
GLIDER: Gradient Landmark-Based Distributed Routing for Sensor Networks

Qing Fang∗ Jie Gao† Leonidas J. Guibas† Vin de Silva‡ Li Zhang§

∗ Department of Electrical Engineering, Stanford University. jqfang@stanford.edu
† Department of Computer Science, Stanford University. {jgao,guibas}@cs.stanford.edu

‡ Department of Mathematics, Stanford University. silva@math.stanford.edu
§ Information Dynamics Lab, HP Labs. l.zhang@hp.com

Abstract— We present Gradient Landmark-Based Distributed
Routing (GLIDER), a novel naming/addressing scheme and as-
sociated routing algorithm, for a network of wireless communi-
cating nodes. We assume that the nodes are fixed (though their
geographic locations are not necessarily known), and that each
node can communicate wirelessly with some of its geographic
neighbors—a common scenario in sensor networks. We develop
a protocol which in a preprocessing phase discovers the global
topology of the sensor field and, as a byproduct, partitions the
nodes into routable tiles—regions where the node placement is
sufficiently dense and regular that local greedy methods can work
well. Such global topology includes not just connectivity but also
higher order topological features, such as the presence of holes.
We address each node by the name of the tile containing it and a
set of local coordinates derived from connectivity graph distances
between the node and certain landmark nodes associated with
its own and neighboring tiles. We use the tile adjacency graph
for global route planning and the local coordinates for realizing
actual inter- and intra-tile routes. We show that efficient load-
balanced global routing can be implemented quite simply using
such a scheme.

Keywords: Graph theory, System Design, Combinatorics, Al-
gebraic Topology, Topology Discovery, Landmark Routing

I. BACKGROUND

Techniques for routing information are central to all com-

munication networks. Routing algorithms are intimately cou-

pled to the way that nodes in the network are addressed

or named. Such algorithms fall somewhere in the spectrum

from proactive to reactive [15], according to the extent of

precomputation done to facilitate route discovery. In stable

networks with powerful nodes, such as the Internet, routing

tables in special router nodes are proactively maintained and

take advantage of the hierarchical structure of IP addresses

to enable route discovery. At the other end, in ad hoc sensor

and communication networks, where topology changes are fre-

quent and node hardware less powerful, reactive protocols that

discover a route on-demand become desirable. Unfortunately,

in the absence of auxiliary data structures, reactive protocols

such as AODV [12] or DSR [8], may resort to flooding the

network in order to discover the desired route.

In this paper we are primarily interested in routing on

wireless sensor networks. Such networks are often deployed

in settings where the nodes operate untethered; thus power

conservation becomes a serious concern and flooding is un-

desirable. Early uses of sensor networks were primarily data

collection applications, requiring the one-time construction of

aggregation or broadcast trees. As the sophistication of sensor

network applications increases, however, there is more de-

mand for point-to-point routing of information to support data

centric storage [14] and more complex database-like queries

and operations. Examples include multi-resolution storage,

range searching, and the like. A survey of networking and

data storage techniques for sensor networks is given in [20].

While the fragile link structure and meager node hardware of

sensor networks suggests the use of reactive routing protocols,

the energy overhead of flooding for route discovery can be

significant and needs to be mitigated whenever possible.

One such situation is when the geographic locations of

sensor nodes are known. In that case, greedy geographical

routing protocols can be used in which a packet starts at

the source node and is then successively relayed through

other nodes to its destination with as few intermediate states

as possible. At each step, the node currently holding the

packet simply forwards it to the node, among its one-hop

communication neighbors, which is closest to the destination.

Various meanings of ‘closest’ are possible. The presence of

holes in the sensor field can cause these greedy methods to

get stuck in local minima; however, a variety of methods

have been proposed for overcoming this difficulty and guar-

anteeing packet delivery, if at all possible. Probably the best

known among these, GPSR [9] builds a planar subgraph of

the connectivity graph and uses perimeter forwarding when

greedy forwarding gets stuck. The beauty of these geographic

forwarding methods is that they compute routes that are often

close to the best possible, and do so with very little overhead

in maintaining auxiliary routing structures. Effectively the

location of a node becomes its name or address, and each node

needs only to know the locations of its neighbors and that of

the destination in order to decide how to forward a packet.

Euclidean coordinates encode the global state and hence such

algorithms can operate effectively using information which is

purely local.

Although geographical location gives the nodes natural

names and enables efficient routing, it is in many cases difficult

or expensive to obtain accurately. GPS receivers can be costly

and lead to cumbersome node form factors; furthermore,

they do not work indoors, or under heavy foliage, etc. As

a consequence, in most settings, it is only feasible to have

a few nodes equipped with a GPS receiver. Various localiza-

tion algorithms have been developed [16], [17] and must be

invoked to localize the rest of the nodes. In these methods,

the geographic location of a set of anchor nodes is assumed
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Fig. 1. Landmarks are shown by triangles. Sensor nodes are shown as small circles. The nodes are divided into tiles. The dark nodes are the boundaries of
the tiles. (i) The landmark Voronoi complex; (ii) The combinatorial Delaunay triangulation.

to be known, either manually or through GPS. Other nodes

determine their location by estimating their distances to three

or more of these anchors and then become anchors themselves;

and so on. However, such localization algorithms are still quite

expensive in terms of computation or communication, and

often insufficiently accurate. Unfortunately, these inaccuracies

can have deleterious effects on routing algorithms based on

location information [18].

The idea of geographic forwarding is so compelling that a

number of authors have tried to use geographic coordinates

even when actual node locations are not available. The idea is

to produce virtual node coordinates on which to use protocols

such as GPSR. These are obtained by embedding the link

connectivity graph of the nodes in the plane [10], [11], [13]

so that nodes that can communicate directly are embedded

near each other and those that do not are further away.

Unfortunately such global embeddings can be time-consuming

to compute and may not reflect well the actual geometry of the

node layout. For example, in the presence of communication

obstacles (such as walls), nodes that are geographically close

may actually be distant in the communication graph. Also,

when the actual node deployment is in 3-D, as in monitoring

buildings, forcing a 2-D layout will cause large distortions with

the consequence that the planarization required by GPSR and

related protocols will necessarily ignore much of the actual

connectivity present.

II. TOPOLOGY-ENABLED ROUTING

We present a novel routing scheme, named GLIDER, that,

like the virtual coordinate schemes above, depends only on

node connectivity and not on any knowledge of node posi-

tions. The key idea is to divide the problem into a global

preprocessing step and a local routing problem (for which

we present a specific solution). In the preprocessing step we

discover the global topology of the sensor field. This gives

us information about connected components and holes in the

sensor field layout. In the process we partition the field into

tiles. We regard these as having trivial topology, so that greedy

forwarding methods based on local coordinates are likely to

work well within each tile.

Our intuition is that, in many of the real-world situations

where sensor networks may be deployed, the topological

features of the layout (e.g. holes) will be few and will mostly

reflect the underlying structure of the environment (e.g. obsta-

cles). Moreover, this relatively simple global topology is likely

to remain stable: nodes may come and go, but such changes are

unlikely to destroy or create large-scale topological features. It

follows, if the global topology is stable, that we can afford to

carry out proactive routing at an abstract combinatorial level.

These high-level routes can then be realized as actual paths in

the network by using reactive protocols.

For example, the node distribution shown in Figure 1 has

a large hole in the middle. If two nodes are situated on

opposite sides of the hole, there are two ways of reaching

one node from the other: clockwise and counter-clockwise

around the hole. This is a topological statement. Having made

the topological decision whether to go clockwise or counter-

clockwise, we can use local decisions to select the specific

path on a node-by-node basis. In this way, we have broken

the routing problem into two phases: a global planning phase,



in which the combinatorial structure of the path is determined

using global information; and a local phase, in which the

combinatorial path is implemented as an actual sequence of

hops, selected using local greedy methods.

For this second phase, we define sets of local coordinates

that depend only on the link connectivity of the nodes.

Gradient descent on these coordinates will naturally follow

local geodesics of the layout. However, our procedure is

less sensitive to sensor geometry than is classical geographic

routing. For example, suppose we have a collection of sensors

densely deployed in two big rooms connected by a long narrow

corridor, as shown in Figure 2. The geometry of the sensor

field is curved, so greedy geographic routing between the

rooms will almost certainly fail if it is based directly on the

coordinate system implied by the diagram. On the other hand,

the topology of this sensor field is fundamentally the same as

the topology of an array of sensors deployed densely inside

a convex shape such as a disk. Our global-local scheme will

thread the route through the corridor without difficulty. This

works because we limit the local greedy processes to certain

regions (the tiles) whose topological structure is known to

be sufficiently nice. Our knowledge of the global network

topology allows our routing scheme to avoid some of the more

common pitfalls and limitations of current global coordinate-

based schemes; such as the limitation to two dimensions, or the

need to construct a planar graph to bypass local minima [9],

[1], or the explicit discovery of holes [5].

Fig. 2. A narrow corridor connects two rooms. GLIDER discovers
a route that goes through the corridor, following naturally defined
gradients.

Both phases of our algorithm—global topology discovery

and local coordinates—are based on the selection of an ap-

propriate subset of the nodes designated as landmarks. We

use combinatorial Voronoi/Delaunay techniques to extract a

topological complex whose vertices are the landmarks and

whose topology captures the topology of the underlying sensor

field. At the same time, we generate a set of local coordinates

for each node which are derived from the node’s link distances

to nearby landmarks. These coordinates are easy to generate

since they depend only on local information—we make no

attempt to provide a global geometric embedding for the entire

network.

The idea of using landmarks for routing is of course not

new to the networking community. Tsuchiya [19] proposed

a hierarchical landmark-based scheme for generating node

names or addresses. Our use of landmarks for addressing

and route generation is quite different—we use landmarks to

partition the sensor field into geographically routable tiles.

Recently, we became aware of another paper currently under

review that uses distances to landmarks as coordinates [7]

and provides extensive simulation results. Our work differs

in that we do not use all the landmarks to provide coordinates

for all the nodes. It follows that our scheme scales better

to large networks. Moreover, we have a different method

for generating the virtual local coordinate systems, which is

guaranteed to route correctly in the continuous domain and

which empirically works well in practice.

In a quite different subject area, nonlinear dimensionality

reduction (NLDR), landmarking techniques were introduced

in [4] to simplify expensive calculations by using a sparse

approximate representation of the global geometry of a data

set. The goal in NLDR is to find explicit low-dimensional

coordinates for viewing high-dimensional nonlinear data. The

local landmark coordinates used by GLIDER are closely related

to the coordinate embedding functions derived in [4].

As an aside, it is somewhat unfortunate that the current

usage of the term topology discovery in the networking com-

munity refers only to the discovery of local link relationships

between nodes and to the lowest-order topological invariant,

namely path connectivity. Our use of the term topology dis-

covery in this paper refers more broadly to an understanding of

the global topology of the sensor field in the sense of algebraic

topology; for example, we consider higher order topological

features such as holes in 2-D, tunnels and voids in 3-D, and

so on.

We note that in traditional algebraic topology the objects

of study are continuous spaces rather than discrete collections

of points or nodes. That being so, when we talk about the

topology of a finite set of points sampled from an underlying

object, we really mean the topology of the underlying object

itself. To recover this from the points alone, we can concep-

tually transform the discrete cloud of points into a continuous

space by putting a small ball around each point, making

sure that the balls associated to nearby points have sufficient

overlap. From this one can build discrete structures, namely

simplicial complexes, that provably capture the topology of

the underlying continuous object [2] under mild conditions.

The same idea can be applied to the task of understanding the

topology of a field of communication nodes. However, the lack

of positional information, the need to minimize computational

costs, and the desire to perform topology estimation in a

distributed way, all make the network case more challenging.



III. OVERVIEW OF GLIDER

As mentioned earlier, our scheme for route discovery and

node naming/addressing is based purely on link connectivity

information, and it works by separating the global topology

and the local connectivity. Formally, suppose that G = (V,E)
is a communication graph on the sensor nodes V . The edges E
are unweighted: they identify which pairs of nodes have direct

communication but not the geometric distance between those

nodes. The graph distance between two nodes is simply the

number of edges (or hop count) in the shortest path between

them.

Given the graph G, we assign a name to each node in V .

We also construct an auxiliary atlas M(G) which is shared by

all the nodes. A local name-based route discovery scheme is a

relay scheme which functions as follows. For any destination v
specified by name, and for any node u, the scheme specifies a

successor node chosen from the neighbors of u. By jumping

repeatedly from node to successor, the destination v is even-

tually reached. The choice of successor depends only on the

names of v, u and the neighbors of u, and on the auxiliary

atlas M .

An alternative view is that the communication graph G is

decomposed into two parts: the common auxiliary atlas M
which encodes global connectivity information that is ac-

cessible to each node, and the node names which encode

node specific information stored distributedly in each node.

In a trivial way, one can simply let M equal G or (in the

other extreme) arrange for each name to encode the entire

communication graph and the position of the node. Our goal is

to reduce the size of M and the length of names by exploiting

the fact that G is a communication graph of sensors deployed

within some geometric space.

To compute the auxiliary atlas M , we estimate the global

topology of the sensor field by partitioning the nodes into

routable tiles and extracting the adjacency relations between

these tiles. The goal is for each routable tile to have trivial

topology, so that simple greedy routing will work well within

the tile. Meanwhile, the global connectivity structure of the

set of tiles provides a compact high-level atlas of the sensor

field. Our particular partition is defined by selecting a small

set of well-dispersed nodes to be landmarks, and letting the

tiles be the Voronoi cells of the landmarks, where the Voronoi

cell of a landmark u is the set of nodes whose nearest

landmark is u (in the hop-count metric). Ties are permitted,

so a node may belong to more than one tile. The cell complex

associated to such a partition is called the landmark Voronoi

complex (LVC). The dual complex of the LVC has been called

the combinatorial Delaunay triangulation (CDT) [3]. It is

this which serves as our auxiliary atlas M . The details of

constructing LVC and CDT are described in Section IV.

The name of each node consists of two parts: the global

tile name and the local landmark coordinates. The global

tile name of a node is simply the identity (unique ID) of its

closest landmark; this identifies the tile containing the node.

(If the node belongs to more than one tile, one can be chosen

arbitrarily.) The local landmark coordinates are derived from

the set of distances from the node to its nearby landmarks.

Specifically, we use ‘centered squared-distance coordinates,’

which we describe in Section V. It turns out that gradient

descent on the Euclidean distance function in these coordinates

gives an effective greedy routing algorithm. More precisely,

in the continuous domain we can prove under mild conditions

that this algorithm always succeeds. In the discrete case, our

experiments show that this scheme has high success rate even

for sparse sensor deployment. In Section V, we describe the

local landmark coordinate system in detail.

In summary, the preprocessing phase discovers the global

topology by building the landmark Voronoi complex, and

constructs the local coordinate system for each tile. Every node

is given a name reflecting these components; and every node

has knowledge of the combinatorial Delaunay triangulation,

which captures the global topology of the sensor field in a

compact lightweight structure. When a node is presented with

a routing request, it first calculates from the combinatorial

Delaunay triangulation a sequence of tiles for the routing path.

Then, to select the next node in the route, the node uses greedy

gradient descent towards the next tile in the path, or towards

the final destination (if the final tile has been reached). The

details are given in Section VII-B.

The success of our approach depends on making a reason-

able choice for the set of landmarks. We discuss this further

in Section IV-B. In many common situations we can expect

that the complexity of the topological features of our complex

will reflect the complexity of the topological features of the

environment in which the sensor nodes are deployed, such

as physical obstacles that prevent node placement. We expect

these to be large-scale features and few in number. As a

consequence, the number of landmark nodes needed will also

be small—as this number is proportional to the topological

complexity of the field. Thus the combinatorial Delaunay

complex is a small structure and it is reasonable to assume

that it can be stored at, or easily accessible from, every node.

IV. LANDMARK VORONOI COMPLEX (LVC)

For a set of nodes V and a communication graph G, the

landmark Voronoi complex captures the global topology of the

network using only the local link connectivity. We may assume

that G is connected, since we can otherwise just consider each

connected component separately. We denote by τ(u, v) the

topological length (hop count) of the shortest path between

u, v in the communication graph.

A. Definition

The landmark Voronoi and Delaunay complexes are the

natural extension of the geometric Voronoi diagram, and its

dual Delaunay triangulation, to the case of a graph with the

shortest-path metric. For a graph G = (V,E) and a subset

of landmarks L ⊂ V , define the Voronoi cell T (v) of a node

v ∈ L to be the set of nodes whose nearest landmark is v (ties

are allowed). See Figure 1(i). Formally:

T (v) = {u ∈ V | ∀w ∈ L , τ(u, v) ≤ τ(u,w)}



We note the following property of a Voronoi cell.

Lemma 1. For any node u ∈ T (v), the shortest path from u to

v is completely contained in T (v).
Proof. If the lemma were false, there would exist w �∈ T (v)
on the shortest path from u to v. Since w �∈ T (v), there exists

x ∈ L such that τ(w, x) < τ(w, v). Thus, τ(u, x) ≤ τ(u,w)+
τ(w, x) < τ(u,w) + τ(w, v) = τ(u, v). This contradicts the

hypothesis that u ∈ T (v); so the lemma must be true. �

One implication of this lemma is that the spanning graph

on each Voronoi cell is connected. Thus, the Voronoi cells

of a set of landmarks provide a natural partitioning of the

sensor field into connected tiles. A stronger requirement is

that the tiles have trivial topology in all dimensions (not

just connectivity). When the sensor field has large holes,

we find that appropriately-chosen landmarks can effectively

fragment the sensor field into subsets with simple topology.

See Figure 1(i).

The Voronoi cells form the landmark Voronoi complex

(LVC). Following [3], we use a dual combinatorial Delaunay

triangulation (CDT) to record the adjacency relation between

Voronoi cells.1 For our purposes, the combinatorial Delaunay

triangulation D(L) is a modified dual of the LVC, defined as

follows. Write w ∼ w′ to mean that nodes w,w′ share an edge

in G or are the same node. Then the vertices v1, . . . , vk span

a simplex in D(L) if and only if there exist nodes w1, . . . , wk

such that wi ∈ T (vi) for all i and wi ∼ wj for all i, j.

Under favorable conditions (a dense distribution of nodes,

reasonably simple topology, a small number of well-separated

landmarks) suitable variations of the LVC and CDT complexes

successfully capture the global topology of the communication

network [3]. These constructions give us the potential to detect

and exploit high-order topological characters of a sensor field.

Having said that, in this paper we are mainly interested in

the connectivity graph D(L) of the landmarks, i.e. the 1-

dimensional skeleton of CDT (Figure 1(ii)). The edge v1v2

belongs to D(L) iff there exist nodes w1, w2 with w1 ∼ w2

and wi ∈ T (vi) for i = 1, 2. The nodes wi are referred to as

witnesses to the edge v1v2.

For connectivity, we have the following easy result:

Theorem 2. If G is connected, then the combinatorial De-

launay graph D(L) for any subset of landmarks L is also

connected.

Proof. We must show that there is a path in D(L) between

any pair of landmarks u, v. Since G is connected, there is

certainly a path from u to v within G. Let us suppose this

path visits nodes w0, w1, . . . , wk in sequence, where w0 = u
and wk = v. Each node wi belongs to some Voronoi cell

T (xi) where each xi ∈ L. We may assume that x0 = w0 = u
and xk = wk = v. We claim that the sequence x0, x1, . . . , xk

represents a valid path in D(L) from u to v. Specifically, for

each 0 ≤ i < k, we claim that xi ∼ xi+1 in the graph D(L).

1Our definitions diverge slightly from the definitions in [3]. The problem
in both cases is to ensure that CDT maintains the connectivity of the original
graph; something that is not quite true with the natural definitions. We deal
with this in a different way than [3].

This is clear, since wi, wi+1 are witnesses for the edge xixi+1

in the case that xi �= xi+1. �

The proof of Theorem 2 amounts to the stronger assertion

that every path in G can be ‘lifted’ to a path in D(L).
Conversely, every path in D(L) can be realized as a path in G.

This follows from the case of a single edge v1v2 ∈ D(L). Let

w1, w2 be witnesses for v1v2. For each i the shortest path

from vi to wi lies entirely within T (vi), by Lemma 1. We can

concatenate these paths to obtain a path v1 . . . w1w2 . . . v2 in G
which lifts to the length-1 path v1v2 in D(L).

These last assertions provide strong corroboration of one of

the main claims in this paper, which is that the CDT graph is

an appropriate simplification of the communication graph G
for determining a global routing strategy.

We summarize the main points of this section: For a set of

chosen landmark nodes, the Voronoi cells of the landmarks

provide a partitioning of the sensors. Each Voronoi cell is

connected and has ‘simple’ topology when the landmarks

are well-chosen. The combinatorial Delaunay triangulation

encodes adjacency information between Voronoi cells, and

provides a compact high-level atlas for the sensor field which

is suitable for global route-planning.

B. Landmark selection

While the definition and properties of LVC and CDT hold

for any subset of landmarks, careful selection of landmarks is

crucial for the effectiveness and efficiency of routing. Since

CDT serves as the auxiliary atlas provided to every node, it

should be as small as possible so that it can be replicated in

the network with minimal cost. On the other hand, we need

enough landmarks to ensure that each Voronoi cell has simple

(i.e. ‘hole-free’) topology. These are the two opposing goals.

The landmark selection problem bears some resemblance to

the sampling problem for mesh generation—we particularly

desire to have several landmarks lying close to topological

features, such as hole boundaries. Hand-picked landmarks

are one option, since in many cases the presence of holes

may be known a priori to those deploying the network. It

is also possible to automatically discover hole-boundaries [6],

or at any rate a few nodes on the boundary [13]. With such

information, we can arrange for nodes near the boundary to

be selected as landmarks with higher probability than interior

nodes. In general we expect the number of landmarks to be

proportional to the number of holes (or topological features) of

the sensor domain. We are usually interested in domains with

a small number of large holes, in which case the landmark set

and hence the CDT complex will be small enough to distribute

to the entire set of nodes.

V. LOCAL LANDMARK COORDINATES

Under ideal circumstances with well-chosen landmarks, the

nodes in each cell of the landmark Voronoi complex will be

nicely distributed. By this we mean that the shortest-distance

metric in each tile approximates the metric in a finite sample

of a convex Euclidean region. One general strategy for routing

on such network is to supply a coordinate system to the nodes,



and then perform greedy routing by forwarding packets to

a neighbor which is closer to the destination according to

these coordinates. The use of the Euclidean coordinates of

the sensors is one natural choice but these coordinates may

be difficult or expensive to obtain. Here we propose a virtual

coordinate system which is easy to compute, is guaranteed to

be free of local minima in the continuous plane, and which in

practice works well in the discrete case. These are the local

landmark coordinates. We first describe these coordinates in

continuous Euclidean space, and then extend the definitions to

the discrete case.

A. Continuous version

It is easiest to understand our coordinate system (we will

define it shortly) in the continuous case. The goal is to

construct a set of coordinate functions depending only on

the distances to some fixed set of landmark points, in such a

way that gradient descent on the distance function to a target

point always reaches the target successfully. In other words,

the distance function should have no local minima other than

the global minimum.

Let {ui} be a set of k landmarks in the plane. The natural

first guess is to assign to each point p the virtual coordinate

vector A(p) = (|p − u1|, |p − u2|, . . . , |p − uk|), where

|p − ui| is the Euclidean distance between p and ui. The

virtual distance in this coordinate system between points p, q
is then d(p, q) = |A(p)−A(q)|2 =

∑k

i=1(|p−ui|−|q−ui|)
2.

Given a destination q, the greedy routing algorithm operates

by gradient descent on this function with respect to p.

There are simple examples with three landmarks which

show that this process can get stuck in local minima. One can

do slightly better with the squared-distance vector B(p) =
(|p−u1|

2, |p−u2|
2, . . . , |p−uk|

2). It can be shown that there

are no local minima when 3 ≤ k ≤ 9 and when the destination

is inside the landmark convex hull. When k > 9 or when

the destination is outside the convex hull, there is no such

guarantee. Figure 3(i) shows an example where the gradient

flow can get trapped in a local minimum. For this reason

we introduce centered landmark-distance coordinates C(p).
The i-th coordinate is defined by [C(p)]i = [B(p)]i − B̄(p),
where B̄(p) is the mean of the entries of B(p). The modified

virtual-distance function is then d(p, q) = |C(p)−C(q)|2. The

advantage of this is made clear by the following lemma.

Lemma 3. In the continuous Euclidean plane, gradient descent

on the function p �→ d(p, q) always converges to the target q,

provided that there are at least three non-collinear landmarks.

Proof. We can explicitly evaluate

[B(p)]i = |p|2 − 2p · ui + |ui|
2 ,

and hence

[C(p)]i = −2p · (ui − ū) + wi ,

where ū = 1
k

∑
j uj and wi = |ui|

2 − 1
k

∑
j |uj |

2.

The function p �→ C(p) is therefore an affine linear

transformation. Under the assumption that there are at least

three non-collinear landmarks, we now show that the map

is one-to-one. The idea is to find at least one point in the

plane which is determined uniquely by its coordinates, because

then (for an affine map) the same must be true for all points

in the plane. The circumcenter of any three non-collinear

landmarks is such a point, since it is uniquely determined

by the property that the corresponding three coordinates are

equal. This establishes that the map is one-to-one, in addition

to being affine linear. It follows that gradient of the distance

function is nowhere zero except at the destination itself. �

In k-dimensional Euclidean space, the minimum require-

ment is k+1 landmarks not contained in any k−1-dimensional

affine subspace. In other words, the affine span of the land-

marks must be the entire k-space.

We note that the straight line path to the target is a

descending trajectory for the distance function d. In general

it is not the path of steepest descent. Figure 3(ii) shows the

same configuration as in Figure 3(i), but with the distance to

target measured in the centered landmark-distance coordinates.

In that case there is no local minimum.

B. Discrete version

In a graph setting, the discrete version of the greedy

routing algorithm uses hop counts to the landmarks as a

replacement for Euclidean distances. In situations where the

nodes are densely distributed, the minimum number of hops to

a landmark is a fair approximation to the Euclidean distance

to that landmark.

For a set of landmarks {u1, u2, . . . , uk} and for any node p,

let τ(p, ui) denote the graph distance (i.e. the minimal hop

count) between p and ui. Let τ̄(p) =
∑k

i=1 τ(p, ui)
2/k. We

then assign to p the centered virtual coordinate vector

C(p) = (τ(p, u1)
2 − τ̄(p), . . . , τ(p, uk)2 − τ̄(p)) .

The centered virtual distance between two points p, q is then

d(p, q) = |C(p) − C(q)|2 just as in the continuous Euclidean

case. Given a destination q, our greedy routing algorithm

chooses the neighbor r of p which minimizes d(r, q). In

other words, we move packets by greedy minimization of

the Euclidean distance to the target, measured in the virtual

coordinate system. This algorithm is local and efficient since

only the virtual coordinates of the neighbor nodes are needed.

In the discrete version, we can no longer guarantee that

local minima do not exist. A packet may hit a node for

which all the neighbor nodes have virtual distances further

away from the destination. However, when the nodes are

dense enough, the shortest distance metric approximates the

Euclidean metric closely enough to reduce the chance of local

minima. Another cause of instability is the eccentricity of the

affine transformation in Lemma 3. When the landmarks are

nearly collinear—e.g. when τ(u, v) + τ(v, w) ≈ τ(u,w) with

three landmarks u, v, w—the gradient field in the continuous

case is quite shallow in certain directions. This can be seen

quite clearly in Figure 3(ii). Under these circumstances the

discrete approximation is more likely to suffer from local

minima.



(i) (ii)

Fig. 3. The distance function for landmark-based greedy routing. There are 3 landmarks marked by snowflakes. The destination is marked by a + sign. The
color of a point represents its distance to the destination with respect to (i) uncentered coordinates; (ii) centered coordinates. Note the local minimum in the
uncentered case.

Local landmark coordinates are only used for routing

between nodes in the same tile, so we can define these

coordinates in terms of a small set of nearby landmarks called

reference landmarks. Specifically, for the nodes in the Voronoi

cell T (v) of a landmark v, the reference landmarks are v itself

and the neighbors of v in D(L). For technical reasons, when

we compute distances between each node and its reference

landmarks we do not use shortest paths within G; instead

we define a neighborhood distance metric as follows. For

each landmark v ∈ L, its Voronoi neighborhood is defined

as U(v) = T (v) ∪
⋃

(u,v)∈D(L) T (u), i.e. as the union of the

Voronoi cells of v and its neighbors. By Lemma 1, U(v) is

connected. For a landmark v and a node u ∈ U(v), their

neighborhood distance is defined as the graph distance from

u to v measured in the subgraph spanned by U(v).

We refer to the resulting (centered squared neighborhood

distance) coordinates as local landmark coordinates.

VI. NAMING AND ROUTING

In this section, we describe the naming and routing scheme

in GLIDER by using the landmark Voronoi complex and local

landmark coordinates. We will describe our implementation of

the scheme in Section VII.

A. Naming of nodes

We distinguish the ID and the name of a node. The ID

of a node is a number or string that uniquely identifies a

node. It is usually assigned to each node before the network

is formed, e.g. when the nodes are manufactured. A node’s

name is assigned after preprocessing, and it depends on the

connectivity of the network and other information such as

the choice of landmarks. The name is used to distinguish

and address network nodes for the purpose of routing or

other higher-level applications such as information gathering.

Usually the node names need not be unique, provided that

ambiguity can be quickly resolved—e.g. if nodes with the

same name are within close vicinity.

In GLIDER, once the Voronoi complex is constructed, each

node belongs to a Voronoi cell. We call that cell the resident

tile of the node, and we call its landmark the home landmark.

The name of a node includes the ID of its home landmark. In

addition, each node includes the list of neighborhood distances

to its reference landmarks, as defined in Section V-B. For

a node v, let h(v) denote the name of its home landmark,

and A(v) its vector of neighborhood distances. As defined

earlier, the local landmark coordinate vector C(v) is obtained

from A(v) by squaring and centering.

We note that witness nodes may belong to multiple Voronoi

cells. In that case the home landmark may be chosen by

breaking the tie in some arbitrary manner; for example, by

assigning a linear order to the landmark IDs and picking the

landmark with the smallest ID among the valid candidates. A

more serious problem in the discrete domain is that the local

landmark coordinates may not uniquely specify the node. In

practice this ambiguity happens rarely provided that each node

has several reference landmarks and enough neighbors. Even

when this ambiguity arises, nodes with the same coordinates

are likely to be close to each other, in which case a local

flooding can easily resolve the situation. We also comment

that, in typical data-centric applications built on sensor net-

works, it may be even less of a problem, since nearby nodes

often carry similar data, and may not need to be distinguished

if they are close enough.

B. Routing

Suppose that we wish to route from node u to node v.

Routing in GLIDER consists of two stages: global routing and

local routing.

• Global routing. This amounts to identifying the shortest

path from h(u) to h(v) in CDT. It can be done by a look-up

in the precomputed shortest-path tree rooted at h(u). The path



provides a sequence of tiles for the journey; say T1, T2, . . . , Tk

where Ti = T (ui) for landmarks ui, with u1 = h(u), uk =
h(v).
• Local routing. Local routing consists of inter-tile routing,

responsible for discovering path from tile Ti to Ti+1, and intra-

tile routing, responsible for discovering the path towards v
once Tk is reached.

Intra-tile routing is done by gradient descent using the

local landmark coordinates. More specifically, once the packet

reaches a node w ∈ T (h(v)), it is relayed to a neighbor which

is closer to the landmark v in the Euclidean distance on the

local landmark coordinates. If such a node does not exist, i.e.

if a local minimum is reached, then the fail-safe option is to

initiate flooding within the tile.

u1

p

q

u2 u3

Fig. 4. Routing across tiles.

According to the discussion in Section IV, for any p ∈ Ti

there exists a path from p to Ti+1 in the Voronoi neighborhood

of ui+1. Inter-tile routing is responsible for discovering such

a path. Since Ti and Ti+1 are adjacent, p lies inside the

Voronoi neighborhood of ui+1. We can forward the packet

towards ui+1 by picking a node which decreases the neigh-

borhood distance to ui+1. Eventually the packet must reach the

tile Ti+1, at which point we switch the temporary destination

to ui+2; and so on until the packet reaches reaches T (h(v))
(Figure 4).

The name of protocol, GLIDER, is meant to capture this

notion of gliding down a sequence of potential slopes during

this trip to the destination.

VII. IMPLEMENTATION

There are two phases in GLIDER: topology discovery and

routing. Corresponding to the two phases, we introduce the

naming protocol and the routing protocol.

A. Naming protocol

The topology discovery phase begins after the landmarks

are selected. The naming protocol is designed to carry out the

following tasks:

1) construct the landmark Voronoi complex (LVC) in a

distributed fashion;

2) compute a routing table on the graph of the combinato-

rial Delaunay triangulation (CDT);

3) assign to each node its local landmark distance coordin-

ates with respect to its reference landmarks.

The topology discovery phase involves several floodings of

the network. Our algorithm is designed such that the number

of messages in each flooding is linear in the number of nodes

in the network and is independent of the number of landmarks.

This improves the scalability of GLIDER to cases where many

landmarks are needed.

In the first round of flooding, we compute Voronoi cells

and the graph-distances from each node to its nearest land-

marks. We arrange things so that each landmark floods only

a small ‘neighborhood of influence’ rather than flooding the

entire network. More specifically, each landmark u initiates

a flooding message (IDu, ℓ) where IDu is the ID of u and

ℓ = 1. Every node v in the network maintains a list Sv of the

current closest landmarks, together with the current shortest

distance τv . Initially, Sv = ∅ and τv = ∞. Upon receiving a

flooding message (IDu, ℓ), there are three cases.

1) if ℓ > τv , discard the message;

2) if ℓ = τv

• if IDu ∈ Sv, discard the message;

• if IDu /∈ Sv , add IDu to Sv , and broadcast (IDu, ℓ+
1) to all the neighbors;

3) if ℓ < τv , set Sv = {IDu}, τv = ℓ, and broadcast

(IDu, ℓ + 1) to all the neighbors.

If the landmarks initiate this process at approximately the

same time, and each message travels at approximately the

same speed, then any given landmark’s flooding message will

be dropped when it starts to ‘penetrate’ the Voronoi cells of

other landmarks. This cuts down the total number of messages

transmitted in the flood.

At the end of this, the list Sv contains precisely the set

of landmarks that are the closest to v with common shortest

distance τv . Equivalently, Sv is the set of landmarks u such

that v ∈ T (u).
At this point, every node knows which Voronoi tile(s) it

belongs to. By consulting its neighbors, a node can now

determine whether it is a witness to an edge u1u2 in the CDT

graph. Specifically, denote by Nv the set of neighbors of v in

the communication graph G. For each landmark node u ∈ Sv,

node v constructs the set

Lv(u) = (Sv ∪ (
⋃

w∈Nv

Sw)) \ {u} .

With this definition, a landmark u′ belongs to Lv(u) iff v is

a witness for the edge uu′ in CDT. If Lv(u) is not empty

then v sends the list Lv(u) to landmark u. This is quite

straightforward: messages within a tile T (u) can be relayed

to u by greedily reducing the graph distance to u at each stage.

It follows from Lemma 1 that there is no danger of getting

stuck. This concludes the distributed construction of the LVC

and the CDT graph.

We now designate one node to poll the landmark nodes and

collect their CDT neighbor information. Having done so, this

polling node floods this information to all the landmarks. Each

landmark computes the CDT shortest-path tree rooted at that

landmark, and then broadcasts the tree to all the nodes inside

its Voronoi cell. This shortest path tree serves as the global

routing table for the nodes in the cell. In addition, each



node v knows the ID of its home landmark u and also of its

other reference landmarks, since these can be read off as the

neighbors of u in the shortest-path tree.

The final stage is to compute, for every node v, the neigh-

borhood distances between v and its reference landmarks. This

can be achieved by initiating a new flood from each land-

mark u which is confined to U(u). Every node knows by now

whether it belongs to U(u), so whenever the flooding message

reaches a node outside U(u) it is simply discarded. Once every

node v has obtained its vector A(v) of neighborhood distances

to its reference landmarks, the local coordinate vectors C(v)
can be computed using the prescription in Section V-B.

B. Routing protocol

After successful completion of the naming protocol: (i) the

global topology of the network is captured by the CDT graph;

(ii) each node stores the CDT shortest-path tree rooted at

its home landmark; (iii) each node stores the neighborhood

distances to its reference landmarks.

The GLIDER routing protocol runs on top of this infrastruc-

ture. The header of a packet contains a ‘temporary destination

landmark’ (TDL) bit together with a integer that saves the

ID of a temporary destination landmark. When a packet and

the name of its destination are received at a node v, the

node determines, by comparing names, whether the destination

belongs to the same tile or a different tile. For the actual

forwarding process—determining which node receives the

packet next—there are two scenarios to consider:

• Intra-tile routing. When the destination is inside the current

tile, GLIDER uses the greedy routing algorithm described in

Section V-B. If all the neighbors of v are further away from

the destination than v itself, flooding within the tile is used

to complete the delivery of the packet to the destination.

Otherwise, v forwards the packet to a neighbor whose distance

to the destination is least among all neighbors of v.

• Inter-tile routing. If the destination is not in the current

tile, routing follows the method indicated in Section VI-B.

The node v first checks whether the temporary destination

landmark bit is set. If TDL is not set, or if TDL is set but the

actual temporary destination landmark stored in the header is

the home landmark of v, then v consults its landmark routing

table to find the next tile ui+1 in a shortest-path route in CDT

to the destination tile. Having done so, v sets TDL to TRUE

and saves the ID of ui+1 in the packet header.

If TDL is set, and the indicated temporary destination ui

is not the home landmark of the current node v, then v greedily

picks any of its neighbors in U(ui) which is closer than v
to ui in neighborhood distance. This is always possible since

U(ui) is connected. When there are multiple such neighbors,

we pick one randomly. This randomization achieves better load

balancing without hurting the quality of the path.

C. Data structures

Landmarks are used as logical reference points in determin-

ing nodes’ local coordinates. However, from the programming

Node{
the shortest path tree on CDT rooted at its home landmark;

neighborhood distances to its reference landmarks;

a bit to record if the node is on the boundary of a tile;

the IDs of its neighbors

}

Fig. 5. Information stored at a node.

point of view, they are just ordinary nodes. No extra processing

power or memory is required. The information stored at a node

is shown in Figure 5.

It is apparent that the local memory required for each node

scales well with network size. Except for the routing table on

the landmarks, each node stores only local information. Since

the number of landmarks is small (23 landmarks out of 2000

nodes in our simulations) the total memory required for each

node is manageable.

The global routing table on the landmarks is stable over

time. The combinatorial Delaunay triangulation is a compact

structure that captures the global topology of the sensor

deployment, and which only changes when a large number of

nodes disappear. As in Figure 1(ii), a CDT edge at the bottom

of the hole disappears only when a band of nodes die so that

the two corresponding landmarks are not directly connected.

VIII. SIMULATIONS

We implemented the GLIDER protocols using C++. Al-

though our simulations do not take into consideration typical

details of network behavior—such as packet loss, packet

delay and timing, and so on—these simulations empirically

verify the correctness of the algorithm and the feasibility of

the protocols. Network-level simulations using ns-2 will be

undertaken in the near future, in order to verify that this routing

scheme is practical for real world deployment.

We simulated a network with 2000 nodes distributed on a

perturbed grid. The communication graph used is the unit disk

graph on the nodes. Two nodes can communicate directly if

their Euclidean distance is at most 1. After the communication

graph is generated, the Euclidean coordinates are discarded

since our protocols use only the communication graph. Among

2000 nodes, 23 are chosen as landmarks. Of the landmarks

18 are chosen randomly, with another 5 nodes added near

the network boundary, after the random selection. In all the

figures, sensors are shown as small circles and landmarks are

shown as larger triangles. Gray circles represent nodes on the

boundaries of Voronoi cells, or equivalently the witnesses of

CDT graph edges.

A. Success rate of landmark greedy algorithm

Using GLIDER, a packet can always make progress across

intermediate tiles. However it may get stuck at small holes

as it progresses towards the destination in the final tile. Node

density is an important parameter in estimating the frequency

at which a packet gets stuck. Although this work is intended

for dense sensor fields with large holes in the communication



time: 0 time: 0

(i) (ii)

Fig. 6. A 315m by 315m region with 2000 nodes distributed on a perturbed grid. The standard deviation of the perturbation (Gaussian random variable) is
equal to 50% of the radio range (11m). There are many small holes and one large hole in the network. There are a pair of source nodes on the left and a pair
of destination nodes on the right. Routes between source and destination are shown as sequences of arrows. (i) Routes generated by GLIDER. Landmarks are
shown as triangles. The network is divided into tiles. The darker nodes form boundaries of the tiles. (ii) Routes generated by GPSR.

average number of neighbors 2.9 3.2 4.1 ≥ 5.3
percentage of success 20 70 95 100

TABLE I. The success rate of the greedy routing

graph, the routing algorithm is also quite tolerant to sparse

node distribution with lots of small holes. We simulated a

network with 2000 nodes distributed on a perturbed grid.

The degree of perturbation is simulated using a Gaussian

random variable with standard deviation equal to 50% of

the radio range. We ran experiments on the success rate of

greedy routing by varying the radio range (thus varying the

average number of one-hop neighbors). The results are shown

in Table I. For each scenario, we tried 20 pairs of sources

and destinations selected at random, with path length about

40 hops in each case. The results indicate that an average of 5

or more neighbors is needed to ensure the success of greedy

routing. In all the figures shown in this paper, each node has

5.3 one-hop neighbors on average

B. Load balancing and path length

In the absence of obstacles, our topology-based routing

algorithm generates routes that are comparable to those gen-

erated by geographical routing algorithms. Figure 6 (i) shows

two sample routes generated by GLIDER between two pairs

of source and destination nodes. For comparison, routes gen-

erated by GPSR are shown in (ii). Although the actual routes

generated by the two algorithms are quite different, their

lengths differ by at most 2 hops out of about 40 hops in total

path length.

When obstacles, i.e. holes, are present in the communica-

tion graph, geographical routing schemes either use planar

graphs [9], [1] or attempt to discover hole boundaries [5]

to get around holes. When a packet gets stuck, it is routed

along the boundary of a hole until greedy forwarding becomes

possible again. Paths that are routed around the same hole

tend to merge at the hole boundary. Figure 7 shows an

example. This traffic pattern is an inherent consequence of

the combination of greedy forwarding on Euclidean distance

and perimeter forwarding. The major consequence is a vicious

cycle where these boundary nodes become overloaded, suffer

power depletion at an early stage, and as a result cause the

hole to grow further. An even stronger effect of this power

depletion is that small neighboring holes merge into larger

holes, resulting over time in large communication voids in the

network.

In contrast, the fact that GLIDER uses intermediate land-

marks to guide inter-tile routing means that hole-boundary

nodes are of no particular importance and do not get over-

loaded. The cross-tile routing described in section VI-B allows

packets to transit efficiently through each tile. Although the

next tile’s landmark is used to “pull” a packet through the

current cell, once the packet enters the tile the target shifts to

the landmark of the subsequent tile in the route. This avoids

the undesirable effect of traffic convergence at the landmarks.

To test this, we randomly picked 45 source and destination

pairs (in each case separated by more than 30 hops) within a

single network. Figure 8 shows the “hot spots” when GLIDER
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Fig. 7. The same network setup as in Figure 6 except for the standard deviation of the Gaussian random perturbation is 20% of the radio range (9m). Three
source and destination pairs are shown in this figure. (i) Routes generated by GLIDER. (ii) Routes generated by GPSR.

(i) (ii)

Fig. 8. Hot spots in the network with 45 pairs of randomly chosen source and destination; the darker the color, the heavier the traffic load: khaki (6 − 8

transit paths), orange (9 − 11 transit paths), black (≥ 12 transit paths) (i) traffic distribution map of GLIDER (ii) traffic distribution map of GPSR.

and GPSR are used, using different colors to indicate different

levels of traffic load. Nodes lying on fewer than 6 routes are

not colored. It is evident that the hole in the center creates

a disturbance in traffic patterns. With GPSR, the effect is

to create hot spots along the hole boundary. With GLIDER,

traffic around the hole appears to be better spread out and

more balanced.

Another disadvantage of boundary-hugging is that it tends

to yield longer paths. In contrast, GLIDER uses shortest (in

terms of the number of hops) paths for inter-tile routing. If

the landmarks are placed close to topological features such

as hole boundaries, GLIDER can circumnavigate obstacles

comparatively efficiently. In the examples shown in Figure 7,

GPSR generates a route of length 52 for the rightmost source

to its destination, while GLIDER generates a route of length 41.

In this figure, although the routes generated by GLIDER are

longer in Euclidean distance, they are shorter in the graph-

distance. On average, the lengths of routes generated by



the two algorithms are comparable. For the 45 routes, the

average path length generated by GPSR is 42.08. The average

path length generated by GLIDER is 40.46. The major factor

influencing path length in the case of GPSR is the geometric

shape of the holes; in the case of GLIDER, it is the placement

of the landmarks.

C. Discovery of routes under cases with difficult geometry

The landmark Voronoi complex succeeds in capturing the

topology of the network and discovering routes even in situa-

tions that would be difficult for purely geometric approaches.

In the scenario shown in Figure 2, two big rooms are connected

by a long narrow corridor. Landmarks are selected randomly.

The routing path that goes from one room to the other through

the corridor is correctly discovered by our routing algorithm.

We do not actually need landmark nodes be placed in the

corridor itself. (Indeed, for randomly selected landmarks, the

probability of finding a landmark in the corridor is compar-

atively small.) As long as the original network is connected,

such connectivity is inherited by the combinatorial Delaunay

triangulation.

IX. SUMMARY AND FUTURE WORK

In this paper we propose a topology-based naming and

routing structure that uses only the link connectivity of the

network. We do not use Euclidean coordinates—instead, we

invent a more robust local landmark coordinate system within

each tile, based on hop distances to nearby landmarks. We

partition the network into tiles using the landmark Voronoi

complex so that within each tile local greedy routing using

our local coordinates can be expected to work well. We show

that the Voronoi landmark-based routing protocol generates

natural and load-balanced routing paths. The algorithms and

protocols proposed in this paper work for sensor nodes in three

dimensions as well—unlike other current geographic routing

protocols (in fact, which underlying space the network nodes

come from matters little).

Although we currently only exploit the path connectivity

information stored in the landmark Voronoi complex for our

routing scheme, we believe that the higher order connectivity

information we compute will prove useful in more complex

applications. An example may be loopy belief propagation and

other probabilistic reasoning tasks that can benefit from a fuller

understanding of the global topology of the sensor field.

It should be clear that this is only preliminary work on

an approach to routing that leaves much to be explored.

We still need to address important issues, such as the cri-

teria and algorithms for landmark selection, potential multi-

resolution LVC hierarchies for situations where a large number

of landmarks is required, as well as methods for handling

network dynamics (node addition and failure). Additional local

coordinate systems also deserve to be explored, perhaps using

partial or total information about the actual node positions or

the communication quality between nodes.
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