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Abstract: In the paper, Tb65Ni35−xCox (x = 0, 10, 20, 30) amorphous ribbons were successfully
prepared, and the glass-forming ability (GFA) of these ribbons was investigated. Both the Trg and γ

of the Tb65Ni35−xCox amorphous ribbons were larger than those of the Tb65Ni35 alloy and reached
the maximum when x = 20, indicating that the Tb65Ni15Co20 amorphous alloy has an optimal GFA.
The magnetic properties as well as magnetocaloric effect of the Tb65Ni15Co20 amorphous alloy were
studied. The Curie temperature (Tc) of the amorphous alloy was ~79 K and the typical spin-glass-like
behavior was found in the alloy. The peak value of magnetic entropy change (−∆Sm

peak) for the
amorphous alloy was up to 9.47 J kg−1 K−1 under 5 T. The mechanism for the increased Tc and
enlarged −∆Sm

peak of the Tb65Ni15Co20 amorphous alloy was analyzed.

Keywords: metallic glass; glass-forming ability; magnetocaloric effect; magnetic entropy change

1. Introduction

With the increasing problems of energy consumption and air pollution, it is very
necessary to develop new refrigeration methods to replace the traditional refrigeration
technology using freon as a refrigerant. Among these refrigeration technologies, the
magnetic refrigeration (MR) method, which is based on the magnetocaloric effect (MCE),
has attracted more interest over the past several decades [1,2]. Compared with traditional
vapor compression cycle refrigeration technology, MR possesses the advantages of high
efficiency (as high as 30–60%, but the traditional refrigeration efficiency is only 5–10%),
free of greenhouse gas and more compactness due to the use of solid refrigerant [1–5]. The
performance of a magnetic refrigeration equipment fundamentally depends on the MCE of
its refrigerant; thus, it is significant to choose appropriate refrigeration materials.

At present, the magnetic materials that exhibit MCE can be divided into two categories:
(1) Crystalline compounds undergoing a first-order magnetic phase transition (FOMPT)
usually show ultra-high magnetic entropy change peak (−∆Sm

peak), but this ultra-high
−∆Sm

peak only exists within a very narrow temperature range, such as Gd-Si-Ge-, La-Fe-Si-
and Ni-Mn-based alloys [6–10]. (2) The MCE materials undergoing a second-order magnetic
phase transition (SOMPT), represented by pure Gd metal and amorphous alloys (AAs),
exhibit relatively lower −∆Sm

peak than FOMPT materials [11–14]. However, the magnetic
entropy change (−∆Sm) curves of the SOMPT MCE materials are broader, which means
they can operate in a wide temperature range and, thus, leads to a much larger refrigeration
capacity. Therein, AAs can be formed within a wide compositional range and can easily
tune their Curie temperature (Tc) and −∆Sm

peak by compositional adjustment [15–17]. In
addition, compared with the crystalline alloys, AAs also have better mechanical properties,
higher corrosion resistance and lower eddy current losses [18,19]. Therefore, amorphous
MCE alloys may be more suitable candidates as magnetic refrigerants used in magnetic
refrigeration.
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Among amorphous MCE alloys, rare earth (RE)-transition metal (TM)-based AAs
and TM-based AAs are the main two categories. The TM-based amorphous MCE alloys
usually show very low −∆Sm

peak (not exceed 4.0 J kg−1 K−1 under 5 T) [3,20–22]. Instead,
the magnetocaloric effect of the RE-TM-based AAs are quite excellent, especially in Gd-
TM-based AAs [23–29]. For example, a −∆Sm

peak under 5 T of up to 11.06 J kg−1 K−1 was
achieved in a ternary Gd34Ni33Al33 metallic glass [24]; Gd55-60Co15-30Al15-30 AAs exhibited
the −∆Sm

peak of 8.6~9.6 J kg−1 K−1 under 5 T [25]. In recent reports, other RE-TM-based
(such as Nd, Tb and Dy) AAs also showed rather high −∆Sm

peak. The −∆Sm
peak under

5 T of Nd65Co35 AA reached 7.59 J kg−1 K−1 [26]. The Tb/Dy-TM AAs even showed a
−∆Sm

peak comparable to those of Gd-based metallic glasses [27–29]. Thus, it is important
for the application of MR to develop and improve the −∆Sm

peak of the RE-TM-based AAs
as high as possible.

In previous work, we have systematically investigated the glass-forming ability (GFA)
and magnetocaloric properties of the Tb-Ni binary alloys, and a −∆Sm

peak under 5 T of
8.7 J kg−1 K−1 was obtained in the Tb65Ni35 alloy, which was the only fully amorphous
sample in the binary alloys [30]. Frustratingly, the GFA of the Tb65Ni35 AA was very poor.
Therefore, in order to increase the GFA and concurrently further improve the MCE of the
Tb65Ni35 AA, the replacement of Ni atom with other TM atoms should be a valid way. In
the present work, Co was used in the substitution of Ni to prepare Tb65Ni35−xCox (x = 0,
10, 20 and 30) amorphous ribbons, and the GFA of the ternary alloys was investigated. The
best glass former in the ternary alloys was employed to study its magnetic properties and
MCE in detail.

2. Materials and Methods

The Tb65Ni35−xCox (x = 0, 10, 20, 30) alloy ingots were produced by arc-melting the
mixture of Tb, Ni and Co metals (purity > 99.9 at.%) in a high vacuum furnace under the
protection of high-purity Ar atmosphere. Each master ingot was remelted in a quartz tube
filled with Ar atmosphere and then the melt was injected on a copper wheel with a speed
of 30 m/s to fabricate the Tb65Ni35−xCox ribbons. These ribbons with a width of ~3 mm
and a uniform thickness of ~40 µm were selected for the structure and performance mea-
surements. A Rigaku D/max-2550 X-ray diffractometer (XRD, Rigaku, Tokyo, Japan) with
Cu Kα radiation was employed to detect the structural information of the Tb65Ni35−xCox
as-spun ribbons. The thermal properties of the glassy sample were achieved from their
differential scanning calorimetric (DSC) curves measured on a model 404 C calorimeter
produced by NETZSCH Company (Selb, Germany). The GFA of these amorphous ribbons
was evaluated according to their thermal parameters and the best glass former was de-
termined to investigate its magnetic properties and MCE. The magnetic measurements of
the amorphous ribbon with the best GFA, including magnetization vs. temperature (M-T)
curves, hysteresis loops and isothermal magnetization (M-H) curves, were performed on a
model 6000 Physical Property Measurement System (PPMS) produced by Quantum Design
Company (San Diego, CA, USA).

3. Results and Discussion

The X-ray diffraction results of the Tb65Ni35−xCox (x = 0, 10, 20, 30) as-spun ribbons are
displayed in Figure 1. There were no obviously sharp crystalline peaks and only smoothly
broad diffraction diffusion in their XRD patterns, which indicates the typical amorphous
characteristic of these ribbons.
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glass transition temperature (Trg = Tg/Tl) [31] and parameter γ (= Tx/(Tg + Tl)) [32]) can be 
calculated accordingly. As shown in Figure 2b, both the Trg and γ were larger than those 
of the Tb65Ni35 amorphous alloy [30], indicating that the replacement of Ni atom with Co 
atom can dramatically improve the GFA of the Tb65Ni35 binary alloy. In addition, the value 
of the Trg and γ first increased and then decreased with the increase in Co content and 
reached the maximum value when x = 20, which implies the best glass former in the 
Tb65Ni35−xCox ternary alloys was Tb65Ni15Co20. 

  

Figure 2. (a) DSC curves of the Tb65Ni35−xCox (x = 0, 10, 20 and 30) amorphous ribbons at a heating 
rate of 0.333 K/s, and the inset are the melting behaviors; (b) the compositional dependence of Trg 
and γ for the Tb65Ni35−xCox amorphous ribbons. 

Table 1. Thermal parameters, Trg and γ of the Tb65Ni35−xCox (x = 0, 10, 20 and 30) amorphous alloys. 

Tb65Ni35−xCox Tg (K) Tx (K) Tl (K) Trg γ 
x = 0 548 579 1137 0.482 0.344 

Figure 1. XRD patterns of the Tb65Ni35−xCox (x = 0, 10, 20, 30) as-spun ribbons.

Figure 2a shows the DSC curves of Tb65Ni35−xCox (x = 0, 10, 20, 30) amorphous
ribbons. It can be seen that as the temperature rose, a faint upward endothermic peak first
appeared, which corresponded to the glass transition behavior of the ribbon, following by
downward exothermic crystallization peaks on each curve. This further proves the typical
amorphous features of these samples. From their DSC curves and melting curves, we can
obtain the temperatures of glass transition (Tg), primary crystallization temperatures (Tx)
and liquidus temperatures (Tl) to evaluate the glass-forming ability of the Tb65Ni35-xCox
(x = 0, 10, 20, 30) AAs, as listed in Table 1. Two criteria used commonly (i.e., the reduced
glass transition temperature (Trg = Tg/Tl) [31] and parameter γ (= Tx/(Tg + Tl)) [32]) can
be calculated accordingly. As shown in Figure 2b, both the Trg and γ were larger than those
of the Tb65Ni35 amorphous alloy [30], indicating that the replacement of Ni atom with
Co atom can dramatically improve the GFA of the Tb65Ni35 binary alloy. In addition, the
value of the Trg and γ first increased and then decreased with the increase in Co content
and reached the maximum value when x = 20, which implies the best glass former in the
Tb65Ni35−xCox ternary alloys was Tb65Ni15Co20.
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Figure 2. (a) DSC curves of the Tb65Ni35−xCox (x = 0, 10, 20 and 30) amorphous ribbons at a heating
rate of 0.333 K/s, and the inset are the melting behaviors; (b) the compositional dependence of Trg
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Table 1. Thermal parameters, Trg and γ of the Tb65Ni35−xCox (x = 0, 10, 20 and 30) amorphous alloys.

Tb65Ni35−xCox Tg (K) Tx (K) Tl (K) Trg γ

x = 0 548 579 1137 0.482 0.344
x = 10 565 582 1022 0.553 0.367
x = 20 566 588 982 0.576 0.380
x = 30 567 581 987 0.574 0.374

Figure 3a shows the variation of magnetization with temperature under 0.03 T for the
Tb65Ni15Co20 glassy ribbon after two different cooling treatments from room temperature
to 10 K, i.e., zero-field-cooling (ZFC) and field-cooling (FC). Obviously, as the temperature
decreased, the ZFC and FC M-T curves were almost coincident at first, and until a certain
temperature (~64 K), the two curves begin to deviate. The λ-shaped M-T curves usu-
ally occur in the spin-glass systems and other spin-glass-like metallic glass [26,28–30,33],
indicating the typical spin-glass-like behavior of the Tb65Ni15Co20 glassy alloy. The Tc
and spin freezing temperature (Tf) were obtained to be ~79 K and ~64 K by derivating
the M-T curves of the glassy sample. The increased Tc of the Tb65Ni15Co20 glassy ribbon
than the Tb65Ni35 amorphous ribbon (Tc = 64 K) may be closely related to the enhanced
3d-3d interaction between TM atoms because the magnetic moment of Co is larger than
that of Ni. Similar to some RE (such as Nd, Tb and Dy)-based metallic glasses [26–28,30],
the spin-glass-like behavior resulted in large coercivity (Hc) and magnetic hysteresis at
low temperatures below Tf. Hence, the hysteresis loops of the Tb65Ni15Co20 AA at 10, 70
and 160 K were measured as illustrated in Figure 3b. The amorphous sample shows hard
magnetic with a Hc of 0.624 T at 10 K (well lower than Tf), soft magnetic at 70 K (between
Tf and Tc) and paramagnetic at 160 K (well above Tc).
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Figure 3. (a) FC and ZFC M-T curves of the Tb65Ni15Co20 amorphous ribbon under a magnetic
field of 0.03 T; (b) the hysteresis loops of the amorphous ribbon measured at 10, 70 and 160 K. (The
magnetization can be transformed to be SI unit according to 1 Am2/kg ≈ 120 A/m).

The large coercivity even inhibited the magnetization of the alloy at low temperature
and, thus, brought about the abnormal magnetization phenomena. Figure 4 shows the
M-H curves of the Tb65Ni15Co20 glassy alloy at various temperatures from 0 to 5 T. At
temperatures above Tf, the magnetization of the ribbon increased with the decrease in
the temperature. However, the magnetization showed a positive correlation with the
temperature under an extreme low magnetic field, when the temperature was below Tf,
especially at 10 K, which also implies the spin-glass-like behavior of the Tb65Ni15Co20
glassy sample.
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It is known that the abnormal magnetization behavior induced by the inhibition of the
coercivity will affect the magnetocaloric properties of the AAs [26,30,34,35]. As such, we
obtained the −∆Sm of the Tb65Ni15Co20 amorphous ribbon under different magnetic fields
and temperatures according to Maxwell’s equation. Figure 5a displays the relationship
between −∆Sm and temperature (−∆Sm-T curves) under 1 T, 1.5 T, 2 T, 3 T, 4 T and 5 T
for the Tb65Ni15Co20 glassy ribbon. Similar with the situation in the spin-glass-like AAs,
the −∆Sm of the sample even decreases to a negative value at the temperatures below
30 K, which implies the irreversible magnetocaloric effect of the Tb65Ni15Co20 glassy alloy.
As the temperature rose, the −∆Sm first increased and then decreased to near zero and
reached a maximum−∆Sm at the vicinity of Tc. The value of−∆Sm

peak for the Tb65Ni15Co20
amorphous ribbon was 2.70 J kg−1 K−1 under 1 T, 3.79 J kg−1 K−1 under 1.5 T, 4.75 J kg−1

K−1 under 2 T, 6.48 J kg−1 K−1 under 3 T, 8.05 J kg−1 K−1 under 4 T and 9.47 J kg−1 K−1

under 5 T. On the other hand, according to the−∆Sm
peak under different magnetic fields (H),

the ln(−∆Sm
peak) vs. ln(H) plots of the Tb65Ni15Co20 amorphous ribbon can be constructed,

which is proposed by V. Franco [36]. The slope (defined as n) of its linear fitting curve near
Tc, as displayed in the inset of Figure 5a, was 0.776 and agreed well with the experimental
value in some AAs experiencing SOMPT.

Compared with the binary Tb65Ni35 AA [30], the MCE of the TbNi(Co) glassy alloy
was improved obviously by replacing Ni atoms with Co atoms. Figure 5b illustrates the
−∆Sm-T curves under 1.5 T and 5 T for the Tb65Ni35 and Tb65Ni15Co20 amorphous ribbons.
The addition of 20 at.% Co atoms not only increased the −∆Sm

peak temperature of the
Tb65Ni35 AA, but also made the −∆Sm

peak under 1.5 T and 5 T of the Tb65Ni35 glassy alloy
enlarge by 15.9% and 8.2%, respectively. The enlarged−∆Sm

peak induced by the substitution
of Ni atoms with Co atoms was likely due to the additional 3d-3d interaction between Ni
and Co atoms [37].
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Figure 5. (a) The −∆Sm-T curves of the Tb65Ni15Co20 amorphous ribbon under different magnetic
fields, the inset is the linear fitting of the ln(−∆Sm

peak) vs. ln(H) plots; (b) the −∆Sm-T curves of the
Tb65Ni35 and Tb65Ni15Co20 amorphous ribbons under 1.5 T and 5 T.

The adiabatic temperature change as a function of temperature (∆Tad-T curves) for the
Tb65Ni15Co20 amorphous ribbon under various magnetic fields were estimated from its
−∆Sm-T and Cp(T) curve according to:

∆Tad(T, 0→ H) = − T
Cp(T)

∆Sm(T, 0 → H)

Figure 6 illustrates the ∆Tad-T curves under 1 T to 5 T of the Tb65Ni15Co20 amorphous
ribbon, and the inset shows its Cp(T) curve. The maximum ∆Tad of the sample is approxi-
mately 1.14 K under 1 T, 2.12 K under 2 T, 2.94 K under 3 T, 3.73 K under 4 T, and 4.47 K
under 5 T, all of which are comparable to some crystal magnetic refrigeration materials with
a giant MCE [10,38]. Furthermore, the large −∆Sm

peak and ∆Tad (9.47 J kg−1 K−1 and 4.47 K
under 5 T) of the Tb65Ni15Co20 amorphous ribbon are higher than those of most Gd-based
MCE AAs [12,24,25,39–41], and amorphous alloys possess better mechanical properties
and corrosion resistance than intermetallic compounds [42], both of which jointly indicate
the application perspective of the amorphous alloy as the magnetic refrigerants in magnetic
refrigeration near the liquefaction temperature of nitrogen.
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4. Conclusions

In summary, we prepared the Tb65Ni35−xCox (x = 0, 10, 20, 30) amorphous ribbons
by replacing Ni atoms with Co atoms, and the GFA of the ternary alloys was studied. The
results show that the addition of Co atoms obviously improves the GFA of the Tb65Ni35
AA, and the Trg as well as γ reach to the maximum value when x = 20, which indicates the
best glass former is Tb65Ni15Co20. The magnetic properties and MCE of the Tb65Ni15Co20
glassy ribbon were further investigated. The λ-shaped M-T curves as well as the anomalous
M-H curves at low field and low temperature indicate the spin-glass-like behavior of the
Tb65Ni15Co20 AA, with a Tf of ~64 K and a Tc of ~79 K. The large coercivity (~0.624 T at
10 K) of the AA results in the irreversible −∆Sm at the temperatures well below Tf. The
−∆Sm

peak and ∆Tad under 5 T of the Tb65Ni15Co20 amorphous ribbon reach to 9.47 J K−1

kg−1 and 4.47 K, both of which were larger than that of most Gd-based AAs, indicating
a promising perspective in the application of magnetic refrigeration. Compared with
the Tb65Ni35 glassy alloy, the increased Tc and enlarged −∆Sm

peak of the Tb65Ni15Co20
amorphous ribbon may be closely related to the extra 3d-3d interaction between Ni and Co
atoms due to the addition of Co atoms with larger magnetic moment.
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