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Abstract

Decentralized storage systems aggregate the available
disk space of participating computers to provide a large
storage facility. These systems rely on data redundancy
to ensure durable storage despite of node failures. How-
ever, existing systems either assume independent node
failures, or they rely on introspection to carefully place
redundant data on nodes with low expected failure corre-
lation. Unfortunately, node failures are not independent
in practice and constructing an accurate failure model is
difficult in large-scale systems. At the same time, mali-
cious worms that propagate through the Internet pose a
real threat of large-scale correlated failures. Such rare
but potentially catastrophic failures must be considered
when attempting to provide highly durable storage.

In this paper, we describe Glacier, a distributed stor-
age system that relies on massive redundancy to mask
the effect of large-scale correlated failures. Glacier is
designed to aggressively minimize the cost of this redun-
dancy in space and time: Erasure coding and garbage
collection reduces the storage cost; aggregation of small
objects and a loosely coupled maintenance protocol for
redundant fragments minimizes the messaging cost. In
one configuration, for instance, our system can provide
six-nines durable storage despite correlated failures of
up to 60% of the storage nodes, at the cost of an eleven-
fold storage overhead and an average messaging over-
head of only 4 messages per node and minute during
normal operation. Glacier is used as the storage layer
for an experimental serverless email system.

1 Introduction

Distributed, cooperative storage systems like FarSite and
OceanStore aggregate the often underutilized disk space
and network bandwidth of existing desktop computers,
thereby harnessing a potentially huge and self-scaling
storage resource [1, 27]. Distributed storage is also a fun-
damental component of many other recent decentralized

systems, for instance, cooperative backup, serverless
messaging or distributed hash tables [15, 17, 20, 28, 31].

Since individual desktop computers are not suffi-
ciently dependable, redundant storage is typically used in
these systems to enhance data availability. For instance,
if nodes are assumed to fail independently with probabil-
ity p, a system of k replicas fails with probability pk�p;
the parameter k can be adjusted to achieve the desired
level of availability. Unfortunately, the assumption of
failure independence is not realistic [3, 4, 25, 41, 43].
In practice, nodes may be located in the same building,
share the same network link, or be connected to the same
power grid.

Most importantly, many of the nodes may run the
same software. Results of our own recent survey of 199
random Gnutella nodes, which is consistent with other
statistics [34], showed that 39% of the nodes were us-
ing the Morpheus client; more than 80% were running
the Windows operating system. A failure or security vul-
nerability associated with a widely shared software com-
ponent can affect a majority of nodes within a short pe-
riod of time. Worse, worms that propagate via email, for
instance, can even infect computers within a firewalled
corporate intranet.

On the other hand, stored data represents an impor-
tant asset and has considerable monetary value in many
environments. Loss or corruption of business data, per-
sonal records, calendars or even user email could have
catastrophic effects. Therefore, it is essential that a stor-
age system for such data be sufficiently dependable. One
aspect of dependability is the durability of a data object,
which we define, for the purposes of this paper, as the
probability that a specific data object will survive an as-
sumed worst-case system failure.

Large-scale correlated failures can be observed in the
Internet, where thousands of nodes are regularly affected
by virus or worm attacks. Both the frequency and the
severity of these attacks have increased dramatically in
recent years [39]. So far, these attacks have rarely caused
data losses. However, since the malicious code can often
obtain administrator privileges on infected machines, the
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attackers could easily have erased the locals disks had
they intended to do serious harm.

In this paper, we describe Glacier, a distributed stor-
age system that is robust to large-scale correlated fail-
ures. Glacier’s goal is to provide highly durable, de-
centralized storage suitable for important and otherwise
unrecoverable data, despite the potential for correlated,
Byzantine failures of a majority of the participating stor-
age nodes. Our approach is ‘extreme’ in the sense that, in
contrast to other approaches [23, 27], we assume the ex-
act nature of the correlation to be unpredictable. Hence,
Glacier must use redundancy to prepare for a wide range
of failure scenarios. In essence, Glacier trades efficiency
in storage utilization for durability, thus turning abun-
dance into reliability.

Since Glacier does not make any assumptions about
the nature and correlation of faults, it can provide hard,
analytical durability guarantees. The system can be con-
figured to prevent data loss even under extreme condi-
tions, such as correlated failures with data loss on 85%
of the storage nodes or more. Glacier makes use of era-
sure codes to spread data widely among the participating
storage nodes, thus generating a degree of redundancy
that is sufficient to survive failures of this magnitude.
Aggregation of small objects and a loosely coupled frag-
ment maintenance protocol reduce the message overhead
for maintaining this massive redundancy, while the use
of erasure codes and garbage collection of obsolete data
mitigate the storage cost.

Despite these measures, there is a substantial storage
cost for providing strong durability in such a hostile en-
vironment. For instance, to ensure an object survives a
correlated failure of 60% of the nodes with a probability
of .999999, the storage overhead is about 11-fold. For-
tunately, disk space on desktop PCs is a vastly underuti-
lized resource. A recent study showed that on average, as
much as 90% of the local disk space is unused [9]. At the
same time, disk capacities continue to follow Moore’s
law [22]. Glacier leverages this abundant but unreliable
storage space to provide durable storage for critical data.
To the best of our knowledge, Glacier is the first system
to provide hard durability guarantees in such a hostile
environment.

The rest of this paper is structured as follows: In the
next section, we give an overview of existing solutions
for ensuring long-term data durability. Section 3 de-
scribes the assumptions we made in the design of our
system, and the environment it is intended for. In the
following two sections, we demonstrate how Glacier can
lend a distributed hash table data durability in the face
of large-scale correlated failures. We discuss security as-
pects in Section 6 and describe our experimental evalua-
tion results in Section 7. Finally, Section 8 presents our
conclusions.

2 Related work

OceanStore [27] and Phoenix [23, 24] apply introspec-
tion to defend against the threat of correlated failures.
OceanStore relies primarily on inferring correlation by
observing actual failures, whereas Phoenix proactively
infers possible correlations by looking at the configura-
tion of the system, e.g. their operating system and in-
stalled software. In both systems, the information is then
used to place replicas of an object on nodes that are ex-
pected to fail with low correlation.

However, the failure model can only make accurate
predictions if it reflects all possible causes of correlated
failures. One possible conclusion is that one has to care-
fully build a very detailed failure model. However, a fun-
damental limitation of the introspective approach is that
observation does not reveal low-incidence failures and it
is difficult for humans to predict all sources of correlated
failures. For instance, a security vulnerability that exists
in two different operating systems due to a historically
shared codebase is neither observable, nor are develop-
ers or administrators likely to be aware of it prior to its
first exploit.

Moreover, introspection itself can make the system
vulnerable to a variety of attacks. Selfish node opera-
tors may have an incentive to provide incorrect informa-
tion about their nodes. For example, a user may want to
make her node appear less reliable to reduce her share of
the storage load, while an attacker may want to do the
opposite in an attempt to attract replicas of an object he
wants to censor. Finally, making failure-related informa-
tion available to peers may be of considerable benefit to
an attacker, who may use it to choose promising targets.

Introspective systems can achieve robustness to corre-
lated failures at a relatively modest storage overhead, but
they assume an accurate failure model, which involves
risks that are hard to quantify. Glacier is designed to pro-
vide very high data durability for important data. Thus, it
chooses a point in the design space that relies on minimal
assumptions about the nature of failures, at the expense
of larger storage overhead compared to introspective sys-
tems.

TotalRecall [5] is an example of a system that uses
introspection to optimize availability under churn. Since
this system does not give any worst-case guarantees, our
criticism of introspection does not apply to it.

OceanStore [27], like Glacier, uses separate mecha-
nisms to maintain short-term availability and to ensure
long-term durability. Unlike Glacier, OceanStore cannot
sustain Byzantine failures of a large fraction of storage
nodes [44].

Many systems use redundancy to guard against data
loss. PAST [20] and Farsite [1] replicate objects
across multiple nodes, while Intermemory [14], Free-
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Haven [18], Myriad [13], PASIS [45] and other sys-
tems [2] use erasure codes to reduce the storage over-
head for the redundant data. Weatherspoon et al. [42]
show that erasure codes can achieve mean time to failures
many orders of magnitude higher than replicated systems
with similar storage and bandwidth requirements. How-
ever, these systems assume only small-scale correlated
failures or failure independence. Systems with support
for remote writes typically rely on quorum techniques
or Byzantine fault tolerance to serialize writes and thus
cannot sustain a catastrophic failure.

Cates [12] describes a data management scheme for
distributed hashtables that keeps a small number of
erasure-coded fragments for each object to decrease
fetch latency and to improve robustness against small-
scale fail-stop failures. The system is not designed to
sustain large-scale correlated failures or Byzantine faults.

Glacier spends a high amount of resources to provide
strong worst-case durability guarantees. However, not all
systems require this level of protection; in some cases, it
may be more cost-effective to optimize for expected fail-
ure patterns. Keeton et al. [26] present a quantitative dis-
cussion of the tradeoff between cost and dependability.

Glacier uses leases to control the lifetime of stored
objects, which need to be periodically renewed to keep
an object alive. Leases are a common technique in dis-
tributed storage systems; for example, they have been
used in Tapestry [46] and CFS [17].

A particularly common example of correlated failures
are Internet worm attacks. The course, scope and impact
of these attacks has been studied in great detail [29, 30,
38, 39, 47].

3 Assumptions and intended environment

In this section, we describe assumptions that underlie the
design of Glacier and the environment it is intended for.

Glacier is a decentralized storage layer providing data
durability in the event of large-scale, correlated and
Byzantine storage node failures. It is intended to be used
in combination with a conventional, decentralized repli-
cating storage layer that handles normal read and write
access to the data. This primary storage layer might typ-
ically keep a small number of replicas of each data ob-
ject, sufficient to mask individual node failures without
loss in performance or short-term availability.

Glacier is primarily intended for an environment con-
sisting of desktop computers within an organizational in-
tranet, though some fraction of nodes are assumed to be
notebooks connected via a wireless LAN or home desk-
tops connected via cable modems or DSL. Consistent
with this environment, we assume modest amounts of
churn and relatively good network connectivity. A sub-
stantial fraction of the nodes is assumed to be online most

of the time, while the remaining nodes (notebooks and
home desktops) may be disconnected for extended peri-
ods of time. In the following, we outline key assumptions
underlying Glacier’s design.

3.1 Lifetime versus session time

We define the lifetime of a node as the time from the
instant when it first joins the system until it either per-
manently departs or it loses its locally stored data. The
session time of a node is the time during which it re-
mains connected to the overlay network. We assume that
the expected lifetime of a node is high, at least on the
order of several weeks. Without a reasonably long life-
time a cooperative, persistent storage system is infeasible
since the bandwidth overhead of moving data between
nodes would be prohibitive [6]. Glacier is intended for
an environment similar to the one described by Bolosky
et al. [8], where an expected lifetime of 290 days was
reported.

However, session times can be much shorter, on the
order of hours or days. Nodes may go offline and return
with their disk contents intact, as would be expected of
notebooks, home desktops, or desktops that are turned
off at night or during weekends.

3.2 Failure model

We assume that Glacier is in one of three operating
modes at any given time: normal, failure or recovery.
During normal operation, only a small fraction of nodes
is assumed to be faulty at any time, though a strong mi-
nority of the nodes may be off-line. In this mode, Glacier
performs the background tasks of aggregation, coding
and storage of newly written data, garbage collection,
and fragment maintenance.

During a large-scale failure, a majority of the stor-
age nodes, but not more than a fraction fmax, have suf-
fered Byzantine failures virtually simultaneously. In this
mode, we cannot assume that communication within the
system is possible, and Glacier’s role is limited to pro-
tecting the data stored on non-faulty nodes. It is suf-
ficient to choose fmax as a loose upper bound, which
can be estimated from the overall amount of diversity in
the system. The failure state is assumed to last less than
Glacier’s object lease period LO.

Glacier enters recovery mode when sysadmins have
recovered or taken off-line enough of the faulty nodes
so that communication within the system is once again
possible. In this mode, Glacier reconstitutes aggregates
from surviving fragments and restores missing frag-
ments. Note that Glacier does not explicitly differentiate
between the three modes.
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3.3 Requirements

Glacier assumes that the participating storage nodes form
an overlay network. The overlay is expected to provide
a distributed directory service that maps numeric keys
to the address of a live node that is currently responsi-
ble for the key. Glacier assumes that the set of possible
keys forms a circular space, where each live participat-
ing node is responsible for an approximately uniformly
sized segment of the key space. This segment consists
of all keys closest to the node’s identifier. Participating
nodes store objects with keys in their segment. If a node
fails, the objects in its local store may be lost.

To prevent Sybil attacks [19], node identifiers are as-
signed pseudo-randomly and it is assumed that an at-
tacker cannot acquire arbitrarily many legitimate node
identifiers. This can be ensured though the use of cer-
tified node identifiers [10].

Structured overlay networks with a distributed hash
table (DHT) layer like DHash/Chord [16, 40] or
PAST/Pastry [20, 37] provide such a service, though
other implementations are possible. Glacier requires that
it can always reliably identify, authenticate and commu-
nicate with the node that is currently responsible for a
given key. If the overlay provides secure routing tech-
niques, such as those described by Castro et al. [10], then
Glacier can tolerate Byzantine failures during normal op-
eration.

Glacier assumes that the participating nodes have
loosely synchronized clocks, for instance by running
NTP [33]. Glacier does not depend on the correctness
of its time source, nor the correctness of the overlay di-
rectory services during large-scale failures.

4 Glacier

The architecture of Glacier is depicted in Figure 1.
Glacier operates alongside a primary store, which main-
tains a small number of full replicas of each data object
(e.g., 2–3 replicas). The primary store ensures efficient
read and write access and provides short-term availabil-
ity of data by masking individual node failures. Glacier
acts as an archival storage layer, ensuring long-term
durability of data despite large-scale failure. The aggre-
gation layer, described in Section 5, aggregates small ob-
jects prior to their insertion into Glacier for efficiency.
Objects of sufficient size can be inserted directly into
Glacier.

During normal operation, newly written or updated
data objects are aggregated asynchronously. Once a
sufficiently large aggregate has accumulated or a time
limit is reached, Glacier erasure codes the aggregate and
places the fragments at pseudo-randomly selected stor-
age nodes throughout the system. Periodically, Glacier

Application

Aggregation
layer

Glacier Primary store

Figure 1. Structure of a multi-tier system
with Glacier and an additional aggregation
layer.

consolidates remaining live objects into new aggregates,
inserts the new fragments and discards fragments corre-
sponding to old aggregates.

Once an object is stored as part of an erasure coded
aggregate, Glacier ensures that the object can be recov-
ered even if the system suffers from a large-scale, corre-
lated Byzantine failure. The durability guarantee given
by Glacier implies that, if the failure affects a fraction
f ≤ fmax of the storage nodes, each object survives
with probability P ≥ Pmin. The parameters fmax and
Pmin determine the overhead and can be adjusted to the
requirements of the application.

Glacier ensures durability by spreading redundant
data for each object over a large number of storage
nodes. These nodes periodically communicate with each
other to detect data loss, and to re-create redundancy
when necessary. After a large-scale failure event, Glacier
reconstitutes aggregates from surviving fragments and
reinserts objects into the primary store. The recovery
proceeds gradually to prevent network overload. Addi-
tionally, an on-demand primitive is available to recover
objects synchronously when requested by the applica-
tion.

4.1 Interface to applications

Glacier is designed to protect data against Byzantine fail-
ures, including a failures of the node that inserted an ob-
ject. Therefore, there are no primitives to either delete
or overwrite existing data remotely. However, leases are
used to limit the time for which an object is stored; when
its lease expires, the object can be removed and its stor-
age is reclaimed. Application must renew the leases of
all objects they care about once per lease period. The
lease period is chosen to exceed the assumed maximal
duration of a large-scale failure event, typically several
weeks or months. Also, since objects in Glacier are ef-
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fectively immutable, updated objects must be inserted
with a different version number.

Applications interact with Glacier by invoking one of
the following methods:

• put(i,v,o,l) stores an object o under identifier
i and version number v, with a lease period of l.

• get(i,v)→o retrieves the object stored under
identifier i and version number v. If the object is not
found, or if its lease has expired, nil is returned.

• refresh(i,v,l) extends the lease of an exist-
ing object. If the current lease period of the object
already exceeds l, the operation has no effect.

4.2 Fragments and manifests

Glacier uses an erasure code [35] to reduce storage over-
head. We use a variant of Reed-Solomon codes based
on Cauchy matrices [7], for which efficient codecs ex-
ist. However, any other erasure code could be used as
well. An object O of size |O| is recoded into n fragments
F1, F2, . . . , Fn of size |O|

r
, any r of which contain suffi-

cient information to restore the entire object. If possible,
each fragment is stored on a different node, or fragment
holder, to reduce failure correlation among fragments.

If the object O is stored under a key k, then its frag-
ments are stored under a fragment key (k, i, v), where
i is the index of the fragment and v is a version num-
ber. For each version, Glacier maintains an independent
set of fragments. If an application creates new versions
frequently, it can choose to bypass Glacier for some ver-
sions and apply the corresponding modifications to the
primary storage system only.

For each object O, Glacier also maintains an authen-
ticator

AO = (H(O), H(F1), H(F2), . . . , H(Fn), v, l)

where H(f) denotes a secure hash (e.g., SHA-1) of f .
This is necessary to detect and remove corrupted frag-
ments during recovery, since any modification to a frag-
ment would cause the object to be reconstructed incor-
rectly. The value l represents the lease associated with
the object; for permanent objects, the value l = ∞ is
used.

The authenticator is part of a manifest MO, which
accompanies the object and each of its fragments. The
manifest may contain a cryptographic signature that au-
thenticates the object and each of its fragments; it can
also be used to store metadata such as credentials or
billing information. For immutable objects that do not
require a specific, chosen key value, it is sufficient to
choose MO = AO and k = H(AO); this makes the
object and each of its fragments self-certifying.

4.3 Key ownership

In structured overlays like Pastry or Chord, keys are as-
signed to nodes using consistent hashing. For instance,
in Pastry, a key is mapped to the live node with the nu-
merically closest node identifier. In the event of a node
departure, keys are immediately reassigned to neighbor-
ing nodes in the id space to ensure availability.

In Glacier, this is both unnecessary and undesirable
because fragments stored on nodes that are temporarily
off-line do not need to be available and therefore do not
need to be reassigned. For this reason, Glacier uses a
modified assignment of keys to nodes, where keys are
assigned by consistent hashing over the set of nodes that
are either on-line or were last online within a period
Tmax.

4.4 Fragment placement

In order to determine which node should store a particu-
lar fragment (k, i, v), Glacier uses a placement function
P . This function should have the following properties:

1. Fragments of the same object should be placed on
different, pseudo-randomly chosen nodes to reduce
inter-fragment failure correlation.

2. It must be possible to locate the fragments after a
failure, even if all information except the object’s
key is lost.

3. Fragments of objects with similar keys should be
grouped together so as to allow the aggregation of
maintenance traffic.

4. The placement function should be stable, i.e. the
node on which a fragment is placed should change
rarely.

A natural solution would be to use a ‘neighbor set’,
i.e. to map (k, i, v) to the ith closest node relative to k.
Unfortunately, this solution is not stable because the ar-
rival of a new node in the vicinity of k would change the
placement of most fragments. Also, choosing P (k, i, v)
as the content hash of the corresponding fragment is not
a solution because it does not allow fragments to be lo-
cated after a crash. Instead, Glacier uses

P (k, i, v) = k +
i

n + 1
+ H(v)

This function maps the primary replica at position k and
its n fragments to n + 1 equidistant points in the circular
id space (Figure 2). If multiple versions exist, the hash
H(v) prevents a load imbalance by placing their frag-
ments on different nodes.
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Figure 2. Fragment placement in a config-
uration with five fragments and three repli-
cas in the primary store.

When a new object (k, v) must be inserted, Glacier
uses the overlay to send probe messages to each loca-
tion P (k, i, v), i = 1..N . If the owner of P (k, i, v) is
currently online, it responds to this message, and Glacier
sends the fragment directly to that node. Otherwise, the
fragment is discarded and restored later by the mainte-
nance mechanism.

If the availability of the nodes is very low, there may
be situations where fewer than r fragment holders are
online during insertion. In this case, the inserting node
sends additional probe messages, which are answered by
one of the owners’ neighbors. These neighbors then act
as temporary fragment holders. When an owner rejoins
the overlay, its neighbors learn about it using the standard
overlay mechanisms and then deliver their fragments to
the final destination.

4.5 Fragment maintenance

Ideally, all N fragments of each object would be avail-
able in the network and stored on their respective frag-
ment holders. However, there are various reasons why
real Glacier installations may deviate from this ideal
state: Nodes may miss fragment insertions due to short-
term churn, key space ownership may change due to node
joins and departures, and failures may cause some or
all fragments stored on a particular node to be lost. To
compensate for these effects, and to avoid a slow dete-
rioration of redundancy, Glacier includes a maintenance
mechanism.

Fragment maintenance relies on the fact that the
placement function assigns fragments with similar keys
to a similar set of nodes. If we assume for a moment that
the nodeId distribution is perfectly uniform, each frag-
ment holder has N −1 peers which are storing fragments
of the exact same set of objects as itself. Then, the fol-
lowing simple protocol can be used:

1. The node compiles a list of all the keys (k, v) in its
local fragment store, and sends this list to some of
its peers.

2. Each peer checks this list against its own fragment
store and replies with a list of manifests, one for
each object missing from the list.

3. For each object, the node requests k fragments from
its peers, validates each of the fragments against the
manifest, and then computes the fragment that is to
be stored locally.

With realistic nodeId distributions, the local portion
of key space may not perfectly match that of the peer, so
the node may have to divide up the list among multiple
nodes. In very small networks, the placement function
may even map more than one fragment to a single node,
which must be accounted for during maintenance.

Glacier uses Bloom filters as a compact representation
for the lists. To save space, these filters are parametrized
such that they have a fairly high collision rate of about
25%, which means that about one out of four keys will
not be detected as missing. However, the hash functions
in the Bloom filter are changed after every maintenance
cycle. Since maintenance is done periodically (typically
once per hour), collisions cannot persist, and every frag-
ment is eventually recovered.

4.6 Recovery

Glacier’s maintenance process works whenever overlay
communication is possible. Thus, the same mechanism
covers normal maintenance and recovery after a large-
scale failure. Compromised nodes either fail perma-
nently, in which case other nodes take over their key
segments, or they are eventually repaired and re-join the
system with an empty fragment store. In both cases, the
maintenance mechanism eventually restores full redun-
dancy. Hence, there is no need for Glacier to explicitly
detect that a correlated failure has occurred.

However, care must be taken to prevent congestive
collapse during recovery. For this reason, Glacier limits
the number of simultaneous fragment reconstructions to
a fixed number Rmax. Since the load spreads probabilis-
tically over the entire network, the number of requests at
any particular node is also on the order of Rmax. Since
Glacier relies on TCP for communication, this approach
has the additional advantage of being self-clocking, i.e.
the load is automatically reduced when the network is
congested.

4.7 Garbage collection

When the lease associated with an object expires, Glacier
is no longer responsible for maintaining its fragments
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and may reclaim the corresponding storage. Since the
lease is part of the authenticator, which accompanies ev-
ery fragment, this process can be carried out indepen-
dently by each storage node.

However, assuming closely synchronized clocks
among the storage nodes would be unrealistic. There-
fore, fragments are not deleted immediately; instead,
they are kept for an additional grace period TG, which
is set to exceed the assumed maximal difference among
the clocks. During this time, the fragments are still avail-
able for queries, but they are no longer advertised to other
nodes during maintenance. Thus, nodes that have already
deleted their fragments do not attempt to recover them.

Glacier has explicit protection against attacks on its
time source, such as NTP. This feature is discussed in
Section 6.

4.8 Configuration

Glacier’s storage overhead is determined by the overhead
for the erasure code, which is N

r
, while the message over-

head is determined by the number of fragments N that
have to be maintained per object. Both depend on the
guaranteed durability Pmin and the maximal correlated
failure fraction fmax, which are configurable.

Since suitable values for N and r have to be chosen
a priori, i.e. before the failure has occurred, we do not
know which of the nodes are going to be affected. Hence,
all we can assume is that the unknown failure will af-
fect any particular node with probability fmax. Note that
this differs from the commonly assumed Byzantine fail-
ure model, where the attacker gets to choose the nodes
that will fail. In our failure model, the attacker can only
compromise nodes that share a common vulnerability,
and these are distributed randomly in the identifier space
because of the pseudo-random assignment of node iden-
tifiers.

Consider an object O whose N fragments are stored
on N different nodes. The effect of the unknown corre-
lated failure on O can be approximated by N Bernoulli
trials; the object can be reconstructed if at least r trials
have a positive outcome, i.e. with probability

D = P (s ≥ r) =

N
∑

k=r

(

N

k

)

(1 − fmax)
k
· fmax

N−k

The parameters N and r should be chosen such that P

meets the desired level of durability. Figure 3 shows the
lower bound on N and the storage overhead for different
assumed values of fmax and for different choices of r.
Table 1 shows a few example configurations.

While D represents the durability for an individual
object, the user is probably more concerned about the
durability of his entire collection of objects. If we as-

Failure Durability Code Fragments Storage
fmax D r N S

0.30 0.9999 3 13 4.33
0.50 0.99999 4 29 7.25
0.60 0.999999 5 48 9.60
0.70 0.999999 5 68 13.60
0.85 0.999999 5 149 29.80
0.63 0.999999 1 30 30.00

Table 1. Example configurations for
Glacier. For comparison, a configuration
with simple replication (r=1) is included.

sume that the number of storages nodes is large and that
keys are assigned randomly (as is the case for content-
hash keys), object failures are independent, and the prob-
ability that a collection of n objects survives the failure
unscathed is PD(n) = Dn. Figure 4 shows a graph of
PD for different values of D.
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Figure 4. Probability of survival for collec-
tions of multiple objects.

If the value for fmax is accidentally chosen too low,
Glacier still offers protection; the survival probability
degrades gracefully as the magnitude of the actual fail-
ure increases. For example, if fmax = 0.6 and Pmin =
0.999999 were chosen, P is still 0.9997 in a failure with
f = 0.7, and 0.975 for f = 0.8. This is different in an in-
trospective system, where an incorrect failure model can
easily lead to a catastrophic data loss.

Another important parameter to consider is the lease
time. If leases are short, then storage utilization is higher,
since obsolete objects are removed more quickly; on
the other hand, objects have to be refreshed more often.
Clearly, the lease time must exceed both the maximal du-
ration of a large-scale failure and the maximal absence
of a user’s node from the system. In practice, we recom-
mend leases on the order of months. With shorter leases,
users leaving for a long vacation might accidentally lose
some of their data if they keep their machine offline dur-
ing the entire time.
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Figure 3. Number of fragments required for 99.9999% durability, and the resulting storage
overhead.

5 Object aggregation

Glacier achieves data durability using massive redun-
dancy. As a result, the number of internal objects Glacier
must maintain is substantially larger than the number of
application objects stored in Glacier. Each of these inter-
nal objects has a fixed cost; for example, each fragment is
stored together with a manifest, and its key must be sent
to other nodes during maintenance. To mitigate this cost,
Glacier aggregates small application objects in order to
amortize the cost of creating and maintaining fragments
over a sufficient amount of application data.

In Glacier, each user is assumed to access the system
through one node at a time. This node, which we call
the user’s proxy, holds the user’s key material and is the
only node in the system trusted by the user. All objects
are inserted into Glacier from the object owner’s proxy
node. A user can use different proxy nodes at different
times.

When a user inserts objects into Glacier, they are
buffered at the user’s proxy node. To ensure their visibil-
ity at other nodes, the objects are immediately inserted
into Glacier’s primary store, which is not aggregated.
Once enough objects have been gathered or enough time
has passed, the buffered objects are inserted as a single
object into Glacier under an aggregate key. In the case
of a proxy failure while an object is buffered, the next
refresh operation will re-buffer the object for aggrega-
tion. Of course, buffered objects are vulnerable to large-
scale correlated failures. If this is not acceptable, appli-
cations may invoke a flush method for important ob-
jects, which ensures that an aggregate with these objects
is created and immediately stored in Glacier.

The proxy is also responsible for refreshing the
owner’s objects and for consolidating aggregates that
contain too many expired objects. Performing aggre-

gation and aggregate maintenance on a per-user basis
avoids difficult problems due to the lack of trust among
nodes. In return, Glacier foregoes the opportunity to bun-
dle objects from different users in the same aggregate and
to eliminate duplicate objects inserted by different users.
In our experience, this is a small price to pay for the sim-
plicity and robustness Glacier affords.

The proxy maintains a local aggregate directory,
which maps application object keys to the key of the ag-
gregate that contains the object. The directory is used
when an object is refreshed and when an object needs to
be recovered in response to an application request. Af-
ter a failure of the proxy node, the directory needs to be
regenerated from the aggregates. To do so, an owner’s
aggregates are linked in order of their insertion, form-
ing a linked list, such that each aggregate contains the
key of the previously inserted aggregate. The head of
the list is stored in an application-specific object with a
well-known key. To avoid a circularity, this object is not
subject to aggregation in Glacier. The aggregate direc-
tory can be recovered trivially by traversing the list.

A B C D E F

Figure 5. Reference graph. The object la-
beled ‘D’ has expired.

Aggregates are reclaimed in Glacier once all of the
contained objects have expired. However, if aggregates
expire in an order other than their insertion order, the ag-
gregate list might become disconnected. To fix this prob-
lem, aggregates in the linked list may contain references
to multiple other aggregates; thus, the aggregates actu-
ally form a directed acyclic graph (DAG, see Figure 5).
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Glacier monitors the indegree of every aggregate in
the DAG and tries to keep it above a fixed number dmin.
If the indegree of an aggregate falls below this thresh-
old, a pointer to it is added from the next aggregate to
be inserted. This requires little extra overhead as long as
insertions occur regularly; however, if a disconnection is
imminent while no objects are inserted for an extended
period of time, an empty aggregate may have to be cre-
ated. This wastes a small amount of storage but, in our
experience, occurs very rarely.

1 2 n
AO

4

Object Aggregate
List Head    Fragment

Authenticator

AO AO

...

AO

H(1) H(2) ... H(n) v l

Figure 6. DAG of aggregates and the list
head (left), and fragments of a single aggre-
gate with the authenticator in detail (right).

An aggregate consists of tuples (oi, ki, vi), where oi

is an object, ki is the object’s key, and vi is the version
number. Additionally, each aggregate contains one or
more references to other aggregates. Note that the leases
of the component objects are not stored; they are kept
only in the aggregate directory, where they can be up-
dated efficiently. The lease of the entire aggregate is
the maximum of the component leases; for efficiency,
Glacier tries to aggregate objects with similar leases.

5.1 Recovery

After a correlated failure, we must assume that all infor-
mation that is not stored in Glacier is lost. In particular,
this includes the contents of the primary store and, for
most nodes, the aggregate directory.

The aggregate directory can be recovered by walking
the DAG. First, the key of the most recently inserted ag-
gregate is retrieved using a well-known key in Glacier.
Then, the aggregates are retrieved in sequence and ob-
jects contained in each aggregate are added to the ag-
gregate directory. The subleases of the component ob-
jects are set to the lease of the aggregate. Since ag-
gregate leases are always higher than component leases,
this is conservative. The primary store can either be re-
populated lazily on demand by applications, or eagerly

while walking the aggregate DAG.
Note that some of the references may be pointing

to expired aggregates, so some of the queries issued to
Glacier will fail. It is thus important to distinguish actual
failures, in which at least N−k+1 fragment holders have
been contacted but no fragments are found, from poten-
tial failures, in which some fragment holders are offline.
In the latter case, recovery of the corresponding aggre-
gate must be retried at a later time.

5.2 Consolidation

In order to maintain a low storage overhead, we use a
mechanism similar to the segment cleaning technique in
LFS [36]. Glacier periodically checks the aggregate di-
rectory for aggregates whose leases will expire soon, and
decides whether to renew their leases. If the aggregate in
question is small or contains many objects whose leases
have already expired, the lease is not renewed. Instead,
the non-expired objects are consolidated with new ob-
jects either from the local buffer or from other aggre-
gates, and a new aggregate is created. The old aggregate
is abandoned and its fragments are eventually garbage
collected by the storing nodes.

Consolidation is particularly effective if object life-
times are bimodal, i.e. if objects tend to be either short-
lived or long-lived. By the time of the first consolidation
cycle, the short-lived objects may have already expired,
so the consolidated aggregate contains mostly long-lived
objects. Such an aggregate then requires little mainte-
nance, except for an occasional refresh operation.

6 Security

In this section, we discuss potential attacks against either
the durability or the integrity of data stored in Glacier.
Attacks on integrity: Since Glacier does not have re-
mote delete or update operations, a malicious attacker
can only overwrite fragments that are stored on nodes
under his control. However, each fragment holder stores
a signed manifest, which includes an authenticator. Us-
ing this authenticator, fragment holders can validate any
fragments they retrieve and replace them by other frag-
ments if they do not pass the test. Assuming, as is cus-
tomary, that SHA-1 is second pre-image resistant, gen-
erating a second fragment with the same hash value is
computationally infeasible.
Attacks on durability: If an attacker can successfully
destroy all replicas of an object in the primary store, as
well as more than n − r of its fragments, that object
is lost. However, since there is no way to delete frag-
ments remotely, the attacker can only accomplish this by
either a targeted attack on the storage nodes, or indirectly
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by interfering with Glacier’s fragment repair or lease re-
newal. The former requires successful attacks on n − r

specific nodes within a short time frame, which is highly
unlikely to succeed due to the pseudo-random selection
of storage nodes. The latter cannot go unnoticed because
Glacier relies on secure and authenticated overlay com-
munication for fragment repair and lease renewal. This
leaves plenty of time for corrective action by system ad-
ministrators before too many fragments disappear due to
uncorrelated failures, churn or lease expiration.

Attacks on the time source: Since the collection pro-
cess is based on timestamps, an attacker might try to de-
stroy an object by compromising a time source such as
an NTP server and advancing the time beyond the ob-
ject’s expiration time. For this reason, storage nodes in-
ternally maintain all timestamps as relative values, trans-
lating them to absolute values only during shutdown and
when communicating with another node.

Space-filling attacks: An attacker can try to consume all
available storage by inserting a large number of objects
into Glacier. While this does not affect existing data,
no new data can be inserted because the nodes refuse to
accept additional fragments. Without a remote deletion
primitive, the storage can only be reclaimed gradually as
the attacker’s data expires. To prevent this problem, in-
centive mechanisms [32] can be added.

Attacks on Glacier: If a single implementation of
Glacier is shared by all the nodes, Glacier itself must
be considered as a potential source of failure correlation.
However, data loss can result only due to a failure in one
of the two mechanisms that actually delete fragments,
handoff and expiration. Both are very simple (about 210
lines of code) and are thus unlikely to contain bugs.

Haystack-needle attacks: If an attacker can compro-
mise his victim’s personal node, he has, in the worst
case, access to the cryptographic keys and can thus sign
valid storage requests. Existing data cannot be deleted
or overwritten; however, the attacker can try to make re-
covery infeasible by inserting decoy objects under exist-
ing keys, but with higher version numbers. The victim
is thus forced to identify the correct objects among a gi-
gantic number of decoys, which may be time-consuming
or even infeasible.

However, notice that the attacker cannot compromise
referential integrity. Hence, if the data structures are
linked (as, for example, the aggregate log), the victim
can recover them by guessing the correct key of a single
object. One way to facilitate this is to periodically in-
sert reference objects with well-known version numbers,
such as the current time stamp. Thus, knowledge of the
approximate time of the attack is sufficient to recover a
consistent set of objects.

7 Experimental evaluation

To evaluate Glacier, we present the result of two sets of
experiments. The first set is based on the use of Glacier
as the storage layer for ePOST, a cooperative, server-
less email system [28] that provides email service to a
small group of users. ePOST has been in use for several
months and it has used Glacier as its data store for the
past 140 days. The second set is based on trace-driven
simulations, which permit us to examine the system un-
der a wider range of conditions, including a much larger
workload corresponding to 147 users, up to 1, 000 nodes,
a wider range of failure scenarios and different types of
churn.

The Glacier prototype is built on top of the Free-
Pastry [21] implementation of the Pastry [37] structured
overlay and makes use of the PAST [20] distributed hash
table service as its primary store. Since the ePOST sys-
tem relies on PAST for storage, Glacier now provides
durable storage for ePOST.

7.1 ePOST experiments

Over time, our experimental ePOST overlay grew from
20 to currently 35 nodes. The majority of these nodes
are desktop PCs running Linux; however, there are also
machines running OS X and Windows. Our user base
consists of 8 passive users, which are still primarily us-
ing server-based email but are forwarding their incoming
mail to the ePOST overlay, and 9 active users, which rely
on ePOST as their main email system.

ePOST uses Glacier with aggregation to store email
and the corresponding metadata. For each object, Glacier
maintains N = 48 fragments using an erasure code with
r = 5, i.e. any five fragments are sufficient to restore
the object. In this configuration, each object can survive
a correlated failure of fmax = 60% of all nodes with
probability Pmin = 0.999999. We are aware of the fact
that with only 35 nodes, our experimental deployment is
too small to ensure that fragment losses are uncorrelated.
Nevertheless, we chose this configuration to get realistic
numbers for the per-node overhead.

Each of the nodes in the overlay periodically writes
statistics to its log file, including the number of objects
and aggregates it maintains, the amount of storage con-
sumed locally, and the number and type of the messages
sent. We combined these statistics to obtain a view of the
entire system.

While working with Glacier and ePOST, we were able
to collect much practical experience with the system.
We had to handle several node failures, including kernel
panics, JVM crashes and a variety of software problems
and configuration errors. Also, there were some large-
scale correlated failures; for instance, a configuration er-
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Figure 7. Storage load in ePOST.

ror once caused an entire storage cluster of 16 nodes to
become disconnected. Glacier was able to handle all of
these failures. Also, note that Glacier was still under ac-
tive development when it was deployed. During our ex-
periments, we actually found two bugs, which we were
able to fix simply by restarting the nodes with the up-
dated software.

We initially configured Glacier so that it would con-
sider nodes to have failed if they did not join the over-
lay for more than 5 days. However, it turned out that
some of the early ePOST adopters started their nodes
only occasionally, so their regions of key space were re-
peatedly taken over by their peers and their fragments
reconstructed. Nevertheless, we decided to include these
results as well because they show how Glacier responds
to an environment that is heavily dynamic.

7.2 Workload

We first examined the workload generated by ePOST in
our experimental overlay. Figure 7 shows the cumulative
size of all objects inserted over time, as well as the size of
the objects that have not yet expired. Objects are inserted
with an initial lease of one month and are refreshed every
day until they are no longer referenced.

Figure 8 shows a histogram of the object sizes. The
histogram is bimodal, with a high number of small ob-
jects ranging between 1 − 10kB, and a lower number
of large objects. Out of the 274, 857 objects, less than
1% were larger than 600kB (the maximum was 9.1MB);
these are not shown for readability. The small objects
typically contain emails and their headers, which are
stored separately by ePOST, while the large objects con-
tain attachments. Since most objects are small compared
to the fixed-size manifests used by Glacier (about 1kB),
this indicates that aggregation can considerably increase
storage efficiency.

 1

 10

 100

 1000

 10000

 100000

 1e+06

 0  100  200  300  400  500  600

O
bj

ec
ts

Size (kBytes)

Figure 8. Object sizes in ePOST.

7.3 ePOST storage

Next, we looked at the amount of storage required by
Glacier to store the above workload. Figure 9 shows the
combined size of all fragments in the system. The stor-
age grows slowly, as new email is entering the system; at
the same time, old email and junk mail is deleted by the
users and eventually removed by the garbage collector.

In this deployment, garbage is not physically deleted
but rather moved to a special trash storage, whose size
is also shown. We used a lease time of 30 days for all
objects. For compatibility reasons, ePOST maintains its
on-disk data structures as gzipped XML. On average, this
creates an additional overhead of 32%, which is included
in the figures shown.
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Figure 10 compares the size of the on-disk data struc-
tures to the actual email payload. It shows the average
number of bytes Glacier stored for each byte of payload,
excluding trash, but including the 32% overhead from
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XML serialization, for live data and for all data stored in
Glacier. The average storage overhead over time is very
close to the expected factor of 9.6 plus the 32% due to
XML serialization.

7.4 ePOST traffic

Figure 11 shows the average traffic generated by an
ePOST node in bytes and in Pastry-level messages sent
per minute (the messages are sent over TCP, so small
messages may share a single packet, and large messages
may require multiple packets). For comparison, we also
report traffic statistics for the other subsystems involved
in ePOST, such as PAST and Scribe [11].

The traffic pattern is heavily bimodal. During quiet
periods (e.g. days 30-50), Glacier generally sends fewer
messages than PAST because it can mask short-term
churn, but since the messages are larger because of the
difference in storage factors (9.6 versus 3), the overall
traffic is about the same. In periods with a lot of node
failures (e.g. days 80-120), Glacier must recover the lost
fragments by reconstructing them from other fragments,
which creates additional load for a short time. The in-
crease in Pastry traffic on day 104 was caused by an un-
related change in Pastry’s leaf set stabilization protocol.

The traffic generated by Glacier can be divided into
five categories:

• Insertion: When new objects are inserted, Glacier
identifies the fragment holders and transfers the
fragment payload to them.

• Refresh: When the leases for a set of objects are ex-
tended, Glacier sends the updated part of the storage
manifest to the current fragment holders.

• Maintenance: Peer nodes compare their key lists,

and lost fragments are regenerated from other frag-
ments.

• Handoff: Nodes hand off some of their fragments
to a new node who has taken over part of their key
space.

• Lookup: Aggregates are retrieved when an object is
lost from the object cache, or when small aggregates
are consolidated into larger ones.

In Figure 12, the Glacier traffic is broken down by cat-
egory. In times with a low number of failures, the traffic
is dominated by insertions and refreshes. When the net-
work is unstable, the fraction of handoff and maintenance
traffic increases. In all cases, the maintenance traffic re-
mains below 15 packets per host and minute, which is
very low.
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Figure 12. Messages sent by Glacier, by ac-
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7.5 ePOST aggregation

To determine the effectiveness of aggregation, we also
collected statistics on the number of objects and ag-
gregates in the system. We distinguished between live
objects, whose lease is still valid, and expired objects,
which are still stored as part of an aggregate but are eli-
gible for garbage collection.

Figure 13 shows the average number of objects in
each aggregate. In our system, aggregation reduced the
number of keys by more than an order of magnitude.
Moreover, our results show that the number of expired
objects remains low, which indicates that aggregate con-
solidation is effective.
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7.6 ePOST recovery

To study Glacier’s behavior in the event of a large-scale
correlated failure, we randomly selected 13 of the 31
nodes in our experimental ePOST overlay and copied
their local fragment store to 13 fresh nodes (note that,
since our overlay has fewer than N = 48 nodes, some
nodes store more than one fragment of the same ob-
ject). The primary PAST store and the metadata were
not copied. We then started a new Pastry overlay with
only these 13 nodes. The resulting situation corresponds
to a 58% failure in the main overlay, which is close to
our assumed fmax = 60%.

We then completely re-installed ePOST on a four-
teenth node and let it join the ring. One of the authors
entered his email address and an approximate date when
he had last used ePOST. From this information, ePOST
first determined the key of its metadata backup in Glacier
by hashing the email address; then it retrieved the backup
and extracted from it the root key of the aggregate DAG.
The aggregation layer then reconstructed the DAG and
restored the objects in it to the primary store. This pro-
cess took approximately one hour to complete but could
be sped up significantly by adding some simple optimiza-

tions. Afterwards, ePOST was again ready for use; all
data that had been stored using Glacier was fully recov-
ered.

7.7 Simulations: Diurnal behavior

For this and the following experiments, we used a trace-
driven simulator that implements Glacier and the aggre-
gation layer. Since we wanted to model a system sim-
ilar to ePOST, we used a trace from our department’s
email server, which contains 395, 350 delivery records
over a period of one week (09/15-09/21). Some email is
carbon-copied to multiple recipients; we delivered each
copy to a separate node, for a total of 1, 107, 504 copies
or approximately 8 GBytes. In the simulation, Glacier
aggregates of up to 100 objects using a simple, greedy
first-fit policy.

In our first simulation, we explore the impact of di-
urnal short-term churn. In their study of a large deploy-
ment of desktop machines, Bolosky et al. [8] report that
the number of available machines, which was generally
around approximately 45, 000, dropped by about 2, 500
(5.5%) at night time and by about 5, 000 (11.1%) dur-
ing weekends. In our simulations, we modeled a ring
of 250 nodes with the behavior from the study, where
M% of the nodes are unavailable between 5pm and 7am
on weekdays and 2M% on weekends. The experiment
was run for one week of simulation time, starting from
Wednesday, 09/15, and the entire trace was used. Glacier
was configured with the maximum offline time Tmax set
to one week.

Figure 14 shows how this behavior affects the total
message overhead, which includes all messages sent over
the entire week, for different values of M . As churn
increases, fewer fragments can be delivered directly to
their respective fragment holders, so insertion traffic de-
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Figure 14. Impact of diurnal short-term
churn on message overhead.

creases. However, the lost fragments must be recov-
ered when the fragment holders come back online, so
the maintenance overhead increases. As an additional
complication, the probability that fragments are available
at the designated fragment holder decreases, so mainte-
nance requires more attempts to successfully fetch a frag-
ment. This causes the disparity between maintenance
requests and replies, which are shown separately in the
figure.
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Figure 15. Impact of increasing load on
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7.8 Simulation: Load

In our second simulation, we study how the load influ-
ences the message overhead. We again used a overlay
of 250 nodes and the trace from our mail server, but this
time, we used only a fraction f of the messages. Instead
of diurnal churn, we simulated uncorrelated short-term

churn with a mean session time of 3 days and a mean
pause time of 16 hours, as well as long-term churn with
a mean node lifetime of 8 days. We varied the parameter
f between 0 and 1.

Figure 15 shows how the load influences the cumula-
tive message overhead over the entire week. Under light
load, the message overhead remains approximately con-
stant. This is because aggregates are formed periodically
by every node, even if less than 100 objects are available
in the local buffer. As the load increases further, the in-
crease in overhead is approximately linear, as expected.
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Figure 16 shows the same overhead in bytes. Here,
the threshold effect does not appear. Also, note the high
maintenance overhead, as expected. This is due to the ag-
gressive parameters we used for churn; at a node lifetime
of eight days, almost all the nodes are replaced at least
once during the simulation period, their local fragment
store being fully regenerated every time. For their desk-
top environment, Bolosky et al. [8] report an expected
machine lifetime of 290 days and low short-term churn,
which would reduce the maintenance overhead consider-
ably.

7.9 Simulation: Scalability

In our third simulation, we examine Glacier’s scalability
in terms of the number of participating nodes. We used
the same trace as before, but scaled it such that the stor-
age load per node remained constant; the full trace was
used for our maximum setting of N = 1000 nodes. The
churn parameters are the same as before.

Figure 17 shows the message overhead per node for
different overlay sizes. As expected, the net overhead
remains approximately constant; however, since query
messages are sent using the Pastry overlay, the total num-
ber of messages grows slowly with N log N .
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7.10 Discussion

The storage overhead required to sustain large-scale cor-
related failures is substantial. In our experiments, we
used fairly aggressive parameters (fmax = 60%, Pmin =
0.999999), which resulted in an 11-fold storage over-
head. However, this cost is mitigated by the fact that
Glacier can harness vast amounts of underutilized stor-
age that is unreliable in its raw form. Moreover, only
truly important and otherwise unrecoverable data must
be stored in a high-durability Glacier store and is thus
subject to large storage overhead. Data of lesser impor-
tance and data that can be regenerated after a catastrophic
failure can be stored with far less overhead in a separate
instance of Glacier that is configured with a less stringent
durability requirement.

On the other hand, our experiments show that Glacier
is able to manage this large amount of data with a surpris-
ingly low maintenance overhead and that it is scalable
both with respect to load and system size. Thus, it fulfills
all the requirements for a cooperative storage system that
can leverage unused disk space and provide hard, analyt-
ical durability guarantees, even under pessimistic failure
assumptions. Moreover, our experience with the ePOST
deployment shows that the system is practical, and that it
can effectively protect user data from large-scale corre-
lated failures. The ever-increasing number of virus and
worm attacks strongly suggests that this property is cru-
cial for cooperative storage system.

8 Conclusions

We have presented the design and evaluation of Glacier, a
system that ensures durability of unrecoverable data in a
cooperative, decentralized storage system, despite large-

scale, correlated, Byzantine failures of storage nodes.
Glacier’s approach is ‘extreme’ in the sense that it does
not rely on introspection, which has inherent limitations
in its ability to capture all sources of correlated failures;
instead, it uses massive redundancy to mask the effects of
large-scale correlated failures such as worm attacks. The
system uses erasure codes and garbage collection to mit-
igate the storage cost of redundancy and relies on aggre-
gation and a loosely coupled fragment maintenance pro-
tocol to reduce the message costs. Our experience with a
real-world deployment shows that the message overhead
for maintaining the erasure coded fragments is low. The
storage overheads can be substantial when the availabil-
ity requirements are high and a large fraction of nodes is
assumed to suffer correlated failures. However, cooper-
ative storage systems harness a potentially huge amount
of storage. Glacier uses this raw, unreliable storage to
provide hard durability guarantees, which is required for
important and otherwise unrecoverable data.
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