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Abstract
Sketch recognition systems usually recognize strokes either 
as stylistic gestures or geometric shapes.  Both techniques 
have their  advantages.   This  paper presents a  method for 
integrating  gesture-based  and  geometric  recognition 
techniques, significantly outperforming either technique on 
its own.

Introduction  

Sketch  recognition  is  the  automated  understanding  of 
hand-drawn  shapes  which  are  automatically  simulated, 
animated,  or  otherwise  processed.   For  example,  circuit 
diagrams can be automatically recognized, interpreted, and 
analyzed,  i.e.  solving  for  the  missing  current  value  in  a 
circuit.

Thus far, most sketch systems recognize objects in two 
ways:  1)  by  how  they  were  drawn  using  gesture-based 
stylistic drawing features such as [Rubine 1991], or 2) by 
what they look like using geometric features that describe 
the  shape  and  arrangement  of  the  object  such  as 
[Hammond  2005].   Gesture-based  recognition  has  the 
disadvantage  that  shapes  must  be  drawn  in  a  particular 
drawing  style,  but  if  they  are  drawn  as  intended  the 
recognition rates can be high.  Geometric recognition has 
the advantage that shapes can be drawn naturally; however, 
certain  shapes  are  difficult  to  describe  using  their 
geometric  subparts.   Returning  to  the  circuit  diagram 
example, the components, such as resistors and capacitors, 
could be easily recognized geometrically, but a character 
such as the  number '2'  in  a  label  is  difficult  to describe 
geometrically  and  would  be  recognized  more  accurately 
using a gesture system.  Previous systems, such as  Music 
Notepad, use spatial arrangement of gestures-based glyphs 
to  aid  in  sketch interpretation  but  do not  fully  integrate 
low-level geometric and gesture classes [Forsberg 1998]. 
Unlike  the  combination  methods  presented  in  [Kittler 
1998],  our  method  combines  two  classifiers  with 
potentially distinct classes.

Our  goal  is  to  combine  the  techniques  to  improve 
accuracy, add drawing flexibility,  and enable recognition 
of  a  broader  number  of  shapes.   Here,  we  describe  a 
method, called GLADDER, to combine the gesture-based 
technique  of  Rubine  with  the  geometric  recognition 
system,  LADDER.   Our  combined  implementation 
outperforms either system on its own.
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Implementation 

We built a system that allows new shapes to be defined 
either  by  LADDER  in  geometric  rules  or  by  Rubine 
features computed from class examples.

Modified Rubine Recognizer
The  standard  Rubine  method  creates  a  linear  classifier 
based on class-specific average feature vectors and pooled 
covariance that is used for all glyph classes [Rubine 1991]. 
However, this pooled covariance loses any class specific 
information. Therefore, we use a modified Rubine method 
featuring a quadratic classifier.  Class specific covariance 
matrices are maintained for each class, in addition average 
feature vectors.   Input strokes  are assigned to a specific 
class based on computation of Mahalanobis distances.  The 
Malalanobis distance for example f  to class i is computed 
as:

where is the average feature vector for class  i  and 
Σ i is the covariance matrix of class  i.   Each example is 

assigned  to  the  class  whose  Mahalanobis  distance  is 
smallest.

LADDER Recognizer
LADDER  is  a  geometric  recognition  framework. 
Primitives  are  recognized  by  a  low-level  recognizer  and 
combined  into  more  complex  shapes  using  geometric 
constraints  [Hammond  2005].  The  LADDER  low-level 
recognizer  used  is  that  designed  by  Brandon  Paulson 
[Paulson  2008].   It  consists  of  a  set  of  tests  and  a 
hierarchical  classifier.   Each  test  determines  if  an  input 
stroke  could  be  interpreted  as  one  of  the  LADDER 
primitives  and  creates  a  fit  for  passed  primitive  types. 
These primitive fits are ordered based on the hierarchical 
classifier,  and  the  top  three  are  selected  as  possible 
interpretations.  Simpler, less complex interpretations are 
added to the list of fits before more complex fits.

Recognizer Assignment
To  correctly  classify  input  examples,  the  recognition 
system must correctly determine which recognizer, Rubine 
or Paulson, should be used to interpret the stroke.  To do 
this, a rejection method is used.  First, the Rubine classifier 
is used to determine the minimal Mahalanobis distance to 

σ i
2= f − f iΣ i

−1  f − f i
f i
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any  Rubine  class.   This  distance  is  then  compared  to  a 
threshold and rejected from classification by the  Rubine 
method  if  the  threshold  is  exceeded.   The  average 
Mahalanobis  distance  of  training  Rubine  glyphs  was 
determined to be 24, and that of LADDER primitives 100. 
A  threshold  value  of  35  was  determined  empirically  to 
optimally separate Rubine strokes from Paulson.

For  compatibility  with  the  LADDER framework,   the 
Paulson  interpretation  is  computed,  giving  a  list  of 
potential  fits.    If  a  stroke's  Mahalanobis  distance  falls 
below the threshold, the Rubine interpretation is added as 
the  top  of  the  fit  list,  and  as  the  bottom,  if  not.  This 
augmented fit list is then available for use in LADDER and 
permits users to define shapes that are composites of both 
the LADDER primitives and Rubine glyphs.  Context can 
later be used to rectify an incorrect ordering of fits.

Modified Rubine 61.9%
LADDER 75.2%
Integrated 79.9%

Table 1: Overall top-result accuracy of each method.

Results

We performed a user study to measure the accuracy of our 
combined method.  We collected a data set consisting of 28 
single-stroke math symbols and simple geometric shapes. 
Figure 1 shows the shapes used in the study.  Note that 
shapes on the left are LADDER geometric primitives that 
can vary in shape and style, while the mathematical shapes 
on the right are more naturally represented using gestures. 
We  defined  each  shape  in  both  gesture  and  geometric 
format  and  tested  recognition  using  Rubine  alone, 
LADDER alone, and our integrated method.  Data from 23 
users was collected to total 3520 examples.  We used 1824 
of these for training and the rest were reserved for testing. 

For the integrated method, the correct classification was 
returned as the top result in 79.9% of test examples.  Using 
the modified Rubine method alone resulted in the correct 
top classification of 61.9% of the examples.  In 75.2% of 
examples, LADDER chooses the correct class as the top 
result.  These results are summarized in Table 1. 

Additionally,  it  should  be  noted  that  several  Rubine 
glyphs overlap with LADDER primitives. For example, the 
'0' class is often drawn similarly to a circle or ellipse.   As 

these shapes look similar, the incorrect interpretation often 
topped the list, accounting for much of the error.  This is 
one  of  the primary reasons for  the  ranked list,  allowing 
context to help determine the correct interpretation.

Future Work 

Several  areas  of  future  extension  still  exist  within  this 
framework.   Although  we  present  a  ranked  list  of 
interpretations,  including  both  LADDER  and  Rubine 
interpretations,  it  is  unclear  how  to  effectively  compare 
how  to  compare  error  rates  to  merge  multiple 
interpretations  from  each  recognizer.  One  method  that 
could be to used a tiered thresholding system that inserts a 
Rubine fit with a higher Mahalanobis distance after a less 
complex  Paulson  interpretation  like  line  or  circle,  but 
before  a  more  complex  curve  or  polyline  interpretation. 
Also,  overlapping  low-level  classifications  should  be 
combined  into  a  single  class  that  is  distinguished  at  a 
higher level, increasing low-level recognition rates.

Conclusion 

We have described a method for combining both geometric 
and  gesture-based  sketch  recognition  techniques  into  a 
single unified framework.  This method can assign strokes 
to  the  correct  type  of  classifier  with  a  high  degree  of 
accuracy.  Also, GLADDER gains the advantages of both 
geometric  and  gesture-based  systems:  naturally  drawn 
shapes that do not depend on style and complex shapes that 
may be difficult to describe geometrically.
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Figure 1: Example shapes.  On the left, LADDER primitives.  On 
the right, single-stroke math glyphs.
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