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We prove by elementary methods the following generalization of a theorem due to Glea-

son, Kahane, and Żelazko. Let A be a real algebra with unit 1 such that the spectrum of

every element in A is bounded and let φ : A→ C be a linear map such that φ(1)= 1 and

(φ(a))2 + (φ(b))2 �= 0 for all a, b in A satisfying ab = ba and a2 + b2 is invertible. Then

φ(ab) = φ(a)φ(b) for all a, b in A. Similar results are proved for real and complex al-

gebras using Ransford’s concept of generalized spectrum. With these ideas, a sufficient

condition for a linear transformation to be multiplicative is established in terms of gen-

eralized spectrum.

1. Introduction

Let A be a real algebra with unit 1 and let φ : A→ C be a linear transformation with

φ(1) = 1. When is φ multiplicative? That is, when is φ(ab) = φ(a)φ(b) for all a, b in A?

This question was first answered for the case of a complex Banach algebra by Gleason

[3], Kahane and Żelazko [6]. Their result, now known as the Gleason-Kahane-Żelazko

theorem, states that, if φ(a) �= 0 for every invertible element a in A (or equivalently φ(a)

lies in the spectrum of a for every a in A), then φ is multiplicative. Subsequently several

generalizations of this result were published by many authors. These include

(i) real Banach algebra—Kulkarni [7],

(ii) complex spectrally bounded algebra—Roitman and Sternfeld [10].

The articles by Jarosz [4, 5] and Sourour [11] contain surveys of many of these results.

The aim of the present article is two-fold. First we extend this result to a real spec-

trally bounded algebra (Theorem 2.9), that is, the algebra in which the spectrum of each

element is bounded (Definition 2.6). The result says φ is multiplicative if and only if

(φ(a))2 + (φ(b))2 �= 0 for all a,b in A such that ab = ba and a2 + b2 is invertible. The class

of real spectrally bounded algebras includes all the above-mentioned algebras. All these

characterizations including the ones to be discussed in this paper are mainly in terms of

the spectrum.

Our second aim is to give simple proofs. The classical proofs make use of the tools

from the complex function theory, in particular Hadamard’s theorem. Our proof uses
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the elementary properties of polynomials, namely, relations between roots and coeffi-

cients. The essential ideas are in Lemma 2.5. Similar ideas were used by Roitman and

Sternfeld in [10] (see also [8, Theorem 2.4.3]).

In Sections 3 and 4, we attempt to relate these ideas to Ransford’s generalized spec-

trum [9]. In Section 3, it is proved that if for each x in a complex algebra, φ(x) lies in the

generalized spectrum of x, then φ is multiplicative. A statement of this theorem was pub-

lished by Catalin Badea in [1], where it was mentioned that the proof will be published

elsewhere, but the proof was not published anywhere. Here is the first instance where a

proof is given for that theorem.

In Section 4, the result in Section 3 is extended to a real algebra E in terms of Ransford’s

spectrum. We have also extended the concept of Ransford’s spectrum to the real case. It

is shown that if (φ(a))2 + (φ(b))2 �= 0 for all a,b in E such that ab= ba and a2 + b2 in ΩR,

then φ is multiplicative (Theorem 4.8). Examples are given to show that this condition is

not necessary.

In the last section, using the sufficient conditions obtained in Sections 3 and 4, we give

a sufficient condition for a linear transformation between spectrally bounded, (complex

or real) algebras, to be multiplicative.

2. Spectrally bounded real algebra

2.1. Notation. Let A be an algebra with the unit 1. An algebra element λ · 1 (product of

λ and one), where λ∈ C, will be denoted just as λ. Let Inv(A) and Sing(A) denote the set

of invertible and singular (noninvertible) elements in A, respectively. For an element a in

A the spectrum is denoted by Sp(a,A). If A is a complex algebra,

Sp(a,A) :=
{
λ∈ C : λ− a∈ Sing(A)

}
. (2.1)

If A is a real algebra,

Sp(a,A) :=
{
s+ it ∈ C : (s− a)2 + t2 ∈ Sing(A)

}
. (2.2)

2.2. Complexification. Complexification of a real algebra A, denoted by AC, is the set

A×Awith addition, scalar multiplication, and multiplication are defined in the following

way. For every (a,b), (c,d) in AC and α+ iβ in C,

(a,b) + (c,d)= (a+ c,b+d),

(α+ iβ)(a,b)= (αa−βb,αb+βa),

(a,b)(c,d)= (ac− bd,ad+ bc).

(2.3)

With these operations AC becomes a complex algebra. Let us recall some results in [2].

These results will be used to prove a lemma.

Proposition 2.1. a∈ Inv(A) if and only if (a,0)∈ Inv(AC).

Proposition 2.2. (a,b)∈ Inv(AC) if and only if (a,−b)∈ Inv(AC).

Proposition 2.3. Sp((a,0),AC)= Sp(a,A).
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Proof.

s+ it ∈ Sp(a,A)⇐⇒ (s− a)2 + t2 ∈ Sing(A)

⇐⇒
(
(s− a)2 + t2,0

)
∈ Sing

(
AC
)

(using Proposition 2.1)

⇐⇒ (s− a, t)(s− a,−t)∈ Sing
(
AC
)

⇐⇒ (s− a, t)∈ Sing
(
AC
)

(using Proposition 2.2)

⇐⇒ (s+ it)(1,0)− (a,0)∈ Sing
(
AC
)

⇐⇒ s+ it ∈ Sp
(
(a,0),AC

)
.

(2.4)

�

The following lemma will be used repeatedly.

Lemma 2.4. Let A be a real algebra and let φ : A→ C be a real linear map with φ(1) = 1.

Assume for all a,b in A, satisfying ab= ba and a2 + b2 in Inv(A),

(
φ(a)2

)
+
(
φ(b)

)2
�= 0. (2.5)

Now define F : AC→ C by

F(a,b)= φ(a) + iφ(b). (2.6)

Then F is a complex linear function. If F(a,b)= 0 for some a,b ∈ A with ab = ba, then (a,b)

is not invertible in AC.

Proof.

F(a,b)= 0=⇒ φ(a) + iφ(b)= 0

=⇒
(
φ(a)

)2
+
(
φ(b)

)2
= 0

=⇒ a2 + b2 ∈ Sing(A)

=⇒
(
a2 + b2,0

)
∈ Sing

(
AC
)

(using Proposition 2.1)

=⇒ (a,b)(a,−b)∈ Sing
(
AC
)

(∵ ab = ba)

=⇒ (a,b)∈ Sing
(
AC
)

(using Proposition 2.2).

(2.7)

�

Lemma 2.5. Let A be a complex algebra with unit 1, let ψ : A→ C be a complex linear

functional with ψ(1)= 1. Fix a∈A and define P : C→ C by

P(z)= ψ
(
[z− a]n

)
. (2.8)

Let λ j , j = 1, . . . ,n, be the roots of the polynomial P. Then

ψ(a)2−ψ
(
a2
)
=

∑n
j=1 λ

2
j

n2
−

1

n
ψ
(
a2
)
. (2.9)

Proof. As λ j , j = 1, . . . ,n, are the roots,

P(z)=
n∏

j=1

(
z− λ j

)
. (2.10)
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On the other hand by expanding P,

P(z)= ψ
(
[z− a]n

)

= ψ

( n∑

k=0

(−1)k
(
n

k

)
zn−kak

)

=

n∑

k=0

(−1)k
(
n

k

)
zn−kψ

(
ak
)
,

(2.11)

and comparing the coefficients of like powers of z, we get

n∑

j=1

λ j = nψ(a),
∑

j<k

λ jλk =
n(n− 1)

2
ψ
(
a2
)
. (2.12)

On substituting these values in the equation

( n∑

j=1

λ j

)2

=

n∑

j=1

λ2
j + 2

∑

j<k

λ jλk, (2.13)

we get

n2ψ(a)2 =

n∑

j=1

λ2
j + 2

n(n− 1)

2
ψ
(
a2
)
. (2.14)

Hence

ψ(a)2−ψ
(
a2
)
=

∑n
j=1 λ

2
j

n2
+

(−1)

n
ψ
(
a2
)
. (2.15)

�

Definition 2.6 (spectrally bounded algebra). An algebra A is called spectrally bounded if

the spectrum of every element in A is bounded.

This means for every a in A, there exist Ma > 0 such that |λ| ≤Ma whenever λ ∈

Sp(a,A). In other words, if

r(a) := sup
{
|λ| : λ∈ Sp(a,A)

}
(2.16)

is the spectral radius, then, r(a)≤Ma. This is a property which we will be using to establish

the result.

Definition 2.7 (spectral algebra). A norm which dominates the spectral radius is called a

spectral norm. A spectral algebra is an algebra on which a spectral norm can be defined.

In view of the spectral radius formula, every Banach algebra is a spectral algebra. See

[8] for examples of spectral algebras that are not Banach algebras. Also, every spectral

algebra is a spectrally bounded algebra. The next example shows that the converse is not

true.
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Example 2.8. Let C(z) denote the set of all complex rational functions. Consider the al-

gebra C⊕C(z). Then for an element (λ, f ) in the algebra,

Sp(λ, f )=



{λ,µ} if f ≡ µ,

{λ} if f is not a constant.
(2.17)

Hence the algebra is spectrally bounded. But it is not a spectral algebra because in a

commutative spectral algebra the spectral radius is subadditive and submultiplicative by

[8, Theorem 2.4.11]. Here the spectral radius is neither subadditive nor submultiplicative

by the following inequalities:

r(0,1)= 1 > 0 + 0= r(0,z) + r(0,1− z),

r(0,1)= 1 > 0 · 0= r(0,z) · r

(
0,

1

z

)
.

(2.18)

Theorem 2.9 (compare [8, Theorem 2.4.3]). Let A be a real unital algebra. Let φ : A→

C be linear and unital (i.e., φ(1) = 1). The first four conditions below are equivalent and

imply the last two conditions. If A is a spectrally bounded algebra, then all six conditions are

equivalent:

(1) φ(a)= iα implies φ(a2)=−α2 for all a∈A, α∈R;

(2) φ(a2)= (φ(a))2 for all a∈A;

(3) φ(a)= iα implies φ(ab)= iαφ(b) for all a,b ∈A, α∈R;

(4) φ(ab)= φ(a)φ(b) for a,b ∈ A;

(5) (φ(a))2 + (φ(b))2 ∈ Sp(a2 + b2,A) for a,b ∈ A such that ab = ba;

(6) (φ(a))2 + (φ(b))2 �= 0 for a,b ∈A such that ab = ba and a2 + b2 is invertible.

Proof. (1)⇒(2) If φ(a)= α+ iβ, α,β ∈R, then φ(a−α)= iβ. Using (1) we can get

−β2 = φ
[
(a−α)2

]
= φ

[
a2− 2αa+α2

]

= φ
(
a2
)
− 2αφ(a) +α2 = φ

(
a2
)
− 2α(α+ iβ) +α2.

(2.19)

Thus

φ
(
a2
)
= α2−β2 + i2αβ= (α+ iβ)2 =

(
φ(a)

)2
. (2.20)

(2)⇒(3) This is [7, Lemma 1].

(3)⇒(4) If φ(a)= α+ iβ, α,β ∈R, then φ(a−α)= iβ. Now using (3), we get

φ
(
(a−α)b

)
= iβφ(b), (2.21)

which implies φ(ab)= (α+ iβ)φ(b)= φ(a)φ(b).

(4)⇒(1) The implication is trivial. This shows that the first four conditions are equiv-

alent.

(4)⇒(5) Suppose (φ(a))2 + (φ(b))2 = s+ it /∈ Sp(a2 + b2,A), s, t ∈R, that is, (a2 + b2−

s)2 + t2 ∈ Inv(A). Then there exist c ∈ A such that c((a2 + b2 − s)2 + t2) = 1. Applying φ
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on both sides of this equation, we get a contradiction as follows:

1= φ(1)= φ
(
c
((
a2 + b2− s

)2
+ t2

))
= φ(c)

([(
φ(a)

)2
+
(
φ(b)

)2
− s
]2

+ t2
)
= 0. (2.22)

(5)⇒(6) As a2 + b2 is invertible, 0 /∈ Sp(a2 + b2,A). But (φ(a))2 + (φ(b))2 ∈ Sp(a2 +

b2,A), so (φ(a))2 + (φ(b))2 �= 0.

(6)⇒(2) The implication holds for a spectrally bounded algebra A.

Assume A is spectrally bounded. Fix a∈ A, n∈N and define P : C→ C as

P(z)= F
([
z(1,0)− (a,0)

]n)
, (2.23)

where F is as in Lemma 2.4. Consider the roots λ j for 1≤ j ≤ n of the polynomial P, then,

P
(
λ j

)
= 0, (2.24)

that is,

F
([
λ j(1,0)− (a,0)

]n)
= 0. (2.25)

If we write [λ j(1,0)− (a,0)]n = (c,d), then cd = dc, so [λ j(1,0)− (a,0)]n is not invert-

ible in AC, by Lemma 2.4. Hence λ j(1,0)− (a,0) is also not invertible. That is, λ j ∈

Sp((a,0),AC), which is equivalent to λ j ∈ Sp(a,A) for 1≤ j ≤ n, by Proposition 2.3. Also

by Lemma 2.4, we get

F(a,0)2−F
(
(a,0)2

)
=

∑n
j=1 λ

2
j

n2
+

(−1)

n
F
(
(a,0)2

)
. (2.26)

Hence

(
φ(a)

)2
−φ

(
a2
)
=

∑n
j=1 λ

2
j

n2
+

(−1)

n
φ
(
a2
)
. (2.27)

Since n∈N is arbitrary and A is spectrally bounded, letting n→∞ and noting |
∑n

j=1 λ
2
j |

≤ nMa
2 gives

(
φ(a)

)2
= φ

(
a2
)
. (2.28)

�

The above proof is along the lines of the proof of [8, Theorem 2.4.3]. Next we show that

[8, Theorem 2.4.3] for complex spectrally bounded algebras follows from our Theorem

2.9. In [8], this theorem is stated for complex spectral algebras. But the proof given there

works also for spectrally bounded algebras.

Corollary 2.10. Let A be a complex unital algebra and let φ : A→ C be complex linear

and unital. Then the first four conditions are equivalent and imply the last two equivalent

conditions. If A is a spectrally bounded algebra, then all six conditions are equivalent:

(1) φ(a)= 0 implies φ(a2)= 0 for all a∈A;

(2) φ(a2)= (φ(a))2 for all a∈A;



S. H. Kulkarni and D. Sukumar 2453

(3) φ(a)= 0 implies φ(ab)= 0 for all a,b ∈ A;

(4) φ(ab)= φ(a)φ(b) for all a,b ∈A;

(5) for each a∈A, φ(a)∈ Sp(a);

(6) φ(a) �= 0 for all invertible a in A.

Proof. (1)⇒(2) Let a ∈ A, φ(a) = iα for some α ∈ R. Since φ is complex linear, we have

φ(a− iα)= 0. Hence 0= φ((a− iα)2)= φ(a2)− 2iαφ(a)−α2. This implies φ(a2)=−α2.

Now (2) follows by Theorem 2.9.

(2)⇒(3) The implication follows from Theorem 2.9.

(3)⇒(4) Let a ∈ A and φ(a) = iα for some α ∈ R. Then φ(a− iα) = 0. Hence by (3)

φ(ab)= iαφ(b) for all b ∈ A. This implies (4) by Theorem 2.9.

(4) obviously implies (1). This establishes equivalence of the first four statements.

(4)⇒(5) Suppose a ∈ A is invertible. Then 1 = φ(1) = φ(aa−1) = φ(a)φ(a−1). This

shows that φ(a) can not be zero.

(5)⇒(6) Let a∈A be invertible. Then 0 /∈ Sp(a). Since φ(a)∈ Sp(a), φ(a) �= 0.

(6)⇒(5) For each a∈A, φ(a−φ(a))= 0. Hence by (6), a−φ(a) is not invertible, thus

φ(a)∈ Sp(a).

(6)⇒(2) The implication holds when A is spectrally bounded algebra.

Let a,b ∈ A be such that ab = ba and a2 + b2 is invertible. Then, since a2 + b2 = (a+

ib)(a− ib), both a+ ib and a− ib are invertible. Now, by (6), 0 �= φ(a+ ib)= φ(a) + iφ(b)

and 0 �= φ(a− ib)= φ(a)− iφ(b). Hence (φ(a))2 + (φ(b))2 = (φ(a) + iφ(b))(φ(a)− iφ(b))

�= 0. Now the conclusion follows from Theorem 2.9. �

The following example shows that the condition (1) of Corollary 2.10 does not imply

condition (2) when A is a real algebra.

Define φ : C→ C as φ(x+ iy)= x− y + iy. Then φ is real linear and φ(1)= 1. If φ(x+

iy) = 0, then x = y = 0, so φ[(x + iy)2] = 0. But φ is not Jordan as we can see [φ(i)]2 =

−2i whereas φ(i2)=−1. Hence the condition (1) in Theorem 2.9 cannot be replaced by

the condition φ(a) = 0 implies φ(a2) = 0. However, if A is a complex algebra and φ is a

complex linear function, then condition (1) is equivalent to φ(a) = 0 implies φ(a2) = 0

for a in A.

3. Ransford spectrum in a complex algebra

Ransford extended the concept of spectrum for a general complex normed linear space in

[9] by replacing the set of all invertible elements with a set, denoted as Ω, satisfying some

properties as follows. Let X be a complex linear space and 1 a fixed nonzero element in

X . Let Ω be a subset of X such that

(1) 0 /∈Ω,

(2) 1∈Ω,

(3) C∗Ω⊆Ω where C∗ := C \ {0}.

Then, for every x ∈ X , Ransford’s Ω spectrum of X is given by

SpΩ(x) := {λ∈ C : x− λ /∈Ω}. (3.1)

It is proved in [9] that if X is a normed linear space and Ω an open subset of X , then
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SpΩ(x) is bounded for every x ∈ X . That is, if λ∈ SpΩ(x) then |λ| ≤Mx for some Mx > 0.

In fact, it is proved in [9] that SpΩ(x) is a nonempty compact subset of C for every x

in X . He also proved an analog of the spectral radius formula using a property called

pseudoconvexity. When X is an algebra, we assume another property for the set Ω in

terms of multiplication as follows.

(4) There is an increasing sequence {n j} (i.e., n1 < n2 < n3 ··· where n j ∈N for j =

1,2,3, . . .) such that

x ∈Ω=⇒ xn j ∈Ω (3.2)

holds true for all j ∈N.

The statement of the following theorem, with slight modifications, was given in [1] but

the proof is not published anywhere.

Theorem 3.1. Let X be a complex algebra with unit 1 and let Ω be a subset of X which

satisfies (1), (2), (3), (4), and SpΩ(x) is bounded for every x ∈ X . Let φ : X → C be a linear

functional satisfying φ(1)= 1. Then first two of the following conditions are equivalent and

imply the third:

(1) φ(x) �= 0 for all x ∈Ω,

(2) φ(x)∈ SpΩ(x) for all x ∈ X ,

(3) φ(ab)= φ(a)φ(b) for all a,b ∈ X .

Proof. Suppose (1) holds. Then for x ∈ X , φ(x−φ(x))= 0. Hence x−φ(x) /∈Ω, that is,

φ(x)∈ SpΩ(x).

Conversely, suppose (2) holds and let x ∈ Ω. Then 0 /∈ SpΩ(x). On the other hand,

x ∈ SpΩ(x). Hence φ(x) �= 0. This shows (1) and (2) are equivalent.

Next we prove that (1) implies (3). Fix x ∈ X and n j ∈N. Define P : C→ C as follows:

P(z)= φ
(
[z− x]n j

)
. (3.3)

Consider the roots λi for 1≤ i≤ n j of the polynomial P. These roots satisfy the equation

P
(
λi
)
= 0, (3.4)

that is,

φ
([
λi− x

]n j
)
= 0. (3.5)

In view of (1), this implies that [λi− x]n j is not in Ω. Hence (λi− x) is also not in Ω. So

λi ∈ SpΩ(x) for 1≤ i≤ n j by definition of spectrum.

Also by Lemma 2.5 we get

φ(x)2−φ
(
x2
)
=

∑n j

i=1 λ
2
i

n j
2

−
1

n j
φ
(
x2
)
. (3.6)
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Since n j ∈N is arbitrary and spectrum is bounded, allowing n j →∞ and noting |
∑n j

i=1 λ
2
i |

≤ n jMx
2 gives

φ(x)2 = φ
(
x2
)
. (3.7)

Now φ is multiplicative by Theorem 2.9. �

The following example shows that the third condition in the above theorem does not

imply any of the first two equivalent conditions.

Example 3.2. Consider X = C2 with coordinatewise multiplication, then (1,1) is the unit

element. Let

Ω=
{(
z1,z2

)
: z1 �= 0

}
, (3.8)

then Ω is an open set satisfying the conditions of hypothesis. Define φ : X → C by φ(z1,z2)

= z2. Then φ is multiplicative. But (1,0)∈Ω and φ(1,0)= 0 /∈ SpΩ(1,0)= {1}.

4. Ransford spectrum in a real algebra

In this section, we extend the ideas in Section 3 to the case of a real algebra. For this, first

we need to define Ransford’s spectrum in this case.

Definition 4.1. Let E be a real algebra with unit 1. Let ΩR be a subset of E that satisfies

(1) 0 /∈ΩR,

(2) 1∈ΩR,

(3) R∗ΩR ⊆ΩR where R∗ :=R \ {0}.

For every x ∈ E, spectrum of x is defined as

SpΩR(x) :=
{
s+ it ∈ C : (x− s)2 + t2 /∈ΩR

}
. (4.1)

(4) for a certain increasing sequence n1,n2,n3, . . . (i.e., n1 < n2 < n3 ···) where n j ∈N

for j = 1,2,3, . . . ,

x ∈ΩR =⇒ xn j ∈ΩR. (4.2)

Example 4.2. In R with usual multiplication, the set R∗ satisfies all conditions with a

sequence 1,2,3, . . . .

Example 4.3. In R2 with coordinatewise multiplication, R2 \ {0} satisfies all conditions

with a sequence 1,2,3, . . . .

Consider the complexification EC of E and a subset ΩC of EC defined by

ΩC :=
{

(a,b)∈ E×E : a2 + b2 ∈ΩR

}
. (4.3)

Then ΩC satisfies the following conditions:

(1) (0,0) /∈ΩC,

(2) (1,0)∈ΩC,



2456 Gleason-Kahane-Żelazko theorem

(3) C∗ΩC ⊆ΩC where C∗ := C \ {0},

(4) x ∈ΩC⇒ xn j ∈ΩC for the same increasing sequence n1 < n2 < n3 ··· where n j ∈

N for j = 1,2,3, . . . .

The following propositions and lemma are general in the sense that Inv(A) and Inv(AC)

in Propositions 2.1, 2.2, and 2.3, and Lemma 2.4 are replaced by ΩR, ΩC. But proofs are

similar.

Proposition 4.4. 1∈ΩR if and only if (1,0)∈ΩC.

Proposition 4.5. (a,b)∈ΩC if and only if (a,−b)∈ΩC.

Proposition 4.6. SpΩC(a,0)= SpΩR(a).

Lemma 4.7. Let φ : E→ C be real linear and unital. Define F : E×E→ C as

F(a,b)= φ(a) + iφ(b). (4.4)

Then F is complex linear. Assume for all a,b in E, satisfying ab = ba and a2 + b2 in ΩR,

(
φ(a)

)2
+
(
φ(b)

)2
�= 0. (4.5)

If F(a,b)= 0, then (a,b) /∈ΩC.

Theorem 4.8. Let E and ΩR be as defined in Definition 4.1 and SpΩR(a) be bounded for

every a∈ E. Let φ : E→ C be real linear and unital. Suppose further that

(
φ(a)

)2
+
(
φ(b)

)2
�= 0 (4.6)

for all a,b ∈ E such that ab= ba and a2 + b2 ∈ΩR, then φ is multiplicative.

Proof. Fix a∈ E and n j ∈N. Define P : C→ C as follows:

P(z)= F
([
z(1,0)− (a,0)

]n j
)
. (4.7)

Consider the roots λi for 1≤ i≤ n j of the polynomial P. The equation

P
(
λi
)
= 0, (4.8)

that is,

F
([
λi(1,0)− (a,0)

]n j
)
= 0 (4.9)

implies that [λi(1,0)− (a,0)]n j /∈ΩC by Lemma 4.7. Hence λi(1,0)− (a,0) is also not in

ΩC by property (5) in definition. That is, λi ∈ SpΩC(a,0), which is equivalent to λi ∈

SpΩR(a) for 1≤ i≤ n j by Proposition 4.6. Also by Lemma 2.5, we get

F
(
(a,0)

)2
−F

(
(a,0)2

)
=

∑n j

i=1 λ
2
i

n j
2

−
1

n j
F
(
(a,0)2

)
. (4.10)
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Hence

(
φ(a)

)2
−φ

(
a2
)
=

∑n j

i=1 λ
2
i

n j
2

−
1

n j
φ
(
a2
)
. (4.11)

Since n j ∈ N is arbitrary and SpΩR(a) is bounded for every a in E, letting n j →∞ and

noting |
∑n j

i=1 λ
2
i | ≤ n jMa

2 gives

(
φ(a)

)2
= φ

(
a2
)
. (4.12)

Now the conclusion follows by Theorem 2.9. �

The following example shows that the condition (φ(a))2 + (φ(b))2 �= 0 for all a,b ∈ E

such that ab = ba and a2 + b2 ∈ΩR, which is a sufficient condition for a function to be

multiplicative, is not necessary.

Example 4.9. Consider E =R2 with coordinatewise multiplication, then (1,1) is the unit

element. Let

ΩR =
{(
x1,x2

)
: x1 �= 0

}
, (4.13)

then Ω satisfies all the conditions of hypothesis. Define φ : A→ C by φ(x1,x2)= x2. Then

φ is multiplicative but not satisfying the condition. To see this, take a= (1,0), b = (0,0).

Then ab = ba and a2 + b2 = (1,0)∈ΩR but (φ(a))2 + (φ(b))2 = 0.

5. Operators

In this section, we give sufficient conditions for a linear transformation, between spec-

trally bounded algebras, to be multiplicative.

Let X and Ω be as in Theorem 3.1. Ransford defined Ω-radical, in [9], as

RadΩ(X) := {a∈ X : a+Ω=Ω}. (5.1)

If RadΩ(X)= {0}, then X is said to be Ω semisimple. Zalduendo [12] defined the subsets

MΩ and Ω̃ as follows:

MΩ :=
{
φ : X → C : φ is linear, φ(1)= 1, φ(Ω)⊆ C∗

}
,

Ω̃=
⋂{

(Kerφ)c : φ ∈MΩ

}
=
{
a∈ X : φ(a) �= 0∀φ∈MΩ

}
,

(5.2)

and proved

RadΩ̃(X)=
{
a∈ X : φ(a)= 0, ∀φ ∈M

Ω̃

}
. (5.3)

With this notation, Theorem 3.1 implies that every φ in MΩ is multiplicative.

Example 5.1. For X and Ω in Example 3.2,

MΩ = {φ}, (5.4)
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a singleton set, where φ : A→ C defined as φ(z1,z2)= z1, and Ω̃=Ω, so

RadΩ̃(X)= RadΩ(X)=
{(
z1,z2

)
: z1 = 0

}
. (5.5)

Theorem 5.2. Let A and B be complex algebras with unit 1. Assume ΩA and ΩB are subsets

of A and B, also each of them is as in Theorem 3.1, and A and B are spectrally bounded with

respect to them. Let T : A→ B be a linear map such that T(1) = 1. If T(ΩA) ⊆ ΩB, then

T(ab)− (Ta)(Tb)∈ RadΩ̃B (B). If in addition B is Ω̃B semisimple, then T is multiplicative.

Proof. Consider

MΩB :=
{
φ : B→ C : φ is linear, φ(1)= 1, φ

(
ΩB

)
⊆ C∗

}
. (5.6)

For every φ∈MΩB , φ ◦T : A→ C, is a linear map with (φ ◦T)(1)= φ(T(1))= 1 and

(φ ◦T)
(
ΩA

)
= φ

(
T
(
ΩA

))
⊆ φ

(
ΩB

)
⊆ C∗. (5.7)

In other words φ ◦T ∈MΩA . Hence by Theorem 3.1, φ ◦T is multiplicative. Thus,

(φ ◦T)(ab)= (φ ◦T)(a)(φ ◦T)(b). (5.8)

That is,

φ
(
T(ab)

)
= φ

(
T(a)

)
φ
(
T(b)

)
= φ

(
T(a)T(b)

)
(5.9)

as φ is multiplicative. Hence

φ
(
T(ab)− (Ta)(Tb)

)
= 0. (5.10)

Since φ is arbitrary in MΩB , we get T(ab)− T(a)T(b) ∈ RadΩ̃B (B) by (5.3). If B is Ω̃B

semisimple, then RadΩ̃B (B)= {0}. Hence T(ab)= T(a)T(b). �

Theorem 5.3. Let A and B be real algebras with unit 1 and B commutative. Let T : A→ B

be a linear map such that T(1)= 1. Assume ΩA and ΩB are subsets of A and B, respectively,

also each of them is as in Definition 4.1, and A and B are spectrally bounded with respect to

them. Suppose (T(a))2 + (T(b))2 ∈ΩB whenever ab = ba and a2 + b2 ∈ΩA. Then,

φ
(
T(ab)−T(a)T(b)

)
= 0 for every φ ∈NΩB , (5.11)

where

NΩB :=
{
φ : B→ C : φ is linear, φ(1)=1,

(
φ(a)

)2
+
(
φ(b)

)2
�= 0 for ab = ba, a2 + b2 ∈ΩB

}
.

(5.12)

Proof. For φ ∈ NΩB , φ ◦ T : A→ C is a linear map with (φ ◦ T)(1) = 1. By assumption,

whenever ab = ba and a2 + b2 ∈ΩA, T(a)2 +T(b)2 ∈ΩB, which implies, as B is commu-

tative, ((φ ◦ T)(a))2 + ((φ ◦ T)(b))2 �= 0. Hence by Theorem 4.8, φ ◦T is multiplicative.

That is,

(φ ◦T)(ab)=
(
φ ◦T(a)

)(
φ ◦T(b)

)
= φ

(
T(a)T(b)

)
(5.13)
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as φ is multiplicative by Theorem 4.8. Hence we get

φ(Tab−TaTb)= 0 for every φ∈NΩB . (5.14)
�

Since every real Banach algebra is a spectrally bounded real algebra, we show in the

next corollary that [7, Theorem 7] follows from the above theorem using [7, Theorem 2].

Corollary 5.4. Let A and B be real Banach algebras with units and suppose that B is

commutative and semisimple. Let T : A→ B be a linear map such that T(1) = 1. Then the

following are equivalent:

(1) T(ab)= T(a)T(b) for all a,b in A,

(2) Sp((T(a))2 + (T(b))2)⊆ Sp(a2 + b2) for all a,b in A such that ab = ba,

(3) (T(a))2 + (T(b))2 is invertible for all a,b in A such that ab = ba and a2 + b2 is in-

vertible.

Proof. (1) implies (2) and (2) implies (3) are straight forward. The nontrivial part is

(3) implies (1). Replacing ΩA and ΩB by the set of all invertible elements of A and B,

respectively, in Theorem 5.3, we get

φ
(
T(ab)−T(a)T(b)

)
= 0 for every φ ∈NΩB . (5.15)

But from [7, Theorem 2], NΩB is the set of all multiplicative functions on B. As B is

semisimple, T(ab)= T(a)T(b) for all a,b in A. �

The assumption, commutativity, on B in Theorem 5.3 is necessary by [7, Example 10].

Here we give an example which shows that semisimple condition on B is necessary, in

Theorem 5.2, to get T as multiplicative operator.

Example 5.5. Let X and Ω be as in Example 3.2. Then X is semisimple by the explanation

in Example 5.1. Now define T : X → X as T(z1,z2) = (z1, (z1 + z2)/2). Clearly T satisfies

hypothesis of Theorem 5.2 but is not multiplicative.
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