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Glassy Dynamics of Driven Elastic Manifolds 

Valerii M. Vinokur 
hfaterial Science Division, Argonne National Laboratory, Argonne, IL 60439 

(January 7, 1997) 

We study the low-temperature dynamics of an elastic manifold driven through a random medium. 
For driving forces well below the zero-temperature depinning force, the manifold advances via ther- 
mally activated hops over the energy barriers separating favorable metastable states. We develop 
a scaling theory of the thermally activated dynamics (creep) and find a nonlinear glassy response 
for the driven manifold, w - exp(-const x FP). We consider an exactly solvable one-dimensional 
model for random driven dynamics which exhibits a creeplike velocity-force characteristic. We dis- 
cuss a microscopic mechanism for the creep motion and show that the distribution of waiting times 
for the hopping processes scales as a power-law. This power-law distribution naturally yields an 
exponential response for the creep of the manifold. 
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The dynamics of elastic manifolds in -random media has become a central topic of modern statistical mechanics 

during the last decade and is in a state of rapid current development. The reasons for this interest are twofold. 
On one hand, elastic manifolds in a random environment are one of the simplest examples of a glassy system and 

yet exhibit a very rich static and dynamical behavior. Secondly, they represent a generic model for a study of both 

nonlinear collective transport in driven disordered systems, such as charge density waves, polymers, driven interfaces, 
dislocations in solids, and magnetic flux lines in type I1 superconductors, as well as stochastic kinetic processes, such 

as stochastic growth and kinetic roughening (see [1,2] for a review). 
The dynamics of driven elastic manifolds is the result of the interplay between quenched disorder and the interaction 

among the many elastic degrees of freedom that compose the manifold. A key physical quantity describing the 

dynamics is the average velocity v of the driven manifold as a function of the applied force F .  At zero temperature 

there is a depinning transition from a pinned state where v = 0 to a sliding state at a critical driving force F,. A finite 

temperatures washes out the transition and the mean velocity is then finite for all driving forces. For low temperatures 
and driving forces well below the T = 0 depinning threshold, F,, the dynamics of the driven manifold is controlled 

by thermally activated jumps of correlated regions over the pinning energy barriers separating different metastable 

states. In this region the mean velocity is highly nonlinear and has been evaluated via a scaling approach [3,4] with 
the result, 

v N exp[-U(F)/T], 

where U ( F )  is the optimal energy barrier for creep between favorable metastable states. Under the action of the 

external drive, sections of the manifold that are initially pinned move to a more favorable metastable state, determined 

by the condition that the energy gain due to the driving force equals the elastic deformation and pinning energy of 

the medium. For F << Fc large sections of the manifold hop long distances to find the next optimal-energy state. 

This yields a large energy barrier that diverges algebraically with vanishing driving force, 

with p a characteristic exponent. The form given in Eqs. (1),(2) was first proposed for the motion of dislocations in 

crystals [4] and is now widely used to describe the low temperature dynamics of vortex lines in type-I1 superconductors 

Dl. - _  
An important recent development has been the confirmation by numerical studies of an elastic string in d = 2 

of the basic assumption of the scaling approach [4] that the barriers between the metastable states scale with the 

length of the fluctuating string segment in the same way as the fluctuations in the free energy (aside from logarithmic 

corrections) [5]. Despite a substantial analytical [6-81 and numerical [9-141 study of the dynamics of driven disordered 

elastic manifolds, many open questions remain. 

In this paper we describe a scaling approach to the driven manifold dynamics developed first in the context of 

dislocation motion [4], then consider a simple exactly solvable one dimensional model for driven dynamics in random 
environment, which in spite of its simplicity captures an essential feature of the non-linear manifold motion, and in 

conclusion we discuss the nature of the mechanism by which the manifold selects the appropriate optimal segment 
controlling the dynamics. 

I. SCALING APPROACH. 

The Hamiltonian of a D-dimensional elastic manifold driven through a d-dimensional disordered medium is 

31= d x  - - + U ( X , U ) - F . U  , s 1 (3) 

where C denotes an elastic stiffness constant (e.g., the linear tension of the string; for simplicity we consider the 

isotropic medium) and u(x, t )  is the n-dimensional transverse displacement field of the manifold. Eq. (3) describes 

for instance an elastic string ( D  = 1) in two (d = 2, n = 1) and three (d = 3,  n = 2) dimensions, and two- or 
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three-ditnensional vortex lattices ( d  = 2 ,  D = 2 ,  n = 2 and d = 3 ,  D = 3 ,  n = 2, respectively). The disorder 

consists of uncorrelated point defects of density n;. It is described by a random potential U (x,u) of range 5 and 

variance A = v o m ,  with  210 the maximum depth of the potential well of a single pinning center. In the absence 

of driving force the string adjusts to the random landscape and traverses the medium along rough optimal paths 

det,erminec! by balancing the elastic and pinning energies. The geometry of these optimal paths is characterized by 

the roughness of the manifold, defined as w ( L )  = ([u(x + L) - u(x)] ) , where (...) denotes the average over both 

thermal fluctuations and quenched disorder. At large distances the roughness scales as w M < (L/L,)‘, where C < 1 

is the roughness exponent and L, is the pinning correlation length. We consider the case of weak disorder such that 

L,  >> 5. In this regime domains of linear size L, = 5 (C<D/A)2/‘4-D’ are pinned coherently by disorder when F = 0. 
The pinning length L, is the smallest scale on which barriers between metastable states exist at F = 0. The minimum 

average energy barrier between neighboring metastable positions of a pinned segment L, is U, = C(2/L$DD-2) .  Optimal 

metastable configurations of sizes L > L, are then separated by barriers U ( L )  N U,(L/L,)2C+D-2. At T = 0 the 

I / ?  

. ,  

string starts to slide when the applied force F can depin a region of linear size L,, yielding a threshold force for sliding 

F, = C € / L ? .  -. 
We now consider the dynamics at a finite but low temperature T << U,, where the elementary pinning scales U, and 

L,  are not renormalized significantly by thermal fluctuations [l]. Under the action of the driving force a domain of 

size L can be displaced to a new more favorable metastable state. For F << F, the dynamics can be described as the 

nucleation of an elementary excitation or nucleus of size L.  The free energy cost for creating such a nucleus is given 

- FL:< (L/L,)c’D. The size Lopt of the optimal excitation is obtained by minimizing 

this free energy cost, with the result Lopt = L,  (Fc/F)1/ (2-c) .  Nuclei with L < Lopt collapse, while nuclei of size 

L > Lopt expand. In other words excitations on scales larger than Lopt slide freely, while pinning barriers on scales 
L < Lopt can be overcome only via thermally activated hops. The length scale Lopt determines the upper bound 

above which thermally activated processes are no longer relevant. The creep rate is determined by the corresponding 

optimal energy barrier, U ( F )  = 3-(Lopt),  with U ( F )  = U, (FJF)’, where p = (2C + D - 2)/(2 - C). For an elastic 
string in two dimensions C = 2/3, D = 1,  and p=1/4. 

2c+D--3 
by WI = uc (L /Lc )  

11. ONE DIMENSIONAL MODEL 

The above qualitative picture of the low temperature creep motion [4,1] is based on dimensional scaling arguments 

and numerical simulations. A rigorous analysis is still lacking and a general analytical derivation for the relevant 

physical models remains an unsolved problem. In the absence of a rigorous analysis of realistic physical situations 

one is seeking for models which are simple enough to  be treated analytically and yet are able to  mimic the large 

diversity of dynamics of real disordered systems. A well known example is the problem of a single particle driven by 
an external force f and subject to a one dimensional random force field with Gaussian short range correlations. The 

term random force means that the correlator of the random potential U ( z )  is ( U ( z )  - U ( Y ) ) ~  - A12 - yI where A 

characterizes the strength of the random potential. This model is known as Sinai’s model and has long been a subject 

of extensive studies [15-15,3,19-211 The remarkable result obtained for this model is that even at finite temperature 

the mobility vanishes below a threshold force f t h  - A/2T. Moreover this system was found to exhibit anomalous 

diffusion, and aging phenomena [20] very much like what is observed in spin glasses 122,231. We investigate a more 
general one-dimensional model with a Gaussian random potential having correlator of the form [24]: 

K ( z  - y) - *((My +log(----- I. - YI ) 
JG U 

(4) 

Tuning the parameter -{ we can cross over from the Sinai’s case (y = I), to glassy creep dynamics at 0 < y < 1 

(see below) and also mimic the transition from the glassy to viscous flow dynamics at y < 0. Note that the latter 

transition mimics the glass transition taking place, for example at the vortex lattice melting [l], where the elasticity 

of the manifold (vortex lattice in this case) breaks down result in the disappearance of the long correlations in the 
effective random potential. The first term which dominates a t  large distance describes long range correlations in 

the random potential and generalizes Sinai’s model. The second term describes the behavior at the critical point 

<G = o. Indeed one has y = 0 and k(q) - l / q  at  the transition and thus K ( z )  - A lnz .  The form (4) is 

an interpolation resulting from the crossover between the critical fixed point and the fixed point describing the glass 
phase. In the uncorrelated phase correlations are short range and one chooses a correlator as & ( q )  = l / d m ,  
i.e I<(.) = Ko(z/<),  so as to reproduce the critical behavior for u << z << (G. An identical scenario was demonstrated 
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using RG for the correlations in the free energy landscape at the glass transition in surface growth models, such as 
the directed polymer in d 2 2 + 1 [26] 

On a mathematical level the present model is the d = 0, R = 1 version of the problem of the dynamics of manifolds 

of internal dimension d ,  in a R dimensional space. Remarkably, the case d = 0 and n + co was recently studied by 

completely different techniques and seems to exhibit similar regimes. 

We consider the Langevin diffusion in the one dimensional quenched random potential U ( z )  in presence of a global 
bias f and thermal white noise q( t ) :  

-- dz(t)  - - V U ( x ( t ) )  + F + q(t) 
dt (5) 

with (q(t)q(t’)) = 2T6(t -t’) and T is the temperature. The probability density P ( z ,  t )  and the current J ( z ,  t )  satisfy: 

with J ( z ,  t )  = -TVP(z,  t )  + ( F  - VU(x))P(z , t ) .  
To derive the analytic expression for the velocity v we generalize to continuum models the method introduced by 

Derrida [18] for discrete hopping problems. We consider an infinite periodic environment, i.e a periodic random force 

V U ( z ) ,  of period L.  The limit L + 00 is taken at the end. One defines the periodized probability p ( x )  = Ck P ( x + k L )  
which obeys the same equation ( 6 )  as P, and corresponds to diffusion on a periodic ring of size L. Using (6) the 

velocity for the particle on the infinite line can be expressed as: 

+a 

dxxVJ = 1, dzJ(z, t)  
d < z( t )  > 

dt 
L 

= 1 dxJ(t , t)  (7) 

where J ( z , t )  = - T V p ( t , t )  + ( F  - VU(z))p(x , t ) .  At long time J ( z , t )  goes to a constant J and the asymptotic 

velocity V is exactly given by v = J L .  To find J’ for a fixed L and disorder configuration one must solve the stationarity 
equation: 

a+) 
T- ax + (VU(2) - F ) F ( x )  = -J’ 

with the two additional conditions p(0) = p ( L )  and dzp(+) = 1. The stationary solution with zero current J = 0, 

i.e the Gibbs distribution Po(x) = exp(+(-U(x)+ F z ) )  does not, in general, satisfy the periodic boundary conditions. 
Thus v can be found from the solution with non-zero current: 

- s,” dye(u(Y )-u(z)+ (z-Y)F)/T 

1 - e(U(L)-ZI(O)-FL)/T 
P ( z )  = - 

J” and thus v follow from the normalization condition for p. In the limit L + co, imposing the restriction U ( 0 )  = U ( L ) ,  
unimportant for F > 0, (9) simplifies to: 

and one gets the general formula for v: 

valid for an arbitrary potential U(z ) .  (A)= denotes the translational average (A)= = limL+m L-l s,” dx:A(z). The 
average in (11) exists quite generally and is independent of the configuration of the random potential, i.e the velocity 

is self-averaging. The physical interpretation of (11) in terms of Arrhenius waiting time is transparent. The average 
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waiting time 1 / u  is a sum of Boltzman weights associated with the barriers the particle must overcome to move in the 

direction of the driving force. The highest barriers U ( x  + z )  - U ( z )  with z > 0, produce the largest waiting times. 

One can immediately verify that the expression (11) describes correctly the behavior in the limiting cases. At large 

F one has v x F .  On the other hand one expects the linear response at small forces, F + 0, provided the random 

field is uncorrelated at large distances. The latter means that ( e ( ' ( z + Z ) - U ( z ) ) ~ T )  + (e ' /T)(e-U/T)  when z + cc, 
then: 

where D and Do are the diffusion coefficients in the presence and in the absence of disorder, respectively and the 

Einstein relation holds. When D << DO the v-F curve will show strong nonlinearity at intermediate scales where the 

transition between low force and high force regime of motion occurs. 
We now turn to a detailed study of gaussian disorder with correlator I'(z). Upon averaging over disorder (11) 

yields: 

The choice of K ( z )  as in (4) gives rise to several regimes of particle dynamics depending on the range of the correlations 

of the random potential. Our expression immediately reproduces Sinai's case 7 = 1: for y > 1 the integral in (13) 

diverges and the velocity is zero. Sinai's model corresponds to y = 1 and appears as a marginal case where the integral . 

(13) diverges for F < Fth = A / ( 2 T & )  and v = 0 while v = F - Fth exactly for F > Fth, in agreement with previous 
results [15-17,19,20]. The system with y = 1 exhibits algebraic distributions of waiting times which gives rise to 

aging phenomena [22]. Therefore Sinai's model mimics essential aspects of the spin-glass behavior. Interestingly, this 

v versus F dependence mimics also the dry friction phenomenon. 

Now we show that the choice 0 < y < 1 gives rise to the creep motion. Defining the dynamical exponent z = 
2 + ( A / 2 T 2 )  and the characteristic force Fc = (A /2T2) ' /Y  T/<G one arrives at: 

Note that F, reduces to the threshold force Fth when y + 1. At y < 1 the sharp threshold disappears but at F << F, 
the v versus F dependence shows strongly nonlinear behavior with an essential singularity at small F .  Using the 

steepest descent method at  F << F, one finds: 

with A - Jy(l  - y)/2ir. The exponential factor holds for any correlator behaving as a power law - ZY at large 

distances. The preexponential factor depends on details of the crossover of the correlator to the logarithmic regime. 

In this creep regime the linear response at F -+ 0 is absent and the characteristic barriers which control the dynamics 

diverge as l /FP .  

111. MICROSCOPIC DESCRIPTION 

We now show that the form given in Eq. (1) for the mean motion arises naturally when the driven manifold 

sequentially nucleates all possible excitations on length scales L < LOpt to overcome all the possible energy barriers 

separating metastable states on scales E < U ( F ) .  For the sake of simplicity we consider an elastic string in 2d .  

We demonstrate that the distribution of waiting times r ( E )  for hops between metastable states separated by energy 

barriers E < U ( F )  scales as a power-law, 

Q ( T )  N 7--1-a, (16) 
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with 0 < 1. This microscopic mechanism of string dynamics can be viewed as an avalanche-like motion. The 
distribution of waiting times given in (IS) is cutoff at the waiting time r [V(F)]  corresponding to the optimal barrier 

U ( F ) .  For hopping times T exceeding .[U(F)] only very rare barriers with E >> U ( F )  can retard the motion (rare 

events) and the distribution function decays much faster than in Eq. (16). The average waiting time that controls 

the mean st-ring velocity is therefore determined by the cutoff .[U(F)]. 
We begin by considering a segment of finite length L < Lopt initially pinned in a metastable configuration. We 

derive an expression for the probability P L ( E )  that this segment encounters energy barriers smaller than E when it 

samples all possible departures from its initial configuration under the action of the external force F .  For any finite 

driving force the set of all configurations that the segment may sample during its activated motion form a connected 

cluster of temporarily pinned states. To describe this cluster, we fix the ends of the segment L and imagine dividing 

it in elementary units of longitudinal size L,. An elementary move consists of the hop of the i-th unit L,  across a 
transverse distance < to a new metastable position by overcoming the elementary pinning energy barrier Vi. Here 

the {Ui}'S are random variables fluctuating around their average value, the minimal average pinning barrier, U,. The 

segment L can be thought of as a singly-connected necklace of n (unit) beads, where the beads corresponds to the 

elementary sections L,. To begin, we consider the simplest class of departures of L from its initial configuration and 

describe the advance of L via the hopping of individual beads over the fluctuating barriers Vi. The barrier associated 

with the motion of the segment L is then the largest of the barriers of the elementary hops L,. To understand this 
we note that the hop of a section L of the string to a nearby metastable state can be thought of as the motion of the 

domain boundary between spin up and spin down regions in an Ising spin system with random couplings { Ji}. Each 

elementary unit L, corresponds to a single Ising spin. The hop of the i-th segment L, over the corresponding energy 

barrier Vi corresponds to a single spin flip. The flip of spin io along the domain boundary will cost an energy of . 

order Jio-l + Jio+l , where Jjo-l and Jio+l are the couplings to the neighboring spins. The flipping of this particular 
spin will facilitate the flipping of the neighboring ones, since now overturning spin io - 1 will only cost an energy 

JiO-2, which may be larger or smaller than Ji,-1 + Jio+l. In either case the process of overturning the entire domain 

boundary will be controlled by the largest energy cost for flipping a single spin. If L is composed of n elementary 

segments L, with energy barriers b'i randomly fluctuating about U,, then the energy barrier for the segment L is 
U = maxUi. It is important to stress here that we are not trying to find the optimal hop for the segment L and the 

associated optimal energy barrier, but we are simply discussing the distribution of all possible hops of the segment 

L from the initial to all available final metastable states. In order to construct all possible configurations of the 

advancing segment, we now imagine redefining the network of elementary hops by choosing a new unit L1 > L, SO 

that the section L is now composed of, say, nl sub-blocks of size L1 and fluctuating energy barriers Uli. The set of all 

possible configurations of the excitation L as it visits all available metastable states forms a new cluster of elementary 

excitations or subclusters L1. Notice that the subclusters of length L1 may in general be multiply connected, b'ut 

the argument given above will still apply upon redefinition of the elementary unit. The global barrier for the motion 

of the new cluster will again be the maximum of the energy barriers of each subcluster. The linear structure of the 

string ensures that the cluster of all possible configurations of L remains singly-connected at  all levels of rescaling. 

It is precisely this linear topology that enables us to carry out this rescaling procedure. Repeated application of this 

procedure will allow us to list all possible configurations of the segment in questions and yield the limiting distribution 

that we seek. Such a distribution, if it exists, must be stable under the max operation and therefore belongs to the 

class of so-called eztreme distributions [27]. To briefly summarize the theory of extreme distributions, we consider a set 

of identically distributed independent random variables Xi, with 1 5 i 5 n - in the present problem these are all the 

energy barriers of the elementary spins and/or block of spins composing the segment L. Let M, = max(X1, ... , x,}. 
If F ( z )  is the probability of the event Xi < I and Pn(z) the probability that M ,  4 z, it can be shown that in the 
limit of large n the probability distribution of the maxima can be approximated by an asymptotic form P(2:), given by 

the solution of the functional equation P,(z -!- a,) = liw+co F"(z  + a,) = P ( z ) ,  where P ( z )  is defined for 

-00 < 2: < 00. The extreme distribution we seek has the form P ( z )  = exp[- exp(-z)] [27]. The functional form of the 
distribution must remain invariant when the elementary unit of the cluster of all possible hops is redefined according 

to the procedure described earlier. Since [P(z)]" = exp[-nexp(-z)], this requires a,  = Inn. It thus follows that for 

the problem of interest here the appropriate variable x is E - In L ,  where we measure E in units of U, and L in units 

of L,. The probability distribution of energy barriers for a given segment L is then ?,(E) = exp[-L exp(-E)]. The 
corresponding distribution density p~ ( E )  = dP,( E ) / d E  is 

p L ( E )  = Le-E exp[-Lexp(-E)]. 

The typical barrier of a segment of length L scales then as E - U,lnL. The global distribution density W ( E )  

of energy barriers for the string is obtained by integrating p L ( E )  over L with the proper weight n~ describing the 
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density of the segments of length L.  At the critical point F = 0, the cluster-sizes distribution is nL - L-”. At finite 

forces F the same distribution will describe the cluster network up to L = Lopt. For the usual percolation clusters 

u = 1 + d/d,, with d the dimensionality of the medium and D < d, < d the fractal dimensionality of the clusters 

network [25]. For anisotropic directed percolation describing the depinning transition the exponent may be different 

and will be discussed elsewhere, but the relation v > 2 holds. By evaluating the integral we find 

The corresponding probability density of finding a waiting time r = r, exp(E/T), with r, a microscopic time scale, is 
given by 

Q(r)  - T(ro/T)l+a, a = (v - l)T/Uc. 

The distribution of energy barriers given in Eq. 18 must be cut off at the energy U ( F )  corresponding to the optimal 

segment Lopt (F)  since the segments of larger scales are, on average, sliding freely and do not participate in the 
activated dynamics. The notion of ”waiting time” makes no sense for such excitations. The average waiting time 

controlling the motion is therefore 

where rmat = r, exp[U(F)/T]. Now, since the motion is controlled by the largest barrier, one arrives at the average . 

velocity given by v 2: uopt / ( r )  2~ exp[-(1 - a)U(F)/T],  recovering the result of the scaling theory [4]. 

We now discuss some observable consequences of the result given in Eq. 19. The vortex lattice in the mixed 
state of high temperature superconductors is probably the best system for the experimental study of different aspects 

of glassy dynamics, since by tuning parameters such as the applied field one can probe different regimes. For a 

driven vortex lattice the avalanche-like low temperature dynamics just described will manifest itself in the spectral 

density of the density-density correlation function, S(k = 0, t )  = (dn, (r, t)dn,(r, 0)), which is accessible by Hall-probe 
measurements. The density-density correlation function can be expressed in terms of the correlation function of the 

displacement field u(r, t )  as S(k, t )  = k2(u(k, t)u(-k, 0)). On large distances displacements are uncorrelated in a 

glassy system and (u(k, t)u(-k, 0)) c( (1/k2)fu(k, t ) .  The corresponding spectral density fu((w) can be expressed in 

terms of the distribution function of energy barriers W ( E ) ,  

Using W ( E )  from (18) we obtain a power law density noise spectrum, 

We see that at low temperatures, T < U,, the exponent Q << 1, and the noise spectrum of vortex density fluctuations 
is nearly the l/f spectrum. 

We now turn to  discuss the high temperature region, where thermal fluctuations renormalize the pinning energy 

barriers. The characteristic temperature Tdp separating the high temperature and low temperature regions is defined 
by the self-consistent equation Tdp N uc(Tdp) [l]. For elastic manifolds with D 2 2, U,(T) grows much faster than 

T [I] for T > T d p ,  and a < 1. The results obtained earlier are therefore still relevant, with suitably renormalized 
parameters . 

The situation is more subtle for the case of an elastic string, corresponding to D = 1. Above the string depinning 

temperature, TLp, the minimal pinning energy of the string becomes of order T, i.e., Uc(T)  N T [4,1]. The definition 

of the depinning temperature used here follows from a scaling theory based on the postulate that the creep barriers 
scale in the same way as the fluctuations in the free energy, i.e., the string statistical mechanics is controlled by a 

unique energy scale [4,5]. Such a scaling theory leaves numerical constants undetermined. To preserve the idea that 

a single energy scale controls the dynamics we define Tjp as the temperature where first a(T) = 1, This definition 

avoids the introduction of a new unphysical energy scale depending on the fractal dimensionality of the cluster of 

the pinned states. For T > Tip the motion of the string on scales L < Lopt is still governed by the waiting times 

distribution function of Eq. 19 with a = 1, Le., f & ( l ( r )  - (I/?). The average waiting time in this high temperature 
regime is then 
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F=r0 ln (~maL. / ro)  - F-”. (23) 

The characteristic energy and length of the segment hopping with this waiting time are E N Tln(7./ro) - 1nF 

and E = L c ( T / r o ) ,  respectively. The typical transverse displacement ii of a length 1 of string is determined by 

Cii’/z N FuL. Defining the string velocity as u = E / ?  and recalling that the activated velocity contains a prefactor - F ensuring that flux flow is recovered for F > F,, we obtain 

w - (F/F,)’-ll, T > T&. (24) 

In the high temperature region, T > T&,, the string velocity vanishes as a power law. This represents a marginal 

glassy dynamics which may be relevant to dislocation dynamics or for vortex creep in the high temperature, low 

magnetic field region of type I1 superconductors. We conjecture that this marginal dynamics corresponds to a new 

glassy state which can be referred to as critical glass. 
In conclusion, we have presented a scaling approach describing thermally activated dynamics (creep) of elastic 

manifolds in quenched random environment. We have investigated a one dimensional exactly solvable model for the 

driven random dynamics and showed that the system exhibits strongly nonlinear creep-like response for the long- 

range correlated random field. We have developed a microscopic model for the glassy dynamics of elastic manifolds 

and found the exponential distribution of energy barriers characterizing the rugged energy landscape for elastic 
manifolds. the low-temperature creep is governed by a power law distribution of waiting times. The dynamics at low 

temperature, T < T d p ,  and long times is dominated by the optimal barrier U ( F ) ,  corresponding to the maximally 

pinned configuration. As a result, the mean velocity of the manifold vanishes exponentially with vanishing driving 

force according to u N exp[-U(F)/T], as obtained earlier by a scaling approach [l]. This form for the macroscopic 

response arises naturally as a result of the cutoff of the algebraic time distribution at the maximal waiting time. We 
also conjecture a qualitatively different marginal glassy response, with u cx [(F/Fc(T)]’-”, for a single elastic string 

and T > Tjp. Finally, we discuss how the power-law distribution of waiting times controls the noise spectrum of the 

vortex density and can therefore be probed experimentally. 
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