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ABSTRACT

The 12 weather and climate models participating in the Global Land–Atmosphere Coupling Experiment

(GLACE) show both a wide variation in the strength of land–atmosphere coupling and some intriguing

commonalities. In this paper, the causes of variations in coupling strength—both the geographic variations

within a given model and the model-to-model differences—are addressed. The ability of soil moisture to

affect precipitation is examined in two stages, namely, the ability of the soil moisture to affect evaporation,

and the ability of evaporation to affect precipitation. Most of the differences between the models and within

a given model are found to be associated with the first stage—an evaporation rate that varies strongly and

consistently with soil moisture tends to lead to a higher coupling strength. The first-stage differences reflect

identifiable differences in model parameterization and model climate. Intermodel differences in the evapo-

ration–precipitation connection, however, also play a key role.

1. Introduction

Interaction between the land and atmosphere plays

an important role in the evolution of weather and the

generation of precipitation (P). Soil moisture may be

the most important state variable in this regard. Much

research has been conducted on the effects of soil wet-

ness (SW) variability on weather and climate, encom-

passing various observational studies (e.g., Namias

1960; Betts et al. 1996; Findell and Eltahir 2003) and

theoretical treatments (e.g., Entekhabi et al. 1992;

Eltahir 1998). These studies notwithstanding, the

strength of the land–atmosphere interaction is tremen-

dously difficult to measure and evaluate. Consider, for

example, attempts to quantify the impact of soil mois-
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ture on precipitation through joint observations of

both. Precipitation may be larger when soil moisture is

larger, but this may tell us nothing, for the other direc-

tion of causality—the wetting of the soil by precipita-

tion—almost certainly dominates the observed correla-

tion. Global-scale or even regional-scale estimates of

land–atmosphere coupling strength simply do not exist.

This difficulty motivates the use of numerical climate

models to address the land–atmosphere feedback ques-

tion. With such models, idealized experiments can be

crafted and sensitivities carefully examined. A few re-

cent examples include the studies of Dirmeyer (2001),

Koster and Suarez (2001), Schlosser and Milly (2002),

and Douville (2003).

Modeling studies, of course, are far from perfect. The

ability of land states to affect atmospheric states in at-

mospheric general circulation models (AGCMs) is not

explicitly prescribed or parameterized, but is rather a

net result of complex interactions between numerous

process parameterizations in the model. As a result,

land–atmosphere interaction varies from model to

model, and this model dependence affects AGCM-

based interpretations of land use impacts on climate,

soil moisture impacts on precipitation predictability,

and so forth (Koster et al. 2002). The broad usage of

AGCMs for such research and the need for an appro-

priate interpretation of model results makes a compre-

hensive evaluation of land–atmosphere interaction

across a broad range of models necessary. The Global

Land–Atmosphere Coupling Experiment (GLACE)

was designed with this in mind.

In GLACE, 12 AGCMs perform the same highly

controlled numerical experiment, which is designed to

characterize land–atmosphere interaction quantita-

tively. In GLACE, three 16-member ensembles of

3-month simulations are performed: an ensemble in

which the land states of the different members vary

independently and interact with the atmosphere (W),

an ensemble in which the same geographically and tem-

porally varying land states are prescribed for each

member (R), and an ensemble in which only the sub-

surface soil moisture values are prescribed for each

member (S). By quantifying the interensemble similar-

ity of precipitation time series within each ensemble

and then comparing this similarity between ensembles,

we can isolate the impact of the land surface on pre-

cipitation; we can quantify the degree to which the at-

mosphere responds consistently to anomalies in land

states. (The degree of consistent response is hereafter

referred to as the “land–atmosphere coupling strength.”)

The companion paper (Koster et al. 2006, hereafter

Part I) describes the experiment and analysis approach

in detail and provides an overview of the model com-

parison.

Note that the focus on subsurface moisture (en-

semble S above) is of special interest. It is well accepted

that the variability of soil moisture is much slower than

that of atmospheric states (Dirmeyer 1995). Hope for

improving the accuracy of seasonal forecasts lies partly

with the “memory” provided by soil moisture. By quan-

tifying the impact of subsurface soil moisture on pre-

cipitation, GLACE helps evaluate a model’s ability to

make use of this memory in seasonal forecasts.

Part I and Koster et al. (2004) highlight “hot spots” of

land–atmosphere coupling—regions of strong coupling

between soil moisture and precipitation that are com-

mon to many of the AGCMs. What causes such com-

monalities, and how do they relate to the climatological

and hydrological regime? Which aspects of the land

surface and atmospheric parameterization cause the

large model-to-model differences of coupling strength

among the AGCMs? How are the signals that exist in

the land surface states transmitted to and manifested in

the atmosphere states?

Such critical questions lie at the heart of our under-

standing of land–atmosphere feedback. Arguably, a

fully comprehensive analysis of these questions would

require additional sensitivity experiments and model-

dependent analysis techniques, all of which are beyond

the scope of GLACE. Nevertheless, the design of

GLACE and the diagnostics provided by the partici-

pants do provide powerful insight into how a soil mois-

ture signal is translated into an evaporation signal,

which in turn is translated to a precipitation signal, and

how and why these translations differ among the

AGCMs. Such an analysis is presented in the present

paper. First, section 2 addresses the geographical pat-

terns of coupling strength seen in the models. Section 3

then provides an analysis of intermodel differences in

coupling strength. Further discussion and a summary of

our findings are presented in section 4.

2. Commonalities in coupling strength

The multimodel synthesis used in Part I proves ef-

fective for identifying robust regions (across models) of

significant soil moisture impact on precipitation and

near-surface air temperature; these identified regions

are less subject to problems in the process parameter-

izations of any of the individual model. We can apply

the same multimodel analysis procedure here to the

other model variables. As in Part I (see section 5), we

first disaggregate variables from each model to the

same fine grid, one with a resolution of 0.5° � 0.5°. We

then average the results on that grid across the models,

applying the same weight to each model.
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As explained in section 4 of Part I [see Eq. (2)], the

variable �� measures the degree to which the 16 time

series for the variable � generated by the different en-

semble members are similar. Thus, ��(S) � ��(W) or

��(R) � ��(W) are measures of the regulation of land

states on the atmospheric variable �. As in Part I, we

computed �� and the standard deviation �� for each

model across 224 aggregated 6-day totals (16 ensemble

members times 14 intervals in each simulation time se-

ries).

The upper-left panel of Fig. 1 shows the mean of

�P(S) � �P(W) for precipitation across the 12 models,

that is, the model-averaged impact of subsurface soil

moisture on precipitation. This figure essentially re-

peats the contents of the top panel of Fig. 9 from Part

I. Notice that the larger soil moisture impacts on pre-

cipitation generally occur in the transition zones be-

tween humid and arid climates, such as the central

Great Plains of North America, the Sahel in Africa, and

the northern and western margins of the Asian mon-

soon regions.

How can we characterize the evaporation signal that

best serves as a link between soil moisture anomalies

and precipitation that best explains the geographical

variations of �P(S) � �P(W) shown in Fig. 1a, if a local

soil moisture influence is assumed? In Fig. 2, we argue

that such an evaporation signal (as a proxy for the full

surface energy balance) must have two characteristics:

it must respond similarly to soil moisture variations,

and it must show wide temporal variations. The four

panels show idealized evaporation time series (i.e., not

from real simulations) for 16 parallel ensemble mem-

bers under the following four situations: (i) a low simi-

larity in the evaporation time series [i.e., a low value of

�E(S) � �E(W)] and a low variability of evaporation

[i.e., a low value of �E(W)], (ii) a low similarity but a

high variability of evaporation, (iii) a high similarity but

a low variability of evaporation, and (iv) a high simi-

larity and a high variability of evaporation. Clearly,

cases (i) and (ii) cannot lead to a “robust” precipitation

response (i.e., a similar response across ensemble mem-

bers) to soil moisture, given that evaporation is the key

link between the two, and evaporation itself has no

robust response to soil moisture. A robust evaporation

response, however, does not by itself guarantee a ro-

bust precipitation response. For case (iii), the evapora-

tion response to soil moisture is robust, but the atmo-

sphere would not see a strong signal at the surface be-

cause of the low evaporation variability. Only the

fourth situation provides a signal for the atmosphere

that is both robust and strong.

We argue that for soil moisture to affect evaporation,

both �E(S) � �E(W) and �E(W) must be suitably

high. In other words, the product [�E(S) � �E(W)]�E(W)

FIG. 1. Average of (a) �P(S) � �P(W), (b) �E(S) � �E (W), (c) standard deviation of ET, and (d) the

weighted similarity diagnostic [�E(S) � �E(W)]�E(W) across all 12 models.
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must be high. We use this diagnostic product through-

out this paper to characterize the ability of a local

evaporation signal to support land–atmosphere feed-

back. [We assume here that �E(W) and �E(S) are simi-

lar; analysis of the model data confirms this.] The prod-

uct proves effective for our purposes, despite being a

potentially suboptimal diagnostic; it may, for example,

already contain some implicit feedback information

through the potential coevolution of �E and �P, and

thus it may partly reflect the character of the atmo-

sphere and its role in feedback. Still, the other direction

of causality (precipitation variability causing evapora-

tion variability) is undoubtedly dominant, and regard-

less of the source of the evaporation variability, the

product still serves as a characterization of the evapo-

ration signal itself.

The upper-right panel of Fig. 1 shows the global dis-

tribution of �E(S) � �E(W) (again, averaged across

the models), and the lower-left panel shows the same

for �E(W). Neither diagnostic by itself explains all of

the characteristics of the distribution of �P(S) � �P(W)

(top-left panel). The lower-right panel shows the distri-

bution of the product [�E(S) � �E(W)]�E(W) aver-

aged over the 12 models (note the different scales

among panels). The spatial correlation between the

geographical patterns of �P(S) � �P(W) and the prod-

uct is 0.46, which is larger than that between �P(S) �

�P(W) and either factor alone [0.35 and 0.2 for �E(W)

and �E(S) � �E(W), respectively]. Of course, none of

these spatial correlations is particularly large. Never-

theless, as will be shown in section 3, the diagnostic

product [�E(S) � �E(W)]�E(W) explains the inter-

model differences in coupling strength at a given loca-

tion well, much better than can either factor could

alone.

The scatterplots in Fig. 3 illustrate further the control

of hydrological regime on the product [�E(S) �

�E(W)]�E(W). The lines represent a best fit through

the mean of the dependent variable in bins of 200

points each. A roughly linear inverse relationship is

seen between the soil wetness and �E(S) � �E(W).

The scatterplot shows that the total evaporation (ET) is

more sensitive to land state in dry climates than in areas

with moderate soil wetness. The results are consistent

with the findings of Dirmeyer et al. (2000), who showed

that the sensitivity of surface fluxes to variations in soil

moisture is generally concentrated at the dry end of the

range of the soil moisture index. In contrast, the stan-

dard deviation of ET (�E) is not large for low soil mois-

ture, simply because ET itself is small in such regions.

Put together, the product [�E(S) � �E(W)]�E(W) has

minima for very wet and very dry soils, and it is largest

for intermediate soil moisture values (with a degree of

saturation between 0.1 and 0.4; see Fig. 3c). Figure 3d

shows, for comparison, how �P(S) � �P(W) varies

with soil moisture; the relationship shows a hint of that

seen for [�E(S) � �E(W)]�E(W), particularly at the

extremes.

The conclusions above were obtained from a multi-

model average. We now examine, with some simple

FIG. 2. Idealized time series of evaporation for different en-

semble members under four situations: (i) low �E with low �E, (ii)

low �E with high �E, (iii) high �E with low �E, and (iv) high �E

with high �E.
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statistical indicators, their relevance to individual mod-

els. First, consider the panels on the left in Fig. 4. The

top panels show the intermodel standard deviation of

�(S) � �(W) among the 12 models, and the bottom

panels show the ratio of the mean to the standard de-

viation. The pattern of the intermodel standard devia-

tion of �E(S) � �E(W) (left) largely resembles the

field of �E(S) � �E(W) itself (Fig. 1), except for the

enhanced variability over arid regions. The ratio serves

as a measure of the signal-to-noise ratio, showing where

there is the least uncertainty among models. The pat-

tern of the ratio resembles that of the mean in the

upper-right panel in Fig. 1, with some shift away from

the arid regions, giving a distribution that overlaps

many of the world’s major agricultural areas.

The implication of the left panels in Fig. 4 is that the

regions of strong ET similarity are relatively common

among the models. The same cannot be said about pre-

cipitation similarity [�P(S) � �P(W)]. The right panels

in Fig. 4 show the standard deviation and signal-to-

noise ratio for precipitation similarity. The ratio of the

mean to the standard deviation for precipitation simi-

larity is much weaker than for ET, and is more domi-

nated by noise. Only over a few regions (e.g., northern

India, China, Pakistan, and parts of sub-Saharan Af-

rica) are there sizeable areas that approach a ratio of

unity (note the difference in scale). Note also that the

strongest signal-to-noise values are still located in re-

gions with strong levels of 12-model mean precipitation

similarity in the upper-left panel of Fig. 1. Large, inter-

model variability, however, predominates over most of

the globe.

3. Comparison among AGCMs

While the models show some similarities in the geo-

graphical pattern of land–atmosphere coupling strength,

FIG. 3. Scatterplots of (a) �E(S) � �E(W), (b) �E, (c) [�E(S) � �E(W)]�E, and (d) �P (S) � �P(W), all

against mean soil wetness. All variables are averaged across the 12 models.
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they also show some wide disparities. Global maps of

�P(S) � �P(W) were provided in Fig. 5 of Part I for all

12 AGCMs. The major features found in the multimo-

del mean are seen in many of the models. Some areas,

though, such as the northern Amazon and Orinoco Ba-

sins, show significant differences. Also, the coupling

strength in general seems relatively large in the Geo-

physical Fluid Dynamics Laboratory (GFDL), National

Aeronautics and Space Administration (NASA) Sea-

sonal-to-Interannual Prediction Project (NSIPP), and

Community Atmospheric Model, version 3 (CAM3),

models, whereas that for the Global Forecast System

Model (GFS)/Oregon State University land surface

model (OSU) seems very weak.

Similar commonalities and disparities among AGCMs

can be found in the impacts of soil moisture on ET.

We showed in section 2 that the diagnostic [�E(S) �

�E(W)]�E(W), which measures the degree to which

the evaporation signal is both similar and strong, ap-

pears to explain much of the geographical variation in

the precipitation similarity for the mean of the models.

Figure 5 shows global maps of this product for each

model. The models tend to agree in the placement of

larger values in the transition regions between humid

and dry climates, but disparities abound. The GFDL

model has the highest mean values for the product,

whereas GFS/OSU has by far the lowest. Indeed, the

low values for GFS/OSU by themselves can explain this

model’s globbally low precipitation similarity values.

Differences in this diagnostic product are indeed re-

lated to differences in the land–atmosphere coupling

strength. Figure 6 shows how [�E(S) � �E(W)]�E(W)

varies with �P(S) � �P(W) for the average of global

ice-free land points and for the three hot spot regions

delineated by dashed lines in Fig. 1. The high r2 values

for the hot spot regions (0.86, 0.84, and 0.51 over the

Sahel, northern India, and the central Great Plains of

North America, respectively) suggest that the inter-

model differences in [�E(S) � �E(W)]�E(W) are

strongly related, and, given the arguments in section 2,

largely explain the intermodel differences in �P(S) �

�P(W) in these regions. (Note that for the global mean

in Fig. 6a, the r2 value appears to be determined mostly

by the position of one point.) Supplemental calcula-

tions show that �E(S) � �E(W) alone would produce

r2 values of 0.84, 0.56, and 0.38, respectively, in the hot

spot regions, while �E(W) alone would produce r2 val-

ues of 0.11, 0.62, and 0.40, respectively.

Of course, the relationship is not perfect because of

sampling error, the inability of the diagnostic to capture

fully the evaporation signal’s impact on land–atmo-

sphere feedback, and the fact that the models also differ

FIG. 4. Intermodel std dev of �E(S) � �E(W) and �P(S) � �P(W) among (top) the 12 models and (bottom)

the ratio of the mean to the std dev.
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FIG. 5. Global distribution of [�E(S) � �E(W)]�E for the models participating in GLACE.
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in the coupling mechanism between ET and precipita-

tion (section 3c). Indeed, the separation of the pathway

linking soil moisture anomalies and precipitation gen-

eration into two parts—the segment between soil mois-

ture anomalies and evaporation anomalies and that be-

tween evaporation anomalies and precipitation genera-

tion—is useful for understanding the intermodel

differences in �P(S) � �P(W). In essence, Fig. 6 sug-

gests that while the first segment is the most important

for explaining these differences [the r2 values for be-

tween the associated diagnostic and �P(S) � �P(W)

are high], it is not all important.

In the remainder of this section, we focus more

closely on the models’ representations of these two seg-

ments. We construct a series of indices to measure the

overall strength of each segment within each model, as

well as the strength of coupling for the entire path from

soil wetness to precipitation. The results are summa-

rized in Table 1.

a. Soil–precipitation coupling: Net effect

The first column after the list of models in Table 1

shows the global mean of the precipitation similarity

diagnostic �P(S) � �P(W) calculated over all nonice

land points. The next column provides the rank of the

model (with 1 indicating the highest global mean, and

thus the model with the strongest control of subsurface

soil moisture on precipitation). Some grouping is evi-

dent; three models (GFDL, NSIPP, and CAM3) show

similarly large values of the global mean index (be-

tween 0.032 and 0.040), and another group [Common-

wealth Scientific and Industrial Research Organization

FIG. 6. Areal average of [�E(S) � �E(W)] · �E vs �P(S) � �P(W) over global ice-free land points and some

hot spot regions (indicated by dashed lines in Fig. 1) for all 12 models.
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(CSIRO), University of California, Los Angeles

(UCLA), Center for Climate System Research

(CCSR), Center for Ocean–Land–Atmosphere Studies

(COLA), Goddard Earth Observing System (GEOS),

and Bureau of Meteorology Research Center (BMRC)]

shows much lower values, ranging from 0.005 to 0.014.

The Hadley Centre Atmospheric Model (HadAM) 3

and GFS/OSU models show almost no impact of sub-

surface soil wetness on precipitation.

A comparison of the R and S experiments reveals

how the specification of “faster” land variables (tem-

peratures, etc.) affects the model rankings. In Fig. 7,

global means of �P(S) � �P(W) are plotted against

�P(R) � �P(W) for each model. Similar groupings are

evident. Notice that the rankings are similar (i.e., the

points cluster along a diagonal line with positive slope)

despite the differences in the scales of the axes. In gen-

eral, if specifying subsurface soil moisture has a rela-

tively large impact on the similarity of rainfall in a

model, then the specification of all land variables in the

model will also have a relatively large impact on pre-

cipitation.

b. Segment 1: Soil–ET coupling

The first segment of the path in soil–precipitation coup-

ling is from soil wetness variations to ET variations,

which we characterize with the diagnostic [�E(S) �

�E(W)]�E(W). Columns 4 and 5 in Table 1 show, re-

spectively, the global mean of this diagnostic for each

model (calculated over all nonice land points) and the

model’s corresponding rank. The GFDL model clearly

has the strongest link between subsurface soil wetness

and ET. There is a significant gap to the model in sec-

ond place [Canadian Centre for Climate Modelling and

Analysis (CCCma)], and then a fairly continuous

spectrum down to the 11th model (COLA). GFS/OSU

has a very weak coupling between soil wetness and ET

and is a clear outlier. Note that the centers of the top-

most soil layers of the GFDL, BMRC, CCCma, and

HadAM3 models are at or are deeper than 5 cm, mean-

ing that for each of these four models, the soil moisture

was continually specified in the topmost layer in the S

experiment. Thus, for these four models only, bare soil

evaporation was directly affected by the soil moisture

specification in case S, helping to increase �E(S) �

�E(W). {In the GFS/OSU model, the topmost soil

layer was not continually specified in the S ensemble

even though the center is exactly 5 cm from the sur-

face. Although this implementation of the experiment

is not precisely correct, it should have a limited im-

pact on the computed global average of the [�E(S) �

�E(W)]�E(W) field. The whole of the root zone en-

TABLE 1. Globally averaged (over nonice land points) land–atmosphere coupling strength for all 12 models and in each segment of

the path from soil wetness to precipitation, namely, soil wetness–ET and ET–precipitation. Subscripts “1” and “2” are used to identify

the different methods for calculating the indices (see section 3c for details).

Model SW – P Rank SW – ET Rank (ET – P)1 Rank (ET – P)2 Rank

GFDL 0.040 1 0.387 1 0.211 7 0.104 4

NSIPP 0.034 2 0.140 5 0.511 2 0.241 2

CAM3 0.032 3 0.129 7 0.715 1 0.248 1

CCCma 0.024 4 0.249 2 0.450 4 0.095 7

CSIRO 0.014 5 0.151 4 0.042 11 0.097 6

UCLA 0.011 6 0.114 8 0.267 6 0.099 5

CCSR 0.009 7 0.104 9 0.453 3 0.090 8

COLA 0.009 8 0.081 11 0.370 5 0.106 3

GEOS 0.006 9 0.209 3 0.162 9 0.030 10

BMRC 0.005 10 0.102 10 0.182 8 0.047 9

HadAM3 0.002 11 0.129 6 �0.016 12 0.012 11

GFS �0.004 12 0.024 12 0.082 10 �0.017 12

FIG. 7. Global average of �P(S) � �P(W) vs �P(R) � �P(W)

over ice-free land points for all 12 models.
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compasses a much larger soil volume than the surface

layer, and supplemental analysis of GFS/OSU’s evapo-

ration fields shows that although bare soil evaporation

is dominant in some regions, transpiration dominates

on the global scale.}

As discussed in section 2, the diagnostic [�E(S) �

�E(W)]�E(W) captures two separate aspects of the

evaporation signal: its variability and its similarity. Fig-

ure 8 shows, for each of the regions analyzed in Fig. 6,

the individual quantities �E and �E(S) � �E(W) for

each model. This breakdown helps us relate differences

in the soil–ET coupling to differences in climate regime

and model parameterization. Differences in �E relate

mostly to differences in the models’ background clima-

tologies (though �E may potentially be amplified

through its coevolution with �P during feedback). Dif-

ferences in �E(S) � �E(W), on the other hand, relate

mostly to differences in incident radiative energy and in

the details of the land surface parameterization, par-

ticularly in those details defining the sensitivity of

evaporation to soil moisture variations. For example,

notice that in Figs. 8a–8c BMRC tends to have moder-

ately high similarity in its evaporation fluxes [�E(S) �

�E(W)], but very low variability (�E)—the type of be-

havior idealized in the third panel of Fig. 2. The low �E

for BMRC reflects the relatively low mean and vari-

ability of the precipitation forcing (not shown) for that

model over most of the areas examined, that is, it re-

sults from the model’s background climatology. The

same arguments regarding evaporation variability ap-

ply, to a degree, to the CCSR/National Institute for

Environmental Studies (NIES) model, particularly over

FIG. 8. �E(S) � �E(W) vs �E for all 12 models, averaged over (a) global ice-free land points, (b) the Great Plains,

(c) northern India, and (d) the Sahel. The boundaries of the final three regions are demarcated in Fig. 1.
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northern India and the Sahel. The GFDL model, on the

other hand, shows relatively high precipitation variabil-

ity on a global scale, helping to promote evaporation

variability. Coupled with the moderate-to-high �E(S)

� �E(W) values for this model, the diagnostic [�E(S)

� �E(W)]�E(W) is especially high, promoting strong

land–atmosphere feedback.

Now consider the COLA model. Evaporation (and

precipitation) variability in the areas studied is not par-

ticularly small for this model, but the evaporation simi-

larity values are (case ii in Fig. 2). These low similarity

values probably reflect this model’s relatively high in-

terensemble variability of net radiation (not shown).

Again, details of the land model parameterization,

particularly those associated with soil water–limited

transpiration and how it relates in magnitude to bare

soil evaporation and canopy interception loss, probably

explain most of the intermodel differences in �E(S) �

�E(W). The parameterization in the GFS/OSU model,

for example, must be responsible for this model’s very

low �E(S) � �E(W). In the India region, at least, the

GFS/OSU model does produce a bare soil evaporation

that exceeds transpiration (not shown). [Curiously, an-

other land model used at the National Centers for En-

vironmental Prediction (NCEP), the Noah LSM, shows

substantial evaporation sensitivity to soil moisture

variations when coupled to NCEP’s Eta regional model

(Berbery et al. 2003).] A proper analysis of such model

parameterization differences would necessarily be com-

plex and will not be addressed in this paper.

Other climatic factors may also lead to intermodel

differences in [�E(S) � �E(W)]�E(W). For example,

because this diagnostic peaks at intermediate values of

soil wetness (Fig. 3), the model whose climatology pro-

duces the highest fractional area with such soil wetness

values might produce the highest average value for the

diagnostic. Also, if a model shows large similarity in

evaporation rates in the free-running W experiment

[�E(W)] resulting from the initialization procedure or

the effects of the oceanic boundary conditions and sea-

sonal radiation forcing applied, the difference �E(S) �

�E(W) may have a small upper potential limit. Careful

analysis of the model output, however, shows that nei-

ther factor has a first-order impact on the ranking of the

models.

Finally, a comparison of the evaporation diagnostics

computed from the R and S experiments provides some

interesting insights into the control of evaporation in

the different models. Figure 9a shows the global mean

(over nonice land points) of [�E(S) � �E(W)]�E(W)

versus the corresponding global mean of [�E(R) �

�E(W)]�E(W). Because more variables (i.e., the fast

variables, including surface soil moisture, skin temp-

erature, and canopy interception) are specified in the

R than in the S experiment, we expect the evapora-

tion similarity to be larger for the R experiment, and

thus we expect [�E(R) � �E(W)]�E(W) to be larger

than [�E(S) � �E(W)]�E(W). This is seen in general

on the global scale. Some models (CAM3, GFS/

OSU, and COLA) show a relatively large difference

between [�E(R) � �E(W)]�E(W) and [�E(S) �

�E(W)]�E(W), suggesting that evaporation in these

models is more strongly controlled by the fast variables.

The higher values of the diagnostic for the R experi-

ment have consequent impacts on the land–atmosphere

coupling strength in that experiment, �P(R) � �P(W)

(Fig. 7).

Similar behavior is observed over the Great Plains

and the Sahel (Figs. 9b,d). Interestingly, the specifica-

tion of the fast variables over India (Fig. 9c) has an

impact on only a handful of models (COLA, UCLA,

GFS/OSU, CAM3, and CCCma); the rest of the models

fall close to the 1:1 line.

c. Segment 2: ET–precipitation coupling

The land surface model and the background clima-

tology may combine to produce a strong and similar

evaporation signal, as in the lowest panel of Fig. 2. For

this to be translated into an impact on precipitation,

however, the second segment of land–atmosphere feed-

back—the link between evaporation and precipita-

tion—must be strong. Returning to Table 1, we present

two different indices to measure this link. Both indices

are inferred from joint analysis of diagnosed precipita-

tion and ET similarities.

The first index (ET � P)1 is simply the spatial pattern

correlation between [�E(R) � �E(W)]�E(W) and

�P(R) � �P(W) across the globe. The idea is simple: if

the control of ET on precipitation is local and strong,

then the spatial patterns of the evaporation diagnostic

and the precipitation similarity should be highly corre-

lated. The correlations from the R experiment are simi-

lar to those from the S experiment; we use those from

the R experiment here simply because they will not be

spuriously high because of the response of bare soil

evaporation or interception loss to incident precipita-

tion.

The second index (ET � P)2 is the ratio between the

global means (over nonice land points) of �P(S) �

�P(W) and [�E(S) � �E(W)]�E(W). This gives a glob-

al measure of how the second segment of land–

atmosphere coupling (i.e., between evaporation and

precipitation) degrades the link between soil moisture

and precipitation, without regard for the “localness” or

“remoteness” of the evaporation impacts.

Table 1 shows that the two indices produce similar
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rankings among the models. The CAM3 and NSIPP

models rank considerably higher than the other models

in both indices, suggesting that their parameterizations

for moist convection, boundary layer physics, and/or

other atmospheric processes are especially sensitive to

evaporation variations at the land surface. GEOS and

HadAM3 show much lower rankings for the ET–P in-

dex than for the SW–ET index, suggesting that the

ET–P connection is weak enough to lose whatever sig-

nal is transmitted from soil wetness to ET. Both CAM3

and COLA show strong values of the ET– P indices but

do not rank high in the SW– ET index, suggesting that

these models might have an even stronger coupling be-

tween soil wetness and precipitation if a different land

surface parameterization were used or (in the case of

the COLA model) if the net radiation were less vari-

able. Finally, the small values of all indices for GFS/

OSU and BMRC suggest that the lack of signal in ET

may prevent any measure of ET–P coupling; again, a

change of land surface scheme might dramatically alter

the behavior of these two models.

The ratio-based index (ET � P)2 can be used to

interpret the scatter in Fig. 6a, which is the plot show-

ing the relationship between globally averaged num-

erator �P(S) � �P(W) and denominator [�E(S) �

�E(W)]�E(W) for the different models. The CAM3

and NSIPP models lie well above a fitted line through

the points. The interpretation of the ratio-based index

(ET – P)2 explains why these two models have atmo-

spheres that are (relatively) sensitive to evaporation

FIG. 9. [�E(S) � �E(W)]�E vs [�E(R) � �E(W)]�E for all 12 models, averaged over (a) global ice-free land

points, (b) the Great Plains, (c) northern India, and (d) the Sahel. The boundaries of the final three regions are

demarcated in Fig. 1.
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variations. Similarly, the fact that GEOS and HadAM3

lie below the fitted line can be explained by the relative

insensitivity of their atmospheres to evaporation varia-

tions.

Figure 10 summarizes the results of separating land–

atmosphere feedback into the two segments. The x axis

represents the first segment of the coupling—the link

between soil wetness and ET. The y axis represents the

second segment—the link between ET and precipita-

tion as provided by the correlation-based diagnostic

(ET – P)1. The number near each model name in Fig.

10 shows how the model ranks in total coupling

strength over all ice-free land points (from column 3 of

Table 1).

The coupling strength in a model, of course, is con-

trolled by the nature of both segments of the coupling.

The closer a model is to the upper-right corner of the

plot, the more likely a soil wetness anomaly can propa-

gate through the ascending branch of the hydrologic

cycle and affect precipitation. The figure immediately

highlights some of the results outlined above; for ex-

ample, the low coupling strengths of the BMRC and

COLA models results from their weak soil moisture–

evaporation connection, whereas the high coupling

strength for the GFDL model results from its very

strong soil moisture–evaporation connection. Coupling

strength is strong in models such as NSIPP and CAM3

mostly because of the strong connection between ET

and precipitation in these two models. The HadAM3,

on the other hand, shows the weakest coupling between

ET and precipitation, and it thus has one of the weakest

coupling strengths. The HadAM3 result is consistent

with findings from a recent study (Lawrence and Slingo

2004a,b) that showed how the inclusion of predicted

vegetation phenology in this model had no impact on

precipitation, even though soil wetness, surface latent

heat flux, and near-surface air temperature were all

significantly affected over large areas of the globe. The

GFS/OSU model lies near the origin and has the weak-

est coupling strength because both the soil moisture–

evaporation connection and coupling between ET and

precipitation are weak.

d. Link between coupling strength and convection

Coupling strength is a net result of complex interac-

tions between numerous process parameterizations in

the AGCM. We have discerned different behaviors of

land–atmosphere coupling among the 12 AGCMs in

this study and have broken down the contributions to

this coupling from the atmospheric and terrestrial

branches of the hydrologic cycle. Can we identify the

process parameterizations that are mostly responsible

for the differing coupling strengths?

We now examine moist convective precipitation with

this in mind. Given that moist convection is often insti-

gated by variations in near-surface air temperature and

humidity, whereas large-scale condensation is strongly

controlled by variations in the general circulation, we

might naturally expect moist convection to be a key

component of the pathway linking soil moisture varia-

tions and precipitation. Figure 11a shows the global

average of �P(S) � �P(W) calculated separately for

total precipitation, convective precipitation, and large-

scale precipitation. (Note that only seven models re-

ported the precipitation components separately.) With

the exception of the NSIPP model, the contribution of

soil moisture to similarity in the convective component

is 60%–200% greater than its contribution to similarity

in the large-scale component. The fact that �P(S) �

�P(W) tends to be larger for convective precipitation

than for large-scale precipitation supports the idea that

convective precipitation is more sensitive to land sur-

face moisture variations.

In Fig. 11b, the �P(S) � �P(W) values are weighted

by the fractional contributions of the convective pre-

cipitation component to total precipitation. This plot

shows that convective precipitation bears most of the

signal of the soil moisture’s impact on precipitation,

due in large part to the dominance of convective pre-

cipitation during boreal summer. Based on the bottom

plot, the coupling between surface fluxes and precipi-

FIG. 10. Global average of [�E(S) � �E(W)]�E over ice-free

land points (a measure of the strength of the soil moisture–

evaporation connection) vs spatial pattern correlation between

[�E(R) � �E(W)]�E and �P(R) � �P(W) (a measure of the

strength of the evaporation–precipitation connection) for all 12

models.
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tation is indeed via the convective precipitation scheme

in the AGCMs.

Not examined separately here are the many aspects

of the moist convective parameterization (convective

triggers, depth of detrainment, droplet microphysics,

evaporation of falling rain, downdrafts) that can affect

the evolution of temperature and humidity of the

boundary layer and can thus induce intermodel differ-

ences in simulated land–atmosphere coupling strength.

Additional sensitivity experiments with more compre-

hensive diagnostics, perhaps in a single-column model

setting, would be needed to address more fully the role

of moist convection in the coupling.

4. Discussion and summary

Through coordinated numerical experiments with 12

AGCMs as part of the GLACE project, the impacts of

soil moisture conditions on rainfall generation have

been examined for the boreal summer season. These

impacts are found to be a function of hydroclimatologi-

cal regime and are heavily affected by the complex

physical process parameterizations implemented in the

AGCM.

In general, impacts of soil moisture on rainfall are

strong only in the transition zones between dry and wet

areas. Multimodel analysis shows that the existence of

“hot spots” of land–atmosphere coupling in these areas

is because of the coexistence there of a high sensitivity

of ET to soil moisture and a high temporal variability of

the ET signal. In wet climates, where soil moisture is

plentiful, ET is controlled not by soil moisture but also

by atmospheric demand (as determined in part by net

radiation). Specifying land moisture states in wet cli-

mates thus has little impact on ET and rainfall genera-

tion (cases i and ii in Fig. 2). In dry climates, ET rates

are sensitive to soil moisture, but the typical variations

are generally too small to affect rainfall generation

(case iii in Fig. 2). Only in the transition zone between

wet and dry climates, where ET variations are suitably

high but are still sensitive to soil moisture, do the land

states tend to have strong impacts on precipitation.

The impact of soil moisture on rainfall varies widely

from model to model. The GFDL, CAM3, and NSIPP

models have the strongest land–atmosphere coupling

strengths, and GFS/OSU, HadAM3, BMRC, and

GEOS have the weakest (Table 1). The breakdown of

the coupling mechanism into two segments—the link

between soil moisture and evaporation and the link

between evaporation and precipitation—helps to iden-

tify some of the reasons for these differences. Some

models (CAM3, NSIPP) have a high coupling strength

because their modeled atmospheres (particularly their

convective schemes) are very sensitive to evaporation

variations, whereas the atmospheres of other models

(HadAM3, GEOS) are relatively insensitive to evapo-

ration variations, leading to a weak coupling strength.

Most of the intermodel differences in coupling

strength, however, can be explained by intermodel dif-

ferences in the nature of the evaporation signal itself, as

characterized by the diagnostic product [�E(S) �

�E(W)]�E(W). Figure 6 suggests that in some of the

hot spot regions of strong coupling, intermodel varia-

tions in the diagnostic product can explain more than

80% of the intermodel variations in coupling strength.

Figures 8a and 10 summarize the impacts of the various

factors on globally averaged coupling strength for each

model.

In Part I, we noted that the �P diagnostic does not

distinguish between local and remote land surface in-

fluences on precipitation. One interpretation of the

overall strong performance of the diagnostic product

[�E(S) � �E(W)]�E(W) in reproducing �P is that the

FIG. 11. (top) Global average over ice-free land points of �P(S)

� �P(W) calculated separately from total precipitation, convec-

tive, and large-scale precipitation components for the models that

reported them separately. (bottom) Same as above, but with val-

ues scaled by the relative contributions of the components to total

precipitation.
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coupling between precipitation and soil moisture is in-

deed largely local. Additional experiments would be

needed to demonstrate this more definitively.

For the understanding of land–atmosphere coupling

strength, we can identify several additional issues that

require further attention. First, an objective quantifica-

tion of large-scale coupling strength from observational

data needs to be obtained; its absence is a major ob-

stacle to the evaluation of model performance. Second,

land–atmosphere coupling strength should be quanti-

fied for other seasons; presumably, it will be weaker

during seasons that feature less moist convection,

though preliminary experiments with the CCSR/NIES

model (not shown) suggest otherwise. Third, for a more

detailed analysis of coupling strength in a more con-

trolled setting, different configurations of convective

precipitation schemes, boundary layer schemes, and ET

formulations should be applied within individual mod-

els. In particular, the use of implicit coupling of the land

surface to the atmosphere (Polcher et al. 1998; Best et

al. 2004), rather than the more common explicit or

semi-implicit approaches, should be investigated, be-

cause the former may lead to a “tighter” connection

between the land surface and the planetary boundary

layer, with consequent impacts on derived coupling

strength. Finally, the strength of land–atmosphere cou-

pling should be quantified relative to that of other con-

trols in the earth’s climate system; for example, com-

paring the GLACE results above with those from a

separate set of ensembles that use different SST bound-

ary conditions for each ensemble member (drawn from

observed interannual SST distributions) could establish

the relative importance of land and ocean controls on

precipitation variability.
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