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Abstract: According to the pulverized coal combustion flame image texture features of the rotary-kiln oxide pellets sintering process, a
combustion working condition recognition method based on the generalized learning vector (GLVQ) neural network is proposed. Firstly,
the numerical flame image is analyzed to extract texture features, such as energy, entropy and inertia, based on grey-level co-occurrence
matrix (GLCM) to provide qualitative information on the changes in the visual appearance of the flame. Then the kernel principal
component analysis (KPCA) method is adopted to deduct the input vector with high dimensionality so as to reduce the GLVQ target
dimension and network scale greatly. Finally, the GLVQ neural network is trained by using the normalized texture feature data. The
test results show that the proposed KPCA-GLVQ classifier has an excellent performance on training speed and correct recognition rate,
and it meets the requirement for real-time combustion working condition recognition for the rotary kiln process.

Keywords: Rotary kiln pellets sintering, texture features, grey-level co-occurrence matrix, kernel principal component analysis,
generalized learning vector quantization.

1 Introduction

The rotary kiln oxidized pellet sintering industrial pro-
cess involves mass transfer, heat transfer and complex
chemical reactions. The control of the modern pellet pal-
letizing process is very complex, and it relates to a large
number of physical parameters such as temperature, pres-
sure, speed and flow rate, and many other factors including
the physical changes and chemical reactions as well as the
distribution of gas in the solid material layers[1]. For a
long time, the control strategy of the rotary kiln palletiz-
ing process is half automation by relying on the operating
workers′ experience about fire. Because the control perfor-
mances are susceptible to the operating workers′ subjective
factors, it is difficult to ensure long-term stable and quali-
fied product quality. It is important to stabilize the rotary
kiln sintering process and improve the pulverized coal com-
bustion efficiency by recognizing the pulverized coal com-
bustion working conditions in the rotary kiln using digital
image processing technique.

Inspired by the operation mode of watching fire, and close
relationship between the rotary kiln combustion working
conditions[1] and the flame images, many scholars carried
out researches on working condition recognition and tem-
perature detection by analyzing the flame images in the
rotary kiln sintering process. Li et al.[2] proposed a neural
network control system for rotary kiln based on flame image
feature, which adopted a visual inspection system to iden-
tify rotary kiln with a flame burning, including flame image
acquisition, preprocessing, segmentation, feature extraction
and recognition. Szatvanyi et al.[3] studied the combustion
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related variables and prediction of product quality based on
the flame digital RGB images and multivariate image anal-
ysis (MIA) technology. Li et al.[4] proposed a second simu-
lation method based on a clustering image processing and
pattern recognition method. Jiang et al.[5] proposed an im-
proved sintering state identification method, which included
image preprocessing, image segmentation, feature extrac-
tion based on integration of image processing methods and
the support vector machine (SVM) theory. The simulation
results showed that the multi-level SVM recognition rate
was 93.89%, while the back propagation (BP) neural net-
work recognition rate was 65%. Zhang et al.[6] proposed a
flame image description method based on Fourier transform
and used artificial neural network and the SVM to realize
flame image recognition. Sun et al.[7] proposed a machine
identification method for the firing zone status based on the
flame image features and the key process data fusion. Yuan
et al.[8] proposed an improved ART-2 clustering decomposi-
tion algorithm to identify the rotary kiln working conditions
by using information fusion technology. Sun et al.[9] pro-
posed an image FCM segmentation method based on the
image gray values and texture roughness characteristics.

Based on the texture features of the pulverized coal com-
bustion flame images in the rotary kiln oxidized pellet sin-
tering process, the paper proposed a kernel principal com-
ponent analysis and generalized learning vector (KPCA-
GLVQ) working condition recognition method. Experi-
ments showed that the method achieved good results in
the execution speed and recognition accuracy.

2 Recognition strategy

The block diagram of the rotary kiln combustion condi-
tion recognition system is shown in Fig. 1. Firstly, the 14
texture parameters of the combustion flame image based on



J. S. Wang and X. D. Ren / GLCM Based Extraction of Flame Image Texture Features and · · · 73

the grey-level co-occurrence matrix (GLCM) are calculated
to describe the visual features of the flame image. Then in
order to reduce the target dimension and the size of the
GLVQ neural network, the KPCA method is used to real-
ize the dimension reduction of the high dimensional input
vector composed of the normalized texture features data.
Finally, the GLVQ network is used to recognize the rotary
kiln combustion working conditions.

Fig. 1 Block diagram of rotary kiln combustion conditions

recognition system

3 Texture features extraction

3.1 Grey-level co-occurrence matrix

The statistical characteristics of the combustion flame
image texture variables of the rotary kiln can reflect the
working conditions of the pulverized coal combustion. The
grey-level co-occurrence matrix (GLCM) is an important
method to analyze the image texture features based on the
second combination condition probability density function
of the estimated image[10, 11]. Fig. 2 is a GLCM schematic
diagram, where i and j denote the gray scale of the corre-
sponding pixel.

Fig. 2 Grey-level co-occurrence matrix

GLCM means the simultaneous occurrence probability
P (i, j, δ, θ) of two pixels. They are the pixel with gray scale
i from the image f(x, y) and the pixel (x+Δx, y+Δy) with
gray scale j, declination θ and distance δ. The mathemati-
cal formula is

P (i, j, δ, θ) =
{

[(x, y), (x + Δx, y + Δy)]|f(x, y) = i,

f(x + Δx, y + Δy) = j; x = 0, 1, · · · , Nx − 1;

y = 0, 1, · · · , Ny − 1
}

(1)

where i, j = 0, 1, · · · , L − 1, x and y are the coordinates
of the image pixel, L is the image gray level, Nx and Ny

represent the numbers of columns and rows of the image.
Haralick et al.[12] proposed 14 GLCM based texture param-
eters (f1–f14): angular second moment (ASM), contrast,
correlation, sum of squares (SS), sum average (SA), inverse
difference moment (IDM), entropy, sum variance (SV), sum
entropy (SE), difference entropy (DE), difference variance
(DV), maximum correlation coefficient (MCC) and infor-
mation measures of correlation (IOC), whose calculation
equations are shown in Table 1.

Table 1 Grey-level co-occurrence matrix

Texture features Calculation equations

ASM f1 =
L∑

i=1

L∑
j=1

{P (i, j)}2

Contrast f2 =
L−1∑
n=0

n2{
L∑

i=1

L∑
j=1

|i−j|=n

P (i, j)}

Correlation f3 =

L∑
i=1

L∑
j=1

(ij)P (i,j)−μx μy

σx σy

SS f4 =
L∑

i=1

L∑
j=1

(i − µ)2P (i, j)

IDM f5 =
L∑

i=1

L∑
j=1

1
1+(i−j)2

P (i, j)

SA f6 =
2L∑
i=2

iPx+y(i)

SV f7 =
2L∑
i=2

(i − f8)2Px+y(i)

SE f8 = −
2L∑
i=2

Px+y(i) log {Px+y(i)}

Entropy f9 = −
L∑

i=1

L∑
j=1

P (i, j) log {P (i, j)}

DV f10 = Variance of Px−y

DE f11 =
L−1∑
i=0

Px−y(i) log{Px−y(i)}

IOC f12 = HXY −HXY 1
max{HX,HY }

f13 = [1 − e−2.0(HXY 2−HXY )]
1
2

HXY = −∑
i

∑
j

P (i, j) log(P (i, j))

where, HX and HY are the entropies of Px and Py .

HXY 1 = −∑
i

∑
j

P (i, j) log(Px(i)Py(j))

HXY 2 = −∑
i

∑
j

Px(i)Py(j) log{Px(i)Py(j)}

MCC f14 = (Second largest eigenvalue of Q)
1
2

Q(i, j) =
∑
k

P(i,k)P (j,k)
Px(i)Py(k)

This paper adopts four methods (GLCM Features 1,
GLCM Features 2, GLCM Features 3 and GLCM Features
4) to calculate the GLCM based combustion flame image
texture parameters. The experimental results of the time
complexity are shown in Fig. 3. It can be seen from Fig. 3
that the GLCM Features 4 method has the shortest time.
The combustion flame image texture parameters can be
used to reflect the rotary kiln sintering working conditions,
which are divided into the complete combustion (repre-
sented by 1) and incomplete combustion (represented by
0). The paper utilizes the formulas in Table 1 and GLCM
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(a) GLCM Features 1 and GLCM Features 2 (b) GLCM Features 3 and GLCM Features 4

Fig. 3 Efficiency comparison results

Table 2 GLCM based texture parameters of flame images

No. f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 Class

1 0.41 0.054 0.98 53.1 1.00 14.4 178 1.33 1.37 0.054 0.21 −0.82 0.92 0.15 1

2 0.23 0.086 0.97 25.4 1.00 9.78 70.6 1.78 1.84 0.086 0.29 −0.78 0.95 0.16 0

3 0.49 0.067 1.08 67.7 1.17 15.7 191 1.69 1.52 0.057 0.27 −0.98 1.19 0.16 1

4 0.24 0.094 1.19 29.8 1.21 12.1 88.6 1.84 2.20 0.115 0.36 −0.92 0.96 0.17 0

5 0.52 0.070 1.09 58.2 1.23 15.3 227 1.71 1.52 0.069 0.26 −0.99 1.14 0.18 1
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100 0.41 0.054 0.98 53.1 1.00 14.4 176.5 1.33 1.37 0.054 0.21 −0.82 0.92 0.15 1

Features 4 method to calculate the texture features of 100
combustion flame images. The results are shown in Table
2.

3.2 Dimension reduction of flame image
texture features based on KPCA

The kernel principal component analysis (KPCA)
method is used to reduce the dimensionality of the high-
dimensional input vector[13, 14]. The KPCA analysis is car-
ried out on the combustion flame image texture features
to reduce the dimensionality of the high-dimensional input
vector, whose basic principle is described as follows[15, 16].

Given a sample set xi(i = 1, 2, · · · , M) and xi ∈ RN , the
nonlinear mapping relation is given as

ϕ : RN → F x → ϕ(x). (2)

So sample xi is mapped to ϕ(xi). Then the covariance
matrix of the new sample space is calculated according to

R =
1

M

M∑
i=1

ϕ (xi)xi
T. (3)

The eigenvalue decomposition is carried out according to

λQ = RQ (4)

where λ (λ > 0) is the eigenvalue of R, and Q is the cor-
responding eigenvector. Multiplying both sides of (4) by
ϕ(xi), we obtain

λ (ϕ (xi) · Q) = (ϕ (xi) · RQ) , i = 1, 2, · · · , M. (5)

And coefficient αi (i = 1, 2, · · · , M) exists such that the
following equation holds.

Q =

M∑
i=1

αiϕ (xi). (6)

By combining the above two equations, matrix K(M ×
M) is defined as

λ

M∑
i=1

αi (ϕ (xk) , ϕ (xi)) =

1

M

M∑
i=1

αi

(
ϕ (xk) ,

M∑
j=1

ϕ (xj)

)
(ϕ (xj) , ϕ (xi)) (7)

Ki,j = (ϕ (xi) ϕ (xj)) = K (xi, xj) . (8)

Set α as the corresponding eigenvector of the kernel ma-
trix K. Then

Kα = Mλα (9)

where α = (α1, α2, · · · , αM )T.
Assume that the solution of (9) is λ1 � λ2 � · · · � λp �

· · · � λM . λP is the last non-zero eigenvalue, whose cor-
responding eigenvector is (αk

1 , · · · , αk
p, · · ·αk

M ). Then the
eigenvector of F is normalized according to

(
Qk · Qk

)
= I, k = 1, 2, · · · , p. (10)

Putting Q =
∑M

i=1 αϕ (xi) and Kij = (ϕ (xi) ϕ (xj)) into
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(10) leads to

I =
M∑

i,j=1

αk
i αk

j (ϕ (xi) ϕ (xj)) =
M∑

i.j=1

αk
i αk

j Kij =

αkKαk = λk

(
αk · αk

)
, k = 1, 2, · · · , p. (11)

The principal component of a new sample xi is obtained
by mapping sample ϕ (x) of F into Qk, which is described
by

Qkϕ (x) =

M∑
j=1

αk
j (ϕ (xi) ϕ (x)) =

M∑
j=1

αk
j K (xj , x). (12)

For the sake of simplicity, K̂ = K − IMK− KIM +
IMKIM is used to substitute kernel matrix of all mapping
samples, among which (IM )ij = 1

M
. The paper adopts

Gaussian function as the KPCA kernel function, which is
described as

K (xj , x) = e
− |xj−x|2

σ2 . (13)

Based on the aforementioned, the procedure of KPCA
algorithm is described as

1) Calculate kernel matrix K̂.
2) Calculate eigenvalues and eigenvectors of kernel ma-

trix K̂.
3) Sort eigenvalues in the descend order; assume λ1 �

λ2 � · · · � λM ; calculate the contribution ratio by (14) to
decide the number of the extracted character information
φ(p)

φ (p) =

p∑
i=1

λi

M∑
i=1

λi

. (14)

4) The eigenvectors in accordance with the previous
p (1 � p � M) biggest eigenvalues are normalized according
to (11).

5) Calculate a new principal component by (12).
The GLCM based texture parameters of flame images are

carried out by kernel principal component analysis, whose
results are described in Table 3. It can be seen that the
contribution ratio of the previous 5 principal components
already exceed 85%. Thus, the principal components ob-
tained by the KPCA on the original variables data are the
input variables of the GLVQ neural network model, which
not only reserves the character information of original vari-
ables, but also simplifies the network scale of GLVQ neural
network.

Table 3 Contribution rates of principle components

Number of principal Percentage of Cumulative percentage

components variance (%) of variance (%)

1 59.34 59.34

2 9.35 68.69

3 7.84 76.53

4 6.4 82.93

5 5.45 88.38

.

.

.
.
.
.

.

.

.

14 0.23 100.00

4 Working condition recognition

4.1 Training of LVQ neural network

The learning vector quantization (LVQ) neural network
is a self-organizing neural network model with the super-
vised learning strategy proposed by Kohonen[17, 18]. The
LVQ neural network is composed of three layers of neurons,
namely input layer, hidden layer (competitive layer) and
output layer. The network structure is shown in Fig. 4.

Fig. 4 Structure diagram of LVQ neural network

In the training procedure, xp is the p-th training vector,
Tp is the belonged category of xp, Cj is the belonged cat-
egory of j-th output neuron, and the cluster number is n.
Thus the training steps of the competition layer weights are
described as follows:

Step 1. Initialize the competitive layer weight vectors
W = {w1, w2, · · · , wn}, the learning ratio η ∈ [0, 1], the
number of iterations n, and the total iteration number N .

Step 2. Execute (1) and (2) for each vector xp in the
training set.

1) Calculate the distance between each sample xp and
the clustering center, and find the cluster center k with
the minimum distance to obtain the winning neuron by
||wk − xp|| < ||wj − xp|| , (j = 1, 2, · · · , n).

2) Revise the weights by the following equations.

W new
ij = W old

ij + η (xi − W old
ij ), Right classification

W new
ij = W old

ij − η (xi − W old
ij ), False classification.

(15)
Step 3. The learning rate η is updated by

η = η0

(
1 − n

N

)
. (16)

Step 4. Check the termination condition. If n is smaller
than N , return to Step 2, otherwise terminate the training
procedure.

4.2 GLVQ neural network

The LVQ algorithm has two drawbacks: 1) there are un-
derutilized neurons; 2) the information between the input
samples and the competition units are wasted[19]. So, Pal
et al.[20] proposed a generalized learning vector quantiza-
tion (GLVQ) network. For a given input vector, the GLVQ
algorithm updates all neurons weights in the competitive
layer. Given n samples, the feature space is p dimensional,
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namely X = {X1, X2, · · · , Xn}, where i represents the no-
tation of the optimal matched neuron. The loss function
Lx is defined as

Lx = L(X; W1, W2, · · · , Wc) =
c∑

r=1

gir ‖X − Wr‖2 (17)

gir =

⎧⎨
⎩

1, r = i
1

c∑
j=1

‖X−Wj‖2
, r �= i (18)

where c is the number of categories.
The purpose of the GLVQ learning algorithm is to find

the c cluster centers Wr. Then the set W = {Wr} makes
the expected value Γ(W ) of the loss function Lx calculated
by (19) minimum. The gradient descent algorithm can be
utilized to solve this optimization problem.

Γ(W ) =

n∑
k=1

c∑
r=1

gir ‖Xk − Wr‖2

n
. (19)

The procedure of the GLVQ learning algorithm can be
summarized as follows:

1) Give a set of data X = {X1, X2, · · · , Xn} ∈ Rp with-
out notations, the class number c, the iteration number T
and the allowable error ε > 0.

2) Initialize W0 = {W10, W20, · · · , Wc0} and the initial
learning step α0.

3) For t = 1, 2, · · · , T , calculate αt = α0(1 − t
T

). For
k = 1, 2, · · · , n, find the Xk satisfying the following expres-
sion.

‖Xk − Wi(t)‖ = min
1�j�c

{‖Xk − Wj(t)‖}. (20)

Then the c weight vector {Wr(t + 1)} is updated in ac-
cordance with the following equation.

Wi(t + 1) = Wi(t) + αt[Xk − Wi(t)]·
D2 − D + ‖Xk − Wi(t)‖2

D2
, r = i.

(21)

Otherwise,

Wr(t+1) = Wr(t)+αt[Xk −Wi(t)] · ‖Xk − Wr(t)‖2

D2
(22)

where D =
∑c

r=1 ‖Xk − Wr(t)‖2.
4) Calculate

Et = ‖W (t + 1) − W (t)‖1 =
c∑

r=1

‖Wr(t + 1) − Wr(t)‖1 =

n∑
k=1

c∑
r=1

|wrk(t + 1) − wrk(t)|. (23)

5) If Et � ε, terminate the procedure. Otherwise, recal-
culate for the next iteration t.

6) Compute the division U = [uik]c×n of the data set X
to the c clustering centers, where

uik =

{
1, ‖Xk − Wi‖ � ‖Xk − Wj‖ , 1 � j � c, j �= i

0, 1 � j � c, 1 � k � n, Otherwise.

(24)

4.3 Recognition of rotary kiln combustion
working conditions

The paper selected 100 combustion flame images with
clear working conditions in the rotary kiln production pro-
cess as sample images. The 60 randomly selected images
served as training samples (42 complete combustion images
and 18 incomplete combustion images). The remaining 40
images served as test samples (24 complete combustion im-
ages and 16 incomplete combustion images).

The main parameters of the GLVQ classifier can be set as
follows. The input layer has 5 neurons in accordance with
the 5 nonlinear principles of the texture feature variables
obtained by the KPCA method. The output layer has 2
neurons representing the 2 combustion working conditions:
Complete combustion notated as 1 and incomplete combus-
tion notated as 0. The maximum iteration number is 5000,
the allowable error is 0.001 and the learning step α0 = 0.5.
The LVQ classifier is utilized for comparison with the pro-
posed KPCA-GLVQ classifier. The classification results are
shown in Table 4.

As seen from Table 4, the identification positive ratios
of the KPCA-GLVQ reach 95.83% and 93.75%, the latter
one is 12.5 percentage points above the LVQ classifier. In
the overall recognition rate, the identification positive ratio
of the KPCA-GLVQ method reaches 95%, which indicates
that the KPCA-GLVQ classification method has achieved
better results in the execution speed and recognition accu-
racy.

5 Conclusions

A combustion working condition recognition method
based on the GLVQ neural network is proposed based on the
pulverized coal combustion flame image texture features of
the rotary kiln oxide pellets sintering process. The test re-
sults show that the proposed KPCA-GLVQ classifier has an
excellent performance for training speed and correct recog-
nition ratio.

In the future, the proposed KPCA-GLVQ recognition
method of rotary kiln combustion working conditions will
be merged into real-time optimized process control. In addi-
tion, design of a better classification method is an important
task that merits future study.

Table 4 Identification results of rotary kiln combustion working conditions

Combustion conditions Test samples Positive number Positive number Positive ratio Positive ratio

(LVQ) (KPCA-GLVQ) (LVQ) (KPCA-GLVQ)

Complete combustion 24 21 23 87.50% 95.83%

Incomplete combustion 16 13 15 81.25% 93.75%

Total 40 34 38 85.00% 95.00%
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