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ABSTRACT

Resource management is a key concern for implementing
effective Grid middleware and shielding application devel-
opers from low level details. Existing resource managers
concentrate mostly on physical resources. However, some
advanced Grid programming environments allow applica-
tion developers to specify Grid application components at
high level of abstraction which then requires an effective
mapping between high level application description (activ-
ity types) and actual deployed software components (activ-
ity deployments). This paper describes GLARE framework
that provides dynamic registration, automatic deployment
and on-demand provision of application components (activ-
ities) that can be used to build Grid applications. GLARE
simplifies description and presentation of both activity types
and deployments so that they can easily be located in the
Grid and thus become available on-demand. GLARE has
been implemented based on a super-peer model with sup-
port for activity leasing, self management, and fault toler-
ance. Experiments are shown to reflect the effectiveness of
the GLARE.

1. INTRODUCTION
Advances in network technologies and the emergence of

Grid computing have provided the infrastructure for com-
putation and data intensive applications to run over col-
lections of heterogeneous computing nodes. A main goal
of a Grid is to provide uniform access to wide-area dis-
tributed resources. It is widely accepted that resource man-
agement which is responsible for the management of physi-
cal resources like networks, storage and computers and log-
ical resources like replicated data files and software com-
ponents, is of paramount importance for Grid infrastruc-
tures. Most existing resource management systems focus
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mainly on physical resources typically dealing with Grid
computers and job submission systems. Some efforts like
GrADS [16], AppLeS [6], GridARM [36] and GridLab [35]
have been made to provide automatic management of phys-
ical resources. There is still much work to be done to ef-
fectively support deployment and management of software
components that essentially may become part of Grid ap-
plications. Grid workflow applications [41] emerge as some
of the most challenging and important classes of truly dis-
tributed Grid applications. Grid workflow applications re-
quire the composition of a set of application (software) com-
ponents (e.g. executables or Grid/web services) which ex-
ecute on the Grid in a well-defined order to accomplish a
specific goal. Most existing systems require manual or semi-
manual deployment of these software components, as well as
force application builders to hardcode specific software com-
ponents deployed on specific Grid sites into their Grid ap-
plications. In addition, currently available Grid information
services are not well adapted to store complete description of
software components, forcing the application builder to use
only (name,location)-like information about available appli-
cations. As a consequence these applications are difficult
to port to different Grid architectures, are sensitive towards
dynamic changes of a Grid infrastructure, and often imply
an avoidable failure rate during execution. Such a manual
and hardcoded approach forces an application developer to
deal with low level details of the Grid. Services and executa-
bles must be described along with their locations and access
paths or URIs. All of that makes application development
a time consuming, tedious and error prone task.

There exists several sophisticated Grid workflow program-
ming environments and paradigms [15, 19] that allow a pro-
grammer to specify the semantics of software components
as part of a workflow. But there is a gap between the de-
scription of the functionality of a component and the ac-
tual deployed services and executables that can provide such
functionality. We believe that this gap can be closed or at
least narrowed down by separating the description of the
functionality of a component from it’s deployments, and
through a sophisticated mapping mechanisms that goes be-
yond management of physical resources. Such an advanced
management system should support dynamic registration,
automatic deployment, on-demand provision, and leasing of
software components.

In this paper we describe GLARE, a Grid-level activity
registration, deployment and provisioning framework that
provides dynamic registration, automatic deployment and
on-demand provision of software components. GLARE is



designed and implemented as a distributed framework that
stores information about application (software) components,
called activities. Activities are the essential components of a
Grid workflow application that may reside on different com-
puters and execute in a well defined order to accomplish
a specific goal of the application. GLARE provides dis-
tributed registries for activity types, activity deployments,
and services which perform registration, provisioning, mon-
itoring and automatic deployment of new activities on dif-
ferent Grid computers in a Virtual Organization (VO). Note
that activity types refer to a functional description of activ-
ities whereas activity deployments relate to executables or
Grid/web services that can actually be executed. Applica-
tion developers can focus on activity types and thus must not
be aware of specific activity deployments. GLARE simplifies
the description and presentation of both activity types and
deployments in such a way that they can easily be located in
a distributed Grid environment and thus become available
on-demand.

Moreover, GLARE provides a leasing mechanism which
enables a client (such as a scheduler or enactment engine)
to lease an activity deployment for a certain timeframe.
GLARE has been designed and implemented based on the
super-peer model [38] with support for self management and
fault tolerance. It remains available and functional even
if some of the Grid computers or services stop working.
GLARE ’s dynamic registration, automatic deployment and
on-demand provision of the Grid activities, in combination
with GridARM’s resource brokerage and advanced reserva-
tion [36], provide a powerful base for the Grid workflow man-
agement system and substantially improve the usability of
the Grid towards an invisible Grid. We developed GLARE
and GridARM as integrated services of the ASKALON Grid
application development and computing environment [18].
A GLARE prototype has been implemented based on the
Globus Toolkit 4 [24], which is a reference implementation
of the new Web-Services Resource Framework (WSRF) [3].

The rest of this paper is organized as follows: In Section 2
we discuss Grid workflow activities and motivation behind
our work. Thereafter, we describe the architecture of the
GLARE in Section 3. In Section 4, we describe our ex-
periments about the GLARE and discuss the results. We
present related work in Section 5 followed by conclusion and
future work in Section 6.

2. MOTIVATION
A Grid workflow consists of Grid activities [19, 41]. A

Grid activity is a high level abstraction that refers to a single
self contained computational task that corresponds to an
execution unit, initiated for instance by an executable or a
service deployed on a certain Grid site. In this section we
present motivation behind the GLARE system and describe
its simplicity. Also, we demonstrate activities as generalised
abstractions of the Grid tasks/jobs.

2.1 An Example Using Basic Grid Services
In order to illustrate the advantages of the GLARE frame-

work, we consider a simple example of a workflow consisting
of two activities: ImageConversion and visualization shown
in Fig. 1. The input of conversion activity is a POVray1 [33]

1POVray is a high-quality tool for creating stunning three-
dimensional graphics.

Figure 1: A simple workflow execution on the Grid.

source file containing description of a scene, which is used
to generate a 3-D image file. A client who wants to initi-
ate conversion activity on a Grid site (e.g. on a powerful
computer), needs to deploy POVray on the target Grid site,
then sends a request to perform the image conversion, and
finally transfer the resulting image to run a visualization ac-
tivity on his computer to analyze the resulting image. To
simplify the understanding, we assume that a Java version
of POVray (JPOVray) is available in the form of an exe-
cutable and also a Grid/web service (WS-POVray) which
wraps the execution of POVray in a web service.

The required components to deploy the JPOVray applica-
tion are: (a) the javac compiler (b) some (possible required)
libraries in the form of .jar files, (c) the ant build tool and
(d) the source code of the JPOVray application itself. Once
the application is (remotely) built and deployed, we need
to store the information about deployed application in some
information service. The Endpoint Reference (EPR) or URI
in case the deployed application is a Grid/web service, and
the application name, path and home in case the application
is an executable.

The remote compilation2 and deployment procedure re-
quires information about the location of the compiler and
built tool on the remote Grid site, URI of required libraries
and JPOVray source code. Example 1 shows a step-by-step
procedure that is needed to perform the compilation, deploy-
ment and execution of the workflow, using the basic Globus
services, that is GRAM [11], MDS3 [10] and GridFTP [2] on
a target Grid site:

Example 1 (Step-by-step execution of the workflow)
# Preparing environment

JAVA HOME = Query MDS for location of java on target Grid site
if java not found then

- Query MDS for the location of JDK installation file
- Transfer installation file to target Grid site
- Create user-defined JDK deployment script
- Submit installation script using GRAM

JAVA HOME = user-defined location used to deploy JDK

- Update MDS with the information about the deployed JDK

endif

ANT HOME = Query MDS for location of ant on target Grid site
if ant not found then

- Do same steps to install ant as done for java and update
MDS

endif

povray libs = Query MDS for libraries
# Transfer needed application data for deployment

2Notice that the compilation of Java code is for exemplar
purpose, otherwise Write once run everywhere is ideal for
Java applications.
3By default only physical resources are registered in MDS,
but it can be used for logical resources like application com-
ponents as well.



- Transfer the required libraries
- Transfer java application (JPOVray) source code
# Prepare build scripts

- Create script to remotely build and deploy JPOVray
using the information from MDS (JAVA HOME, ANT HOME

and set CLASSPATH)
- Submit deployment script through GRAM

povray location = user-defined location on remote Grid site
- Update MDS with information about newly deployed JPOVray
application (i.e. jpovray location, libs location etc.)
# Using the deployed application

- Query MDS to find JPOVRay service location
if deployed application is Grid/web service then

- Contact the WS-POVRay service directly
elseif deployed application is an executable

- Create script to run jpovray using
java and libs location

- Submit execution script to run jpovray through GRAM

endif

# Visualization

- Retrieve result using GridFTP

- Visualize image on local station

In Example 1, we need to put application-specific infor-
mation of the JDK and Ant in some information or registry
service for (a) the deployment of the JPOVray and (b) the
execution of JPOVray itself, i.e. there is a special need to
store activity-specific description, so that the procedure can
be automatized as much as possible. This becomes very
complex for several activities, which must be orchestrated
and executed as a Grid workflow application[19].

The main problem is that the information stored in the
information service (like MDS) maps the name of the ac-
tivity directly to its location. Therefore, the description of
the workflow cannot be done independently of a given ap-
plication deployment, which represents a major disadvan-
tage of current systems. We need a service which allows
the registration, deployment and provisioning of activities,
in order to simplify the automation of service execution
and composition. The information stored in such a registry
service should allow to map (a) the description of the de-
ployed application activity, and (b) the access point (EPR
or host:/path/to/application). We believe that such an ac-
tivity registry should work in coordination with MDS, which
is well adapted to store static information about available
Grid resources (e.g. available Grid sites, operating system,
etc.), but not well adapted to store application-related in-
formation.

Creating an automatic deployment procedure for an ap-
plication, as described in Example 1, using basic Grid ser-
vices is non-trivial and hard to achieve in practice. We
present a more practical solution for this problem based on
the GLARE system.

2.2 A GLARE-based solution
During workflow composition we would like to specify a

functional (or semantic) description (types) of activities, so
that based on their descriptions, the associated activity de-
ployments can be located and used. For this purpose, a
fine-grained activity-based Grid resource management is re-
quired.

In order to provide this management, GLARE allows a
user to describe activities in the form of activity types and
activity deployments.

• An activity type (AT) is a functional or behavioural

Figure 2: Activity Type Hierarchy and type to de-

ployment mapping.

description, which can be used to lookup or deploy an
activity (application component).

• An activity deployment (AD) refers to an executable
or Grid/web service and describes how they can be
accessed and executed.

Activity Types are organized in a hierarchy of abstract and
concrete types. An abstract type is one which has no directly
associated deployment. A concrete type may have multiple
deployments and a deployment may have multiple instances.
A running process of an activity is called activity instance.

As shown in Fig. 2, Imaging and POVray are abstract
types which perform some kind of image processing and
define functionality (render and export) with possible in-
puts/outputs. JPOVray is a concrete type that extends
POVray and Imaging and thus inherits functional descrip-
tion of the base types. Installed occurrences of a concrete
type on different Grid sites, or on the same site with different
options are referred to as their deployments. WS-JPOVray
and jpovray shown in Fig. 2 are deployments of JPOVray.
A developer only uses activity types while composing a Grid
workflow application. The GLARE system hides deploy-
ments from the developer, and transparently maps activity
types composed in the application, to the deployments. This
is a major advantage, since the Grid workflow composer,
does not want to know how and where the POVRay appli-
cation is actually implemented (as an executable, Grid/web
service, etc.) on the Grid. Activity instances are not shown
in Fig. 2. They are specific to a given execution of the
Grid application and typically handled by the execution en-
gine [13].

Fig. 3 shows a more complete overview of the different
components that are needed to deploy and execute our ex-
ample workflow described in Example 1 and shown in Fig. 1.
In addition to the different abstract and concrete types, the
dependencies between the components are shown. GLARE
manages these dependencies over the Grid sites.



Figure 3: Example activities, type hierarchy and Deployments on different Grid sites.
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Figure 4: A simple workflow execution by a sched-
uler with help of GLARE.

GLARE framework consists of distributed GLARE ser-
vices, which can perform automatic deployment of new ac-
tivities. Each Grid site has a local GLARE service. The
service provider describes the activity types to be registered
with GLARE. The detailed information description that has
to be provided is described in Section 3. Example 2 shows
registration of JPOVray activity type in the GLARE. Notice
that the registration of an activity type is done only on a
single Grid site, and GLARE takes care of distributing and
deploying it on other sites on-demand.

Example 2 (Registration of JPOVray type)
JPOVray.xml = Define JPOVray activity type in a xml file
if provider does not know xml format then

- Transfer template xml from local GLARE service
- Modify template xml

endif

- Register JPOVray in the local GLARE service

The workflow shown in Fig. 1 can be composed using the ac-
tivity types stored in the GLARE registry. The description
only specifies that a user needs an activity that can produce

an image using as input a POVray scene description source
file. The workflow description can then be submitted to
the scheduler. The scheduler interacts with a local GLARE
service and requests for an activity deployment capable to
provide the requested service (ImageConversion). Exam-
ple 3 shows steps involved in executing the workflow with
the GLARE system. A client (scheduler) specifies activity
type (any one in the type hierarchy) and GLARE returns
a list of deployment references. Fig. 4 demonstrates regis-
tration of JPOVray activity type on one Grid site by activ-
ity provider and discovery of JPOVray deployments by the
scheduler from an other Grid site. Both activity provider
and scheduler interact with their local sites.

Example 3 (Execution of workflow using GLARE)
Result = Get ImageConversion deployments using local GLARE
if Result is an error then

- Retry later
else

- Select a Deployment from the Result

endif

if Deployment is a Grid/web service then

- Contact the service(WS-JPOVRay) directly
elseif Deployment is an executable

- Instantiate JPOVray using jpovray executable as GRAM job
endif

# Visualization

- Retrieve result using GridFTP

- Visualize image on local station

On a discovery-request by the scheduler, the local GLARE
service (e.g. at Grid site 2 shown in Fig. 3) internally ad-
vances as follows:

• It looks up ImageConversion in the distributed GLARE
registry service and finds (after an iterative lookup)
JPOVray, a concrete activity of the required type, but
without any deployment anywhere in the Grid or VO.

• It analyzes the JPOVray type and found that (a) JPOVray
can be installed on Grid site 3 (b) JPOVray depends



on activities Java and Ant and (c) both Java and Ant
are not available on site 3.

• It discovers Java and Ant activity types which are (a)
suitable for target Grid site and (b) provide installa-
tion or deploy-file that describes the steps for auto-
matic deployment.

• If deploy-file exists, it invokes deployment handler on
the target site and hands over the deploy-file to it.
Deployment handler performs all steps given in the
deploy-file automatically. Otherwise, it transfers in-
stallation files and required libraries on the target site
using GridFTP.

• Then it automatically connects to the target Grid site
(as described in Section 3.4) to build and install both
Java and Ant activities by automatizing the interac-
tive installation process (procedure).

• It identifies deployments (e.g. java, javac and ant)
associated with newly deployed activities and regis-
ters them in the deployment registry of the target Grid
site along with information including executable path,
home and type etc. Deployments are identified in an
activity type description by the activity provider, or
automatically by the GLARE service (e.g. by explor-
ing bin sub directory of the deployed activity home for
executables).

• Finally, it transfers JPOVray installation file on to the
target Grid site and deploys it automatically. Further-
more, it identifies JPOVray deployments (i.e. jpovray
and WS-JPOVray), registers them in the deployment
registry of the target Grid site and returns their refer-
ences to the client i.e. scheduler.

In this way, the GLARE system performs dynamic reg-
istration of new types and deployments, automatic instal-
lation and on-demand provision. The deployments jpovray
and WS-JPOVray both provide the same functionality but
belong to different categories, one is an executable whereas
the other is a web service. It is also possible that both de-
ployments of the same type belong to different Grid sites.
Clients can select one of them suitable to their needs.

GLARE system hides deployments and the installation
process of all activities thus shielding the client from the
Grid.

3. GLARE ARCHITECTURE
The architecture of the GLARE system is depicted in

Fig. 5. In brief, it comprises three principal components:
Activity Type Registry (ATR), Activity Deployment Registry
(ADR) and GLARE Registration, Deployment, and Moni-
toring (RDM) Service, which handles requests and deploy-
ments (installations), and monitors different components.
The system is deployed on all Grid sites in a VO to form
a distributed framework. The distributed framework works
based on a super-peer model. In contrast to hierarchical or
centralized models, the super-peer model works well with
dynamic and large-scale distributed environments such as
computing Grids. Based on this model, some members (called
super-peers) of smaller groups of Grid sites form a super
group. A VO consists of one or more groups, who share
distributed activity types and deployments with each other

Figure 5: GLARE system Architecture.

through the super-peers. This model makes the GLARE
framework more scalable and extensible. Furthermore, the
automatic formation of super-peer model-based distributed
framework makes GLARE self-managed.

3.1 Registry Services
Activity types and deployments are maintained in separate

registries. Each occurrence of an activity type and deploy-
ment in a registry service is represented as a WS-Resource.
A WS-Resource is a stateful web service which provides
mechanisms including service lifecycle management, event
registration and notification [3]. Activity Types are described
in a hierarchy of abstract and concrete types and defined in
terms of base activity types, domains, functions, arguments,
benchmarks for different platforms and installation mecha-
nism required for an on-demand deployment. Abstract ac-
tivity types are used to discover concrete activity types and
a concrete type identifies available activity deployments.

Activity Type Registry (ATR) maintains a set of named
activity types in the form of WS-Resources organized in a
hierarchy. It presents a more abstract activity type as root
and uses it in discovering concrete types. Concrete types
are installed on Grid sites and may have associated activity
deployments and a reference to deploy-file describing steps
involved in automatic installation.

Activity Deployment Registry (ADR) complements Type
Registry and maintains a set of activity deployments of con-
crete activity types as WS-Resources. An activity deploy-
ment refers to an executable or a web/Grid service and pro-
vides information required for the selection and instantiation
of a deployed (installed) activity. The Endpoint Reference
(EPR) of each activity deployment resource is registered in
its type resource presented in the type registry. Moreover,
an activity type must be present in the type registry before
registration of its deployments. The type registry service is
responsible for discovering a matching activity types. In case
of failure in discovering matching activity type, the deploy-
ment registry service requests the type registry service for
the dynamic registration of a new activity type.

Both registry services are part of a distributed framework
(explained in Section 3.3). They can access all resources
registered on different Grid sites with GLARE services dis-
tributed all over the VO. A new activity type registered dy-
namically with one site can be discovered automatically by
other sites. A resource discovered from a remote registry is



<DeploymentEPR>

   <Address>

     https://138.232.1.2:8084/wsrf/services/ActivityDeploymentRegistry

   </Address>

   <ReferenceProperties>

     <ActivityDeploymentKey> jpovray </ActivityDeploymentKey>

     <LastUpdateTime> Mar 30, 2005 16:41:24 </LastUpdateTime>

   </ReferenceProperties>

   <ReferenceParameters/>

</DeploymentEPR>

Figure 6: Deployment Endpoint Reference.

optionally cached locally.
Both registry services provide an aggregation of all lo-

cally registered and cached resources, based on a WSRF
service-group framework, in which aggregated resources are
periodically refreshed. This enables the service to discover
resources (activity types or deployments) by using standard
XPath-based querying mechanism. In order to answer queries
for named resources faster, the registry services use hash
tables to access named resources. This eliminates XPath-
based search requirements for named resources and signifi-
cantly improves the performance.

3.2 GLARE RDM Service
The GLARE Registration, Deployment and Monitoring

(RDM) service is the main frontend service which consists of
components including Request Manager, Deployment Man-
ager, Cache Refresher, Index Monitor and Deployment Sta-
tus Monitor. The Request Manager receives and handles
requests both from clients (in the form of queries) and from
activity providers (in the form of updates). Deployment
Manager performs on-demand deployment and installation
of new activities.

Caching and Cache Monitoring: To ensure an effi-
cient on-demand provision, GLARE supports a two-level
cache; cache at normal Grid site and cache at super-peer
Grid site, and provides a mechanism to refresh cache of
updated resources. As shown in Fig. 5, cache of activity
types and activity deployments is maintained in the type
registry and deployment registry respectively, and the Cache
Refresher updates cached resources if and when they change
on the source Grid site. Outdated resources are discarded
automatically.

The Deployment Status Monitor checks the status of each
locally registered activity deployment and updates its re-
source and endpoint reference registered in the resource of its
type. The deployment Endpoint Reference (EPR) contains
an additional attribute Last Update Time (LUT) which is
used by the Cache Refresher. Fig. 6 shows a deployment
EPR in which the service Address and ActivityDeploymen-
tKey elements are required to access activity deployment re-
source and do not change during the lifecycle of a deployed
activity. Last Update Time can be changed frequently by
the Deployment Status Monitor and each time it changes,
cached activity deployment resources are revived.

The Deployment Status Monitor can register in local WS-
GRAM service to get the latest metrics associated with ac-
tive deployed activities. For instance, attributes like last
execution time, return code, last invocation time etc. can be
useful while scheduling and promising QoS. Fig. 7 represents
a sample representation of jpovray activity deployment.

Deployment Leasing: The GLARE service provides

<ActivityDeployment name="jpovray" type="POVray">

  <executable> jpovray </executable>

  <Node name="schareck.askalon.org" home="$DEPLOYMENT_PATH" 

       path="$DEPLOYMENT_PATH/bin"/>

  <function name="render" input="POVTextFile" output="PNGImageFile"/>

  <ActivityHistory>

    <LastExecution completionTime="3636" returnCode="1" 

                            accessTime="Mar 30,2005 16:41:24"/>

  </ActivityHistory>

</ActivityDeployment>

Figure 7: A simple deployment representation.

the capability to lease an activity deployment with the help
of GridARM Reservation service. A fine-grained reservation
of a specific activity instead of the entire Grid site is sup-
ported. A user with valid reservation ticket is authorized to
instantiate the reserved activity. A lease can be exclusive or
shared. In case of an exclusive lease no one else is allowed
to use the activity, during its leased timeframe. In case of
shared lease, multiple clients can use the leased activity but
GridARM reservation service ensures that the number of
concurrent clients does not exceed the allowed limits and
the required QoS are met.

Local Access: A distributed GLARE framework, as de-
scribed in Section 3.3, ensures that clients of different Grid
sites have the same view of the entire Grid or VO. An ac-
tivity is discovered and provisioned by the local Grid site
independent from the location of activity deployments. This
is in contrast to the hierarchical model of MDS, in which a
client has to contact root or the community Index service4

in order to get the entire view of all Grid resources [10]. This
enables clients to interact only with their local sites and get
all distributed activity types and deployments. Clients don’t
have to consider or remember a centralized service and its
access mechanism.

3.3 Self Management and Fault Tolerance
The GLARE framework is self-managed and fault toler-

ant. It uses Globus Toolkit 4 (GT4) built-in hierarchical ag-
gregation and indexing mechanism to discover Grid sites and
form peer groups. One member from each group becomes a
super-peer and all super-peers form a super group. Within
a group, a peer-to-peer interaction model is used, whereas
inter-group communication is done through the super-peers.
If some sites or services fail, the rest of the GLARE system
continues working. A super-peer failure leads to the elec-
tion of a new super-peer. Fig. 8 shows coherent peer and
super-peer groups formed by using WS-MDS hierarchy.

Super-peer Election: Index Monitor is part of GLARE
RDM service. It periodically probes the GT4 Default Index
to see whether it is a community index or local index. A
GLARE service on a site with community index becomes
super-peer election coordinator and notifies all other Grid
sites registered in the community. Notification is done twice
(with a configurable time interval) and the second notifica-
tion is acknowledged. A notification message includes num-
ber of registered Grid sites in the community index showing
the community strength. A message from a smaller commu-
nity is acknowledged in case of notifications from multiple
indices. A responding site with higher rank is elected as

4In Globus Toolkit 4, terms Default Index service and Com-
munity Index service are used for local and root (VO-level)
WS-MDS/MDS4 services respectively.



Figure 8: Peer and super-peer groups, formed after super-peer elections.

super-peer. Depending on the number of Grid sites, more
than one sites can also be elected as super-peers and other
members are then equally distributed among the elected
super-peers. In this way each group can have exactly one
super-peer. This group making is initially done by the elec-
tion coordinator who notifies all elected super-peers about
their group members after the completion of their election.

In order to rank different sites, a unique hashcode of
all grid sites is calculated based on their static attributes.
These attributes includes processor speed, memory, uptime
and site name. Well established hashcode algorithms ensure
the uniqueness when invoked by different GLARE RDM ser-
vices residing on different sites. This unique hashcode is
used as site rank.

Once a GLARE service recognizes itself as super-peer af-
ter receiving notification from the election coordinator, it
does the following:

• Discovers other super-peers distributed in a larger com-
munity by interacting with community or super com-
munity indices.

• Handles requests from its peer members. A super-peer
is contacted when other peers could not find informa-
tion about some activity types or deployments within
the group. It then forwards requests to other super-
peers and caches the results.

Fig. 8 depicts the structure of a VO after election of super-
peers with 3 peer groups and one super-group. Each member
within a smaller group become peer of each other, whereas
one member from each group joins a super-group as super-
peer.

Once a member discovers that the super-peer is not work-
ing, it immediately calculates the ranks of all member sites,
excluding the missing super-peer and notifies the highest
ranked member. The highest ranked member then (a) veri-
fies that the super-peer is missing (b) verifies its own rank
and then (c) sends verification message to every other mem-

ber. As a result each member again verifies the unavailabil-
ity of the super-peer and acknowledges back to the highest
ranked site. An acknowledgement from a simple majority
confirms that the super-peer is no longer available, and the
highest ranked site takes over as a new super-peer. In this
way election and re-election of super-peers takes place, and
high availability and scalability of the distributed GLARE
system is ensured.

Furthermore, as both activity types and deployments are
represented in the form of WS-Resources, they can be ex-
pired, refreshed or removed permanently. An activity provider
can control the lifecycle of an activity type and its deploy-
ments by making a registration, cancelling it or revoking
for certain time. Moreover, a provider can also specify min-
imum and maximum limits of deployments of an activity and
the GLARE system ensures to fulfil the implied constraints.
If an activity type expires, its deployments automatically ex-
pire, but an active (running) deployment at expiration time
completes its execution. Moreover, if a deployment fails on
one site, it can be moved to another site.

3.4 On-demand Deployment
Installation and deployment of scientific applications (ac-

tivities) on different Grid sites is a time consuming and
labour intensive task. GLARE provides a mechanism in
which an activity provider can register new abstract or con-
crete activity types with an installation procedure in an as-
sociated deploy-file. A new activity type registered with one
Grid site can be discovered by other sites and installed on-
demand (automatically) based on constraints specified in
the type description.

Also, simultaneous installation can be performed on mul-
tiple Grid sites, with least involvement of administrators or
requesters. An installation procedure of POVray is depicted
in Fig. 9.

Currently, installation with autoconf (configure, make, in-
stall) and auto build using ant is supported. The deploy-file
and source URLs must be accessible by GridFTP for trans-



Figure 9: JPOVray activity type description and
Deploy-file with steps for automatic deployment.

fers to the target Grid site. An activity provider can specify
different constraints which must be fulfilled before the in-
stallation, for example, prerequisite platform and operating
system etc. An activity can be restricted to a certain number
of sites or revoked temporarily. An activity provider can use
default environment variables DEPLOYMENT DIR, USER HOME,
GLOBUS SCRATCH DIR and GLOBUS LOCATION in the deploy-
file, and RDM service substitutes their values.

After successful installation, the activity type is marked as
deployed and specified executables or services are registered
in the deployment registry in the form of deployment WS-
Resources. The deployments are identified in the activity
type description by the activity provider, or GLARE service
can automatically find, for instance by exploring bin sub di-
rectory of the deployed activity home. In case of failure, or
installation mode=manual GLARE service notifies admin-
istrator of the target site by email referring to the website
of the activity or contact of its provider. Automatic de-
ployment eliminates the overhead of manual or on-demand
deployment. But, in order to control unwanted installa-
tions on different sites, only constraint-based or on-demand
deployment is supported. A smart scheduler can reduce
overhead of on-demand deployment by providing intelligent
look-ahead scheduling.

Deployment Handler: is an Expect5 [17] based virtual

5Expect is a method of automating interactive applica-
tions/tools like telnet, ftp, passwd etc.

terminal used to automatically interact with operating sys-
tems of different Grid sites and perform interactive process
of local or remote installation. GLARE uses local shell (e.g.
bash) or glogin6 [25] to login on target site securely with the
expect mechanism. As an alternative to glogin, the deploy-
ment handler can use GRAM on target Grid site and issues
commands in the form of GRAM jobs. By default, system’s
local shell is used by the GLARE service running on target
Grid site. We also exploit Expect for interactive installation.
For instance, the installation of POVray requires human in-
teraction and prompts for license acceptance, user type, and
install path, and activity provider specifies this interaction
dialog in deploy-file in the form of send/expect patterns as
shown in Fig. 9.

GLARE system is designed as a set of WSRF services
distributed in the Grid with platform-independent interac-
tion mechanism. This makes it acceptable for both Grid
and web services technologies. The openness of underly-
ing infrastructure and super-peer model based design makes
GLARE a scalable middleware that shields application de-
velopers from the Grid. Furthermore, automatic super-peer
election and activity installations upgrade GLARE system
to become self managed and fault tolerant. In the following
section we show some experiments which demonstrate the
effectiveness of the GLARE.

4. EXPERIMENTS
We have implemented a prototype of the GLARE system

based on GT4 and integrated in ASKALON Grid environ-
ment [18]. We then deployed it on different sites of Austrian
Grid infrastructure [8]. The Austrian Grid is a national com-
puting Grid infrastructure distributed across several cities
and institutions across Austria. The infrastructure is com-
posed of more than ten Grid sites that aggregate over 200
processors. Each local Grid site system administrator in-
dependently installed his favourite local job manager and
the Globus toolkit (GT2 or GT4) for integration within the
Austrian Grid.

We have evaluated on-demand deployment of new activ-
ities and calibrated the deployment overhead for some real
world scientific applications. We have selected three applica-
tions; Wien2k [7] (pre-compiled) which performs electronic
structure calculation of solids based on density functional
theory. Invmod, a hydrological application for river mod-
elling which has been designed for inverse modelling cali-
bration of the WaSiM-ETH program [28], and counter, a
sample GT4 service that explores GT4 features and used
here to demonstrate the deployment of a Grid service. Ta-
ble 1 illustrates time spent in different operations and com-
ponents of the GLARE framework. On-demand deployment
is performed in two ways; with JavaCoG (using GRAM and
GridFTP) and with Expect by programmatically acquiring
local system shell and automatizing the installation process.
Communication and deployment overhead depends on the
size of installation files and compilation respectively. As
shown in the Table 1, the registration of a new type and its
deployments and notification to the site administrator imply
reasonable costs. Downloads take some time but significant

6Glogin is a secure shell that uses standard Globus GRAM
and GSI mechanism, i.e. the users can use their proxy certifi-
cates to log into a remote Grid site, without any additional
server running (as gsissh).
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Figure 10: Comparison of Activity Type Registry
and WS-MDS Index Service both with and without
transport level security. Throughput with varying
number of concurrent clients.

time is spent in compilation and installation. Also, Expect
is more efficient than Java CoG. The overall scheduler over-
head shown in the Table, can be eliminated by employing
automatic deployment, or reduced by providing a schedule-
ahead mechanism by the scheduler.

We tested the efficiency, performance and scalability of the
GLARE system by deploying it on up to 7 Austrian Grid
sites. We compared an integral component of the GLARE
framework, that is, Activity Type Registry with the GT4
Index Service (WS-MDS) by registering multiple activity
type WS-Resources in both services. We performed exper-
iments with and without transport level security enabled
(i.e. with http and https). Note that, although Index Ser-
vice is normally used for physical resources but the underly-
ing aggregation framework (WSRF-based GT4 aggregation
framework) is same for both GT4 Index service and GLARE
registries. Therefore it is logical to make this comparison.

Fig. 10 shows performance of both services with and with-
out security enabled. Throughput decreases almost by 50%
for both services with transport level security. Index Service
is 50% slower than Activity Registry because of its XPath-
based querying mechanism. This experiment was performed
with both WS-MDS Index and activity type registry services
running on the same Grid site with same number of regis-
tered activity types, whereas clients were distributed among
7 other sites.

Fig. 11 shows a comparison of Activity Type registry with
Index Service with a varying number of activity type re-
sources in the registry and index service, again, with and
without security. Throughput of Index Service decreases
significantly with increasing number of resources whereas it
can be observed that throughput of an activity type registry
is consistent. A good performance comparison of previous
versions of MDS is given in [29, 42].

We also experienced the scalability of the system on 1, 3
and 7 Grid sites, with and without cache enabled. Fig. 12
shows response time per request for a list of deployments
associated with an activity type. Deployment entries are
equally distributed on all involved sites. It is observed that
there is a significant improvement in performance by increas-
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Figure 12: Response time per activity deployment

request with cache on 1 Grid site and without cache
on 1, 3 and 7 Grid sites.

ing number of sites or by enabling the cache.
Fig. 13 shows the change in the 1-minute load average as

the number of clients (requesters) and event notification lis-
teners (sinks) increases; the load average is measured as the
load on the Activity Type Registry during the last minute
(using Unix uptime command). The load average is there-
fore a measure of the number of jobs waiting in the run
queue. The highest load average occurs when the notifica-
tion rate is 1 sec. It peaks slightly above 16 corresponding
to 210 sinks. Load average is proportional to the notifica-
tion rate. The load average against the number of requesters
peaks just below 5, which shows consistency.

Finally, we have evaluated that sometimes Index Service
stops responding when we register more than 130 activity
type resources in it and number of concurrent clients exceeds
10 (Fig. 11). This is quite strange behaviour and could be a
real shortcoming of the index service, which may become a
bottleneck when registered number of Grid sites increases.
In contrast, the GLARE registry services works well with a
reasonable large number of registered resources.



Deployment Method Operation/Overhead Wien2k Invmod Counter

Expect

Activity Type Addition 633 632 665
Communication Overhead 1,667 1,381 1,279

Activity Installation/Deployment 8,068 27,776 29,843
Activity Deployment Registration 355 350 352

Notification 345 345 345
Expect Overhead 2,100 2,100 2,100

Total overhead for meta-scheduler 11,068 30,484 32,484

Java CoG

Activity Type Addition 633 632 665
Communication Overhead 5,600 2,500 2,400

Activity Installation/Deployment 18,068 49,700 39,756
Activity Deployment Registration 355 350 352

Notification 345 345 345
JavaCoG Overhead 9,800 9,900 9,800

Total overhead for meta-scheduler 25,001 53,527 43,518

Table 1: Time spent (in ms) in different operations.
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Figure 13: Average 1-min CPU load with various
number of concurrent client and notification sinks.

5. RELATED WORK
A number of efforts have been made within the Grid com-

munity to develop automatic Grid resource management and
brokerage solutions but very few of them are addressing the
issue of resource management covering software components
(activities) and their automatic deployment. A separation
between meaning, behaviour, and implementation of the
Grid application components is described in [31]. The work
in [23] matches a high-level application specification to an
optimal combination of available components. In contrast,
GLARE provides a high-level application specification in a
hierarchy of activity types and provides dynamic registration
and automatic deployment of software components.

Pegasus [15] uses Chimera [22] and Transformation Cata-
log [14] for transforming an abstract workflow into concrete
workflow. The transformation Catalog is used to map a
logical representation of an executable (transformation) to
a physical representation, which describes its functionality
and accessibility. The catalog uses MySQL as a centralised
backend database. Chimera Virtual Data System [22] de-
scribes and stores data derivation procedures and derived
data in a central database. It provides a special language
interpreter that translates user requests. This system is use-

ful for datagrid applications, but works with a dedicated
querying mechanism. Pegasus uses Globus middleware ser-
vices and automates replica selection. It does not provide
automatic/on-demand deployment of software components.

GrADS [12] resource selection framework [30] addresses
the discovery and configuration of physical resources that
match application requirements. It provides a declarative
language using set matching techniques, which extend Con-
dor matchmaking [40] and support both single and multiple
resource matching. This system does not cover Grid appli-
cation components. S. Decker et al describe in [39] Grid
resource matching using semantic web technologies. This
work proposes physical resource matching by using ontolo-
gies, background knowledge and rules. It highlights the
need of semantic description of Grid resources and resource
matching but does not address issues of performance and
efficiency. Both systems [12, 39] do not cover software re-
sources like Grid computational activities.

CrossGrid [9] provides a distributed component registry
with peer-to-peer technology. It supports inter-registry com-
munication for maintaining table coherency. Grimoire [27]
extents UDDI [32] to provide invocable activities such as
workflows or legacy programs. GridLab capability registry
[35], CrossGrid component registry [9] and MyGrid Gri-
moire [27] provide registries for static information of the
Grid applications. UDDI [32] and Handle System [20] can
be used to augment our system but they have their own lim-
itations. UDDI is a specification for distributed web-based
information registries for web services but unsuitable for
legacy scientific applications. Also it does not support dy-
namic updates. Handle System supports a very basic query-
ing mechanism. Furthermore, it requires domain specific
naming authorities to be registered in a root naming author-
ity which is not managed efficiently. Globus MDS [10] pro-
vides a hierarchical aggregation framework for distributed
Grid resources.

The main difference between GLARE and the above sys-
tems is that while most of the above systems focus on dis-
covering and brokering physical resources, GLARE frame-
work focuses on software components (activities). Further-
more, GLARE provides dynamic registration, automatic de-
ployment and on-demand provision and leasing of logical
resources. The framework is self-managed, fault tolerant,
distributed and scalable. In contrast to MDS, GLARE pro-



vides a super-peer model based distributed framework which
works well for large scale environments. It is implemented in
Globus Toolkit 4 an implementation of a new Web-Services
Resource Framework [3].

Ka-tools [5], LCFG [4] and Quattor [34] provide auto de-
ployment but mostly deal with configuration of physical
nodes or perform OS cloning in a fabric. SmartFrog [1]
requires specific components or wrappers to support auto-
matic deployment of software components.

Global Grid Forum CDDLM working group [21] is ad-
dressing issues of automatic deployment and provisioning of
Grid services with security and fault tolerance. The focus
of this group is how to describe configuration of services,
deploy them on the Grid and manage their deployment life-
cycle (instantiate, initiate, start, stop, restart, etc.). The
group is also standardising APIs for this purpose. The fo-
cus of the group is a WSRF-based Grid services whereas
GLARE targets both Grid services and legacy scientific ap-
plications.

6. CONCLUSION
Grid resource management systems so far have been mostly

used for brokerage of Grid computers. In our work we
focused on extending resource management to application
components that can be part of distributed Grid applica-
tions. We introduced GLARE, a Grid-level application com-
ponent registration, deployment and provisioning framework
that provides dynamic registration, automatic deployment
and on-demand provision of application components (activ-
ities) that can be used to build Grid applications. Applica-
tion components are described as activity types and activity
deployments. By separating activity types from activity de-
ployments we can shield the application developer from the
Grid. GLARE automatically relates activity types to a set of
activity deployments that can then be selected for instance
by the middleware to create a Grid application for execu-
tion. Moreover, GLARE provides a mechanism in which
new activities can be registered dynamically, installed auto-
matically and provisioned and leased on-demand. We be-
lieve that this functionality is a major step forward towards
an invisible Grid from the application developer point of
view.

We examined the performance of the GLARE system and
compared its registries with GT4 index service (WS-MDS)
and found it quite encouraging. We also exhaustively veri-
fied the efficiency of the registration and provisioning mech-
anism with varying number of activity types, activity deploy-
ments and concurrent clients.

We plan to incorporate the GGF recommendation for au-
tomatic configuration and deployment of Grid services, once
they become standard. We are considering to add features of
un-deployment and generation of wrapper services for legacy
code by integrating with the Otho toolkit [26]. Also as a
future work, we plan to augment activity types with onto-
logical description so that activity types can be searched for
based on a semantic description. Similar as proposed for
physical resources [37].

GLARE simplifies the description and presentation of both
activity types and deployments in such a way that they can
be easily located in a distributed Grid environment and thus
become available on-demand. A mechanism is supported to
lease an activity deployment for a certain timeframe. The
GLARE ensures that a leased activity remains available and

provides required QoS during the leased timeframe. GLARE
has been implemented based on a super-peer model with
support for self management and fault tolerance. Exper-
iments have been shown to demonstrate the performance
and efficiency of the proposed system.
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