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Changes in a large-scale glacial lake area directly reflect the regional glacier status and climate changes. However, long time series
of glacial lake dataset and comprehensive investigation of the spatiotemporal changes in the glacial lake area in the whole High
Mountain Asia (HMA) region remained elusive. Satellite remote sensing provides an indispensable way for dynamic
monitoring of glacial lakes over large regions. But glacial lakes are quite small and discretely distributed, and the extraction of
glacial lakes is usually influenced by clouds, snow/ice cover, and terrain shadows; thus, there is a lack of an automatic method
to continuously monitor the dynamic changes of glacial lakes in a large scale. In this paper, we developed a per-pixel
composited method named the “multitemporal mean NDWI composite” to automatically extract the glacial lake area in HMA
from 1990 to 2020 using time-series Landsat data. There were 19,294 glacial lakes covering a total area of 1471:85 ± 366:42 k
m2 in 1990, and 22,646 glacial lakes with an area of 1729:08 ± 461:31 km2 in 2020. It is noted that the glacial lake area in the
whole HMA region expanded by 0:58 ± 0:21%/a over the past three decades, with high spatiotemporal heterogeneity. The
glacial lake area increased at a consistent speed over time. The fastest expansion was in East Kun Lun at an average rate of
2:01 ± 0:54%/a, while in the Pamir and Hengduan Shan, they show slow increases with rates of 0:33 ± 0:08%/a and 0:39 ± 0:01
%/a, respectively, during 1990–2020. The greatest increase in lake area occurred at 5000-5200m a.s.l., which increased by about
45 km2 (~25%). We conclude that the temperature rise and glacier thinning are the leading factors of glacial lake expansion in
HMA, and precipitation is the main source of lake water increase in West Kun Lun. Using the proposed method, a large
amount of Landsat images from successive years of melting seasons can be fully utilized to obtain a pixel-level composited
cloud-free and solid snow/ice-free glacial lake map. The uncertainties from supraglacial ponds and glacial meltwater were also
estimated to improve the reliability and comparability of glacial lake area changes among different regions. This study provides
important technical and data support for regional climate changes, glacier hydrology, and disaster analysis.

1. Introduction

Glacial lakes are the joint product of global warming and
glacier melting. Glacial lake changes are closely associated
with climate changes and glacier activities and impact the
local hydrologic cycles [1, 2]. High Mountain Asia (HMA)
develops the most extensive glaciers in the middle and low
latitudes [3, 4]. In addition to evaporation and flowing into

rivers, a fair amount of glacial meltwater is retained in the
glacial lakes. This to some extent delays the loss of regional
glacial water resources due to climatic warming [5, 6] but
also directly leads to an increased risk and number of poten-
tially dangerous glacial lakes [7]. HMA is known as the
world’s Glacial Lake Outburst Flood (GLOF) vulnerability
hotspot [1, 8], and its GLOF risk could nearly triple with
the future rapid development of lakes [9]. In the periods of
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1990 and 2018, it was estimated that the HMA glacial lakes
experienced widespread areal expansion at an average rate
of 15.2% [10], with large variability between different subre-
gions and elevation ranges.

Glacial lake area extraction is basically important for two
reasons. First, glacial lake coverage areas offer the basic data
to determine the detailed lake outlines. Several recently
released HMA glacial lake inventories [10, 11], which are
mainly delineated manually from Landsat images for the
boundaries, can be used to provide the fundamental data
for glacial lake change detection, GLOF hazard analysis,
and terrestrial water budgets. Second, glacial lake coverage
and associated area changes are closely related to glacier
mass balance changes and regional climate conditions. Sim-
ulation results showed that more than 13,000 new glacial
lakes could appear in the nonglacial area, and ~47% of them
will appear by 2050 [9]. However, for all HMA glacial lakes,
there are few long-term, continuous, and systematic obser-
vations of area changes so far. Most of the efforts are con-
cerned with glacial lake monitoring over different regions
of HMA at different time scales [12–14]. The resulting
incomplete spatial coverage and the influence of different
data sources and mapping algorithms yield large uncer-
tainties in the regional comparisons and comprehensive
evaluation of HMA [6, 15].

In the past decades, many studies have been carried out to
delineate glacial lakes using optical remote sensing images.
Manual digitalization through visual interpretation is still a
necessary step for optimizing the mapping results. Water indi-
ces (WIs) [16–18] combine two or more spectral bands by
mathematical computation and are effective and convenient
for water detection. The combination ofWImaps with several
segmentation methods, such as iterative threshold segmenta-
tions [19–21] and level-set-based active-contour approaches
[15, 22], has been proposed to improve the lake local details.
Nevertheless, a number of manual postprocessing steps were
required to remove other false water features (e.g., small
streams and shadows) and supplement missing lakes.
Object-oriented analysis of remote sensing data that included
size, shape, reflectance, and contextual information was per-
formed for mapping glacial lakes with specific morphological
and spectral features [21, 23]. Machine learning, such as ran-
dom forest and deep learning methods, has high generaliza-
tion and automation ability for recognizing glacial lakes
from high-dimensional data, while the results heavily rely on
the appropriate training samples. Additionally, the require-
ments for both costs and processing times are exceptionally
high [24–26]. Despite the achieved inspiring results, for
HMA, the extraction of small and dispersed glacial lake targets
over such a large-scale area with harsh climate and complex
terrain conditions is challenging. Among the aforementioned
methods, WIs are the most popular method for glacial lake
extraction due to their high computational efficiency and ease
of use, and among different WIs, the normalized difference
water index (NDWI) [16] is robust in delineating different
types of lakes and features a reasonably stable threshold to
classify edge pixels of water [18, 27].

Glacial lakes are defined as water bodies originating from
glacier activities, which are formed when glaciers erode the

lands and melt and fill depressions excavated by glaciers
[28]. According to the definition of glacial lakes, they are dis-
tributed around glaciers, and a 10 km buffer [11, 29] around
the Randolph Glacier Inventory (RGI v6.0) [30] was widely
used to preliminarily determine the distribution area of gla-
cial lakes. Within this 10 km buffer range, some researchers
only define the lakes that are directly fed by glaciers as glacial
lakes [31, 32], but others think that all the lakes within the
buffer are glacial lakes and can be further divided into differ-
ent subclasses according to whether they are supplied by gla-
ciers and whether they are connected with glaciers [10, 33].
There are no unified classification schemes for glacial lakes.
Unlike glaciers that appear as perennial, large pieces of dense
ice slowly moving under their own weight, glacial lakes are
abundant at small size and have high spatial variability.
Due to the changeable environment and the complex spec-
tral features of satellite images, the great challenges of auto-
matically detecting glacial lakes from optical data include the
following obstacles: identifying clouds and alleviating their
impacts, excluding mountain shadows, distinguishing glacial
lakes from snow and ice cover, and detecting the changing
pattern of glacial lakes.

Summer and autumn seasons are generally selected as the
optimal time to recognize glacial lakes from satellite imagery
because ice and seasonal snow melt and lakes present a stable
extent during this period [34]. For the whole HMA, the situa-
tion is muchmore complicated. There is frequent solid precip-
itation in summer in the Himalayan regions [35], and this is
especially pronounced on Tien ShanMountain, where the pre-
cipitation is solid for the whole year at an elevation higher than
3000m [36, 37]. The existence of clouds and seasonal snow
cover in the warm season makes lake delineation challenging.
Glacial lake inventory compilation for the southeastern
Tibetan Plateau is extremely difficult due to the prevalent
heavy clouds influenced by summer monsoons and high-
relief terrain [38]. Although clouds and cloud shadows can
be automatically detected from multispectral data and using
time series of satellite scenes could reduce the impact of
clouds, it is not possible to merge them together piecewise
for large cloud-free optical imagery.

In rugged terrain environments, glacial lakes are easily
confused with mountain shadows due to their similar spec-
tral reflectance. This phenomenon is particularly serious
for north-facing glaciers that are widely shaded by adjacent
mountains [39]. Slope maps and shaded relief derived from
a digital elevation model (DEM) have been employed to
mask a number of mountain shadows [9, 22]. To completely
eliminate the interference of mountain shadows, their spatial
relationships with regard to glacial lakes should be modeled,
which requires many additional parameters such as solar
elevation angle, local time of image, and relative height
difference between glacial lakes and mountain peaks [40].
It is not easy to identify mountain shadows in large regions.

At present, there is no systematic studies to investigate
the current distribution and spatiotemporal heterogeneity
of glacial lakes in the whole HMA. The historical to present
glacial lake dataset covering HMA is crucial for assessing
glacier-climate change interactions and GLOF risk at the
regional scale. Local residents and management agencies
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are also very concerned about the development and changes
of glacial lakes, in order to predict and give early warning of
outburst disasters and minimize casualties and economic
losses. Meanwhile, monitoring glacial lake changes in
HMA as a whole is particularly important for assessing the

impacts of global climate changes. The spatial distribution
and heterogeneous changes of rapidly expanding glacial
lakes in the whole HMA region deserve further attentions.

Google Earth Engine (GEE) is the most advanced geo-
graphic information processing platform based on cloud
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Figure 1: Glacial lake distribution in HMA in 2020. (a) The mapped glacial lake extent (blue polygons), and area statistics along latitude
(right) and longitude (below); (b) distribution of different sizes of glacial lakes. The circle size represents the size class to which each
glacial lake area belongs. The inset shows the total number and area of glacial lakes in 1990, 2000, 2010, and 2020.
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computing in the world. It offers the possibility for the large-
scale processing and analysis of geoscience data and has
become popular in land-cover classification [41–43]. For
mapping glacial lakes over the whole HMA region, a reason-
able and effective strategy is still lacking. In the study of the
extraction of glacial lake outlines using this cloud-based
platform, the scheme of glacial lake mapping in the Third
Pole is discussed [22]. However, the GEE is mainly used
for the selection of cloudless images, and we noted the post-
processing problems regarding manual reediting and remov-
ing some erroneously extracted lakes in their semiautomated
method. Therefore, in this study, we developed a new auto-
matic method—the multitemporal mean NDWI composi-
te—to extract glacial lakes based on the archived Landsat
data on GEE. Then, the glacial lake coverage over the whole
HMA was extracted with the proposed method, and long-
term changes in the glacial lake area from 1990 to 2020 were
estimated in detail.

2. Results

2.1. Spatial Distribution Pattern of Glacial Lakes. Based on the
developed glacial lake mapping method, the glacial lake areas
across the 15 subregions in HMA were extracted at 10-year
intervals from 1990 to 2020. An example of the latest distribu-
tion pattern of glacial lakes in 2020 is presented in Figure 1.
Most of the glacial lakes were developed in the southern zone
of HMA, including Hindu Kush-Karakoram-Himalaya
Mountain ranges, South and East Tibet, and Hengduan Shan
(Figure 1(a)), where large glacial lakes (>1km2) were also dis-
tributed over these regions (Figure 1(b)). In East Kun Lun and
Qilian Shan, glacial lakes were sparsely distributed, and almost
all were in small sizes. Glacial lake area is evenly distributed
along the longitude, but concentrated in the latitude range
between 27°N and 32°N and also around 35°N, corresponding

to the Central and East Himalaya, the south side of South and
East Tibet, and the Hengduan Shan (Figure 1(a)). In 2020,
only 214 large glacial lakes (>1km2) were identified. Glacial
lakes with an area of less than 1km2 covered 1337:36 ±
261:47 km2, accounting for 77:35 ± 18:16% of the total lake
area (1729:08 ± 461:31 km2). 19,131 glacial lakes
(578:37 ± 121:45 km2) are less than 0.1 km2, which is domi-
nated in number (84%). Compared with the very large glacial
lakes, the spatial and temporal variation of these small lakes is
significant due to the unstable shapes and enhanced hydrolog-
ical cycle [21].

Figure 2 shows the distribution pattern of glacial lakes in
the vertical direction in 2020. Glacial lakes were distributed
between 2000m a.s.l. and 6000m a.s.l. Most of the glacial
lakes were located at the elevation above 3500m a.s.l., and
the main elevation range of the glacial lake distribution
was 4200–5500m a.s.l. These results are consistent well with
the previous studies [10, 11, 31]. In each 200m bin size,
more than 3500 glacial lakes were found in the 5000–
5200m a.s.l., which further confirm that as the global tem-
perature rises, more glacial lakes gradually develop towards
higher elevations [44].

2.2. Area Changes in Glacial Lakes in HMA. Due to the
occurrence of snow or ice meltwater on the glacier terminus
and the limited observation times of each pixel used for the
image composite in some regions, the extracted glacial lake
pixels cannot be directly used for the calculation and analy-
sis of glacial lake area changes. To reduce the total bias in the
estimated lake area and improve the reliability of results,
lake area uncertainty is estimated by an error of areas corre-
sponding to the lake region within the glacier boundaries.
Our mapped glacial lake pixels corresponding to the region
outside of glacier boundaries are used as the lower limit,
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Figure 2: (a) Area distribution of glacial lakes along the elevation in 2020; (b) frequency distribution of glacial lakes along the elevation.
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and all glacial lake pixels are deemed the upper limit. The
areas within the upper and lower limits in different colors
in Figure 3 denote the glacial lake area changes of each sub-
region during 1990–2020. Considering the presence of
unstable supraglacial lakes on the glacier surface, the esti-
mated glacial lake area of each subregion is obtained by aver-
aging the upper and lower limits.

We do not adopt the uncertainty estimation methods
used in the previous studies by the linear error and the lake’s
perimeter [39, 45, 46]. The main reasons are as follows: (1)
the proposed automated mapping method is based on the
pixel-level composited, and the output glacial lake maps
are in raster format displaying the glacial lake coverage
areas, while others are vectorized glacial lake outlines; (2)
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Figure 3: Glacial lake area changes in HMA during 1990–2020. Map in the center displays the spatial extent of HMA, glacial lake
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the effects from supraglacial ponds and glacial meltwater
and the limited observation times are fully considered in this
study. Based on the calculated glacial lake areas and their
uncertainty measurements, the area change rates between
1990 and 2020 in different regions are calculated.

The lake area change with time varies greatly among dif-
ferent regions across the HMA. All the 15 subregions showed
varying degrees of expansion. This is expected due to the con-
tinued global warming (especially in the HMA region) over
the past several decades [47, 48]. The most rapid expansion
in the glacial lake area is in East Kun Lun at a rate of approx-
imately 2:01 ± 0:54%/a, but with a small total area
(22:30 ± 4:36 km2 in 2020). There has been little expansion
in Hengduan Shan during the past 30 years. In Pamir, the gla-
cial lake areas increased rapidly during 1990–2010, but slightly
decreased and became relatively stable in the following 10
years, resulting in the slowest expansion rate (0:33 ± 0:08%/a
). It should be noted that in West Kun Lun, where the glacier
area was recorded to increase at a rate of 0:50 ± 0:11%/a dur-
ing 1990–2018 [49], glacial lakes in this region also unexpect-
edly exhibited an increasing area in recent years.

The changes in the glacial lake area in the whole HMA
and Region 13 Central Asia, Region 14 South Asia West,
and Region 15 South Asia East are shown in Figure 4. Gla-
cial lakes expanded at rates of 0:60 ± 0:17%/a, 0:59 ± 0:23
%/a, and 0:55 ± 0:11%/a between 1990 and 2020 for Central
Asia, South Asia West, and South Asia East, respectively.
The total glacial lake area in HMA expanded by 257:23 ±
94:89 km2 (17:47 ± 6:33%) at a rate of 0:58 ± 0:21%/a dur-
ing 1990–2020. Specifically, the expansion rates of glacial
lake area were 0:67 ± 0:12%/a from 1990 to 2000, 0:40 ±
0:05%/a from 2000 to 2010, and 0:57 ± 0:09%/a from 2010
to 2020, with a continuous and uniformly expanding trend
in the past 30 years.

2.3. Different Patterns of Glacial Lake Evolution. In order to
explore the dynamic evolution process of glacial lakes in more

detail, the annual area changes of glacial lakes aggregated on a
grid of 1° × 1° were further analyzed (Figure 5(a)). Negative
growth of glacial lake area was observed in East Hindu
Kush, Karakoram, Inner Tibet, and Hengduan Shan. The
region with the fastest area decrease was in the Karakoram
Mountain, with a negative area rate of -0.44 km2/a, where a
medium-sized glacial lake (0.4-0.6 km2) had vanished dur-
ing 1990-2020 (Figure 5(b)). In contrast, the areas of glacial
lakes in most of the other mountains continue to expand.
The fastest growing region (0.85km2/a) is located in the
East Himalaya, with the emergence of many medium and
large glacial lakes in 2020 (Figure 5(c)). It is noted that a
new glacial lake with an area of larger than 1km2 has
appeared in the West Tien Shan, which also correspond
with the rapidly expanding zone.

Both area and number of glacial lakes have increased at
different 200m elevation bands in HMA (Figure S1). The
greatest expansion occurred at 5000-5200m a.s.l., with the
increased area of about 45 km2 (~25%). The area change
rate fluctuated at different elevation ranges with no
obvious trend. The glacial lake area changes with elevation
were significantly different among the different subregions
(Figure 6). The change rates of glacial lakes in the West
Tien Shan, East Tien Shan, Inner Tibet, and East Himalaya
were found to be increasing with the increased elevation.
However, the change rates varied markedly, and no
significant trends of increase or decrease were observed in
other subregions. In particular, glacial lakes in West Tien
Shan and Karakoram exhibited large area decreases at
elevations of about 3400m a.s.l. (-1.99 km2) and 4600m
a.s.l. (-2.60 km2), respectively.

2.4. Effects of Climate and Glacier Thickness Changes on the
Glacial Lake Changes. The heterogeneous changes in the gla-
cial lake area in the whole HMA is closely related to complex
climate changes and glacier activities. From 1990 to 2020,
the temperature of all mountain ranges in HMA showed
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an increasing trend, with the highest warming rate of 0.6°C/
10a (P value < 0.05) occurring in Inner Tibet and West Tien
Shan (Figure S2(a)).

Rapid increase in the glacial lake area in HMA appears to
be directly driven by multiple water sources, including net
precipitation falling into the lakes, surface runoff from
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precipitation, glacier melting, and permafrost degradation.
Almost the entire Himalaya Mountain ranges, as well as parts
of the West Tien Shan, Hindu-Kush, and Hengduan Shan, are
getting drier, while Inner Tibet is getting wetter (Figure S2(b)).
Many studies have reported that ~70% of the increase in lake
water in the endorheic basin (e.g., Inner Tibet) is due to the
increased precipitation [50–52]. In the Himalayan region,
precipitation decreased by up to 16mm/a (P value < 0.05),
so the precipitation in these regions did not account for the
main contribution of glacial lake expansion.

At the same time, the mountainous glacier activities caused
by the climate changes are intensifying, such as the rapid retreat
of glacier ablation area, glacier surface thinning, and glacier
surge [4, 53, 54]. Glacier changes affect the development and
expansion of glacial lakes from several aspects. Glacier surface
thinning provides source of water for the glacial lake area
expansion, while the rapid retreat of the glacier terminus pro-
vides sufficient space for the development of glacial lakes. In this
paper, to illustrate the effects of regional glacier surface elevation
changes on the glacial lake changes, West Tien Shan, West Kun
Lun, and East Himalaya were selected as the typical mountain
regions due to the observed great total mass loss across the Tien
Shan and Himalaya and significant positive mass change in the
West Kun Lun [55–57]. As each subregion is very huge, it is dif-
ficult to show the glacier surface elevation changes at glacier-
specific scale clearly. Therefore, partial regions in the three
mountains with the most representative glacier changes and
densely distributed glacial lakes surrounded are taken as exam-
ples (Figure S3). From 2000 to 2018, the glacier surface

elevations in West Tien Shan and East Himalaya showed
significant thinning, with the mean negative elevation changes
of −0:24 ± 0:07m/a and −0:39 ± 0:15m/a, respectively, and
the mean thinning rate of glaciers in East Himalaya was
faster. During this period, the glacier surface elevation of West
Kun Lun showed a thickening trend of 0:23 ± 0:10m/a due to
the extensive glacier surge [56]. Overall, it can be inferred that
the rapid expansion of glacial lakes in HMA since 1990 is
mainly driven by climate warming and glacier thinning, and
the local evolution patterns of glacial lakes are related to the
regional differences of climate variability and glacier ablation.
For some regions with abnormal glacier thickness changes
such as West Kun Lun, increased precipitation dominates the
spatial distribution and variation of glacial lakes.

2.5. Evaluation of Extracted Glacial Lake Extent. The extracted
glacial lake areas in 1990 and 2020 were compared with the
newly released glacial lake inventory in 1990 and 2018, which
was produced byWang et al. (2020) over a much larger region,
including Altai and Sayan. To make the comparison in the
same spatial extent and minimum mapping unit, we excluded
the Altai and Sayan region and lakes smaller than 0.0081km2

from the inventory. The differences between the lake areas
extracted in 1990 and 2020 and those derived from the inven-
tory are illustrated in Figure 7.

Our mapped results show general agreement with the
inventory data for most of the subregions having varying total
lake areas. The most overestimated lake area is located in Cen-
tral Himalaya, which is shown as an example in Figure 8 for
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Figure 6: Changes in glacial lake area along the elevation (200m bin sizes) for each subregion during 1990-2020.
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(a) (b)

Figure 8: Examples showing the overestimated areas in Central Himalaya in 2020. (a) Snow and ice melt region on the glacier terminus; (b)
supraglacial ponds formed on the debris-covered ablation zones. Dark blue polygons are the outlines from the glacial lake inventory. The
two high-resolution Google Earth images are obtained on June 03, 2019, with supraglacial lakes shown in cyan outlines.
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in-depth exploration. There are large glacial lake regions
extracted by our proposed method which were not digitized
as glacial lakes in the inventory. These regions are mostly dis-
tributed on the debris-covered ablation zones of glaciers below
3500m. Our mapped glacial lake areas have a high degree of
confidence, and the valid observation times of each pixel are
usually higher than 10, meaning that they are not ephemeral
water bodies and may exist throughout several warm seasons.
In our opinion, this overestimation is acceptable due to the
different definitions for glacial lake mapping and producer’s
operation. The substantial melting of glacier ice and snow
was detected by our method (Figure 8(a)). Although they
appeared as very shallow water with no clear water bound-
aries, they originated from glaciers and may be converted to

supraglacial or proglacial lakes in the short term [5, 58]. More-
over, most of the water ponds lie on the low-altitude glacier
tongue in our extracted results (Figure 8(b)), but in the glacial
lake inventory in HMA from Wang et al. (2020), the highly
dynamic seasonal supraglacial lakes that have relatively small
sizes, complex shapes, and large quantities (even hundreds of
supraglacial ponds on a glacier terminus) that are not easily
digitized were partially excluded. They are the main cause
for the large disagreements between the extracted glacial lake
extent using our automated method and glacial lake inventory
from Wang et al. (2020).

Additional comparisons in the total number, total area,
and maximum/minimum area of glacial lakes with Wang
et al. (2020) and Chen et al. (2021) are listed in Table S1.

42°0'0"N

42°5'0"N

0 2 4 km

�e extracted glacial lake
(a)

78°0'0"E77°55'0"E77°50'0"E77°45'0"E77°40'0"E

42°0'0"N

42°5'0"N

Hill shadow
1

0

(b)

Figure 9: Hill shadow results in West Tien Shan in 2020. (a) Landsat 8 OLI image is acquired on September 26, 2020, with extracted glacial
lakes shown in blue; (b) mean hill shadow map calculated using the image collection (images in warm seasons during 2018–2021) in GEE.
The lower the value, the higher the probability of being a hill shadow.
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The statistics derived from our mapped glacial lakes are
close to that of the inventory from Wang et al. (2020) for
the epochs ~1990 and~2020. We found that thousands of
glacial lakes with a total area of about 300 km2 were not
detected by Chen et al. (2021). The main reasons for the
missed glacial lakes in the inventory from Chen et al.
(2021) are because of the interference of some bad
observations (clouds or snow), drying up of small glacial
lakes, or outburst in a single year [11].

2.6. Comparison of Lake Area Changes with Previous Studies.
The studies about observations of glacial lake area changes
in the whole HMA region are very limited and only focus
on the two time periods [9, 10]. To fully validate our results
in other periods, in this section, the detailed comparisons
were performed using the reported data of glacial lake area
changes for parts of HMA and time intervals. The wide area
increases were documented in mountains such as Pamir,
South and East Tibet, and Hengduan Shan during 1990–
2010 [59–61]. In our extracted results, glacial lake areas in
Pamir, South and East Tibet, and Hengduan Shan increased
0:58 ± 0:15%/a, 0:44 ± 0:11%/a, and 0:47 ± 0:19%/a from
1990 to 2010, respectively. The large-scale retreat and melt-
ing of glaciers is thought to be the major cause for the rapid
expansion of lake area in these regions [13, 56]. In Inner
Tibet, glacial lakes were reported to expand 0.86%/a during
1990–2000 [31]; in our results, glacial lakes increased 0:69
± 0:22%/a during this period. For the whole Himalayan
mountain range, we conducted a comparison between our
results and the results from automatic extraction methods
and human inspection during 1990–2015 [33]. In Nie
et al.’s work, although each of the West Himalaya, Central
Himalaya, and East Himalaya has been further divided into
the northern side and southern side regions along the ridge
line, respectively, it can be clearly shown that Central Hima-
laya expanded fastest, followed by the East Himalaya and
West Himalaya over the past nearly three decades. This is
similar to the results obtained by our method. Additional

comparisons for different subregions and time intervals are
listed in Table 1.

Although the area coverages are different, our results are
consistent with previous results in most subregions and
periods (Table 1). The time of the data in the collected refer-
ences is usually close to the periods covered by our results.
There are three possible reasons for the severe deviations in
some subregions. In the Hindu Kush and Karakoram, the
observed opposite trends of glacial lake changes from our
results, and the reference data are possibly caused by the very
small study area in the reference and the wide existence of
surge-type glaciers in this region. Glacial lakes in East Kun
Lun are small and very sparsely distributed; the different
observation periods and lakes smaller than 0.01km2 ignored
by Zheng et al. (2021) may cause the differences in the results.
In East Tien Shan, the large disagreement may stem from the
snowy and rainy weather in areas above 3000m, where ancient
glacial deposits have also accumulated, seriously hindering the
identification of glacial lakes. In the next section, we will dis-
cuss in more details about the influences of nonglacial lake
areas on the mapping procedure.

3. Discussion

3.1. Influence of Snow and Ice. Most of the previous studies
adopted visual interpretation and digitalization to delineate
glacial lakes. Although snow/ice meltwater can be effectively
excluded, lakes that are completely covered by snow or ice
are still difficult to recognize from individual satellite image
[42]. In this paper, we used a three-step strategy to identify
frozen or snow-covered glacial lakes. First, Landsat images
in the warm seasons are used. Second, glacial lakes might
be covered with snow or ice many times, while over an
~five-year period, glacial lakes can be identified based on
the stable status of water bodies (NDWI > 0:1). Third, the
observation times for most of the regions in HMA are
greater than 10, which improves the reliability of multitem-
poral glacial lake mapping results.

Table 2: Information of the datasets used in this study.

Dataset
Temporal
coverage

Spatial
resolution

Data type Source

Landsat imagery

1990 (1988–1993) 30m Landsat 5/TM, tier 1 TOA

United States Geological Survey (USGS)
https://earthexplorer.usgs.gov

2000 (1998–2003) 30m Landsat 5/TM, tier 1 TOA

2010 (2009–2012) 30m Landsat 5/TM, tier 1 TOA

2020 (2018–2021) 30m Landsat 8/OLI, tier 1 TOA

SRTM DEM 2000 30m Single-raster band USGS https://http://earthexplorer.usgs.gov

TanDEM-X 2018 1.7-3.5m Single-raster band
Apply from German Aerospace Center (DLR)

https://tandemx-science.dlr.de/

RGI v6.0
Region 13–15

1999–2010 — Multipolygon shapefile
Global Land Ice Measurements from Space
(GLIMS) https://www.glims.org/RGI/rgi60_dl

.html

GAMDAM glacier
inventory

1990–2010 — Multipolygon shapefile See Sakai (2019)

CRU v4.05 1990–2020 0.5° Gridded dataset https://crudata.uea.ac.uk/cru/data/hrg/

GPCC, full data monthly
version 2020

1990–2019 0.25° Gridded dataset
https://opendata.dwd.de/climate_environment/

GPCC/html/download_gate.html
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The proposed method shows good performance for the
large-scale glacial lake extraction even in the monsoon-
affected areas with heavy cloud cover; e.g., Hengduan Shan

and South and East Tibet, their differences with the glacial lake
inventory are less than 5% (Figure 7). In Central Himalaya, it
was also found that there is a wide coverage of supraglacial

Image preprocessing

Pixel-level image composite
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Figure 10: Flowchart of the processing chain for automated glacial lake detection.
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ponds or snow/ice meltwater that were not delineated as gla-
cial lakes in the inventory (Figure 8). Therefore, to reduce
the bias for the estimation of glacial lake area changes, we take
the intersection areas of our extracted glacial lakes with glacier
boundaries as the uncertainty area. At present, however, we
think it is difficult to resolve the discrepancy between our
results and manual inventory since variation in the snow or
ice melt contributions is hardly ignored during the automatic
extraction over such a large area.

3.2. Influence of Topographic Shadow. The influence of topo-
graphic shadow in mountainous area is still a common prob-
lem for the delineation of glacial lakes or glaciers.
Topographic parameters like shaded relief and slope are usu-
ally employed to distinguish between terrain shadows and
lakes [11, 50]. However, the influence of terrain shadow can-
not be completely eliminated due to the insufficiently
detailed topographic features and time lag of DEM data.

The shadow area in the remote sensing image is mainly
determined by the sun elevation and topography when the
image is collected. In HMA, the areas seriously affected by
the terrain shadows are the mountains with east–west ridges
or near east–west ridges, such as the Tien Shan Mountains
(Figure 9(a)), for which glaciers typically appear along the
northern slope [40]. To greatly reduce topographic shadow,
imagery collected from September to October is preferen-
tially used because the solar elevation angles are relatively
high. In our case, we fully consider the topographic relief,
solar azimuth, and zenith synchronous with the image
acquisition and use the mean value of the hill shadow for
each time-series pixel set to alleviate shadowing effect
(Figure 9(b)). It should be noted that the areas of the sha-
dowed surface are different over different regions and even
in the same region are different at different times, but gener-
ally, the remaining shadowed surface after the processing
using the slope and mean hill shadow occupies a very small
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Figure 12: Glacial lake extraction images applying NDWI at (a) 0.05, (b) 0.1, and (c) 0.15 with NDSI at 0.6 in the East Himalaya in 2020. (d)
is the corresponding false color composite of the Landsat 8 OLI image on September 05, 2020. The extracted glacial lakes are shown in blue,
and the red outlines are the 2018 glacial lake inventory delineated by Wang et al. (2020). The areas within the yellow ellipses are considered
as glacial lakes in the inventory, but using different thresholds of NDWI, parts of the area are not identified as glacial lakes. The areas within
the green ellipses are areas outside the inventory, while some may actually be omitted by the inventory, and some might be identified as
glacial lakes after applying different thresholds.
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proportion in the final extracted lakes and will seldom affect
the estimation of glacial lake area changes after subtraction
of different periods.

3.3. Limitations and Advantages of the Proposed Method.
Multitemporal image composite was necessary for the low-
quality images affected by thick clouds, frozen and snow-
covered lakes, and topographic shadows. Glacial lake extent
extracted using our automated method fits the real bound-
aries of the glacial lakes very well (Figure S4), while
manually delineated glacial lake outlines are largely
influenced by people’s subjective experience and manual
operation, resulting in inaccurate extraction of lake details
near the glacier terminus and overestimation or complete
omission of some small glacial lakes. Moreover, manual
digitization shows poor performance for the delineation of
glacial lakes with complex curved shapes.

Apart from manual delineation, many automatic
methods were proposed for the glacial lake extraction.
Thresholding segmentation method is simple but effective

for the small homogeneous area [9, 19, 33, 40], while for
a large region with diverse environment, the classification
accuracy will be greatly reduced. To improve the details of
lake edge, level-set-based active-contour approaches fully
consider the regional heterogeneity and can be applicable
to different features [15, 22, 65, 66]. However, the calcula-
tion is complicated, and many attempts are needed to select
optimized parameters. Object-oriented classification
methods full exploit the lake spectral information, morpho-
logical characteristics, and contextual information [21, 23].
The main limitation lies in the manual establishment of
classification rules and segmentation scales. The improved
deep learning methods have high automation for detecting
glacial lakes without assistance of additional auxiliary data
[24–26, 67], while enough and representative training sam-
ples are required.

In comparison with these automatic glacial lake mapping
methods, our method has the following advantages: (1) The
method was developed based on the GEE cloud computing
platform which offered massive images for the high-efficiency
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pixel-level composite. (2) It is unnecessary to select available
data from a large number of images and then merge them; all
images can be fully utilized to obtain a pixel-level composited
glacial lake map. (3) The impacts of ice, snow, cloud, and hill
shadowwere comprehensively considered and greatly removed;
the evaluation indicators were established to reduce the impact
from glacial meltwater on the mapping results. (4) Our method
shows high accuracy for the extraction of the lake details and
can capture areas of tiny supraglacial and unconnected glacial
lakes that are easily overlooked.

However, there are also some limitations in the proposed
method. The main problem with compositing images over
~5 years is that in regions where glacial lakes change extremely
rapidly, the edges of glacial lakes will look “blurred.” For the
few highly active glacial lakes, e.g., Lake Merzbacher in Tien
Shan, which has suddenly breached nearly every year due to
intense glacier melting or huge ice falling into the lake [8],
our method is not able to capture rapid changes and ensuing
GLOF events over the entire growing period of such glacial
lakes. That is the main limitation of this methodology in
detecting glacial lake changes, which only considers most of
glacial lakes that evolve stably or slowly.

Another problem with our proposed method is that we
consider all the lakes within this 10 km buffer zone to be
glacial lakes, which is controversial and may cause devia-
tions since nonglacier-fed lakes were regarded as nonglacial
lakes in some studies [31, 32]. Examples of the deviations
caused by the nonglacial lake pixels in typical regions are
shown in Figure S5. It can be seen that nonglacial lakes
bring great uncertainty to the total number and area of
glacial lakes in the East Himalaya. The number of
nonglacial lakes accounts for nearly half of the total
number; the area accounts for a slightly lower proportion,
about 18%. The errors caused by the nonglacial lake area
in West Tien Shan and West Kun Lun decreased,
occupying 8% and 2% of the total lake area, respectively.
More deviations of number were observed for the West
Tien Shan, with nonglacial lakes accounting for about
18% of the total number. Generally, the errors caused by
the nonglacial lake pixels are different in different
mountains, and the resulting errors of area are smaller
than that of the number.

In the mapping results, glacial lakes directly in contact
with glaciers or lying on the glacier surface were identified;
however, some glacial meltwater at the glacier terminus was
also extracted with high confidence (the observation times
were usually >10), excluding the possibility of transient melt-
water (Figure 8). This glacial meltwater can exist for several
warm seasons and will continue to accumulate or flow down-
ward [68]. Traditional methods using human vision have dif-
ficulty in distinguishing glaciers from glacial meltwater, but
glacial meltwater can be quickly differentiated using our pro-
posed method. Although this continuous melting of snow
and ice has not yet evolved into a stable water body and has
not been taken as glacial lake in the manually delineated
inventory, in our opinion, it is more sensitive to the climatic
warming than glacier itself due to the thermal effect and offers
new perspectives for understanding the glacier mass loss and
glacial lake formation.

4. Conclusion

No systematic studies have been made to investigate the cur-
rent distribution and long-term heterogeneous changes of gla-
cial lakes in the whole HMA. Glacial lake mapping from
satellite images is of crucial importance for glacial lake dynam-
ics monitoring. In previous studies, the heavy clouds, snow or
ice cover, and terrain shadows were the major obstacles for
image selection from a large number of images and accurate
lake mapping. This study is aimed at solving these problems
by developing a new automated glacial lake extraction
method. First, due to the spectral complexity and multiple
influencing objects in alpine environments, the multitemporal
mean NDWI composite was proposed for the stable glacial
lake extraction. Then, different cloud scores and NDSI settings
were tested in this study, and shadowed pixels were greatly
reduced using the mean hill shadow > 0:9. The uncertainties
from supraglacial lakes and glacial meltwater were estimated
using the intersection area between the extracted results and
glacier inventory boundaries. The strength of this method is
that we composite the glacial lake image at the pixel level by
making full use of all the available images, rather than just
image mosaicking.

Glacial lake area changes present successive and consis-
tent increases in the past 30 years. The estimated glacial lake
area increase was 0:58 ± 0:21%/a (8:57 ± 3:16 km2/a) in
HMA from 1990 to 2020, showing strong spatiotemporal
heterogeneity of changes. The fastest expanding area of gla-
cial lake was East Kun Lun, and its growth rate was 2:01
± 0:54%/a. Pamir and Hengduan Shan have the slowest
increases, which were 0:33 ± 0:08%/a and 0:39 ± 0:01%/a,
respectively. Even in the glacier accumulated regions—West
Kun Lun—the glacial lake area increased to some extent due
to the dominant effects from the increased precipitation.
The greatest expansion occurred at 5000-5200m a.s.l., with
the increased area of about 45 km2 (~25%). The warming
temperature and thinning glaciers are considered to be the
main drivers of widespread glacial lake expansion in HMA
region. The long-term glacial lake dataset, proposed auto-
mated glacial lake mapping method, and findings in this
study have important implications to improve the under-
standing of glacial lakes and glacier hydrological changes,
as well as for disaster risk assessment in mountainous glaci-
ated regions.

5. Materials and Methods

5.1. Datasets. Approximately 30,000 Landsat Thematic Map-
per (TM) and Operational Land Imager (OLI) scenes were
accessed from GEE for the lake mapping in the periods of
1990, 2000, 2010, and 2020. The ten-year interval between
these four periods is chosen to fully explore the changes in
glacial lakes during the past decades. Because the high-
quality images in a single year are quite limited in HMA,
to obtain abundant data, all available images were collected
within ±2~3 years of the four periods (Table 2). Landsat 8
shows better performance for the lake mapping compared
with its previous sensors due to the enhanced image acquisi-
tion technology and improved sensor [69]. The archived
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Landsat 5 images are fewer than those of Landsat 8, and
thus, the selected time span for 1990 and 2000 is relatively
long. Landsat Tier 1 calibrated top-of-atmosphere (TOA)
reflectance images on GEE were employed.

Other auxiliary dataset are as follows: (i) Randolph Gla-
cier Inventory (RGI v6.0) [30] to delimit the distribution of
glacial lakes within its 10 km buffer. An updated glacier
inventory—Glacier Area Mapping for Discharge from the
Asian Mountains (GAMDAM) [70]—has also been included
to supplement some missing glaciers in RGI v6.0. (ii) HMA
glacial lake inventory for comparison and cross-validation of
our results [10]. (iii) Version 3.0 Shuttle Radar Topography
Mission (SRTM) DEM with approximately 30m resolution
to reduce the effect of terrain shadows on glacial lake map-
ping and combined with TanDEM-X data acquired in
2018, to calculate the glacier thickness changes (TanDEM-
X minus SRTM DEM). (iv) Monthly gridded temperature
dataset derived from Climate Research Unit (CRU) data
(v4.05, 0.5° spatial resolution) to estimate the temperature
changes in HMA from 1990 to 2020. (v) Monthly land-
surface precipitation data from Global Precipitation Clima-
tology Centre (GPCC) with a spatial resolution of 0.25° to
estimate the precipitation trend in HMA during 1990–2019.

5.2. Methodology

5.2.1. The Processing Chain. To automatically detect glacial
lakes from Landsat time series of images while overcoming
the limitations of clouds, terrain shadows, and seasonal
snow or ice cover, our proposed method composites a glacial
lake map on pixel scale, which mainly consists of four steps
(Figure 10): (1) image preprocessing to filter out the frozen
season images, nonglacial lakes, and thick cloud-covered
pixels; (2) multitemporal mean NDWI composite and min-
imum NDSI composite; (3) glacial lake area extraction; and
(4) automated postprocessing step.

(1) Image Preprocessing. To minimize the influences from sea-
sonal snow or ice cover, images were mostly selected in the
warm season (June to November) for the four periods. During
this time, the lakes also featured the most stable and maximum
extent following glacier ablation. In monsoon-affected regions
such as Southeastern Tibet and Central and Eastern Himalaya,
late September to November is more suitable due to the
abundant monsoon cloud cover in summer. We reduced the
search range to <10km of glacier terminus in the inventory
and considered all the mapped lakes within this range as glacial
lakes [10, 33]. We excluded areas far from each glacier, assum-
ing that plateau lakes in these regions have weak interactions
with glaciers.

Time series of clipped Landsat images in HMA make up
pixel sets at each pixel location. Then, the cloud score (in the
range [0, 100]) of each pixel is calculated using the Landsat sim-
pleCloudScore function provided by GEE based on a combina-
tion of brightness, temperature, andNDSI. For the cloudy areas,
the absolutely clear-sky pixels (cloud score equals zero) are too
limited to composite a glacial lake map. We found that water
covered by thin clouds can be separated from the land and still

be identified as water pixels. Here, we used 11,715 pixels of lakes
located within the boundaries of glacial lake inventories from
Wang et al. (2020), pixels that may be cloudy or clear; it was
observed that NDWI decease with the increase of cloud score
(Figure 11(a)). For glacial lake pixels with cloud scores less than
50, their NDWI is higher than 0.1, the threshold within the
range of 0.05 to 0.15 for glacial lake mapping [19, 22]. The
results for nonglacial lake areas show no obvious trend
(Figure 11(b)), but the NDWI is mostly lower than 0, indicating
that nonglacial lake pixels are less likely to be recognized as gla-
cial lake pixels due to the cloud score settings. Some glaciers
connected to glacial lakes can be misclassified as lakes using
only NDWI; thus, NDSI was utilized for the further glacial lake
identification. The NDSI of most lake pixels is lower than 0.4
(Figure 11(c)), a threshold that is generally used for the extrac-
tion of glacier coverage area [49, 71]. Almost all pixels are lower
than 0.6, which may be more reasonable for the exclusion of
glaciers while extracting lake water bodies that are sometimes
partially covered with ice or snow. The NDSI of nonglacial lake
regions is insensitive to the cloud score, similar to the results of
NDWI (Figure 11(d)). Based on the above analysis, we used a
threshold of 50 on the cloud score to mask thick cloudy pixels.
A very low cloud score threshold will reduce the available pixel
sets, and seasonal snow and ice melt will be misclassified as gla-
cial lakes, resulting in overestimation of lake area. A very high
threshold will include thick cloud pixels, which will be identified
as land pixels no matter the clouds are over land or water [72],
making the lake area underestimated.

(2) Pixel-Level Image Composite. This step is aimed at calcu-
lating the NDWI and NDSI values for each pixel of the
images after the cloud mask and then composite new images
with the mean NDWI value and minimum NDSI value for
each pixel set. The mean NDWI value represents the stable
status of lake pixels, and it can obtain complete interior
pixels of lake water to the greatest extent. The minimum
NDSI is helpful for the exclusion of snow or ice cover when
the exposed glacier is undergoing ablation during the obser-
vation time.

(3) Glacial Lake Area Extraction. According to the above
experiments and related studies [19, 22], glacial lakes in
the Tibetan Plateau have NDWI values higher than 0.05 or
0.15 using Landsat images. Here, we set the threshold of
NDWI to 0.1 to extract glacial lakes from the composited
image. To avoid commission errors from the glacier and,
at the same time, retain the lakes partly covered by seasonal
snow or bare ice, 0.6 is used as the threshold on the mini-
mum composited NDSI image. A slope threshold of <20°
[9] is employed to alleviate disturbances from terrain
shadows. Moreover, shadow of each pixel set is calculated
using the hillShadow algorithm in GEE taking the input of
the DEM, solar azimuth, and zenith of the image, with an
output of 1 where pixels are illuminated and 0 where they
are shadowed. In this study, pixels with mean hill shadows
higher than 0.9 are considered illuminated regions given
the transient appearance of shadows on the time scale. By
synthesizing from the former conditions, binary images of
glacial lakes in HMA are obtained.
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(4) Automated Postprocessing. In the binary image, some of the
holes exist within the lakes due to the heterogeneous spectral
responses from variable suspended solids, water depth, and
colored dissolved materials in the water. In a postprocessing
step, we search the connected void pixels in the existing lake
region and fill them and remove small patches < 9 pixels
(0.0081 km2) that originate from noise from unstable tiny
ponds and river segments [11]. Finally, the time series of gla-
cial lake maps are generated. This method has a high degree
of automation for the glacial lake extraction. Given the
amount of work required to update the inventory and improve
the work efficiency of large-scale glacial lake dynamic moni-
toring, while minimizing the influence of subjective judgment
of operators, each glacial lake boundary was not visually
checked and reedited with original Landsat images.

5.2.2. Tests of Optimal NDWI Threshold. In HMA, glacier
backgrounds dominate the scenes. Therefore, both NDWI
and NDSI are applied sequentially: firstly, NDWI is applied
to extract the water bodies from images; then, NDSI is used
to eliminate the pixels misclassified with glaciers. Since
NDWI is designed to separate water and nonwater types, it
forces water types above 0 and nonwater types below 0;
some thresholds above 0 (e.g., 0.05 or 0.15) are applied to
extract glacial lakes from NDWI images. However, due to
the varying brightness and contrast of the scene with space
and time, these thresholds might not always achieve the best
classification accuracy. In this section, multiple thresholds of
NDWI were considered to determine the optimal threshold,
which approximates to the minimum sum of commission
and omission errors.

A comparison of the glacial lake extraction results using
different thresholds of NDWI is shown in Figure 12 as an
example. The glacial lake outlines in 2018 [10] generated by
satellite images from 2016 to 2020 were taken as a reference.
Obviously, the threshold of NDWI at 0.05 (Figure 12(a)) over-
estimated the lake area; although most areas within the inven-
tory boundaries are identified as glacial lakes, in the regions
outside the inventory boundaries, large portions of glacier ter-
minus are also mistakenly recognized. If the threshold of
NDWI is set to 0.15 (Figure 12(c)), the influence of glaciers
is greatly reduced, but many small glacial lakes are not
detected, and there are missing pixels on the lake edge. This
implies that 0.1 (Figure 12(b)) could be reasonable to classify
glacial lakes under various environmental conditions, with a
tradeoff between commission and omission errors. The choice
of the multitemporal pixel-level image composite scheme also
intends to stabilize this threshold.

5.2.3. Tests of Cloud Score Thresholds. The use of different
thresholds of the cloud score directly controls the number of
available pixels in each pixel location; thus, it is important
for the final glacial lake extraction. An example of the influ-
ence of different cloud score thresholds on glacial lake extrac-
tion is presented in Figure 13. In HMA, South and East Tibet
is one region most vulnerable to cloud cover, so the
composited image in 2020 in the South and East Tibet region
is selected as an example. Generally, most glacial lakes can be
identified using this pixel-level composite strategy regardless

of the cloud score. It can even automatically extract previously
undiscovered glacial lakes (shown in the yellow ellipses).
When the threshold of cloud score is below 50, clouds have lit-
tle impact on glacial lake extraction. Most pixels in the inven-
tory boundaries are delineated, but many pixels of snow or ice
are misclassified as glacial lakes. When the cloud score is
higher than 50, thick clouds block all information for land
(including snow and ice) and water separation, and glacial lake
extraction is prone to be underestimated together with the
absence of small glacial lakes. The cloud score should therefore
be set to 50 to ensure a satisfactory amount of the pixel sets
used and high extraction accuracy.

5.2.4. Uncertainties of Snow or Ice Melt.Glacial lake area could
be overestimated due to the melting of ice or snow on the gla-
ciers if the data were found to be insufficient (Figure 13). Here,
the mean NDWI value of pixel set is taken as corresponding
value of composite images, meaning that if seasonal meltwater
has been short-lived, those pixels would not be recognized as
glacial lakes. We also calculated the observation times of each
pixel used in the production of the multitemporal mean
NDWI composite and minimum NDSI composite, which
records how many valid pixels in each pixel location can be
used to determine whether a pixel is a glacial lake during the
observation period (Figure 14(a)). The observation times are
high onmost occasions because the data were collected during
~5 warm seasons (June to November) with a revisit cycle of 16
days for each mapping period (Table 2). However, in areas
with frequent cloud cover, such as Himalaya and South and
East Tibet regions, the observation times may be relatively
low after the cloudy pixels are masked. Using the combination
of NDWI and NDSI, most of the pixels of glaciers distributed
downstream or around glacial lakes can be excluded, but there
are still a few misclassified glacier pixels with sustained high
water content, usually known as glacier and snow runoff.
Figure 14(b) is taken as an example to show the observation
times of each pixel in the mapped glacial lake areas in Central
Himalaya. More observation times mean that glacial lakes can
be more accurately extracted, but this also inevitably mixes
with some high glacial meltwater pixels. To reduce noise and
ensure the quality of glacial lake changes, one possible solution
is to directly mask off glaciers using a glacier outline inventory.
However, such workmight also erase much of the information
about supraglacial lakes that lie on the surface of glaciers. In
this study, we take the intersection area of the glacier boundary
and extracted glacial lake areas as qualitative measurement of
area uncertainties, by fully considering the impact of glacial
meltwater and the uncertainty caused by the high variability
of the supraglacial lakes.
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Supplementary Materials

Figure S1: changes in the area and number of glacial lakes for
each 200m elevation band in HMA region from 1990 to
2020: (a) area changes; (b) number changes. Figure S2: spa-
tial pattern of temperature and precipitation changes in
HMA: (a) trend in temperature change from 1990 to 2020
produced by CRU data (v4.05, 0.5° spatial resolution); (b)
annual mean precipitation changes for the period 1990–
2019 obtained from GPCC data (full data monthly version
2020, 0.25° spatial resolution). The symbol “+” indicates
the linear fit of temperature/precipitation versus time is at
the 90% confidence interval. Figure S3: glacier surface eleva-
tion changes in three typical glaciated areas of HMA during
2000–2018: (a) West Tien Shan; (b) West Kun Lun; (c) East
Himalaya. The values in subplots represent the estimated
mean glacier elevation changes in each region. Figure S4:
example showing the mapped glacial lakes by our purposed
method, Chen et al. (2021), and Wang et al. (2020) in the
Central Himalaya in 2020. (a–d) represent four enlarged
maps of glacial lakes. Background image is from false-color
composited (bands: 5/4/3) Landsat-8 OLI image in October
2, 2020. Figure S5: examples showing the deviations caused
by the nonglacial lake pixels: (a) geographic location of three
typical regions; (b) number and area of all the mapped lakes
and nonglacial lakes for typical regions in West Tien Shan,
West Kun Lun, and East Himalaya. Table S1: comparisons
between the two released HMA glacial lake inventories and
glacial lakes mapped in this study. (Supplementary
Materials)
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