
GLADDER: Combining Gesture and Geometric Sketch Recognition

Paul Corey and Tracy Hammond

Sketch Recognition Laboratory, Department of Computer Science, Texas A&M University
Mail Stop 3112, College Station, TX 77839

(979)696-1286, pfc9416@cs.tamu.edu (979)862-4284, hammond@cs.tamu.edu

Abstract
Sketch recognition systems usually recognize strokes either
as stylistic gestures or geometric shapes. Both techniques
have their advantages. This paper presents a method for
integrating gesture-based and geometric recognition
techniques, significantly outperforming either technique on
its own.

Introduction

Sketch recognition is the automated understanding of
hand-drawn shapes which are automatically simulated,
animated, or otherwise processed. For example, circuit
diagrams can be automatically recognized, interpreted, and
analyzed, i.e. solving for the missing current value in a
circuit.

Thus far, most sketch systems recognize objects in two
ways: 1) by how they were drawn using gesture-based
stylistic drawing features such as [Rubine 1991], or 2) by
what they look like using geometric features that describe
the shape and arrangement of the object such as
[Hammond 2005]. Gesture-based recognition has the
disadvantage that shapes must be drawn in a particular
drawing style, but if they are drawn as intended the
recognition rates can be high. Geometric recognition has
the advantage that shapes can be drawn naturally; however,
certain shapes are difficult to describe using their
geometric subparts. Returning to the circuit diagram
example, the components, such as resistors and capacitors,
could be easily recognized geometrically, but a character
such as the number '2' in a label is difficult to describe
geometrically and would be recognized more accurately
using a gesture system. Previous systems, such as Music
Notepad, use spatial arrangement of gestures-based glyphs
to aid in sketch interpretation but do not fully integrate
low-level geometric and gesture classes [Forsberg 1998].
Unlike the combination methods presented in [Kittler
1998], our method combines two classifiers with
potentially distinct classes.

Our goal is to combine the techniques to improve
accuracy, add drawing flexibility, and enable recognition
of a broader number of shapes. Here, we describe a
method, called GLADDER, to combine the gesture-based
technique of Rubine with the geometric recognition
system, LADDER. Our combined implementation
outperforms either system on its own.
 Copyright © 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Implementation

We built a system that allows new shapes to be defined
either by LADDER in geometric rules or by Rubine
features computed from class examples.

Modified Rubine Recognizer
The standard Rubine method creates a linear classifier
based on class-specific average feature vectors and pooled
covariance that is used for all glyph classes [Rubine 1991].
However, this pooled covariance loses any class specific
information. Therefore, we use a modified Rubine method
featuring a quadratic classifier. Class specific covariance
matrices are maintained for each class, in addition average
feature vectors. Input strokes are assigned to a specific
class based on computation of Mahalanobis distances. The
Malalanobis distance for example f to class i is computed
as:

where is the average feature vector for class i and
Σ i is the covariance matrix of class i. Each example is

assigned to the class whose Mahalanobis distance is
smallest.

LADDER Recognizer
LADDER is a geometric recognition framework.
Primitives are recognized by a low-level recognizer and
combined into more complex shapes using geometric
constraints [Hammond 2005]. The LADDER low-level
recognizer used is that designed by Brandon Paulson
[Paulson 2008]. It consists of a set of tests and a
hierarchical classifier. Each test determines if an input
stroke could be interpreted as one of the LADDER
primitives and creates a fit for passed primitive types.
These primitive fits are ordered based on the hierarchical
classifier, and the top three are selected as possible
interpretations. Simpler, less complex interpretations are
added to the list of fits before more complex fits.

Recognizer Assignment
To correctly classify input examples, the recognition
system must correctly determine which recognizer, Rubine
or Paulson, should be used to interpret the stroke. To do
this, a rejection method is used. First, the Rubine classifier
is used to determine the minimal Mahalanobis distance to

σ i
2= f − f iΣ i

−1 f − f i
f i

Proceedings of the Twenty-Third AAAI Conference on Artificial Intelligence (2008)

1788

any Rubine class. This distance is then compared to a
threshold and rejected from classification by the Rubine
method if the threshold is exceeded. The average
Mahalanobis distance of training Rubine glyphs was
determined to be 24, and that of LADDER primitives 100.
A threshold value of 35 was determined empirically to
optimally separate Rubine strokes from Paulson.

For compatibility with the LADDER framework, the
Paulson interpretation is computed, giving a list of
potential fits. If a stroke's Mahalanobis distance falls
below the threshold, the Rubine interpretation is added as
the top of the fit list, and as the bottom, if not. This
augmented fit list is then available for use in LADDER and
permits users to define shapes that are composites of both
the LADDER primitives and Rubine glyphs. Context can
later be used to rectify an incorrect ordering of fits.

Modified Rubine 61.9%
LADDER 75.2%
Integrated 79.9%

Table 1: Overall top-result accuracy of each method.

Results

We performed a user study to measure the accuracy of our
combined method. We collected a data set consisting of 28
single-stroke math symbols and simple geometric shapes.
Figure 1 shows the shapes used in the study. Note that
shapes on the left are LADDER geometric primitives that
can vary in shape and style, while the mathematical shapes
on the right are more naturally represented using gestures.
We defined each shape in both gesture and geometric
format and tested recognition using Rubine alone,
LADDER alone, and our integrated method. Data from 23
users was collected to total 3520 examples. We used 1824
of these for training and the rest were reserved for testing.

For the integrated method, the correct classification was
returned as the top result in 79.9% of test examples. Using
the modified Rubine method alone resulted in the correct
top classification of 61.9% of the examples. In 75.2% of
examples, LADDER chooses the correct class as the top
result. These results are summarized in Table 1.

Additionally, it should be noted that several Rubine
glyphs overlap with LADDER primitives. For example, the
'0' class is often drawn similarly to a circle or ellipse. As

these shapes look similar, the incorrect interpretation often
topped the list, accounting for much of the error. This is
one of the primary reasons for the ranked list, allowing
context to help determine the correct interpretation.

Future Work

Several areas of future extension still exist within this
framework. Although we present a ranked list of
interpretations, including both LADDER and Rubine
interpretations, it is unclear how to effectively compare
how to compare error rates to merge multiple
interpretations from each recognizer. One method that
could be to used a tiered thresholding system that inserts a
Rubine fit with a higher Mahalanobis distance after a less
complex Paulson interpretation like line or circle, but
before a more complex curve or polyline interpretation.
Also, overlapping low-level classifications should be
combined into a single class that is distinguished at a
higher level, increasing low-level recognition rates.

Conclusion

We have described a method for combining both geometric
and gesture-based sketch recognition techniques into a
single unified framework. This method can assign strokes
to the correct type of classifier with a high degree of
accuracy. Also, GLADDER gains the advantages of both
geometric and gesture-based systems: naturally drawn
shapes that do not depend on style and complex shapes that
may be difficult to describe geometrically.

Acknowledgments

This work is funded in part by NSF IIS grant 0744150: Developing
Perception-based Geometric Primitive-shape and Constraint Recognizers
to Empower Instructors to Build Sketch Systems in the Classroom.

References

Forsberg, A., Dieterich, M., and Zeleznik, R. 1998. The Music Notepad,
In Proceedings of UIST '98, ACM SIGGRAPH.

Hammond, T., Davis, R. 2005. LADDER, a sketching language for user
interface developers. Computers and Graphics 29: 518-532.

Kittler, J.; Hatef, M.; Duin, R.P.W.; Matas, J., "On combining classifiers,"
Pattern Analysis and Machine Intelligence, IEEE Transactions on , vol.
20, no.3, pp.226-239, Mar 1998.

Paulson, B., Hammond, T. 2008. PaleoSketch: Accurate Primitive Sketch
Recognition and Beautification. In Proceedings of IUI 2008.

Rubine, D. 1991. Specifying gestures by example. In Proceedings of the
18th Annual Conference on Computer Graphics and Interactive
Techniques SIGGRAPH '91. ACM, New York, NY, 329-337.

Figure 1: Example shapes. On the left, LADDER primitives. On
the right, single-stroke math glyphs.

1789

