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Abstract

We discuss the glassy dynamics recently found in the meta-equilibrium quasi-stationary states
(QSS) of the HMF model. The relevance of the initial conditions and the connection with Tsallis
nonextensive thermostatistics is also addressed.
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1. Introduction

In this paper we present a brief review of the glassy and anomalous behavior
observed in the dynamics of the Hamiltonian mean ;eld (HMF) model [1,2]: a simple
XY model of fully coupled inertial spins with ferromagnetic long-range interactions
[3–8]. We show, in particular, a more detailed description of the microscopical analo-
gies between the quasi-stationary states (QSS) regime found in the HMF model and
the spin glass phase scenario of the Sherrington–Kirkpatrick (SK) in;nite-range model
[9,10]. We also discuss the importance of the initial conditions in order to observe
dynamical frustration [2]. The latter is a crucial feature for the emergence of a glassy
dynamics, since, a priori, the HMF model is not frustrated. Dynamical frustration is
related to the weak-ergodicity breaking phenomenon, typical of glassy systems [11,12]
and to other dynamical anomalies, such as superdiDusion and LEevy walks, negative
speci;c heat, vanishing Lyapunov exponents, non-Gaussian velocity pdf’s, power-law
decaying correlation functions [2,6–8]. This anomalous behavior seems to be linked
to the fractal structure of the region of phase space in which the systems remains
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trapped when the dynamics starts suKciently far from equilibrium. We will show that
such a dynamics can be quantitatively characterized by the introduction of a new order
parameter, namely the polarization p [1]. In the end we will also brieMy discuss the
links with Tsallis nonextensive thermostatistics scenario [14–16].

2. Glassy phase and nonextensivity in the HMF model

2.1. The model

The HMF model, here considered in its ferromagnetic version, consists of N planar
classical spins s̃i=(cos �i; sin �i) interacting through an in;nite-range potential [3]. The
Hamiltonian is

H = K + V =
N∑
i=1

p2i
2
+

1
2N

N∑
i; j=1

[1− cos(�i − �j)] ; (1)

where −�¡�i ¡� is the angle of the ith spin and pi the conjugate variable represent-
ing the rotational velocity. Since the modulus of each spin is unitary, we can represent
the system of N planar rotating spins as N interacting particles moving on the unit
circle. The usual order parameter of the model is the magnetization M :

M =
1
N

∣∣∣∣∣
N∑
i=1

s̃i

∣∣∣∣∣ : (2)

The equilibrium solution in the canonical ensemble predicts a second-order phase tran-
sition from a low-energy condensed (ferromagnetic) phase with magnetization M �= 0,
to a high-energy one (paramagnetic), where the spins are homogeneously oriented on
the unit circle and M =0. The caloric curve, i.e., the dependence of the energy density
U = E=N on the temperature T , is given by U = T=2 + 1

2 (1 −M 2) [3,4]. The critical
point is at energy density Uc = 3

4 , corresponding to a critical temperature Tc =
1
2 [3].

The dynamics of HMF shows several anomalies before complete equilibration. More
precisely, if we adopt the so-called M1 initial conditions, i.e., �i =0 for all i (M (0)=
1) and velocities uniformly distributed (water bag), the results of the simulations,
in a special region of energy values ( 12¡U ¡Uc), show a disagreement with the
canonical prediction for a transient regime whose length depends on the system size
N . In such a regime, the system remains trapped in metastable states (QSS) at a
temperature lower than the canonical equilibrium one, until it slowly relaxes towards
Boltzmann–Gibbs (BG) equilibrium, showing strong memory eDects. This transient
regime becomes stable if one takes ;rst the in;nite size limit and then the in;nite time
limit [6].

2.2. Glassy dynamics

The observation of these long relaxation times and in particular of aging [2,8]
for the QSS was the ;rst indication towards a possible interpretation of this regime
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in terms of glassy dynamics. The paradigmatic example of this behavior are spin
glasses [12,13]. In the materials that originally were called ‘spin glasses’ the randomly
distributed magnetic impurities determine a random distribution (‘quenched disorder’)
of ferromagnetic and anti-ferromagnetic interactions among the magnetic spins, thus
generating frustration in the lattice. In these systems the impossibility to minimize
simultaneously the interaction energies of all the couple of spins leads to a frus-
trated situation, which determines a very complex energetic landscape in phase space.
The latter appears as consisting of large valleys separated by high activation energies.
Each valley contains many local minima in which the system, at low temperature, can
remain trapped for a very long time. This time grows exponentially with the height
of the energy barriers, thus the system shows very slow relaxation, strong memory
eDects and aging. In an ordinary ferromagnetic phase, where there is only one en-
ergy minimum, the application of an external magnetic ;eld gives suddenly rise to a
non-zero magnetization. The latter, for a ;xed temperature, remains constant until the
;eld is active and then vanishes very rapidly. On the contrary, in the spin glass phase
the magnetization shows a strong dependence on the thermal history of the system
(aging). After quenching the spin glass below its critical temperature in presence of
the external ;eld, the system settles in at a particular magnetization value (�eld cooled
magnetization) that does not change instantaneously when the ;eld is switched oD,
but relaxes to equilibrium very slowly. This relaxation depends on the waiting time
spent between the quenching and the elimination of the external ;eld. Such a behavior
can be explained within the so-called weak-ergodicity breaking framework [11,12].
A very similar situation seems to happen in the QSS regime of the HMF model [1,2].
Within the mean-;eld framework of the SK model [9,10], the ;rst solvable model of
a spin glass system with Gaussian distribution of interactions, it was possible to ob-
serve three diDerent phases, namely, paramagnetic (PA), ferromagnetic (FE) and spin
glass (SG) phase, depending on the temperature and the parameters of the Gaussian
distribution. Each phase is characterized by a diDerent microscopic behavior and a dif-
ferent kind of orientation order. Although today some features of the SK model are
considered rather obsolete, its microscopic interpretation of the SG phase can be still
considered as representative of a generic glassy-like phase. Thus, in order to get an
intuitive picture of the diDerences between the three phases, let us consider for example
a two-dimensional lattice of planar spins, see ;rst column of Fig. 1. This schematic
picture describes also the HMF dynamics if one imagines to locate the spins in a
square lattice. Now let us take some snapshots of the spin con;guration in each of
the three phases, see Fig. 2. In the FE phase (T ¡Tc) all the spins results aligned
and frozen in their equilibrium position, so it is easy to recognize this phase even by
means of snapshots taken for only one particular instant of time. But in this way it
would be impossible to distinguish between the PA and the SG phase. In fact in both
these phases the instantaneous mutual orientations of the spins are random, in the PA
phase (T ¿Tc) due to the high temperature and in the SG phase (T ¡Tc) due to the
quenched disorder of the interactions. So we necessarily need to consider a temporal
sequence of snapshots in order to discriminate the SG from the PA phase. In the SG
phase all the snapshots will be identical with each other, since each spin is frozen
and retains the same orientation over very long periods of time. On the other hand, in
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Fig. 1. The ;gure shows a schematic representation of the three phases of a spin glass system: ferromagnetic
phase, paramagnetic phase and spin glass phase. In the ;rst column spins are represented in a two-dimensional
lattice. In the second column, in analogy with the HMF model, spins are represented as particles rotating on
the unit circle. In the third column we draw the corresponding schematic single-particle potential landscape
of the three phases.

the PA phase the orientation of the same spin at successive instants of time changes
randomly. It appears clearly that the magnetization order parameter, calculated as in
Eq. (2) at one instant of time, vanishes in the SG phase just like in the PA one.
Therefore, in order to discriminate between spin glass disorder and paramagnetism,
one needs an additional order parameter. The latter should take into account the tem-
poral evolution of each spin, in order to measure its degree of freezing. In eDect a
parameter of this kind, called ‘EA order parameter’, was originally proposed in Refs.
[9,10], although later it turned out to be inadequate for the mean-;eld theoretical de-
scription of the SG phase [12]. Nevertheless, inspired by the physical meaning of this
parameter, we have proposed a new order parameter in the context of the HMF model,
the polarization p to characterize in a quantitative way the glassy dynamics of the
QSS regime [1].
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Fig. 2. In this ;gure we show a temporal sequence of snapshots for each of the three phases of a spin glass.
Only comparing the diDerent snapshots in the sequences it is possible to distinguish the paramagnetic phase
(where the snapshots change in time), from the spin glass one (where all the snapshots are identical). In
the last column we report the elementary polarizations resulting for each phase. By averaging their modulus
over all the spins of the lattice we obtain the order parameter p, see text, which allows to discriminate
between the three phases.

2.3. The polarization

We de;ne the elementary polarization as the temporal average, integrated over an
opportune time interval �, of the successive positions of each elementary spin vector:

〈̃si〉= 1
�

∫ t0+�

t0
s̃i(t) dt; i = 1; : : : ; N ; (3)

being t0 the initial transient time. Then we further average the modulus of the
elementary polarization over the N spin con;guration, to ;nally obtain the average
polarization p:

p=
1
N

N∑
i=1

|〈̃si〉| : (4)

It is easy to see (last column of Fig. 2) that:

(1) in a pure ferromagnetic (condensed) phase each elementary polarization vector
coincides with the correspondent spin vector, both being frozen and parallel, then
the average polarization p keeps a non zero value equal to the modulus of the
average magnetization per spin M ;

(2) in a paramagnetic (homogeneous) phase, where the orientation of each spin vector
at every time changes in a completely aleatory way, this continuous motion yields
a vanishing value for both M and the average polarization;
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Fig. 3. In the upper panel of the ;gure we plot the temporal evolution of temperature for the HMF model
for U = 0:69; N = 1000 and M1 initial conditions. In the lower panel we show the value of polarization
versus the integration time � (in a linear scale), after a transient time t0 =1000 time units and for a window
of 9000 time units. One can see that for � greater than 2000—i.e., the standard interval we use for our
simulations—the polarization does not change signi;catively up to the end of the QSS temperature plateau.
The values of polarization were averaged over 20 diDerent realizations—the error bars refers to such an
average.

(3) in a spin glass phase, where the spatial disorder is random but the dynamics is
quenched, while M vanishes as in the PA phase, p gets a nonzero value as in
the FE one.

From the numerical simulations, it results that the QSS temperature lies on the
extension of the high-temperature line of the caloric curve below Tc [2,6]. This implies
that in the QSS regime M vanishes with the size N of the system (more precisely as
N−1=6), so we have M � 0 below the critical temperature, just as in the SG phase of
the SK model [9,10]. Thus, the next natural step is to check if the polarization order
parameter would remain diDerent from zero in the QSS regime for a growing size of
the system. Preliminarly we consider the calculation of p versus the integration time
interval � at U = 0:69 and N = 1000, after a transient time t0 = 1000. As one can see
in Fig. 3, lower panel, the value of the polarization does not change signi;catively
increasing the integration time interval � beyond � = 2000, up to the end of the QSS
temperature plateau, see upper panel. The same behavior is obtained for greater values
of N . In the following, we adopt the time interval � = 2000 for the calculation of p.
Starting the numerical simulations from the usual M1 initial conditions, we have found
(see the upper part of Fig. 4(a)) that, in the QSS regime, while M goes to zero with
the expected scaling, the polarization p does not vanish and remains constant inside
the error: p ∼ 0:24. This ;nite value of p which characterizes quantitatively a frozen
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Fig. 4. The ;gure shows the behavior of p and M with the size of the system. On the left (a) we plot the
scaling in the QSS regime at U = 0:69 for the two diDerent initial conditions considered in the paper, M1
and M0. While the magnetization tends to zero going towards the in;nite size limit, the polarization remains
constant. The polarization p is signi;catively diDerent from zero only for M1 initial conditions, see text for
further details. On the right (b), the behavior of p is plotted only for M1 initial conditions at the overcritical
energy U = 5, i.e., in the full paramagnetic (homogeneous) phase, where the system reaches immediately
the BG equilibrium. In this case the polarization is very small and almost equal to the case U = 0:69 with
M0 initial conditions. Moreover, in this case, as shown in the inset, at variance with the behavior plotted
in Fig. 3 for the QSS regime, the polarization vanishes, as �−1=4 for N = 1000, increasing the integration
time interval �.

dynamics, is due to a ‘dynamical frustration’ phenomenon [1]: in fact the QSS are
characterized by the presence of many clusters of particles appearing and disappearing
on the unit circle, see the lower picture in the second column of Fig. 1. Each of them
compete with the others trying to capture as many particles as possible in order to
relax to the equilibrium con;guration with a magnetization M ∼ 0:3. These results
are also in perfect agreement with the observed dynamical correlations in the �-space
[2,6]: as required by the weak-ergodicity breaking hypothesis, during the QSS regime
the system lives in a smooth fractal part of the a priori accessible phase space [6], and
for N going to in;nity it never escapes from that region. So, in the thermodynamic
limit, the QSS regime can be considered as a new glassy phase of the HMF model.
As expected, when the dynamical frustration disappears, i.e., when the system (for N
;nite) has reached the equilibrium conditions of the condensed phase, we loose any
trace of glassy-like dynamics and one obtains values of M and p which are equal
everywhere but not zero [1]. Finally, in the full homogeneous phase both M and p
vanish, because the spins can rotate freely [1].

2.4. The role of initial conditions

It is important to stress the role of the M1 initial condition in order to have
weak-ergodicity breaking and glassy behavior. In fact, if we start from initial
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conditions with both angles and velocities uniformly distributed (namely M0 initial
conditions, since M (t = 0) = 0), the QSS regime shows a very diDerent scenario: in
fact in this case neither power-law correlation functions nor dynamical structures in
the �-space are present [2]. Such a scenario is consistent with the diDerent value of
the polarization calculated in such QSS regime reached from M0 initial conditions,
see lower part of Fig. 4(a). One can see that in this case the values of p vs. N is
constant to a value much smaller than before, i.e., p ∼ 6×10−2. This is also the order
of magnitude of the polarization at equilibrium in the full homogeneous phase (for
M1 initial conditions), see Fig. 4(b). Please note also that here, for ;xed N (1000),
the value of the polarization vanishes with the integration time interval � as �−1=4,
see the inset. The intuitive explanation of such a diDerent behavior is quite simple.
Starting from M0 initial conditions, although we are far from Boltzmann–Gibbs (BG)
equilibrium, we do not have the same kind of kinetic explosion, as for M1 initial
conditions, which creates the long-lasting dynamical correlations. In fact, in this case
the system is directly put on the QSS plateau at a temperature T=0:38 where M (0)=0
and thus also the force acting on each spin, proportional to M [6], vanishes since the
beginning. For M0 initial conditions we do not have any kind of fast quenching from
an high temperature phase, at variance with the M1 case, and therefore we do not
;nd any glassy-like behavior, dynamical frustration or weak-ergodicity breaking. On
the other hand, several other dynamical anomalies observed in connection with the M1
case (fractal-like structures in the �-space, power-law velocity pdf’s and correlation
functions, LEevy walks and superdiDusion, aging) have not been found for the M0 one
[2]. This suggests that a connection with Tsallis nonextensive thermodynamics [6,2],
exists probably only for the QSS regime obtained starting the system with M1 and
not with M0 initial conditions. The metastable states in this second case (M0) have a
diDerent microscopic nature and can be probably better interpreted as Vlasov stationary
states [17].

2.5. Links to nonextensive thermostatistics

In Ref. [6] we had already found a link of the QSS regime with Tsallis nonexten-
sive thermostatistics, by reproducing the microcanonical non-Gaussian velocity pdf’s
with a q-exponential curve. However the value of q obtained in that case is rather
large and not fully understood. A very interesting progress in that direction has been
presented, considering the more appropriate canonical ensemble, by Baldovin [18]. On
the other hand, we have recently found that also the power-law decay of correla-
tion functions, from the QSS regime to equilibrium, can be very well explained by
q-exponential curves [2,19]. More interesting is the fact that in this case, we obtain
q = 1:65 ± 0:05 for the entropic index. In fact this is the value expected from the
relationship, derived in Ref. [20], between q and the anomalous diDusion exponent �,
i.e., q = (3� − 2)=�. In our case we had previously found a value � = 1:4 ± 0:2 for
superdiDusion in the QSS regime [5], thus in this respect the nonextensive formal-
ism seems to apply in a consistent way. A more detailed study in this direction is
in progress.
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3. Conclusions

In this paper we have shown that the metastable quasi-stationary states of the HMF
model, obtained from M1 initial conditions, can be interpreted as a glassy phase of the
system. This phase can be characterized by a new order parameter, the polarization p,
which gives a quantitative description of the frozen dynamics. This fact establishes a
very interesting and promising relationship between nonextensive systems and glassy
ones, which will hopefully lead to new exciting discoveries in the near future.
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