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Abstract. Over past decades, a lot of global land-cover products have been released; however, these still lack
a global land-cover map with a fine classification system and spatial resolution simultaneously. In this study, a
novel global 30 m land-cover classification with a fine classification system for the year 2015 (GLC_FCS30-
2015) was produced by combining time series of Landsat imagery and high-quality training data from the
GSPECLib (Global Spatial Temporal Spectra Library) on the Google Earth Engine computing platform. First,
the global training data from the GSPECLib were developed by applying a series of rigorous filters to the
CCI_LC (Climate Change Initiative Global Land Cover) land-cover and MCD43A4 NBAR products (MODIS
Nadir Bidirectional Reflectance Distribution Function-Adjusted Reflectance). Secondly, a local adaptive ran-
dom forest model was built for each 5◦ × 5◦ geographical tile by using the multi-temporal Landsat spectral and
texture features and the corresponding training data, and the GLC_FCS30-2015 land-cover product contain-
ing 30 land-cover types was generated for each tile. Lastly, the GLC_FCS30-2015 was validated using three
different validation systems (containing different land-cover details) using 44 043 validation samples. The val-
idation results indicated that the GLC_FCS30-2015 achieved an overall accuracy of 82.5 % and a kappa co-
efficient of 0.784 for the level-0 validation system (9 basic land-cover types), an overall accuracy of 71.4 %
and kappa coefficient of 0.686 for the UN-LCCS (United Nations Land Cover Classification System) level-
1 system (16 LCCS land-cover types), and an overall accuracy of 68.7 % and kappa coefficient of 0.662 for
the UN-LCCS level-2 system (24 fine land-cover types). The comparisons against other land-cover products
(CCI_LC, MCD12Q1, FROM_GLC, and GlobeLand30) indicated that GLC_FCS30-2015 provides more spatial
details than CCI_LC-2015 and MCD12Q1-2015 and a greater diversity of land-cover types than FROM_GLC-
2015 and GlobeLand30-2010. They also showed that GLC_FCS30-2015 achieved the best overall accuracy of
82.5 % against FROM_GLC-2015 of 59.1 % and GlobeLand30-2010 of 75.9 %. Therefore, it is concluded that
the GLC_FCS30-2015 product is the first global land-cover dataset that provides a fine classification system
(containing 16 global LCCS land-cover types as well as 14 detailed and regional land-cover types) with high
classification accuracy at 30 m. The GLC_FCS30-2015 global land-cover products produced in this paper are
free access at https://doi.org/10.5281/zenodo.3986872 (Liu et al., 2020).
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1 Introduction

Global land-cover information, as used by the scientific com-
munity, governments, and international organizations, is crit-
ical to the understanding of environmental changes, food se-
curity, conservation, and the coordination of actions needed
to mitigate and adapt to global change (Ban et al., 2015; Chen
et al., 2015; Tsendbazar et al., 2015). These data also play an
important role in improving the performance of models of the
ecosystem, hydrology, and atmosphere (Gong et al., 2013).
Accurate and reliable information on global land cover is,
therefore, urgently needed (Ban et al., 2015; Zhang et al.,
2019).

Due to the frequent and large area coverage that it pro-
vides, more and more attention has been attached to using
the remote sensing technology for global land-cover map-
ping. In past decades, several global land-cover products
have been produced at various spatial resolutions ranging
from 1 km to 300 m (Bontemps et al., 2010; Defourny et al.,
2018; Friedl et al., 2010; Loveland et al., 2000; Tateishi et
al., 2014). However, owing to differences in classification
accuracy, thematic detail, classification schemes, and spatial
resolution, the harmonization of these land-cover products is
usually difficult (Ban et al., 2015; Gómez et al., 2016; Giri
et al., 2013; Grekousis et al., 2015), and their quality is also
far from satisfactory for many fine applications (Giri et al.,
2005; Grekousis et al., 2015; Y. Yang et al., 2017). Recently,
thanks to free access to fine-resolution remote sensing im-
agery (Landsat and Sentinel-2), combined with rapidly in-
creasing data storage and computation capabilities, global
land-cover products at fine spatial resolutions (10 and 30 m)
have been successfully developed (Chen et al., 2015; Gong et
al., 2013, 2019). Specifically, Chen et al. (2015) used multi-
temporal Landsat and similar image data along with the in-
tegration of pixel- and object-based methods to produce the
GlobeLand30 land-cover product that has an overall classifi-
cation accuracy of over 80 %. Similarly, Gong et al. (2013,
2019) produced the global 30 and 10 m land-cover prod-
ucts (FROM_GLC30 and FROM_GLC10) using single-date
Landsat imagery and multi-temporal Sentinel-2 imagery, re-
spectively. Unlike FROM_GLC10 and GlobeLand30, which
have only 10 land-cover types, FROM_GLC30 was classified
using 28 detailed land-cover types. However, as the overall
accuracy for the detailed land-cover types was only 52.76 %
and the patch effects were noticeable due to the temporal
differences among the Landsat scenes, FROM_GLC30 fo-
cused on the mapping results for just 10 major land-cover
types (Gong et al., 2013). Although these products permit
the detection of land information at the scale of most human
activity and offer increased flexibility for the environmental
model parameterization needed for global land-cover stud-
ies (Ban et al., 2015), the simple classification system and
large amount of manual work required (manual collection of
training samples and knowledge-based interactive verifica-

tion) limit their greater use in many specific and fine applica-
tions at regional or global scales.

As Giri et al. (2013) and Ban et al. (2015) stated, there
are a number of challenges to overcome in producing a fine-
resolution characterization of global land cover. These in-
clude the unavailability of timely, accurate, and sufficient
training data; the high cost of collecting satellite data with
consistent global coverage; difficulties in preparing image
mosaics; and the need for high-performance computing fa-
cilities.

Firstly, Foody and Arora (2010) stated that the training
data had more impact on the classification results than the
selection of the classifier: the collection of timely, accu-
rate, and sufficient training data is especially important for
global or regional land-cover mapping. Generally, the col-
lection of training data can be divided into two types of
method: interpretation-based methods and the derivation of
training samples from existing land-cover products. Specif-
ically, the interpretation-based methods are widely used in
regional land-cover classification because high confidence in
the training data can be guaranteed (Xie et al., 2018; Zhu
et al., 2016). However, for large-area land-cover mapping,
the interpretation of sufficient and accurate training data usu-
ally involves a huge amount of manual work. For example,
Gong et al. (2013) collected 91 433 training samples using 27
image analysts who were experienced in remote-sensing im-
age interpretation. Similarly, Tateishi et al. (2014) selected
312 753 training points from 2080 prior training polygons
(Tateishi et al., 2011) and used a large amount of reference
data, including Google Earth images from around 2008, ex-
isting regional land-cover maps, and MODIS NDVI pheno-
logical curves from 2008. Despite the total number of train-
ing samples apparently being large in the works of Gong
et al. (2013) and Tateishi et al. (2014), in fact, in terms
of global land-cover mapping, these training samples still
provided only sparse coverage: Zhu et al. (2016) suggested
that the optimal number of training pixels needed to clas-
sify an area about the size of a Landsat scene was about
20 000. Furthermore, the land-cover diversity (the number of
land-cover types in the final results) of training data is also
constrained by the available expert knowledge: for exam-
ple, Chen et al. (2015) produced a global land-cover product
(GlobeLand30) containing only 10 land-cover types; Gong et
al. (2019) developed the first global 10 m land-cover product
(FROM_GLC10), which also contained 10 major land-cover
types.

Compared with the interpretation-based methods, the sec-
ond type of data collection method – deriving training sam-
ples from existing land-cover products – has been demon-
strated to have many significant advantages, including fully
automated collection and refinement of training data, the
production of a large and geographically distributed train-
ing dataset, and the possibility of using the same land-cover
classes as existing land-cover products (Inglada et al., 2017;
Jokar Arsanjani et al., 2016b; Liu et al., 2017; Radoux et
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al., 2014; Wessels et al., 2016; Xian et al., 2009; Zhang and
Roy, 2017; Zhang et al., 2018, 2019). For these reasons, this
type of data collection has recently attracted more attention
in large-area land-cover mapping. For example, Radoux et al.
(2014) used the coarse-resolution land-cover products Global
Land Cover (GLC) 2000 and Corine Land Cover (CLC)
2006 to develop 300 m land-cover results for South Amer-
ica and Eurasia, respectively; Zhang and Roy (2017) used
the MODIS land-cover product (MCD12Q1) to classify time
series of Landsat imagery and then produce a 30 m land-
cover classification of North America, achieving an over-
all agreement of 95.44 % and a kappa coefficient of 0.9443.
Recently, Zhang et al. (2019) proposed simultaneously us-
ing the MODIS Nadir Bidirectional Reflectance Distribution
Function-Adjusted Reflectance (MCD43A4 NBAR) and the
CCI_LC (European Space Agency Climate Change Initiative
Global Land Cover) land-cover product from 2015 to gener-
ate a 30 m Landsat land-cover dataset for China. However,
as well as these advantages, there is the problem that the
derived training data might be affected by classification er-
rors in the existing land-cover products and by spatial reso-
lution and temporal differences between the land-cover prod-
ucts and the satellite data that are to be classified. In recent
years, many researchers have proposed various measures to
ensure that only reliably defined training data are extracted:
for example, Radoux et al. (2014) proposed the use of spatial
and spectral filters to remove outliers, and Zhang and Roy
(2017) proposed that only MCD12Q1 pixels that had been
stable for 3 consecutive years should be used and that these
pixels should be refined using the “metric centroid” method
developed by Roy and Kumar (2016). In summary, if effec-
tive measures can be taken to control the confidence and re-
liability of the training data, the derivation of training sam-
ples from existing land-cover products has great potential for
global land-cover mapping.

Secondly, the high cost of collecting satellite data with
consistent global coverage, the lack of high-performance-
computing requirements, and the difficulties in preparing
image mosaics also cause problems. However, because the
Google Earth Engine (GEE) cloud-based platform consists
of a multi-petabyte analysis-ready data catalog co-located
with a high-performance, intrinsically parallel computation
service and because the library’s image-based functions in
the GEE are per-pixel algebraic operations (Gorelick et
al., 2017), these difficulties can be easily solved by us-
ing the GEE cloud-computation platform. In recent years,
many large-area land-cover classifications have been pro-
duced based on the GEE cloud computation platform: for
example, Teluguntla et al. (2018) successfully derived 30 m
cropland extent products for Australia and China, which had
overall accuracies of 97.6 % and 94 %, on the GEE platform.
Gong et al. (2019) produced the first global 10 m land-cover
product using time series of Sentinel-2 imagery also on the
GEE platform.

Overall, due to the difficulties in collecting sufficient ac-
curate training data with a fine classification system and
the computing requirements involved, producing a global
30 m land-cover classification with a fine classification sys-
tem is a challenging and labor-intensive task. This paper
presents an automatic classification strategy for producing a
global land-cover product with a fine classification system
at a spatial resolution of 30 m for 2015 (GLC_FCS30-2015)
using the Google Earth Engine cloud computation plat-
form. To achieve this goal, we first derived the global train-
ing data from the updated Global Spatial Temporal Spec-
tra Library (GSPECLib), which was developed by combin-
ing the MCD43A4 NBAR surface reflectance product and
the CCI_LC land-cover product for 2015. Secondly, time se-
ries of Landsat imagery on the GEE platform were collected
and then temporally composited into several temporal spec-
tral and texture metrics using the metrics-composite method.
Finally, by combining a multi-temporal random forest model,
global training data, and Landsat temporal features, a global
annual land-cover map with 30 land-cover types was pro-
duced. The validation results indicated that the GLC_FCS30-
2015 is a promising land-cover product and could provide
important support for numerous regional or global applica-
tions.

2 Datasets

2.1 Satellite datasets

2.1.1 Landsat surface reflectance data

Taking account of the frequent contamination of cloud in
the remote sensing imagery, particularly in the tropics, all
Landsat-8 surface reflectance (SR) imagery from 2014–2016
archived on the GEE platform was collected for the nominal
year 2015. Each Landsat-8 SR image on the GEE was at-
mospherically corrected by the Landsat Surface Reflectance
Code (LaSRC) atmospheric correction method (Roy et al.,
2014; Vermote et al., 2016), and bad pixels – including cloud,
cloud shadow, and saturated pixels – were identified by the
CFMask algorithm (Zhu et al., 2015; Zhu and Woodcock,
2012). In this study, only six optical bands – blue, green, red,
near infrared (NIR), SWIR1, and SWIR2 – were used for
land-cover classification because the coastal band is easily
affected by the atmosphere conditions (Wang et al., 2016).

Figure 1 illustrates the clear-sky Landsat-8 SR temporal
frequency after the cloud, cloud shadow, and saturated pix-
els have been masked out. The statistical results indicated
that (1) most land areas, except for tropical areas, had a high
availability of clear-sky Landsat imagery, and (2) areas with
a low frequency of clear-sky Landsat SR were mainly located
in rainforest areas including the Amazon rainforest, African
rainforests, and Indian–Malay rainforests, which are areas
mainly covered by evergreen broadleaved forests.
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Figure 1. The availability of clear-sky Landsat SR imagery for the years 2014–2016 on the GEE platform.

2.1.2 Digital elevation model data

Over the past few years, many studies have demonstrated that
a digital elevation model (DEM) and variables derived from
it (slope and aspect) are necessary and important auxiliary
variables for land-cover mapping (Gomariz-Castillo et al.,
2017; Zhang et al., 2019). In this study, the Shuttle Radar
Topography Mission (SRTM) DEM, which has a spatial res-
olution of 30 m and covers the area between 60◦ N and 56◦ S
(Farr et al., 2007), and the slope and aspect variables, were
used as the classification features. It should be noted that this
dataset archived on the GEE platform has been optimized by
a void-filling process that uses other open-source DEM data.
Furthermore, to complement the missing SRTM data at high
latitudes, the GDEM2 DEM dataset (Tachikawa et al., 2011)
was collected.

2.2 Global 30 m impervious surface products

Due to the spectral heterogeneity and complicated make-up
of impervious surfaces, large-area impervious mapping is
usually challenging and difficult (Chen et al., 2015; Gong et
al., 2013; Zhang and Roy, 2017). For example, in our previ-
ous work Zhang et al. (2019), impervious surfaces had a low
producer’s accuracy of 50.7 % because fragmented impervi-
ous surfaces such as rural cottages, roads, etc., were easily
missed. Therefore, Chen et al. (2015) split the impervious
surface class into three independent sub-classes including
“vegetated”, “low reflectance”, and “high reflectance” and
then used the classification method of integrating pixel- and
object-based techniques and manual editing to produce accu-
rate global impervious surface products.

In this study, the global land-cover classification neglected
the impervious surface land-cover type when building the
classification model; instead, existing global 30 m impervi-
ous surface products for 2015 (MSMT_IS30-2015) were di-
rectly superimposed over the global land-cover classifica-
tions (Zhang et al., 2020). The MSMT_IS30-2015 dataset
was produced in our previous work and developed by com-
bining 420 000 Landsat-8 SR and 83 500 Sentinel-1 SAR im-
ages from around the globe on the GEE platform. The vali-
dation results indicated that the MSMT_IS30-2015 product
achieved an overall accuracy of 95.1 % and a kappa coeffi-
cient of 0.898 using 11 942 validation samples from 15 rep-
resentative regions. The MSMT_IS30-2015 dataset is avail-
able at https://doi.org/10.5281/zenodo.3505079 (Zhang and
Liu, 2019).

2.3 Global validation datasets

To guarantee the confidence of the validation points, several
existing prior datasets (see Table 1), high-resolution Google
Earth imagery, and time series of NDVI values for each veg-
etated point were integrated to derive the global validation
datasets. Many studies have demonstrated that an inappropri-
ately sized validation sample could lead to limited and some-
times erroneous assessments of accuracy (Foody, 2009 and
Olofsson et al., 2014); therefore, a stratified random sam-
pling based on the proportion of the land-cover areas was
adapted to determine the sample size of each land-cover type:
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Ô

)





2

(1)

where Wi was the area proportion for class i over the globe,
Si is the standard deviation of class i, S(Ô) is the standard
error of the estimated overall accuracy, pi is the expected
accuracy of class i, and ni represents the sample size of the
class i.

First, the cropland-related validation samples were di-
rectly inherited from the global cropland reference data,
which were first collected by worldwide crowdsourcing us-
ing the ground data collection mobile app and then reviewed
using high-resolution imagery in the online image interpre-
tation tool to ensure that the samples were centered on agri-
cultural fields. There are 22 823 cropland validation samples
in the reference dataset (Xiong et al., 2017). In addition, due
to the possible temporal interval between the acquisition of
the reference data and the GLC_FCS30 products (2015), the
reference samples were checked by three interpreters using
the high-resolution imagery for 2015 in the Google Earth
software and were discarded if the judgements of three ex-
perts were in disagreement. After discarding wrong cropland
points and resampling using Eq. (1), a total of 6917 cropland
samples in 2015 were retained.

Secondly, the GOFC_GOLD datasets contained several
reference datasets which included the Global Land Cover
National Mapping Organizations (GLCNMO) 2008 (Tateishi
et al., 2014) training dataset, the Visible Infrared Imag-
ing Radiometer Suite (VIIRS) dataset, the MODIS Land
Cover (MCD12Q1) product System for Terrestrial Ecosys-
tem Parameterization (STEP) dataset, the GlobCover2005
validation database, and the GLC2000 database (Herold et
al., 2010). In this study, the GlobCover2005 and GLC2000
datasets were removed because they were too sparse and
also because the temporal difference between them and our
GLC_FCS30-2015 products was too big. The GLCNMO,
VIIRS, and STEP datasets all contained numerous valida-
tion polygons, so we first rechecked each validation polygon
against the high-resolution imagery for 2015 and then ran-
domly selected several validation points within each refined
polygon.

Specifically, as the GLCNMO used the UN LCCS (United
Nations Land Cover Classification System), similar to our
study (Table 2), and the VIIRS and STEP datasets followed
the IGBP (International Geosphere Biosphere Programme)
classification system, and as the land-cover types had consis-
tent definitions in both the UN LCCS and IGBP classification
systems (including land-cover IDs 50, 60, 70, 80, 90, 130 and
200: see Table 2), the corresponding validation points were

randomly collected from each polygon for all three datasets.
For other land-cover types, where there were slight differ-
ences according to the two classification systems (120 and
150), the validation points were selected from within the
GLCNMO polygons only.

Thirdly, the FROM_GLC validation dataset was only used
to complement our validation datasets because of the dis-
crepancy between the classification systems (C. Li et al.,
2017). The lichen and moss land-cover type (140) was miss-
ing in the GOFC_GOLD datasets, the shrubland polygons
(120) in the GLCNMO dataset were too sparse, and the im-
pervious surface polygons (190) in GOFC_GOLD were not
suitable for validation of the impervious surfaces at a res-
olution of 30 m because the impervious surfaces within the
polygons were usually broken and heterogeneous. There-
fore, the shrubland, tundra and impervious samples in the
FROM_GLC validation dataset were collected and then re-
fined using the high-resolution imagery for 2015.

Afterwards, the GLWD dataset, which had a spatial reso-
lution of 30 arcsec and contained 12 lake and wetland classes
(Lehner and Döll, 2004; Tootchi et al., 2019), was used to de-
rive the validation samples for the water body (210) and wet-
land (180) classes. To further ensure confidence in these vali-
dation samples, they were rechecked by the interpreters using
high-resolution Google Earth imagery for the year 2015.

The time series of NDVI (normalized difference vegeta-
tion index) values for each validation point, derived from the
Landsat SR imagery time series, were used to help distin-
guish between the vegetation-related land-cover types; for
example, evergreen shrubland (121) and deciduous shrub-
land (122), evergreen broadleaved/needleleaved forests (50,
70), and deciduous broadleaved/needleleaved forests (60,
80).

Lastly, as the ice and snow cover generally varied with
time, the time series of NDSI (normalized difference snow
index) values and high-resolution imagery were combined
to collect high-confidence permanent ice and snow (220)
samples. Overall, after the combination of the auxiliary
datasets from multiple sources and careful rechecking by
several interpreters, a total of 44 043 validation samples
for 24 fine land-cover types were finally collected – see
Fig. 2. The global validation dataset is publicly available at
https://doi.org/10.5281/zenodo.3551994 (Liu et al., 2019).

3 Methods

3.1 Deriving training samples from the CCI_LC

land-cover product

As explained in our previous studies (Zhang et al.,
2018, 2019), the Global Spatial Temporal Spectral Library
(GSPECLib) was developed to store the reflectance spec-
tra of different land cover types within each 158.85km ×
158.85km geographic grid cell at a temporal resolution of
8 d using time series of the MCD43A4 NBAR and ESA
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Table 1. Multi-source auxiliary datasets used for collecting the global validation samples.

Dataset name Target land-cover ID

Global cropland reference data https://croplands.org/app/data/
search?page=1&page_size=200 (last access: 11 June 2021)

10, 11, 12, 20

Global Observation for Forest Cover and Land Dynamics
(GOFC_GOLD) reference data http://www.gofcgold.wur.nl/
sites/gofcgold_refdataportal.php (last access: 11 June 2021)

50, 60, 70, 80, 90, 120, 121, 122, 130, 150, 152, 153, 200, 201,
202

FROM_GLC global validation sample set http://data.ess.
tsinghua.edu.cn (last access: 11 June 2021)

120, 121, 122, 140, 190

Global Lakes and Wetlands Database (GLWD)
https://www.worldwildlife.org/pages/
global-lakes-and-wetlands-database
(last access: 11 June 2021) 180, 210
NDVI time-series datasets 50, 60, 70, 80, 120, 121, 122
NDSI time-series datasets 220

Note: for details of the land-cover IDs, refer to Table 2.

Table 2. The fine classification system and its relationships with other classification systems (LCCS and GlobeLand30 Level 0).

Level 0 classification system LCCS classification system Id Fine classification system Id

Cropland Rain-fed cropland 10 Rain-fed cropland 10
Herbaceous cover 11
Tree or shrub cover (orchard) 12

Irrigated cropland 20 Irrigated cropland 20
Forest Evergreen broadleaved forest 50 Evergreen broadleaved forest 50

Deciduous broadleaved forest 60 Deciduous broadleaved forest 60
Closed deciduous broadleaved forest 61
Open deciduous broadleaved forest 62

Evergreen needleleaved forest 70 Evergreen needleleaved forest 70
Closed evergreen needleleaved forest 71
Open evergreen needleleaved forest 72

Deciduous needleleaved forest 80 Deciduous needleleaved forest 80
Closed deciduous needleleaved forest 81
Open deciduous needleleaved forest 82

Mixed-leaf forest 90 Mixed-leaf forest 90
Shrubland Shrubland 120 Shrubland 120

Evergreen shrubland 121
Deciduous shrubland 122

Grassland Grassland 130 Grassland 130
Wetlands Wetlands 180 Wetlands 180
Impervious surfaces Impervious surfaces 190 Impervious surfaces 190
Bare areas Lichens and mosses 140 Lichens and mosses 140

Sparse vegetation 150 Sparse vegetation 150
Sparse shrubland 152
Sparse herbaceous cover 153

Bare areas 200 Bare areas 200
Consolidated bare areas 201
Unconsolidated bare areas 202

Water body Water body 210 Water body 210
Permanent ice and snow Permanent ice and snow 220 Permanent ice and snow 220
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Figure 2. The spatial distribution of the global validation datasets.

CCI_LC land-cover products. The reasons for selecting the
CCI_LC and MCD43A4 NBAR products were that (1)
MODIS has similar spectral bands to the Landsat OLI sen-
sor, and MCD43A4 NBAR has better correction for view-
angle effects than other SR products such as MOD09A1,
meaning that there is more consistency between MCD43A4
NBAR and Landsat 8 SR (at small view angles, i.e., < 15◦)
(Feng et al., 2012), and (2) the CCI_LC land-cover product
has a detailed classification scheme containing 36 land-cover
types, achieves the required classification accuracy over ho-
mogeneous areas (75.38 % overall), and has a relatively high
spatial resolution of 300 m as well as a stable transition be-
tween the different annual land-cover products (Defourny et
al., 2018; Y. Yang et al., 2017). In contrast to the previous
GSPECLib that was used to store the reflectance spectra, in
this study GSPECLib was developed to derive the location of
training samples. The training samples’ spectra were derived
from Landsat data, while their land-cover labels were derived
from CCI_LC.

The fine classification system used in this study (Table 2)
inherited that of the CCI_LC products after the removal of
four mosaic land-cover types (including mosaic natural veg-
etation and cropland and mosaic forest and grass or shrub-
land) because, in the 30 m Landsat imagery, it is possible to
clearly identify the mosaic land-cover types in the coarse-
resolution imagery (Fisher et al., 2018; Mishra et al., 2015).
The three wetland land-cover types (tree–shrub–herbaceous

cover, flooded, and fresh/saline or brackish water) were fur-
ther combined into one wetland land-cover type as their high
spatial and spectral heterogeneity as well as temporal dynam-
ics made it difficult to identify the wetlands using remote
sensing imagery (Gong et al., 2013; Ludwig et al., 2019). It
should be noted that the CCI_LC products provide detailed
land-cover results only for certain regions and not for the
whole world because these detailed land-cover types made
use of more accurate and regional information – where avail-
able – to define more LCCS classifiers and so to reach a
higher level of detail in the legend (Defourny et al., 2018);
therefore, the fine classification system in this study simul-
taneously contained 16 LCCS land-cover types (“multiple-
of-10” values such as 10, 20, 50, 60, etc.) and 14 detailed
regional land-cover types (other “non-10” values such as 11,
12, 61, etc.).

Similar to our previous works (Zhang et al., 2018, 2019),
four key steps were adopted to guarantee the confidence of
each training point, as illustrated in Fig. 3. As in Zhang et al.
(2019), the spectrally homogeneous MODIS–Landsat areas
were firstly identified based on the variance of a 3 × 3 local
window using spectral thresholds of [0.03, 0.03, 0.03, 0.06,
0.03, and 0.03] for the six spectral bands (blue, green, red,
NIR, SWIR1, and SWIR2) in both the MCD43A4 NBAR
products and Landsat SR imagery (Feng et al., 2012). It
should be noted that the year-composited Landsat SR data
were downloaded from the GEE platform with the sinusoidal
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Figure 3. The flowchart of deriving training samples by using multi-source datasets.

projection. As the MCD43A4 NBAR is corrected for view-
angle effects and Landsat has a small view angle of ±7.5◦,
the view-angle difference between MCD43A4 and Landsat
SR could be considered negligible.

Before the process of refinement and labeling, the CCI_LC
land-cover products, which had geographical projections,
were reprojected to the sinusoidal projection of MCD43A4.
The spatial resolution of MCD43A4 was 1.67 times that of
the CCI_LC land-cover product, and the spectrally homoge-
neous MODIS–Landsat areas had been identified in the 3×3
local windows. Also, Defourny et al. (2018) and Y. Yang
et al. (2017) found that the CCI_LC performed better over
homogeneous areas; therefore, a larger local 5 × 5 window
was applied to the CCI_LC land-cover product to refine and
label each spectrally homogeneous MODIS–Landsat pixel.
Specifically, the land-cover heterogeneity in the local 5 × 5
window was calculated as being the percentage of land-cover
types occurring within the window (Jokar Arsanjani et al.,
2016a). Aware of the possibility of reprojection and classifi-
cation errors in the CCI_LC products, the land-cover hetero-
geneity threshold was empirically selected as approximately
0.95; in other words, if the maximum frequency of dominant
land-cover types was less than 22 in the 5 × 5 window, the
point was excluded from GSPECLib. After a spatial–spectral
filter had been applied to MCD43A4 and a heterogeneity fil-
ter to the CCI_LC product, the points that had homogeneous
spectra and land-cover types were retained. In addition, to
further remove the abnormal points contaminated by classi-
fication error in the CCI_LC, the homogeneous points were
refined based on their spectral statistics distribution, in which
the normal samples would form the peak of the distribution
whereas the influenced samples were on the long tail (Zhang
et al., 2018). It should be noted that the geographical coordi-
nates of each homogeneous point were selected as being the
center of the local window in the CCI_LC product because
this had a higher spatial resolution than that of MCD43A4.

Then, Zhu et al. (2016) and Jin et al. (2014) found that the
distribution (proportional to area and equal allocation) and
balance of training data had a significant impact on classifi-
cation results and quantitatively demonstrated that the pro-

portional approach usually achieves higher overall accuracy
than the equal-allocation distribution. In addition, Zhu et al.
(2016) also suggested extracting a minimum of 600 training
pixels and a maximum of 8000 training pixels per class for
alleviating the problem of unbalancing training data. In this
study, the proportional distribution and sample balancing pa-
rameters were used to resample these homogeneous points
in each GSPECLib 158.85km × 158.85km geographic grid
cell.

Lastly, different from the previous spectrally based classi-
fication using MCD43A4 reflectance spectra (Zhang et al.,
2019), in this study, we proposed using the Landsat re-
flectance spectra, derived by combining the global training
samples and time-series Landsat imagery, to produce the
global 30 m land-cover mapping. However, as the spatial res-
olution difference between Landsat SR (30 m) and homoge-
neous training samples would cause resolution effects when
acquiring the training spectra (300 m), the “metric centroid”
algorithm proposed by Zhang and Roy (2017) was used to
find the optimal and corresponding training points at a reso-
lution of 30 m. Specifically, as each homogeneous point cor-
responded to an area equivalent to 10×10 Landsat pixels, the
normalized distances (Eq. 2) between each Landsat pixel and
the mean of all 10×10 pixel areas were calculated. The opti-
mal and corresponding training points at 30 m were selected
as the ones having the minimum normalized distance,

Di =
(

ρi − 1

n

n
∑

j=1

ρj

)2

, i = 1,2, . . .,n, (2)

where ρi is a vector representing the annually composited
Landsat SR for 2015 and n is the number of Landsat pixels
within a 10 × 10 local window (defined as 100). If several
30 m pixels had the same minimum Di value, then one pixel
was selected at random.

3.2 Land-cover classification on the GEE platform

Despite the long-term plans for periodic systematic acquisi-
tions and the improved accessibility of Landsat data through
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global archive consolidation efforts, the availability of Land-
sat data for persistently cloud-contaminated areas (the rain-
forest areas in Fig. 1) is less than ideal. To overcome the lim-
itations of scene-level data quality, pixel-based compositing
of Landsat data has increased in popularity since the opening
of the USGS Landsat archive in 2008 (Griffiths et al., 2013;
Woodcock et al., 2008). In particular, the seasonal composite
and metrics composite are two widely used methods in large-
area land-cover classification (Hansen et al., 2014; Massey
et al., 2018; Teluguntla et al., 2018; Zhang and Roy, 2017).
Recently, Azzari and Lobell (2017) quantitatively demon-
strated that season- and metric-based approaches had nearly
the same overall accuracies for land-cover classification con-
taining multiple land-cover types or for single cropland map-
ping. Also, the metrics-composite method proposed by the
Hansen et al. (2014) can capture the phenology and land-
cover changes without the need for any explicit assumptions
or prior knowledge regarding the timing of the season; there-
fore, its main advantage is that it is applicable globally with-
out the need for location-specific modifications.

In this study, the time series of Landsat SR imagery and
corresponding spectral indexes, including NDVI (normalized
difference vegetation index) (Tucker, 1979), NDWI (normal-
ized difference water index) (Xu, 2006), EVI (enhanced veg-
etation index) (Huete et al., 1999), and NBR (normalized
burnt ratio) (Miller and Thode, 2007), were composited into
the 25th, 50th, and 75th percentiles for each spectral band
using the metrics-composite method. It should be noted that
the 25th and 75th percentiles were used instead of the mini-
mum and maximum values to minimize the effects of resid-
ual haze, cloud, and shadows caused by the errors in the CF-
Mask method. In addition, many researchers have found that
the texture variables can significantly improve the classifi-
cation accuracy for land-cover mapping (M. Li et al., 2017;
Rodriguez-Galiano et al., 2012; Wang et al., 2015; Zhu et
al., 2012), for example, Zhu et al. (2012) found that the im-
port of Landsat-derived texture features improved the land-
cover accuracy from 86.86 % to 92.69 %. Therefore, the NIR
band texture variables of variance, homogeneity, contrast,
dissimilarity, entropy, and correlation were also added using
a method based on GLCM (gray level co-occurrence matrix).
Due to the great similarity between the six Landsat optical
bands (Rodriguez-Galiano et al., 2012), only the texture vari-
ables of the NIR bands were considered. In total, there were
16 spectral–texture metrics (MS–T) for each percentile and a
total of 48 metrics for each Landsat pixel. Except for these
Landsat-based metrics, the three topographical variables of
elevation, slope, and aspect, derived from the DEM datasets,
were also added.

MS–T =
[

[

ρb,ρg,ρr,ρNIR,ρSWIR1,ρSWIR2,

NDVI,NDWI,EVI,NBR
]

,

[

vari,homo,cont,diss,entr,corr
]

NIR

]

(3)

Afterwards, the random forest (RF) classifier, comprised
of a decision-tree classification using the bagging strategy
(Breiman, 2001) and an internal algorithm on the GEE plat-
form, was used to combine the training data and aforemen-
tioned composited metrics for land-cover mapping. Many
studies have demonstrated that the RF performs better with
high-dimensional data, gives a higher classification accuracy,
and is less sensitive to noise and feature selection than other
widely used classifiers such as the support vector machine,
artificial neural network, and classification and regression
tree (Belgiu and Drăguţ, 2016; Du et al., 2015; Pelletier
et al., 2016). Moreover, the RF classifier has only two ad-
justable parameters: the number of selected prediction vari-
ables (Mtry) and the number of decision trees (Ntree). Belgiu
and Drăguţ (2016) also explained that the classification ac-
curacy was less sensitive to Ntree than to the Mtry parameter,
and Mtry was usually set to the square root of the number of
input variables. Due to these advantages, the RF classifier is
widely used in land-cover mapping (Gong et al., 2013, 2019;
Zhang and Roy, 2017; Zhang et al., 2019). In this study, the
values of Ntree and Mtry were set to 100 and the default value
(the square root of the total number of input features), respec-
tively.

There were usually two options for large-area or global
land-cover classification including global classification mod-
eling (Gong et al., 2013; Teluguntla et al., 2018) and local
adaptive classification modeling (Gong et al., 2020; Phalke
et al., 2020; Zhang et al., 2020). First, the global classifica-
tion strategy meant using all training samples to train a sin-
gle classifier which was suitable for land-cover mapping in
any areas. For example, Buchhorn et al. (2020) used 141 000
unique 100 × 100 m training locations to train a single ran-
dom forest classifier to generate the Copernicus Global Land
Cover layers. Then, the local adaptive classification mod-
eling first divided the globe into a lot of regions and then
trained the corresponding local classifiers using the regional
training samples, and the global land-cover map was spatially
mosaicked by a lot of regional land-cover classification re-
sults. For example, Zhang and Roy (2017) split the United
States into 561 159 × 159 km tiles and then trained 561 cor-
responding local adaptive random forest models to generate
the regional land-cover results, and they found the land-cover
maps derived from the local adaptive models achieved higher
accuracy performance than that of the single global model.
Similarly, Radoux et al. (2014) also found that the local adap-
tive modeling allowed regional tuning of classification pa-
rameters to consider regional characteristics and increased
the sensitivity of the training samples. Therefore, as illus-
trated in the previous works, the training samples in a small
spatial grid (Landsat scene) might not be enough, especially
for sparse land-cover types, and the training samples from
neighboring 3-by-3 tiles were also imported (Zhang and Roy,
2017; Zhang et al., 2019). The GEE platform also had some
limitations for computation capacity and memory. Therefore,
after balancing the accuracy performance, computation effi-
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ciency, and training sample volume, the local adaptive ran-
dom forest models, which split the globe into approximately
948 5◦ × 5◦ geographical tiles (approximately 3 × 3 Landsat
scenes) similar to our previous work (Zhang et al., 2020),
were applied to generate a lot of regional land-cover maps.
In addition, to guarantee the spatially continuous transition
over adjacent regional land-cover maps, the training samples
from neighboring 3 × 3 tiles were used to train the random
forest model and classify the central tile.

3.3 Accuracy assessment

Assessing the accuracy of land-cover products is an essen-
tial step in describing the quality of the products before they
are used in related applications (Olofsson et al., 2013). In the
past, although there has been no standard method of assess-
ing the accuracy of land-cover maps, the error or confusion
matrix has been widely considered to be the best measure
(Foody and Mathur, 2004; Gómez et al., 2016; Olofsson et
al., 2014). This is because it not only describes the confusion
between various land-cover types but also provides quantita-
tive metrics, including the user’s accuracy (U.A.) (measuring
the commission error), producer’s accuracy (P.A.) (measur-
ing the omission error), overall accuracy (O.A.), and kappa
coefficient, to measure the performance of the products.

In this study, since the GLC_FCS30 products contained 30
fine land-cover types, including 16 LCCS level-1 types and
14 detailed level-2 types (Table 2), for a more comprehen-
sive validation of the GLC_FCS30 products, the confusion
matrices were divided into three parts: (1) a level-0 confu-
sion matrix containing 9 major land-cover types, similar to
the GlobaLand30 and FROM_GLC classification systems;
(2) a LCCS level-1 validation matrix containing 16 level-
1 land-cover types; and (3) a LCCS level-2 validation ma-
trix containing 24 fine land-cover types after the removal of
6 coverage-related level-2 types (closed or open deciduous
or evergreen or broadleaved/needleleaved forests) from the
classification system. These six coverage-related types were
removed because it was difficult to guarantee the confidence
for these detailed land-cover types in the validation datasets.
It should be noted that the relationship between the level-0
validation system and the classification system used in this
study was related to the work of Defourny et al. (2018) and
Y. Yang et al. (2017).

4 Results

4.1 The GLC_FCS30-2015 land-cover map

Figure 5 illustrates the global 30 m land-cover map for the
nominal year of 2015 (GLC_FCS30-2015) containing 30
fine land-cover types and produced using the time series of
Landsat SR imagery and the local random forest classifica-
tion models. Intuitively, the GLC_FCS30-2015 land-cover
map accurately delineates the spatial distributions of vari-

ous land-cover types and is consistent with the actual spa-
tial patterns of global land cover: for example, areas of ev-
ergreen broadleaved forest are mainly distributed in tropical
areas, including the Amazon rainforest, African rainforests,
and India–Malay rainforests, whereas bare areas are found
in the African Sahara, Arabian Desert, Australian deserts,
and China–Mongolia desert areas. In addition, owing to im-
porting the multi-temporal Landsat features for land-cover
classification and using the training samples from neighbor-
ing 3 × 3 tiles to train the random forest model and classify
the central tile, the stamping problem that occurs in single-
date land-cover classification (Gong et al., 2013; Zhang et al.,
2018) has been largely solved in the case of this global map,
and the spatial transitions between adjacent geographical
tiles are continuous and natural. Similarly, Zhang and Roy
(2017) used the time-series Landsat imagery and imported
the neighboring training samples to generate the spatially
consistent land-cover classification over the United States.

Using the validation datasets described earlier, three con-
fusion matrices (Tables 3–5) corresponding to different val-
idation systems were generated. Table 3 summarizes the
accuracy metrics for nine major land-cover types: overall,
the GLC_FCS30-2015 map achieved an overall accuracy of
82.5 % and a kappa coefficient of 0.784. From the perspective
of the producer’s accuracy, the forest type had the highest ac-
curacy, followed by cropland, permanent ice and snow, bare
areas, and water body; wetland, shrubland, and grassland had
low accuracies. These results indicate that land-cover types
that had relatively pure spectral properties or occupied a large
proportion of the Earth’s surface usually had a relatively high
accuracy. In contrast, the complex land-cover types were of-
ten confused with other types: for example, the spectra of the
wetlands were especially complicated and easily confused
with water body and vegetation (Ludwig et al., 2019). As
a result, 16.7 % and 9.5 % of wetland validation points were
wrongly identified as vegetation (including cropland, forest,
and shrubland) and water body, respectively, in Table 3. As
for the user’s accuracy metric, the accuracy rankings were
similar to those for the producer’s accuracy; however, in this
case, the permanent ice and snow class achieved the highest
accuracy.

Tables 4 and 5 describe the performance of the
GLC_FCS30-2015 land-cover map under the LCCS level-1
and level-2 validation schemes, respectively. Compared with
the values of the accuracy metrics in Table 3, the values in
these tables are clearly lower because similar fine land-cover
types were easily confused under these conditions. Accord-
ing to Table 4, the GLC_FCS30-2015 achieved an overall
accuracy of 71.4 % and a kappa coefficient of 0.686. From
the perspectives of the user’s accuracy and producer’s ac-
curacy, there was significant confusion between the forest-
related and cropland-related cover types. In order to intu-
itively display the degree of confusion for the 16 LCCS level-
1 land-cover types, the confusion proportions for each of
the land-cover types in Table 4 were calculated; these are
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Figure 4. Overview of the 5◦ ×5◦ geographical tiles used for local adaptive modeling. Three blue rectangular tiles were used for comparing
GLC_FCS30 with other land-cover products. The background imagery came from the National Aeronautics and Space Administration
(https://visibleearth.nasa.gov, last access: 11 June 2021).

Figure 5. GLC_FCS30-2015 land-cover map containing 30 fine land-cover types for the nominal year 2015 and the legend color map
inherited from the CCI_LC land-cover product. The legend color map inherited from the ESA CCI_LC land-cover products (Defourny et al.,
2018).
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Table 3. The accuracy matrix for the GLC_FCS30-2015 land-cover product according to the level-0 validation scheme and containing nine
major land-cover types.

CRP FST SHR GRS BaA WET IMP Wat PIS Total P.A.

CRP 6085 338 163 150 70 10 83 18 0 6917 0.880
FST 201 12869 156 54 37 364 2 5 0 13 688 0.940
SHR 444 575 3088 645 576 88 17 6 2 5441 0.568
GRS 197 176 430 3100 514 171 14 7 0 4609 0.673
BaA 150 109 403 420 7125 90 3 18 28 8346 0.854
WET 78 56 24 23 72 585 15 89 4 946 0.618
IMP 52 8 9 12 12 5 384 2 0 484 0.793
Wat 48 85 13 7 92 32 3 1455 1 1736 0.838
PIS 0 16 8 66 89 2 0 47 1648 1876 0.878

Total 7255 14232 4294 4477 8587 1347 521 1647 1683 44043
U.A. 0.839 0.904 0.719 0.692 0.830 0.434 0.737 0.883 0.979

O.A. 0.825
Kappa 0.784

Note: CRP: cropland; FST: forest; SHR: shrubland; GRS: grassland; WET: wetlands; IMP: impervious surfaces; BaA: bare areas; Wat: water
body; PIS: permanent ice and snow.

Table 4. The accuracy matrix for the GLC_FCS30-2015 land-cover product according to the LCCS level-1 validation scheme.

10 20 50 60 70 80 90 120 130 140 150 180 190 200 210 220 Total P.A.

10 5305 86 32 281 12 1 4 163 146 0 47 10 66 23 5 0 6181 0.858
20 213 481 0 8 0 0 0 0 4 0 0 0 17 0 13 0 736 0.654
50 65 0 2830 152 82 0 28 17 1 0 0 47 0 0 0 0 3222 0.878
60 82 3 325 3010 175 58 189 99 28 0 10 44 1 1 2 0 4027 0.747
70 10 0 12 136 2469 34 133 15 7 1 10 192 1 2 3 0 3025 0.816
80 2 0 0 59 283 545 31 11 2 0 11 29 0 0 0 0 973 0.560
90 31 8 67 840 604 24 783 14 16 0 1 52 0 1 0 0 2441 0.321
120 402 42 64 395 57 39 20 3088 645 21 422 88 17 133 6 2 5441 0.568
130 183 14 9 94 47 7 19 430 3100 311 128 171 14 75 7 0 4609 0.673
140 0 0 0 1 13 12 0 35 39 93 83 5 0 12 0 0 293 0.317
150 47 8 0 75 0 3 0 254 218 147 1540 13 0 692 4 26 3027 0.509
180 64 14 12 12 22 8 2 24 23 12 17 585 15 43 89 4 946 0.618
190 38 14 1 1 4 1 1 9 12 0 5 5 384 7 2 0 484 0.793
200 94 1 0 2 3 0 0 114 163 14 415 72 3 4129 14 2 5026 0.822
210 33 15 3 4 57 17 4 13 7 49 28 32 3 15 1455 1 1736 0.838
220 0 0 2 6 6 0 2 8 66 2 13 2 0 74 47 1648 1876 0.878

Total 6569 686 3357 5076 3834 749 1216 4294 4477 650 2730 1347 521 5207 1647 1683 44043
U.A. 0.808 0.701 0.843 0.593 0.644 0.728 0.644 0.719 0.692 0.143 0.564 0.434 0.737 0.793 0.883 0.979

O.A. 0.714
Kappa 0.686

shown in Fig. 6. First, it can be seen that the complicated
land-cover types were more easily misclassified: for exam-
ple, mixed forest (90) and lichens and mosses (140) had the
highest confusion proportions, with more than 60 % of the
validation samples being misclassified as other types. Sec-
ondly, there was a great deal of misclassification between
similar land-cover types: for example, more than 20 % of
irrigated cropland samples (20) were misclassified as rain-
fed cropland (10), approximately 30 % of deciduous needle-
leaved forest samples (80) were misclassified as evergreen
needleleaved forest (70), and the confusion between sparse
vegetation (150) and bare areas (200) was also considerable.

In Table 5, it can be seen that GLC_FCS30-2015 achieved
an overall accuracy of 68.7 % and kappa coefficient of
0.662. It should be noted that the values with superscript
(*) in Table 5 also represented correct classification because
GLC_FCS30-2015 simultaneously consisted of 16 LCCS
land-cover types (the “tens” values such as 10, 20, 50, etc.)
and 14 detailed regional land-cover types (the “non-10” val-
ues such as 11, 12, 61 etc.), which were only present in some
regions (Defourny et al., 2018). Also, the 14 detailed land-
cover types simultaneously belonged to the corresponding
LCCS land-cover types according to Table 2; similar oper-
ators for these detailed land-cover types can also be found
in the works of Defourny et al. (2018) and Bontemps et
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Figure 6. The confusion proportions for each of the land-cover types in the LCCS level-1 validation scheme.

al. (2010). Under the LCCS level-2 fine validation system,
the accuracy metrics were basically consistent with those
found for the LCCS level-1 validation scheme. Figure 7 il-
lustrates the confusion proportions between each of the fine
land-cover types. In contrast to the results discussed above,
the degrees of confusion for these fine land-cover types are
more significant: for example, most tree-covered cropland
(12) samples are misclassified as herbaceous-covered crop-
land (11), and the confusion between the LCCS land-cover
types (the “tens” values) and the corresponding detailed land-
cover types (the “non-10” values) is more obvious.

4.2 Comparison between GLC_FCS30-2015 and other

land-cover products

4.2.1 Comparison between three global 30 m land-cover

products

Based on the global validation datasets and the Level-0 vali-
dation scheme, the classification accuracy of GLC_FCS30-
2015 was compared to two other global 30 m land-cover
products (FROM_GLC-2015 and GlobeLand30-2010), as
listed in Table 6. Overall, the GLC_FCS30-2015 achieved
the best accuracy performance of 82.5 % against the
FROM_GLC-2015 of 59.1 % and the GlobeLand30-2010
of 75.9 %. Specifically, the GLC_FCS30-2015 gave better
performance than GlobeLand30-2010 in shrublands, grass-
lands, and impervious surfaces and achieved similar accura-
cies with the GlobeLand30 in most land-cover types (crop-
land, forest, bare land, water body, and permanent ice and
snow). Compared to the FROM_GLC-2015 products, the
GLC_FCS30-2015 and GlobeLand30-2010 had higher accu-
racy for most land-cover types, especially for the cropland
and forest.

Similarly, Kang et al. (2020) also analyzed the perfor-
mance of three global land-cover products in the com-
plicated tropical rainforest region (Indonesia) using over
2000 verification points, and validation results indicated
that the GLC_FCS-2015 achieved the highest accuracy of

65.59 %, followed by the GlobeLand30-2010 of 61.65 % and
FROM_GLC-2015 of 57.71 %. Specifically, all three land-
cover products had greater performance for forests and im-
pervious surfaces, and the cropland and wetland mapping
accuracy of GLC_FCS30-2015 was higher than that of the
other two products (Kang et al., 2020).

Except for the quantitative assessment, three 5◦ × 5◦ typ-
ical regions (the blue rectangles in Fig. 4) and their local
enlargements, covering various climate and landscape en-
vironments, were selected to directly illustrate the perfor-
mance of each land-cover product in Fig. 8. Overall, there
was higher spatial consistency between the GLC_FCS30-
2015 and GlobeLand30-2010 products; both of them ac-
curately depicted the spatial distributions of different land-
cover types. As for the FROM_GLC-2015 products, it was
different from other two products in spatial distribution; for
example, the areas (in Fig. 8II), identified by FROM_GLC-
2015 as grassland and shrubland, were labeled as cropland
and forest in the GLC_FCS30-2015 and GlobeLand30-2010.
In addition, from the perspective of land-cover diversity, it
was obvious that the GLC_FCS30-2015 products had sig-
nificant advantages over other two products, which made
the regional land-cover maps of GLC_FCS30-2015 contain
diverse color legends. In more detail, as for the cropland-
prevalent areas (Fig. 8Ia and IIIc), the spatial distribu-
tion of GLC_FCS30-2015 was similar to the GlobeLand30-
2010 products; however, the FROM_GLC-2015 had omis-
sion error for impervious surfaces (Fig. 8Ia) and misiden-
tified some cropland pixels as grassland (Fig. 8Ia) and for-
est (Fig. 8IIIc). Secondly, for the undulating agricultural
and forestry areas (Fig. 8Ib, 8Ic, 8IIb, 8IIIa), three land-
cover products captured the spatial patterns of various land-
cover types; for example, the cropland was usually located
in the flat areas, and the mountain areas mainly contained
the forest and grassland. Lastly, in the woodland areas where
some forests are reclaimed as farmland (Fig. 8IIa), both the
GLC_FCS30-2015 and GlobeLand30-2010 accurately delin-
eated the tracks of human interference, and the GLC_FCS30-
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Figure 7. The confusion proportions for each of the land-cover types in LCCS level-2 validation scheme.

Table 6. The accuracy metrics of three global 30 m land-cover products using the validation datasets.

CRP FST SHR GRS BaA WET IMP Wat PIS O.A. Kappa

GLC_FCS30-2015
P.A. 0.880 0.940 0.568 0.673 0.854 0.618 0.793 0.838 0.878

0.825 0.784
U.A. 0.839 0.904 0.719 0.692 0.830 0.434 0.737 0.883 0.979

FROM_GLC-2015
P.A. 0.477 0.749 0.294 0.484 0.696 0.033 0.459 0.781 0.647

0.591 0.499
U.A. 0.747 0.771 0.500 0.263 0.638 0.484 0.771 0.346 0.962

GlobeLand30-2010
P.A. 0.882 0.926 0.323 0.586 0.725 0.526 0.814 0.891 0.908

0.759 0.704
U.A. 0.887 0.905 0.617 0.367 0.776 0.384 0.889 0.908 0.992

Note: CRP: cropland, FST: forest, SHR: shrubland, GRS: grassland, WET: wetlands, IMP: impervious surfaces, BaA: bare areas, Wat: water body, PIS: permanent ice
and snow

2015 had larger cropland areas than that of GlobeLand30-
2010, which also demonstrated the increase in reclamation
over the 5-year interval. Different from the other two prod-
ucts, the FROM_GLC-2015 identified these reclaimed areas
as grassland pixels, and some forest pixels were also labeled
as grassland, which meant the FROM_GLC-2015 had the
largest grassland area in Fig. 8IIa.

4.2.2 The comparisons of GLC_FCS30-2015 with

CCI_LC and MCD12Q1 land-cover products

Except for comparing with global 30 m land-cover prod-
ucts, two widely used global products (CCI_LC-2015 and
MCD12Q1), which both contained diverse land-cover types,
were also selected to comprehensively analyze performance
of the GLC_FCS30-2015. It should be noted that the global
validation dataset (Sect. 2.3) was collected to validate the
30 m land-cover products, so the quantitative assessment
was skipped for the coarse-resolution land-cover products
of CCI_LC-2015 and MCD12Q1-2015. Figure 8 intuitively
compared the performances of GLC_FCS30-2015, CCI_LC-
2015, and MCD12Q1-2015 products over three 5◦ × 5◦ typ-
ical regions and corresponding local enlargements. Overall,

the spatial consistency of GLC_FCS30-2015 and CCI_LC-
2015 was higher than that of MCD12Q1-2015 because the
GLC_FCS30-2015 and CCI_LC-2015 shared the same clas-
sification system. For example, the savanna pixels (tree cover
10 %–30 %) (Friedl et al., 2010) in the MCD12Q1-2015
were labeled as broadleaved forest in the other two products
(Fig. 8II).

Lastly, it can be found that the GLC_FCS30-2015 had a
great advantage in spatial details compared to the CCI_LC-
2015 and MCD12Q1-2015 products over these local enlarge-
ments in Fig. 8. For example, the river boundary in Fig. 8Ia;
the fragmented impervious surfaces in Fig. 8Ia, 8Ib, and 8IIb;
and the terrain changes in Fig. 8Ic, IIb, and IIIa were more
accurately captured in the GLC_FCS30-2015, while two
coarse land-cover products (CCI_LC-2015 and MCD12Q1-
2015) usually lost these details. Therefore, compared with
CCI_LC-2015 and MCD12Q1-2015 land-cover products, the
GLC_FCS30-2015 not only had obvious advantages in spa-
tial details, but also achieved a higher accuracy and corrected
a lot of misclassification in the CCI_LC-2015 land-cover
products.
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Figure 8. Comparison between GLC_FCS30-2015 and other land-cover products (CCI_LC-2015 products developed by Defourny et al.,
2018; the MCD12Q1-2015 developed by Friedl et al., 2010; the FROM_GLC-2015 developed by Gong et al., 2013; and the GlobeLand30
developed by Chen et al., 2015) in three 5◦ × 5◦ regions. In each case, two to three local enlargements (a–c) with the size of 40km × 60km
were used to reveal further details of each land-cover product.
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5 Discussion

5.1 Advantages of GLC_FCS30 using huge training

samples

Global land-cover classification is a challenging and labor-
intensive task because of the large volume of data pre-
processing involved, the high-performance computing re-
quirements, and the difficulty of collecting training data
that allow the classification models to be both locally reli-
able and globally consistent (Friedl et al., 2010; Giri et al.,
2013; Zhang and Roy, 2017). Thanks to the parallel com-
puting ability and efficient and free access to multi-petabyte,
analysis-ready remote-sensing data that are available on the
GEE platform (Gorelick et al., 2017), the main challenge lies
in collecting sufficient reliable training data. In this study,
we propose extending our previous work on SPECLib-based
classifications (Zhang et al., 2018, 2019) and deriving global
high-quality training data from the updated GSPECLib for
global land-cover mapping (Sect. 3.1). Figure 9 illustrates the
number of global training samples in each 1◦ ×1◦ geograph-
ical grid cell. The statistics are generally consistent with the
land-cover patterns shown in Fig. 5. In addition, in contrast
to other studies that used manual interpretation of samples
for global land-cover mapping (Friedl et al., 2010; Gong et
al., 2013; Tateishi et al., 2014), the total number of training
samples in this study reached 27 858 258 points and so was
tens to hundreds of times higher than that used in these global
land-cover classifications.

To demonstrate the importance of sample sizes, 200 000
points, approximately 1 % of the total training samples, were
randomly selected to quantitatively analyze the relationship
between overall accuracy and the corresponding sample size.
Specifically, we used the 10-fold cross-validation method to
split these points into training and validation samples, and
then we gradually increased the size of training samples with
the step of 2 % and repeated the process 100 times. Fig-
ure 10a illustrates the overall accuracy (level-0 and LCCS
level-1 classification systems) increased for the increased
percentage of training samples. It was found that the over-
all accuracy rapidly increased when the percentage of train-
ing samples increased from 1 % to 30 %, while it remained
relatively stable when the percentage of training samples
was higher than 30 %. Therefore, the appropriate sample size
should be larger than 60 000 (30 % of the total input points);
fortunately, the local training samples in this study almost
all exceeded the 60 000 because the training samples from
neighboring 3 × 3 tiles were used to train the random forest
model and classify the central tile. Similarly, Foody (2009)
also found that the sample size had a positive relationship
with the classification accuracy up to the point where the
sample size was saturated, and Zhu et al. (2016) suggested
that the optimal size was a total of 20 000 training pixels to
classify an area about the size of a Landsat scene.

Secondly, many studies have demonstrated that the sample
outliers had influence on the land-cover classification accu-
racy (Mellor et al., 2015, Pelletier et al., 2017). In this study,
using the previous 200 000 training points, we further an-
alyzed the relationship between overall classification accu-
racy and erroneous training samples by randomly changing
the category of a certain percentage of these samples and us-
ing the “noisy” samples to train the random forest classifier.
Similar to the previous quantitative analysis of sample size,
we gradually increased the percentage of erroneous training
samples with the step of 2 % and then repeated the process
100 times. Figure 10b showed that the overall accuracy of
two classification systems (level-0 and LCCS level-1) gener-
ally decreased with the increase in percentage of erroneous
sample points. It remained relatively stable when the per-
centage of erroneous training samples were controlled within
30 % and decreased obviously after exceeding the threshold
of 30 %. Meanwhile, the overall accuracy of a simple classifi-
cation system was more susceptible to the erroneous samples
than that of the LCCS classification system in Fig. 10b. Sim-
ilarly, many scientists have also demonstrated that a small
number of erroneous training data have little effect on the
classification results (Gong et al., 2019; Mellor et al., 2015;
Pelletier et al., 2016; Zhu et al., 2016): for example, Mel-
lor et al. (2015) found the error rate of the RF classifier was
insensitive to mislabeled training data, and the overall accu-
racy decreased from 78.3 % to 70.1 % when the proportion
of mislabeled training data increased from 0 % to 25 %. Sim-
ilarly, Pelletier et al. (2016) found the RF classifier was little
affected by low random noise levels up to 25 %–30 % but that
the performance dropped at higher noise levels.

Defourny et al. (2018) demonstrated that CCI_LC
achieved an overall accuracy of 75.38 % for homogeneous
areas. In this study, some measures have been taken to guar-
antee the confidence of training samples. Some complicated
land-cover types were then further optimized to improve the
accuracy of the training data; for example, impervious sur-
faces were imported as an independent product and directly
superimposed over the final global land-cover classifications,
the three wetland types were merged into an overall wet-
land land-cover type, and four mosaicked land-cover types
were removed (Table 2). After optimizing these complicated
land-cover types, the overall accuracy of CCI_LC reached
77.36 % for homogeneous areas based on the confusion ma-
trix of Defourny et al. (2018). In addition, other measures,
including the spectral filters applied to the MCD43A4 NBAR
data, the land-cover homogeneity constraint for CCI_LC
land-cover products, and the “metric centroid” algorithm for
removing the resolution differences, were used to further
improve confidence in the training data. Therefore, some
training samples (exceeding 18 000 points) in the previous
analysis were randomly selected to quantitatively evaluate
the confidence of the global training dataset. After pixel-
by-pixel interpretation and inspection, the validation results
indicated that these samples had satisfactory performance
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Figure 9. The number of global training samples in each 1◦ × 1◦ geographical grid cell.

Figure 10. Sensitivity analysis showing the relations between the overall classification accuracy and the percentage of total samples and
erroneous sample points.

with the overall accuracy of 91.7 % for the level-0 classi-
fication system and 82.6 % for level-1 LCCS classification
system. Therefore, it can be assumed that the training data,
derived by combining the MCD43A4 NBAR and CCI_LC
land-cover products, were accurate and suitable for large-
area land-cover mapping at 30 m.

Lastly, the sample balance is also an important factor in
land-cover classification, especially for rare land-cover types,
because unbalanced training data would cause the under-
fitting of the classification model for rare land-cover types
and further degrade the classification accuracy. In this study,
we used the sample balancing parameters (a minimum of 600
training pixels and a maximum of 8000 training pixels per
class), based on the work of Zhu et al. (2016), to alleviate the
problem of unbalancing training data when deriving train-
ing samples from the GSPECLib in the Sect. 3.1; therefore,
Fig. 8II and III illustrated that the water body, which was the
rare land-cover type in all the regions, has been accurately
captured in the corresponding enlargement figures.

5.2 Uncertainty and limitations of the GLC_FCS30-2015

land-cover map

Except for the training sample uncertainties (including sam-
ple size, outliers) in Sect. 5.1, the land-cover heterogeneity
also had a significant effect on the classification accuracy
(Calderón-Loor et al., 2021; Wang and Liu, 2014). To clar-
ify the relationship between land-cover heterogeneity and
overall accuracy of the GLC_FCS30-2015 land-cover map,
we firstly used the Shannon entropy to calculate the spatial
heterogeneity using the GLC_FCS30_2015 at spatial resolu-
tion of 0.05◦ × 0.05◦ (Eq. 4). Figure 11a illustrated the land-
cover heterogeneity of the GLC_FCS30 land-cover map.
Intuitively, the highly heterogeneous regions mainly corre-
sponded to the climatic transition zone, especially for the
sparse-vegetation areas. Then, we combined the land-cover
heterogeneity and global validation datasets (in the Sect. 2.3)
to calculate the mean accuracy at different heterogeneities il-
lustrated in Fig. 11b. It could be found that the classification
accuracy had a negative relationship with land-cover hetero-
geneity with the slope of −0.3347; namely the GLC_FCS30
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had better performance in the homogeneous areas than of the
heterogeneous areas. Similarly, Defourny et al. (2018) also
demonstrated that the CCI_LC land-cover products achieved
the higher accuracy of 77.36 % in the homogeneous areas
than 75.38 % in all the areas.

H = −
n
∑

i=1

(

Pi × log2Pi

)

. (4)

The CCI_LC map used a fine classification system in some
regions but used a coarse classification system in other re-
gions (Defourny et al., 2018). Because the training sam-
ples were derived from the CCI_LC land-cover product, our
GLC_FCS30 product inherited these characteristics. There-
fore, although the GLC_FCS30-2015 provided a global 30 m
land-cover product with 30 land-cover types (Table 2), the 14
LCCS level-2 detailed land-cover types were applied only for
certain regions rather than the globe, illustrated in Fig. 12. In
future work, quantitative retrieval models and multi-source
datasets should be combined to improve the diversity of
global land-cover types in GLC_FCS30-2015 and further
avoid the existence of a global LCCS classification system
and detailed regional land-cover classification system. This
could be done, for example, by using the fractional vegeta-
tion cover (FVC) estimation models (L. Yang et al., 2017) to
retrieve the annual maximum FVC and then distinguish be-
tween open and closed broadleaved or needleleaved forests,
combining the time-series NDVI to split the evergreen and
deciduous shrublands, as well as integrating the GLCNMO
training dataset to further distinguish consolidated from un-
consolidated bare areas (Tateishi et al., 2011, 2014). In addi-
tion, although the patch problem that occurred in single-date
land-cover classification had been solved in the GLC_FCS30
global maps (Fig. 5), there was still a very slight boundary
effect between neighbor tiles over transitional areas (for ex-
ample, the bare land transited to the sparse vegetation and
grassland), which was also tricky for local training and clas-
sification because the similar land-over types were classified
by different local classification models. Therefore, further
work should take some measures to improve the spatial con-
sistency of GLC_FCS30 products over transition areas.

Due to the differences in classification system, spatial
resolution, and mapping year, the comparisons between
GLC_FCS30-2015 and other land-cover products described
in Sect. 4.2 focused on a qualitative analysis over three re-
gions only. The comparisons illustrated that GLC_FCS30-
2015 had great advantages compared to CCI_LC-2015 and
MCD12Q1-2015 in terms of spatial detail and had a greater
diversity of land-cover types than FROM_GLC-2015 and
GlobeLand30-2010; however, quantitative metrics for mea-
suring the advantages and disadvantages of GLC_FCS30-
2015 compared to other land-cover types were missing.
Therefore, our future work will aim to further optimize the
global validation datasets and combine more prior validation
datasets so that the performance of these land-cover prod-

ucts can be assessed using common validation data. For ex-
ample, Y. Yang et al. (2017) used common validation data
to quantitatively assess the accuracy of seven global land-
cover datasets over China, and Tsendbazar et al. (2015) ana-
lyzed metadata information from 12 existing GLC reference
datasets and assessed their characteristics and potential uses
in the context of four GLC user groups.

6 Data availability

The GLC_FCS30-2015 product generated in this paper is
available at https://doi.org/10.5281/zenodo.3986872 (Liu et
al., 2020). The global land-cover products are grouped
by 948 5◦ × 5◦ regional tiles in the GeoTIFF format,
which are named “GLCFCS30_E/W**N/S**.tif”, where
“E/W**N/S**” explains the longitude and latitude informa-
tion of the upper left corner of each regional land-cover map.
Further, each image contains a land-cover label band rang-
ing from 0–255, and the projection relationship between la-
bel values and corresponding land-cover types has been ex-
plained in Table 2 (Sect. 3.1), and the invalid fill value is
labeled as 0 and 250.

The corresponding validation dataset, produced by inte-
grating existing prior datasets, high-resolution Google Earth
imagery, time series of NDVI values for each vegetated point,
and visual checking by several interpreters, is available at
https://doi.org/10.5281/zenodo.3551994 (Liu et al., 2019).

7 Conclusion

In this study, a global land-cover product for 2015 that had a
fine classification system (containing 16 global LCCS land-
cover types as well as 14 detailed and regional land-cover
types) and 30 m spatial resolution (GLC_FCS30-2015) was
developed by combining time series of Landsat imagery
and global training data derived from multi-source datasets.
Specifically, by combining MCD43A4 NBAR, CCI_LC
land-cover products, and Landsat imagery, the difficulties of
collecting sufficient reliable training data were easily solved,
and the fine classification system was also made use of. Local
adaptive random forest models, which allow regional tuning
of classification parameters to consider regional characteris-
tics, were applied to combine the time series of Landsat SR
imagery and corresponding training data to produce numer-
ous accurate regional land-cover maps.

The GLC_FCS30-2015 product was validated using
44 043 validation samples which were generated by com-
bining many prior validation datasets and visual interpreta-
tion of high-resolution imagery. The validation results in-
dicated that GLC_FCS30-2015 achieved an overall accu-
racy of 82.5 % and a kappa coefficient of 0.774 for the
Level-0 validation system (similar to that of GlobeLand30,
which contains nine major land-cover types), as well as
overall accuracies of 71.4 % and 68.7 % and kappa coeffi-

https://doi.org/10.5194/essd-13-2753-2021 Earth Syst. Sci. Data, 13, 2753–2776, 2021

https://doi.org/10.5281/zenodo.3986872
https://doi.org/10.5281/zenodo.3551994


2772 X. Zhang et al.: GLC_FCS30: global fine land-cover product at 30 m

Figure 11. The land-cover heterogeneity of the GLC_FCS30 land-cover map at a spatial resolution of 0.05◦, and the relationship between
land-cover heterogeneity and overall accuracy using the global validation datasets.

Figure 12. The spatial distributions of 14 detailed regional land-cover types in the GLC_FCS30-2015 products.

cients of 0.686 and 0.662 for the LCCS level-1 (contain-
ing 16 land-cover types) and LCCS level-2 (containing 24
land-cover types) validation systems, respectively. The qual-
itative comparisons between GLC_FCS30-2015 and other
land-cover products (CCI_LC, MCD12Q1, FROM_GLC,
and GlobeLand30) indicated that GLC_FCS30-2015 had
great advantages over CCI_LC-2015 and MCD12Q1-2015
in terms of spatial detail and had a greater diversity of land-
cover types than FROM_GLC-2015 and GlobeLand30-2010.
The quantitative comparisons against the other two 30 m
land-cover products (FROM_GLC and GlobeLand30) indi-
cated that GLC_FCS30-2015 achieved the best overall ac-
curacy of 82.5 % against FROM_GLC-2015 of 59.1 % and
GlobeLand30-2010 of 75.9 %. Therefore, it was concluded
that GLC_FCS30-2015 is a promising accurate land-cover

product with a fine classification system and can provide im-
portant support for numerous regional or global applications.
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