundy (France) and California (USA) studied by Blondel 
et al. (1984; raw data are presented in their Table 1).  Data set Morph2 comprises 6 morphological variables for 13 species 
of West Indian Anolis lizards (Losos 1990).  Because of missing data in the performance measurements, two species were 
excluded from the analysis.  Data set Behavior represents 6 behavioral variables for the same 13 lizard species in Morph2. 
Raw data for Morph2 and Behavior data sets were presented in Losos (1990: Table 1) and they were both log10 
transformed.   Finally, data set Lake represents 8 environmental variables for 42 lakes sampled by Robinson and Tonn 
(1989: Appendix 1) in the Athabasca River basin.  Three lakes presenting missing data were deleted from the analysis.  All 
variables with the exception of pH were log10 transformed.   

 
Assessments of the ecological data sets were based only on the bootstrapped eigenvector and bootstrapped broken-

stick due to their superior performance.   Overall, both methods tended to agree in terms of the magnitude of their 
probabilities (Table C.1).  In only three situations did the two tests provide contrasting results indicating that the loading 
was significant or not for an alpha at 0.05. As expected, the magnitude of loading is not as important as the associated 
eigenvalue.  For instance, a loading of 0.741 associated with an eigenvalue representing 53.1% of the total variation 
presented larger probabilities of rejection for both methods than when compared to a loading of 0.733 for Morph1 where 
PC-1 retained 70.0% of the total variance.  However, three variables (two in Behavior and one in Lake) were marginally 
significant according to the bootstrapped broken-stick but not to the bootstrapped eigenvector.  In cases of non-rejection, 
the bootstrapped broken-stick tended to provide greater probabilities of rejection than the bootstrapped eigenvector.  This 
result is indicative of  several variables being associated with more than one component. 
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Table C.1. Loadings for the ecological data sets in the first two principal components and the 
associated probabilities for the bootstrapped eigenvector (Bt-eigv) and the bootstrapped 
broken-stick (Bt-bs). Percentages of variation retained by the axes are presented below the data 
set being assessed.  Bote that both methods largely agreed, indicating that perhaps in real 
situations, where there is a mix of both unique and complex variables, the two methods may be 
similarly efficient. 

data set Loading (PC-1) Bt-eigv Bt-bs Loading (PC-2) Bt-eigv Bt-bs 

Stream -0.458 0.161 0.606 0.788 0.258 0.146 
(53.1%/24.0%) 0.741 0.186 0.038 0.559 0.258 0.440 

 -0.786 0.010 0.055 -0.003 0.703 1.000 
 0.931 0.000 0.000 0.252 0.262 0.999 
 0.645 0.185 0.343 -0.448 0.297 0.549 

Morph1 0.882 0.000 0.000 -0.295 0.169 1.000 
(70.0%/11.9%) 0.862 0.000 0.000 -0.250 0.155 0.990 

 0.688 0.002 0.019 -0.451 0.171 0.736 
 0.733 0.000 0.000 0.598 0.147 0.259 
 0.878 0.000 0.000 0.276 0.163 0.996 
 0.851 0.000 0.000 0.202 0.221 0.987 
 0.935 0.000 0.000 -0.070 0.235 1.000 

Morph2 0.972 0.001 0.000 -0.020 0.491 1.000 
(71.3%/11.9%) 0.983 0.001 0.000 -0.018 0.369 1.000 

 0.840 0.001 0.000 -0.321 0.253 0.993 
 0.953 0.000 0.000 0.173 0.369 1.000 
 0.734 0.062 0.015 0.626 0.337 0.513 
 0.734 0.017 0.043 -0.433 0.373 0.785 

Behavior 0.768 0.027 0.077 -0.166 0.517 0.994 
(42.5%/28.1%) -0.807 0.024 0.009 -0.456 0.367 0.723 

 0.946 0.025 0.001 0.181 0.397 0.989 
 -0.130 0.438 0.998 0.880 0.380 0.064 
 0.304 0.353 0.966 -0.798 0.382 0.060 
 0.550 0.116 0.418 -0.100 0.529 0.999 

Lake 0.560 0.086 0.196 0.428 0.309 0.686 
(25.4%/20.1%) -0.536 0.126 0.490 0.635 0.315 0.076 

 0.586 0.119 0.121 -0.492 0.362 0.681 
 0.139 0.325 0.960 -0.442 0.403 0.450 
 0.756 0.081 0.064 0.245 0.316 0.900 
 0.204 0.331 0.936 0.314 0.376 0.723 
 -0.050 0.426 0.971 0.560 0.309 0.206 
 0.671 0.101 0.162 0.341 0.357 0.682 

 
 
 


