SHORT COMMUNICATIONS

Glass Transition Temperature of Glassy Polymers Plasticized by CO₂ Gas

Hisao HACHISUKA, Takanori SATO, Tohru IMAI, Yoshiharu TSUJITA,* Akira TAKIZAWA, and Takatoshi KINOSHITA

Department of Materials Science and Engineering, Polymeric Materials Course, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466, Japan

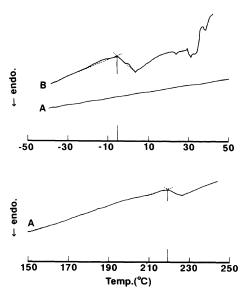
(Received July 10, 1989)

KEY WORDS Plasticization / CO₂ / Glassy Polymer / Glass Transition Temperature /

It is well-known that sorption of vapors and liquids in polymers can cause significant plasticization resulting in substantial decrease in the glass transition temperature $(T_g)^{1-4}$ Such effect is slight in the sorption of gases in polymers since the solubility level is quite low. However condensable gases like CO₂ with high critical temperature are, in general, considerably soluble, particularly in glassy polymers. Correspondingly, it has been reported that glassy polymers are plasticized by sorbed CO₂ at high pressure. Physical properties such as gas sorption and permeation are markedly influenced by the plasticization of glassy polymer by sorbed CO₂.5-12 Investigations on the plasticization of glassy polymer at high CO₂ pressure have been carried out.¹³⁻¹⁷ It is of interest as to how much T_g may be reduced by sorbed CO₂. However, it is difficult to determine T_g of glassy polymers at CO_2 high pressure and only a few studies have been reported by Wonders et al. They showed that $T_{\rm g}$ of polycarbonate sorbed at 6.8 atm was 8— 9°C lower than that in the absence of CO₂ using a special differential thermal analyzer. 14 Wang et al. have also reported that the re-

Here we report on the variation of $T_{\rm g}$ of various engineering plastics having relative high $T_{\rm g}$ by CO₂ sorbed under 60 atm at 25°C and a skillful method to determine $T_{\rm g}$ of glassy polymers using DSC in the range up to 60 atm.

The determination of $T_{\rm g}$ of various glassy polymers using DSC (SSC-560, Seiko Electronics Co., Ltd.) was carried out as follows. A glassy polymer film and dry ice (CO₂) were placed in a pressure-sealable aluminium pan which was sealed completely by an aluminium lid. The CO₂ pressure in the pan was controlled by the amount of dry ice. To evaluate the CO₂ pressure in the pan, the van der Waals equation, which can express satisfactory real


duction of $T_{\rm g}$ of polystyrene in the presence of ${\rm CO_2}$ was estimated by the change in mechanical relaxation behavior. Chiou *et al.* have furthermore reported in detail that the variation of $T_{\rm g}$ of various glassy polymers caused by sorbed ${\rm CO_2}$ at the pressure range up to 25 atm was determined using a differential scanning calorimeter (DSC). However there are few investigations on the variation of $T_{\rm g}$ of glassy polymers having relatively high $T_{\rm g}$ at higher ${\rm CO_2}$ pressure.

^{*} To whom all correspondence should be addressed.

gas state, was applied.

$$p = \frac{nRT}{V - nh} - \frac{an^2}{V^2}$$

In this study, V is the volume in the pan subtracting volume of polymer, n is the moles of dry ice (CO_2) in the pan, T is the temperature, a and b are the van der Waals constant $(a=3.61 \text{ atm } 1^2 \text{ mol}^{-2} \text{ and } b=0.0431 \text{ mol}^{-1})$ for CO₂, and R is the gas constant. The pressure of ca. 60 atm is in the gas-liquid equilibrium state at 25°C. The film was exposed to CO₂ at various pressures in the sealed pan for 24 h to attain sorption equilibrium. Then the sealed pan was quenched to -60° C to maintain the equilibrium sorption amount of CO₂ in polymer at various CO2 pressures. After that, DSC measurement was performed rapidly at a heating rate of 15°C min⁻¹ from -50° C. In this study, we examined various glassy polymers which have relatively high solubility for CO₂; poly(2,6-dimethyl phenylene oxide) [PPO] (GE Plastics Japan), two imidized polyamic acids [PAA-0 and PAA-41, the number representing imide content]

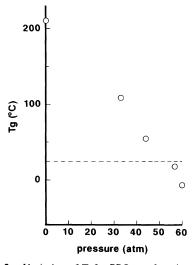


Figure 1. DSC thermograms for PPO at atmospheric pressure (A) and PPO sorbed under *ca*. 60 atm of CO₂ (B).

(Nissan Chemical Industry Co., Ltd.), and polycarbonate [PC] (Idemitsu R & D Lab.).

Figure 1 shows the DSC thermograms of PPO at atmospheric pressure (A) and PPO sorbed under ca. 60 atm of CO₂ prepared by the procedure mentioned above (B). $T_{\rm g}$ of PPO was reduced from 219°C to ca. -7°C by exposure to CO₂ of 60 atm. Scattered fluctuation of DSC thermogram above $T_{\rm g}$ may be caused by desorption of CO₂ from PPO. It was found that reduction of $T_{\rm g}$ was caused by plasticization by sorbed CO₂. $\Delta C_{\rm p}$, the difference of heat capacity between glassy and rubbery states, for PPO at 60 atm of CO₂ and atmospheric pressure was 0.50 and $0.39 \, {\rm Jg}^{-1} \cdot {\rm deg}^{-1}$, respectively and reasonable values.

Next we examined the variation of $T_{\rm g}$ of PPO at various pressures of CO₂. Figure 2 shows $T_{\rm g}$ of PPO as a function of CO₂ exposure pressure. $T_{\rm g}$ of PPO was reduced linearly with increase in exposure pressure. This suggests that the plasticization of PPO occurs markedly by sorbed CO₂ and the miscibility between PPO and CO₂ is good. As the results, the physical properties of PPO vary at high CO₂ pressure.

Figure 2. Variation of T_g for PPO as a function of CO_2 exposure pressure.

Sample	$T_{ m go}/^{\circ}{ m C}$	Press/atm	$T_{g_1}/^{\circ}\mathbf{C}$	References
PPO	219	33	109	This work
		44	55	This work
		57	19	This work
		60	-7	This work
PC	148	20	97	16
		60	55	This work
PAA-0	156	60	-8	This work
PAA-41	227	60	0	This work
PVC	75	20	57	16
PS	100	20	78	16
PET	74	20	52	16

Table I. Variation in T_g of glassy polymers with sorbed by high CO_2 pressure

Table I shows $T_{\rm g}$ at both 60 atm of ${\rm CO_2}$ and atmospheric pressure for various engineering plastics including some reference values. $T_{\rm g}$ was reduced markedly by plasticization caused by sorbed ${\rm CO_2}$ under 60 atm. It was found that the sorbed ${\rm CO_2}$ molecules interestingly played the role of a plasticizer. The degree of reduction of $T_{\rm g}$ may be attributed to the difference of solubility of ${\rm CO_2}$ in each glassy polymer.

The DSC technique under high CO_2 pressure described here provides an easy method to estimate the reduction of $T_{\rm g}$ of glassy polymer caused by sorbed CO_2 at various pressures. CO_2 at high pressure can cause significant reduction of $T_{\rm g}$ of glassy polymers which have high CO_2 solubility. This behavior may be quite important in certain applications such as improvement of permeability of glassy polymer films. Some interesting facts in relation to CO_2 plasticization will be reported in the near future.

REFERENCES

 G. A. Bernier and R. P. Kambour, Macromolecules, 5, 393 (1968).

- R. P. Kambour, E. E. Romagosa, and C. L. Gruner, *Macromolecules*, 5, 335 (1972).
- 3. R. P. Kambour, C. L. Gruner, and E. E. Romagosa, *Macromolecules*, 7, 248 (1974).
- R. P. Kambour and C. L. Gruner, J. Polym. Sci., Polym. Phys. Ed., 16, 703 (1978).
- Y. Kamiya, K. Mizoguchi, Y. Naito, and T. Hirose, J. Polym. Sci., Polym. Phys. Ed., 24, 535 (1986).
- Y. Kamiya, K. Mizoguchi, Y. Naito, and T. Hirose, J. Polym. Sci., Polym. Phys. Ed., 24, 1525 (1986).
- K. Mizoguchi, T. Hirose, Y. Naito, and Y. Kamiya, *Polymer*, 28, 1298 (1987).
- Y. Kamiya, T. Hirose, Y. Naito, and K. Mizoguchi, J. Polym. Sci., Polym. Phys. Ed., 26, 159 (1988).
- J. Polym. Sci., Polym. Phys. Ed., 20, 139 (1988).
 J. S. Chiou, Y. Maeda, and D. R. Paul, J. Appl. Polym. Sci., 30, 4019 (1985).
- J. S. Chiou and D. R. Paul, J. Appl. Polym. Sci., 32, 2897 (1986).
- S. Zhou and S. A. Stern, J. Polym. Sci., Polym. Phys. Ed., 27, 205 (1989).
- 12. H. Hachisuka, Y. Tsujita, A. Takizawa, and T. Kinoshita, *Polym. J.*, 21, 1019 (1989).
- R. A. Assink, J. Polym. Sci., Polym. Phys. Ed., 12, 2281 (1974).
- 14. A. G. Wonders and D. R. Paul, *J. Membr. Sci.*, **5**, 63 (1979).
- W. V. Wang, E. J. Kramer, and W. H. Sachse, J. Polym. Sci., Polym. Phys. Ed., 20, 1371 (1982).
- J. S. Chiou, J. W. Barlow, and D. R. Paul, J. Appl. Polym. Sci., 30, 2633 (1985).
- Y. Kamiya, K. Mizoguchi, and Y. Naito, *Polym. Prepr. Jpn.*, 37, 2187 (1988).

^a T_{g_0} , at atomospheric pressure; T_{g_1} , at CO₂ pressure.