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ABSTRACT Native microtubules prepared from extruded and dissociated axoplasm have been 
observed to transport organelles and vesicles unidirectionally in fresh preparations and more 
slowly and bidirectionally in older preparations. Both endogenous and exogenous (fluorescent 
polystyrene) particles in rapid Brownian motion alight on and adhere to microtubules and are 
transported along them. Particles can switch from one intersecting microtubule to another 
and move in either direction. Microtubular segments 1 to 30/~m long, produced by gentle 
homogenization, glide over glass surfaces for hundreds of micrometers in straight lines unless 
acted upon by obstacles. While gliding they transport particles either in the same (forward) 
direction and]or in the backward direction. Particle movement and gliding of microtubule 
segments require ATe and are insensitive to taxol (30/~M). It appears, therefore, that the 
mechanisms producing the motive force are very closely associated with the native microtu- 
bule itself or with its associated proteins. 

Although these movements appear irreconcilable with several current theories of fast 
axoplasmic transport, in this article we propose two models that might explain the observed 
phenomena and, by extension, the process of fast axoplasmic transport itself. The findings 
presented and the possible mechanisms proposed for fast axoplasmic transport have potential 
applications across the spectrum of microtubule-based motility processes. 

Fast axoplasmic transport is one of a number of fundamental 
cellular motility processes for which the mechanism is not 
known in detail, yet microtubules clearly play an integral and 
possibly fundamental role (for reviews see references 30, 50, 
51, 62, 70, 71, 73). The most intriguing question about the 
involvement of microtubules is whether their role is only 
passive, serving as guide elements or tracks for some other 
force-generating system, or whether they might be involved 
directly in force generation. Although many hypotheses of 
axoplasmic transport propose a passive role for microtubules 
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(52, 67), some models suggest that microtubules or their 
associated proteins may be involved in the force production 
or contain the force-generating enzymes (31, 37, 50). 

Some authors have suggested a role in axoplasmic transport 
for actin and myosin (17, 29, 42, 44), but most of the recent 
evidence does not favor an actomyosin mechanism of force 
generation (16, 25, 26, 28, 71). 

The giant axon of the squid Loligo pealei was selected as 
material for the present study not only because of the volume 
of axoplasm that can be obtained from a single axon (5 to 10 
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~1), but also because transport of  organelles and vesicles 

(particles) continues in the extruded axoplasm for several 

hours, as long as ATP is available as a source of  energy (15). 

Our strategy, a more direct approach to motile processes, is 

based on the results of  high resolution video-enhanced mi- 

croscopy supported by electron microscopy where necessary, 

rather than on ultrastructural research alone. The Allen video- 

enhanced contrast (AVEC) t method of videomicroscopy (3- 

5, 8) developed during the last few years makes it possible to 

detect, visualize, and analyze the motile behavior of small 

organelles and cytoskeletal elements (34, 35). 

In the course of earlier work it was observed that "fila- 

ments" of unknown identity often protruded from the axo- 

plasmic surface into the buffer and transported particles (15). 

In a progress report given at the Marine Biological Laboratory 

in 1983 it was shown for the first time by some of the authors 

(6) that "motile filaments" could be dissociated from extruded 

axoplasm and that some of these transported particles unidi- 
rectionally, whereas others transported bidirectionally. In this 

report there were also indications that the filaments them- 

selves might be motile. 

We now report the results of  our continuing studies of  the 

identity and ultrastructure of these filaments, and the results 

of  our recent attempt to explore and quantify the full range 

of their motile capabilities. We present evidence that the 

filaments separated from squid axoplasm are native micro- 

tubules and that they themselves can glide over glass surfaces 

and transport organelles and vesicles. These previously un- 

known properties of native microtubules enable us to present 

much more detailed and testable hypotheses for the mecha- 

nisms that may underlie microtubule-dependent motility in 

the axon and a number of other cellular processes of  funda- 

mental biomedical importance. 

MATERIALS AND METHODS 

Materials: Freshly collected squid (Loligopealei) from 12 to 20 cm in 
body length were obtained daily from the Department of Marine Resources of 
the Marine Biological Laboratory (Woods Hole, MA). Giant axons were 
dissected (27), washed several times in Ca++-free sea water, and extruded (13) 
into 50 vl of axoplasmic dissociation buffer of the following composition 
(expressed as millimolar): 200 K ÷ aspartate, 37 taurine, 20 betain, 15 glycine, 
8 HEPES, 3.7 MgCI2, 2.8 K+-EGTA, 0.86 CaCI2, 0.3 D-glucose, <1 to 20 K ÷- 
ATP, 10 -6 M phenylmethylsulfonyl fluoride, pH 7.2. This is similar to Buffer- 
X in reference 16 but more dilute. All experiments were performed at a room 
temperature of 2 I*C. 

The axoplasm in dissociation buffer was placed on a 24 x 50 mm No. 0 
cover glass supported by a stainless steel frame and covered by a smaller cover 
glass, usually 22 x 22 mm (No. 1). Observations were made over 2-8-h periods 
on preparations sealed or partially sealed with Valap (Vaseline, lanolin, paraffin 
1:1:1). 

We obtained motile microtubule segments by homogenizing the extruded 
axoplasm in 40 M of dissociation buffer in a homemade Dounce-type homog- 
enizer (inner diameter 2.0 mm) with a loosely fitting pestle. Four or five gentle 
strokes were sufficient to fragment the microtubules into segments 0.5-30 ~m 
long. 

In some experiments we added taxol to the dissociation buffer (30 ~M final 
concentration), in other experiments, fluorescent latex beads (570 nm diam; 
Polysciences inc., Warrington, PA) were applied to the preparation in the same 
buffer. 

In experiments with motile microtubule fragments, cover glasses were used 
untreated or treated experimentally by the following procedures: (a) siliconi- 
zation (Prosil-28; PCR Research Chemicals, Inc., Gainesville, FL); (b) detergent 
wash followed by rinsing in distilled deionized water; (c) detergent wash 
followed by rinsing in absolute ethanol and subsequent flaming; (d) coating 
with poly-L-ornithine (110,000 or 15,000 tool wt) or poly-L-lysine (800,000 

Abbreviation used in this paper: AVEC, Allen video-enhanced con- 

trast. 

mol wt); or (e) coating with poly-L-ornithine ( 15,000 mol wt), then with doubly 
concentrated poly-L-aspartate ( 15,000 to 20,000 mol wt). 

All poly-amino acids were obtained from Sigma Chemical Co. (St. Louis, 

MO) and applied according to Collins (20). 

Methods" The motile behavior of the dissociated axoplasm was ob- 
served by AVEC-differential interference contrast videomicroscopy (3-5, 8). 

The internally corrected 100x planapochromatic oil immersion objective of 
the inverted Zeiss Axiomat microscope equipped with a 50 W mercury arc 
lamp was used, yielding a magnification on the TV monitor (screen width 25 
cm) of 10,000 x. Real time analogue video enhancement and digital image 
processing with the Hamamatsu C 1966 Photonic Microscope System (Photonic 
Microscopy Inc., Oak Brook, IL) consisted of the following steps: (a) AVEC 
analogue enhancement of the full aperture image at an instrumental compen- 
sator setting of k/9, with gain and offset adjusted to from about one-third to 

one-half of their respective ranges; (b) digital subtraction of the fixed pattern 
of mottle that is an inevitable consequence of analogue enhancement; (c) in 
some cases, reduction of pixel noise by a real-time digital rolling average 
operation over two or four frames; (d) manipulation of the gray scale by 

stretching of the pixel brightness histogram. 
To demonstrate movements of long microtubules in tangles, autosubtraction 

with the specimen in focus was carried out to show changes in microtubular 
position and loop diameter. In this mode, the image initially disappeared then 
gradually reappeared, showing only moving structures and their original posi- 
tions in reverse contrast. 

Fluorescent particles were detected with a Hamamatsu C 1000-12 silicon- 
intensified target (SIT)-camera head connected to the C 1966 image processor. 

These particles were analyzed quantitatively with the trace function of the C 
1966; the Hamamatsu C 1055 x, y-tracker, or the Hamamatsu C 2117 video 
manipulator (Photonic Microscopy Inc.). 

Video-enhanced microscope images were recorded simultaneously in real 
time by a normal speed video cassette recorder (Sony model VO-5800 or VO- 
2600; Sony Corp. of America, Long Island City, NY) and by a time lapse 
recorder (Sony model TV0-9000, no longer commercially available in the 
United States) for display at an acceleration of 10 times. 

Video analysis was carried out in several ways. Preliminary velocity analysis 
was done by a computer method described previously (7). Detailed analyses 
were performed with the Hamamatsu model C 2117 video manipulator, which 
permits single particles or microtubule segments to be analyzed with respect to 

both trajectory and instantaneous velocity history. 
We performed electron microscopy by placing several Formvar- and carbon- 

coated gold finder grids in the dissociated preparations. Either the grids were 
removed after the observation and stained with 0.5% uranyl acetate for negative 
staining according to Langford (45) or the preparation was fixed by perfusion 
with 1% glutaraldehyde in 0.1 M cacodylate buffer of pH 7.4 and stained with 
0.5% uranyl actate for whole mount electron microscopy (74). Aliquots of 
homogenized preparations were processed for negative staining as described by 
Langford (45). 

Electron microscopy was performed with a JEOL 100CX electron micro- 
scope with stereo attachments. A 60-~m aperture was used for negative stain, 
and an aperature of 40 vm for whole-mounts. The microscope was operated at 
an accelerating voltage of 80 kV. 

RESULTS 

Transport of Organelles and Vesicles along 
"Filaments" Continued during Gradual 
Dissociation of the Axoplasm 

Incubation of extruded squid axoplasm in the dissociation 
buffer caused a gradual dissociation of the axoplasm into a 
more or less tangled mass of "filaments" which served as 
substrata (or "tracks") for the transport of organelles and 
vesicles (collectively called "particles") (Fig. 1). The vesicles 
are of very low contrast and by the criteria of size and 
abundance correspond to the many synaptic vesicles visible 
in intact axon (7, 38). 

There were several typical stages or conditions of the dis- 
sociation process that were distinguishable. Not every stage 
was seen in every preparation. In all of these, continuous 
movement along the filaments was observed: 

STAGE 1. A X O P L A S M I C  C Y L I N D E R :  The extruded cyl- 
inder of axoplasm retains its highly ordered parallel arrange- 
ment of filaments in its interior. The morphology and motility 
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FiGure 1 A sequence of videomicrographs (0.5-exposure) at times indicated over a period of 46 s shows that almost all long 
microtubules undergo changes in position and shape. The four most evident long microtubules with shape chartres are indicated 
by numbers. Timer indicates hours, minutes, seconds, and hundredths of a second. Bar, 2 #m. x 4,000. 
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of its interior are qualitatively indistinguishable from those of 
intact axons (15, 16). 

STAGE 2. SURFACE OF THE AXOPLASMIC C Y L I N D E R :  

The surface of the axoplasmic cylinder adjacent to the cover 
glass shows the individual filaments in disorder, somewhat 
loosened, curly, and frequently intersecting. Vesicles and 
larger organelles move along individual filaments rapidly and 
almost unidirectionally. 

STAGE 3. P R O T R U D I N G  FILAMENTS:  With time the 
free ends of filaments, which continue to move particles, 
protrude from the free surface of the axoplasmic cylinder. 
This is one source of the numerous particles that are released 
from the bulk axoplasm and remain in Brownian motion in 
the medium surrounding the filaments. The filaments wave 
gently, probably actively as well as by Brownian motion. They 
have the appearance of seaweed waving under water. 

STAGE 4. SEPARATE FILAMENTOUS TANGLES;  

Sometimes filamentous tangles can be found at a variable 
distance from the axoplasm proper. With time, apparently 
more and more filaments fall free or move a certain distance 
from the axoplasm. Both axial and lateral movements have 
been observed (Fig. 1). Filaments are found on the surface of 
the lower cover glass where they continue to be in motion 
and/or to move particles that have alighted upon them from 
the surrounding medium (Fig. 1). 

STAGE 5. ASTERLIKE ARRAYS: In some cases these 
tangled masses form loose knots or asterlike arrays with 
filaments transporting particles in and out of a center where 
the particles tend to accumulate (Fig. 2). 

STAGE 6. FREE FILAMENT FRAGMENTS;  Sometimes 
short segments of the filaments come free from the tangles or 
from the axoplasm proper and glide over the glass surface. 
The number of fragments can be increased by gentle homog- 
enization so that a field 25 um wide with a depth of focus of 
-0.3 um may contain up to 100 filaments, most of which 
show the gliding motion, and many of them simultaneously 
transport particles in one or both directions (Fig. 3). Particles 
moving forward along gliding microtubules often accumu- 
lated at the end, forming a knob resembling the head of a 
cane. 

STAGE 7. AGED P R E P A R A T I O N S ;  After 1 h--earlierin 
the cases where ATP was only 1.0 raM--the movement of 
the particles slowed down considerably concomitant with the 

FIou~t~ 2 A tangle or knot to long microtubules, each of which 
was transporting particles unidireclionally either toward or away 
from the center, Bar, 2 ~m. × 3,5130. 

speed of filament gliding, and bidirectionality of transport on 
individual filaments became more pronounced. 

STAGE 8. TERMINAL STAGE: After several hours, when 
only Brownian motion persisted, many particles were found 
attached all along the filaments. Some of them appeared to 
be bound to the filaments by some kind of microscopically 
unresolved filament with a length of up to 0.5 um showing 
apparent "tethered Brownian motion." 

Ultrastructure 

Electron micrographs of negatively stained filaments with 
particles attached clearly showed that these were actually 
native microtubules, almost all of them single. In some prep- 
arations particles were found to be attached by thin bridging 
filaments of irregular appearance and unknown molecular 
identity. The microtubules themselves were surrounded by an 
amorphous "fuzzy coat" which sometimes resembled a loose 
helix (Fig. 4). 

The particle-laden microtubules do not appear to be asso- 
ciated with other recognizable cytoskeletal elements, at least 
not in any apparent functional relationship. That is not to 
say, however, that the preparations are devoid of other fila- 
mentous structures. Filaments the size of neurofilaments, 
which are very numerous in ilataet axoplasm (38), are fre- 
quently seen in these preparations and are more numerous 
than microtubules. However, they rarely show associated 
vesicles and have a much more curly appearance, whereas 
only the microtubules in the electron micrographs appear as 
straight as the filaments seen by light microscopy. 

Details of Particle Movements 

Particles in suspension around the filaments were in vigor- 
ous Brownian motion, but once they came close to or collided 
with the filaments, they adhered to them and were trans- 
ported. Movement of small particles rarely stopped before 
they reached the end of the microtubute. Larger organelIes 
sometimes stopped for a while and continued to move within 
seconds or minutes, but real stops or "jamming" were not 
often observed except when two or more microtubules inter- 
sect. These particles only rarely became detached along the 
filament length and in most cases remained attached until 
they came to the end of the filament. There, one or a few 
9articles occasionally remained at the end of a filament, as 
was seen predominantly in older preparations and on micro- 
tubular fragments (see below). 

In preparations that were either fresh and/or contained 
>1.0 mM exogenous ATP, the movements of particles along 
the vast majority of microtubules appeared to be unidirec- 
tional. In these preparations, speeds reached 2 urn/s, almost 
as fast as in the intact axon. 

The vesicles (smallest particles) moved continuously with- 
out interruption or changes of direction, just as in the intact 
cell. The movements of large organeUes were neither so rapid 
nor so regular, although some moved as rapidly as vesicles. 
In fresh preparations or ones containing at least 1.0 mM ATP 
the movement was fastest, and the tendency to unidirectional 
transport was more pervasive. The density of traffic appears 
to depend on the concentration of particles in suspension, 
which varies considerably with time and distance from the 
axoplasm. 

As preparations were observed over time, the veIocity of 
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FIGURE 3 A sequence of videomicrographs at the times shown depicts the gliding of four filament fragments over a period of 

17 s. Arrows show the directions of gliding. Two fragments became detached and were carried out of the plane of focus by 

Brownian motion. Arrowhead shows particles carried at the frontal end of a gliding microtubule. Bar, 2 ~m. x 4,000. 

particle movement decreased, while the incidence of bidirec- 
tional transport increased (Table I). In some preparations, 
bidirectional transport became the dominant mode, in which 
the larger particles moved more slowly and predominantly in 
the direction opposite the transport of  the small vesicles (Table 
I). 

Vesicles and small particles are the most numerous and 
move most rapidly in one direction, which probably corre- 
sponds to the orthograde direction, since this compares well 
with the situation in intact axons. In cases where similar 
numbers of  particles move in either direction the movement 
is not symmetrical: large particles move more frequently in 
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what would correspond to the retrograde direction and do so 
with decreasing speed as their size increases. The velocity of 
orthograde particles in contrast seems to be almost independ- 
ent of  size (Table I). 

Particles traveling in opposite directions along the same 
microtubule usually do not interact in such a way as to perturb 
their respective movement or velocity when they pass one 
another (Fig. 5). Only in some cases do two particles collide 
and then one may leave the microtubule. In many scenes the 
large particles appear to be more loosely attached to the 
microtubules and seem to be hopping over the small ones. 

When two microtubules that are not parallel cross one 



FIGURE 4 Electron micrograph of a negatively stained native microtubule with an associated large particle. Also present is an 
amorphous, possibly helical fuzzy coat around part of the microtubule (arrow). Similar material is around the particle (arrow). The 

microtubule surface also has a few projections (arrowheads). Neurofilaments were also observed (white arrow), x 68,340. 

another, particles moving along one of them may switch to 
the other and move in either direction along it without an 
apparent pause or change of speed (Fig. 5). Simultaneous 
attachment of a particle to two neighboring or intersecting 
microtubules can cause the microtubules to become deformed 
under stress. When one microtubule becomes detached from 
the particle, both microtubules recoil elastically (Fig. 5). 

The speed at which particles moved varied from one prep- 
aration to another and depended on the concentration of ATP 
available. We repeatedly observed that the addition of ATP 
to preparations in which transport had slowed down increased 
the speed of the particles several fold, but the .speed never 
reached that observed in intact axons. 

In preliminary experiments, fluorescent polystyrene parti- 
cles 0.537 ~m in diameter were added to an active preparation 
and their movement was recorded immediately. Although in 
the fluorescence mode the microtubules could not be seen, it 
was clear that some particles did not show the characteristic 
Brownian motion and were transported linearly and in the 
same manner as the organelles and vesicles. The speed was 
estimated to be 0.135 + 0.005 ttm/s, which corresponds well 
to the speed of large particles moving retrogradely (compare 
Table I). 

Movements of Microtubules 

Long (>30 #m) segments of microtubules within the fila- 
mentous tangles near the edges of the extruded axoplasm 
became deformed irrespective of whether particles were trans- 
ported along them or not. This could best be demonstrated 
by autosubtraction with the image processor. These images 
initially lacked contrast except for that due to structures that 
had moved. It was clear from Fig. 1 that microtubular loops 
changed not only their shape and position but also their radius 
of curvature from the initiation of autosubtraction. The free 

ends of microtubules protruding from tangles or from the 
surface of bulk axoplasm showed graceful waving and some- 
times serpentine movement. These movements are ATP de- 
pendent and can be clearly distinguished from Brownian 
motion. The latter is responsible for a more rapid oscillation 
of small amplitude and is characteristic of preparations in 
which all motility has ceased. 

When two microtubules intersected, one was frequently 
bent by the other, as if pulled or stroked in some manner. 
This could be attributed in almost all cases to a moving 
particle contacting or transiently attaching to the transverse 
filament (Fig. 5). Particles seem to have multiple "binding 
sites" (compare reference 48) since often a particle moving 
along one microtubule pulls another microtubule with it. 
Attachment to more than one microtubule is most often seen 
with large spherical particles and mitochondria but may also 
occur with the particles of the smallest size class. 

Shorter segments (1 to 30/~m) of microtubules obtained by 
gentle homogenization of extruded axoplasm glide over the 
glass surface at velocities between 0.1 and 0.7 gm/s (Table II, 
Figs. 9 and 13). The gliding of individual microtubules is 
strictly unidirectional. Individual microtubules can glide in 
any direction through the field of observation and usually 
follow almost straight paths (Figs. 3 and 6). The paths of 
gliding microtubules are all different and cannot be attributed 
to tracks on the glass surface or to streaming of the medium 
in the preparation. For the most part, they did not deform or 
change direction unless interacting with particles attached to 
glass. In such cases microtubules usually detached from the 
glass surface and disappeared out of the focus or changed 
direction while remaining stiff all of the time (e.g., Fig. 3 and 
86 in Fig. 6). 

When a gliding microtubule was completely stopped by 
colliding with a particle stuck to the glass, it was blocked from 
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further translation but underwent a "flshtailing" deformation 
that consisted of a sequence of serpentine shapes (Fig. 7). In 
~40 such cases observed usually a certain segment of the 
front end of the microtubule was attached to the surface or 
otherwise immobilized (Fig. 8). Occasionally, such blocked 
microtubular segments freed themselves and underwent ad- 
ditional translation for many tens or hundreds of micrometers 
before encountering another obstacle. The fishtailing micro- 
tubular segment in Fig. 8 fractured when its radius of curva- 
ture became less than 1 #m. Individual microtubules were 
followed over many microscope fields for up to 5 rain. During 
this time they traveled far from the residual axoplasm without 
conspicuous diminution of their length or speed. The speed 
of the microtubules was independent of  their length (Fig. 9). 

It is striking that the movement of microtubules, including 
the serpentine movements, took place in a layer of fluid ~0.3 
t~m thick above the glass surface (as measured with the 
calibrated stage height adjustment of the microscope). This 
movement therefore can be considered to take place in an 
almost two-dimensional space. Only in a very few cases 
observed was part of a microtubule out of focus. However, in 
a few cases fishtailing of filaments descending from free 
suspension down to the surface layer was observed when they 
hit the surface, while the tail end was still out of focus. In 
these cases fishtailing was not maintained for an extended 
time, but the bent microtubules underwent elastic straight- 
ening, settled as stiff rods, and started gliding over the surface. 

We should mention that even in fields where dozens of 
microtubule fragments are gliding over the glass there is little 
or no detectable interference between them when their paths 
cross. Even if particles remained attached to the front end of 
the microtubules no disturbance of the paths of the microtu- 
bules gliding over one another was detectable. Of a few 
hundred cases only one collision was observed where a micro- 
tubule with a particle attached deformed another microtubule 
which was struck "amidships." This particle moved forward 
along the second microtubule up to its end while dragging the 
adhering microtubule along. In another case, one microtubule 
caused a second to bend at an angle o f -5*  when one moved 
over or under the tail end of the second. 

We observed - 1 0  microtubules that had been bent into a 
U shape or into rings (as if the ends were tied together by an 
invisible filament). These microtubules showed rotation in 
the plane of the focus on the surface of the cover glass (Fig. 
10). This movement was again not disturbed by other micro- 
tubules passing through the area, and it appeared that these 
rings were rotating while loosely attached to the glass. Some 
showed a circling motion for several minutes. 

The administration of the microtubule-stabilizing agent 

FIGURE 5 A sequence of videomicrographs shows the interactions 

between two native microtubules (a and b) and two large particles 

(I and 2), and bidirectional particle mot ion on microtubule B. 

Particles 1 and 2 move in the same direction along B; 1 migrates to 

the end of B but attaches transiently to A enough to deform it. A 

smaller particle in a (arrowhead) moves in the opposite direction of 

particles 1 and 2 on microtubule B and is just visible in frame b 

(arrowhead). Particle 2 makes dual contact with A and B in frames 

c and d, causing both A and B to deform due to the force applied 

by the particle to A and 8. In frame e, the attachment of 2 to B is 

suddenly broken, but that of 2 to A remains. Both microtubules 

recoil elastically. Bar, 2 ~m x 5,730. 
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TABLE II 

Velocity of Short Microtubule Segments Obtained by Homogenization 

Age of prepara- 

MTs MTs with head tion whi le Symbol in 
Type of preparation analyzed particles Length Velocity analyzed Fig. 9 

Untreated cover glasses 17 

Untreated cover glasses + taxol 19 

Untreated cover glasses 20 

Siliconized cover glasses 5 

Siliconized cover glasses, preparation 20 

transferred to untreated cover 

glasses 

,~m #mls h 

0 3.6 _ 1.3 0.22 + 0.02 0.25- I  • 

2 5.7 +__ 2.7 0.18 + 0.02 2 -6.5 0 

9 3.9 + 1.5 0.35 ± 0.05 0.25-1 • 

1 5.1 ± 1.6 0.35 ± 0.08 1 -1.5 • 

5 4.4 _ 2.8 0.25 ± 0.04 2 -4 • 

MT, microtubule. 

Z 

FIGURE 6 A populat ion of native microtubule fragments obtained 

by shearing is observed in the presence of 30 #M taxol for 5 min. 

Two or three positions are depicted at variable intervals for num- 

bered microtubules, the velocities of which are given in Table II 

(taxol preparation). Note that the paths are almost but not quite 

straight, some deviating in either direction from straightness. 

taxol (by replacement of the medium in the preparation three 
times with an equal volume of 30 pM taxol-containing me- 
dium) did not interfere with particle transport or the gliding 
of microtubules (Table II and Fig. 1 l). 

Modification of the glass surface by careful cleaning, sili- 
conization, or treatment with poly-L-ornithine, poly-L-lysine, 
or poly-L-aspartate did not influence the gliding behavior of 
microtubular segments very much (Table II). Although the 
gliding microtubules appeared to be somewhat attracted by 
the surface of various kinds of differently treated cover glasses, 
on the hydrophobic siliconized glasses this "attachment" was 
more loose. In this case moving microtubules behaved like 
stiff rods continually undergoing small adjustments in direc- 
tion although they never reversed their motile polarity (Fig. 
6). More subtle differences may exist but must await further 
quantitative analysis. 

As the preparations age and/or the concentration of ATP 
decreases, microtubule movement slows down (Table II) and 
an increasing number cease gliding. 

Movements of Particles on Gliding Microtubules 

Particles attached to and moved along short, gliding micro- 
tubules just as they did on longer segments in the tangled 
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FIGURE 7 The sequence of straight and serpentine shapes as- 

sumed by a gliding microtubule before and after it encounters an 

obstacle. Times are in seconds. Left row shows arrival and initial 

bending of the microtubule. Center and right rows show a full cycle 

of 30 s. Arrows indicate maximal inflections that are the result of 

pushing forward on the part of the tail end of the microtubule. 

These shapes are fol lowed by partial straightening of the microtu- 

bule due to elastic forces. The microtubule is 4.8 ~.m long. 

masses. Particles in some preparations traveled more fre- 
quently in the same (forward) direction in which the micro- 
tubules glided (Fig. 12). In most preparations, however, the 
particles moving in the direction opposite that of gliding were 
much more numerous. The velocity of microtubule gliding 
linearly correlates with the velocity of the particles moving 
backward simultaneously on the same microtubule (Fig. 13). 

The organelles moving in the same direction as microtu- 

1744 THE JOURNAL OF CELL BIOLOGY • VOLUME 100, 1985 



bular gliding showed a very weak correlation coefficient, 0.44. 
We observed only four gliding microtubules that had bidirec- 
tional transport while gliding. In all of these cases, the veloc- 
ities showed the same range and same relationship as those of 
microtubules attached to glass (See Table I, series B). The 
backward velocity was in all cases two to four times faster 
than the forward velocity (Table III), suggesting that the 
forward direction corresponds to the retrograde direction in 
Table I and in situ. 

No difference was detected in the speeds of microtubule 
gliding in cases in which particles either did or did not move 
along them. When particles moved on microtubules partially 
attached to the surface and partially undergoing serpentine 
movement of the tail region, no conspicuous differences in 
speed could be observed when the particles passed from the 
waving tail to the immobilized front part or vice versa. Gliding 
microtubules that also transported particles often showed a 
particle stuck at the leading end (two examples are shown in 
Fig. 3). In some preparations almost all microtubules showed 
such particles. Particle movement and microtubule gliding 
slowed down as the preparations aged. In the stage at which 
most microtubules were already stuck to the surface, particle 
movement along stationary microtubules was still observed, 
although it occurred at a reduced speed. 

Rotation of Microtubules on Their Axes 

The manner of movement by both long and short micro- 
tubular segments suggested the possibility that this movement 
entailed rotation of the microtubule on its axis, as was sug- 
gested by Jarosch and Foissner (43). The present study neither 
confirmed nor excluded this possibility. That slightly bent 
ends of some microtubules protruding from tangles oscillated 
back and forth at -1  Hz, as if rotating slowly, favors this 
hypothesis. 

If microtubules gliding over glass actually did rotate, one 
would expect lateral displacement of the microtubules during 
their translation. This is indeed the case for most of the 
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FIGURE 8 A series of videomicrographs of two microtubules (A 
and B) initially gliding in opposite directions. A shows a small particle 

moving backward. B encounters an undetected obstacle or its front 
end becomes fixed to the glass. In b-e it becomes deformed into 
serpentine shapes. In f, it breaks into two fragments. Bar, 2 ,m.  x 
6,000. 
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microtubules, but the lateral displacement is small (usually 
<0.5 ~m per 10 ~m of movement). Since it occurs about 
equally often to the right- and to the left-hand side (there are 
several examples in Fig. 6), the data do not offer strong 
support for the rotation hypothesis. 

The particles move equally well along filaments that appear 
to be either firmly attached to glass or are gliding freely. This 
suggests that their movement may not be helical around the 
microtubule. 
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FIGURE 10 The rotation in the plane of focus of a U-shaped native 

microtubule. At the right is a composite image from the various 

times shown at the times indicated. Time is in minutes, seconds, 

and hundredths of a second. One full rotation is 28 s. 

DISCUSSION 

Interpretation of A VEC-Differential Interference 
Contrast Images 

It has been shown previously that AVEC-differential inter- 
ference contrast and AVEC-polarization microscopy can de- 
tect cytoskeletal and vesicular structures an order of magni- 
tude smaller than the resolution limit of the microscope (3- 
5, 7, 8). However, it must be kept in mind that structures 
smaller than an Airy unit (-0.2 ~m) are inflated to that size 
so that they may be imaged at some multiple of their physical 
size (4). 

A possible limitation of video-enhanced microscopy sug- 
gested by this fact is that one may not always be able to 
discriminate between single, double, or multiple elements. 
Thus, it is significant that negatively stained preparations 
showed almost all of the microtubules to be single. It is 
interesting, however, that when two microtubules do lie in 
the same microdomain in one part of their length and diverge 
elsewhere, the contrast is doubled when they lie within the 
same microdomain or Airy disk diameter. Thus, one can 
actually discriminate single and paired microtubules on the 
basis of their image contrast even when they cannot be 
resolved. 

The impression of particles riding on microtubules, al- 
though confirmed by electron microscopy (Fig. 4), does not 
prove their physical contact, since they might be separated by 
as much as 100 nm on either side of the microtubule. 
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FIGURE 11 The velocity of microtubule gliding as a function of the age of the preparation. (Top) Removal of preparation from 
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Although the viscoelasticity of squid axoplasm suggests 
cross-linking of the microtubules and other elements of  the 
cytoskeletal scaffold, it is clear that such cross-linkage is lost 
during preparation or is so weak that it permits the microtu- 
bules to be so easily separated from this scaffold (compare 
references 45 and 56). 

Unidirectional and Bidirectional 

Particle Transport 

It has been shown that cytoplasmic transport traffic occurs 
in contact with microtubules in frog keratocytes (35). More- 
over, bidirectional particle transport, including movements of 
the same particles in both directions, occurs on single micro- 
tubules (6, 34). The live observations of transport were carried 
out by AVEC-differential interference contrast microscopy 
followed by whole-mount electron microscopy of the same 
preparations to confirm that transport occurred on a single 
microtubule. Similar findings have been reported on a micro- 
tubule from squid axoplasm (60). 

From the polarized orientation of microtubules in neurons 
(19, 24, 36) and bidirectional traffic in intact axons and 
extruded axoplasm, one might expect that isolated native 
axonal microtubules would transport particles bidirectionally. 
However, contrary to this expectation, single microtubules in 
our preparations transported particles rapidly and unidirec- 
tionally in freshly made preparations and more slowly and 
bidirectionally when allowed to stand (Table I). 

At present we cannot distinguish between two possibilities, 
(a) that the decrease of the orthograde speed due to a decrease 
in ATP concentration would permit more particles to move 
in a retrograde direction, and (b) that the decrease in the 
frequency of particles moving past any fixed point itself 
allowed retrograde movements to occur. The data in Table I 
are consistent with both possibilities, since in fast microtu- 
bules the large organelles are conveyed in the orthograde 
direction as well, and in slow microtubules they move pre- 
dominantly in the retrograde direction. It is also possible that 
with time either the particles or the microtubules are modified 
so as to increase the frequency of bidirectional transport. 

Microtubular Movement 

It was suspected earlier (6) that long microtubules them- 
selves might be moving. Since there are no markers along 
these microtubules, the only way we could confirm this sus- 
picion was to show that curved sectors of loop arcs changed 
in diameter. This is confirmed and substantiated in our report. 
We could also show that protruding microtubules (stage 3) 
and microtubules captured by one end in a tangle (stage 4) 
show bending and serpentine movements that are ATP de- 
pendent. 

By causing the breakage of these long microtubules by 
shear, it was shown that segments 1.0 to 30 um long could 
glide along glass surfaces, even when the glass had been treated 
chemically in a variety of ways. This gliding movement is also 
ATP dependent (compare references 1 and 51) and insensitive 
to taxoi at 30 ~M. Therefore, the movement would appear to 

FIGURE 12 A 5 /~m-microtubule segment moves from left to right 

at the times shown (in seconds), and a particle alights (arrows) and 

moves forward to the end, where it is released. Bar, 2 #m. x 4,940. 
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FIGURE 13 The backward velocities of particles relative to the 

microtubules are plotted against the gliding velocity of the same 

microtubule. The slope is 3.02, the y-intercept is -0.11, and r is 

0.98. The forward velocities of particles (data not included) show a 

very weak correlation with slope = 2.19, y-intercept = -0.02, and 

r = 0.44. 

be due to a mechanoenzyme, an ATPase, and not to tread- 
milling (47). The mechanism of this movement appears to 
reside on the microtubule itself or with some protein bound 
to native microtubules. 

Except for our experiment involving the use of 30 uM taxol 
(Table II and Fig. 6) which establishes that treadmilling is not 
necessary for gliding or axonal transport to occur, the gliding 
of microtubular segments has not yet been studied after 
various pharmacological treatments. However, it may be rea- 
sonable to rely on the pharmacology of the extruded axoplasm 
paradigm (16) and microinjected or permeabilized axons (26, 
28) for a preliminary assessment of a likely mechanism for 
microtubule-associated transport. The pharmacology at pres- 
ent supports a central role for microtubules, and inhibition 
by erythro-9-[3-2-(hydroxynonyl)]adenine and vanadate is 
consistent with the involvement of a dynein or dynein-like 
mechanoenzyme although the definitive proof of such in- 
volvement is still missing. It is not yet clear, however, whether 
the available pharmacological data from the extruded axo- 
plasm paradigm apply to particle transport alone or to micro- 
tubular gliding as well. 

The close correlation of the speed of gliding with that of 
backward particle transport (Fig. 13) at the same time strongly 
supports the view that both motile phenomena are the result 
of the same force-generating mechanism. 

The translatory movements of microtubular segments are 
unidirectional and therefore probably related to the growth 
polarity of the microtubule. Further details can be deduced 
from a comparison of the speeds of particles on microtubules 
attached to glass (Table I) with the speeds of particles on 
gliding microtubules (Table III). Since the movement of par- 
ticles on these segments is predominantly backward, it is 
reasonable to suggest that this corresponds to the orthograde 
direction of transport in the intact axon. The forward trans- 
port of particles is less frequent, slower (Table III B), more 
variable in speed (Fig. 13), and therefore (by comparison with 
Table I) is assumed to correspond to retrograde transport. 
From these findings we conclude that the direction of micro- 
tubule gliding would correspond to the retrograde direction 
in situ. This was one of the predictions of the microstream 
hypothesis (72, 73). 
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Since the fast growing (+) end of microtubules is oriented 
toward the synapse (17, 24, 36), it seems probable that micro- 
tubules glide with their slow growing ( - )  ends forward. 

The finding that vesicles often remain at the ends of gliding 
microtubules corresponds nicely with reports that in intact 
neurons numerous vesicles are often seen associated with 
microtubule ends (56). 

Possible Mechanoenzymes and Their Location 

It has been shown by others that exogenous, inert particles 
are transported in axoplasm (2) and in other cells (l 1). This 
would appear to rule out a particle-associated mechanoen- 
zyme unless the cytoplasm contains an excess of that enzyme 
with a specific affinity for the surface of the type of particles 
transported. Certainly the transport of exogenous particles 
and gliding movement of microtubules in our preparations 
appear inconsistent with the idea that particle transport could 
result from a chemiosmotic gradient across particle mem- 
branes as was recently proposed (64). 

Furthermore, the various forms of motility of microtubular 
segments clearly demonstrate that some mechanoenzymatic 
process occurs at or near the surface of the microtubule and 
exerts a force pushing towards the front end. 

Since the microtubules are native, i.e., not reassembled 
from purified tubulin and microtubule-associated proteins, 
there may be mechanoenzymes associated with them. The 
fact that microtubular motility runs down without ATP and 
can be restored and accelerated by exogenous ATP strongly 
implicates an ATPase mechanoenzyme similar to either 
myosin or dynein. Such mechanoenzymes either have been 
reported in axons (for review see reference 71) or pharmaco- 

TABLE III 

Speed of Particles Moving along Gliding Microtubules 

Speed 

,~m/s 

A. Particles from different mi- 

crotubules 

Gliding microtubules 

Forward particles relative 

to surroundings 

Backward particles relative 

to surroundings 

Forward particles relative 

to microtubule* 

Backward particles relative 

to microtubule s 

B. Particles from bidirectional 

microtubules I 

0.26+_.0.11 (33) 

0.95 -+ 0.36 (9) 

0.39 +_ 0.24 (24) 

0.65 + 0.34 (9) 

0,63 _+ 0.35 (24) 

Backward Forward Ratio 

Microtubule I 0.70 0.18 3.89 

2 1.13 0.36 3.14 

3 1.21 0.71 1.70 

4 0.64 0.24 2.67 

* Each microtubule showed only one particle, moving either backward or 
forward. Values are averaged from three different preparations. Forward 
and backward speeds cannot be compared because of the use of different 
microtubules. The total number of particles measured is given in parenthe- 
ses. 

* These speeds are correlated with the speed of microtubule gliding. 
J These speeds are correlated with the speed of microtubule gliding as shown 

in Fig. 13. 
i The microtubules used each had one forward and one backward particle. 

Forward and backward speeds can be compared directly because they are 
measured from particles on the same microtubule. Speeds of particles are 
relative to the microtubule. 



logical data showing sensitivity to vanadate and erythro-9-[3- 
2-(hydroxynonyl)]adenine have been interpreted as compati- 
ble with the behavior ofa  dynein-like molecule as an essential 
part of the mechanism of fast axonal transport (16, 25, 26, 
28). Perhaps other mechanoenzymes remain to be discovered. 
The microtubule itself has long been known to turn over 
ATP, a process that has an unknown function (49, 53). 

Ultrastructural data so far do not help in identifying any 
known mechanoenzyme such as myosin or dynein. Electron 
micrographs of negatively stained native microtubules show 
either smooth surfaces or the presence of a loose, amorphous 
(or possibly helical) fuzz around them (Fig. 4), or particles 
attached to microtubules by bridging filaments (66). On the 
other hand, obervations in freeze-fracture preparations have 
been interpreted to mean that organdies are not connected 
to microtubules (59). It is likely that chemical fixation and 
dehydration may have removed or rendered unrecognizable 
any labile mechanoenzyme associated with the native micro- 
tubule. The image of native microtubules (Fig. 4) is certainly 
more complex than that of purified microtubules (45). 

Molecular Models to Explain Microtubular 

Motility and Fast Axonal Transport 

The new findings can now be compared with the various 
possible mechanisms and some new possibilities can be dis- 
cussed. Any valid theoretical approach must take into account 
a number of known facts derived from earlier works and the 
present study (for review see references 5 l, 70, and 71, and 
Table IV in reference 73): 

(a) In intact axons, the speeds of orthograde and retrograde 
transport are about equal (7). 

(b) Vesicles are transported continuously in one direction 
or the other without interruption; larger organelles move 
discontinuously in both directions (7) but predominantly in 
the retrograde direction. Although the speed of orthograde 
transport is similar for the various organelles, there are con- 
siderable differences in speed of retrograde particles. 

(c) The orthograde and retrograde transport systems are 
specific for different types of particles in the intact nerve (23, 
68, 71, 73). 

(d) Particles move in both directions along microtubules 
attached to glass. 

(e) Large and small particles can move in opposite direc- 
tions along single microtubules, yet they very seldom collide 
or influence one another's speeds. 

( f )  Particles moving along one microtubule toward the 
junction with another can switch to the intersecting micro- 
tubule and move in either direction. 

(g) Particles have more than one attachment site to the 
transport mechanisms (48). 

(h) Gliding microtubules transport particles in both direc- 
tions at similar speeds relative to the microtubule. The speed 
of backward movement is closely correlated with the speed of 
gliding, whereas with forward movement it is only weakly 
correlated. 

(i) Even in microtubules that transport particles in both 
directions, asymmetry of movement is maintained, since the 
two directions differ in speed, particle transport frequency 
and size. 

(j) Exogenous particles are also transported. 
(k) Attached microtubules show ATP-dependent bending 

and undulation. 

(l) Free microtubule segments move over glass surfaces at 
about one-quarter the speed of particles, apparently inde- 
pendent of the chemical nature of the surface. The direction 
of gliding probably corresponds to the retrograde direction in 
situ. 

(m) At obstacles, microtubules continue to push toward 
their front end, performing serpentine movements. 

(n) Gliding or fishtailing microtubules move over one an- 
other without mutual interference. 

(o) Microtubule assembly-disassembly seems not to be in- 
volved in any of the above phenomena. 

The formulation of any model must also take into account 
the following physical constraints and their consequences: 

(i) The viscosity of the environment of native microtubules 
must be not far from that of water (1 centipoise [cP]) (32, 71, 
73). For this reason, Brownian motion by suspended organ- 
elles and vesicles is so intense that it is difficult to follow the 
path of unattached particles from one television field (1/60 s) 
to the next. 

(ii) The dimensions of microtubules and particles are so 
small that the Reynolds number characteristic of any flow in 
the system is vanishingly small (~10-7). Consequently, any 
flow is laminar, and anything observed to move in a contin- 
uous manner must be acted upon continuously by the motive 
force. In other words, particles of this size can not coast if an 
instantaneous force gives them a brief kick (33, 54). 

Taken together these facts and physical constraints would 
seem to call for a transport mechanism that operates with the 
particles bound to the microtubules, where they would be 
protected from the interference of continuous Brownian bom- 
bardment. 

Given the apparent simplicity of microtubule structure (9, 
21), we can consider how a rod- or paddle-shaped mechan- 
oenzyme might operate to explain the known facts within the 
physical constraints of aqueous or cytoplasmic environments. 

Microtubules might have on them evenly spaced mechan- 
oenzyme molecules that could undergo a cycle of rotation or 
shape change as proposed for myosin (40, 65) or dynein (57). 
The mechanoenzymes could be positioned in either linear or 
spiral rows. Linear might be more likely, because particles 
apparently do not move spirally along microtubules (from 
fact d). The mechanoenzymes might have either a planar or 
an elliptical beat. If it were planar, two opposite power strokes 
would be required, and particles would be expected to collide 
and bump one another off the system (fact e). Two sets of 
oppositely oriented mechanoenzymes with a planar beat 
would also suffice, but then the forces would neutralize, and 
one would not expect the microtubule to glide, let alone glide 
while transporting particles (facts h and l). 

If, however, the microtubule possessed a surface matrix of 
parallel mechanoenzyme molecules exhibiting coordinated 
elliptical cycles, then this would account for particle motions 
in both directions with little or no interference (fact e) at 
similar speeds (fact h). 

Let us assume that during the middle of the orthograde 
portion of the beat cycle, the orientation of the mechanoen- 
zyme is an extension of the microtubule radius, while in the 
middle of the retrograde cycle it is roughly tangential to the 
microtubule surface. Under those circumstances the retro- 
grade traffic would be closer to the microtubule surface than 
the orthograde traffic, and two lanes would be established that 
would occupy different radial domains of the microtubules' 
circumtubular space and thus not mutually interfere (fact e). 
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The inclination of the orbits of the distal tip of the mechan- 
oenzyme would place one of the lanes of traffic farther from 
the microtubule surface than the other. The coordinated 
movements of the mechanoenzyme tips with or without trans- 
ported particles might create some local "microstreams" in 
both directions (65, 71, 73). The more distal stream away 
from the surface of the native microtubule would correspond 
to the orthograde direction and have the greatest effect upon 
the substratum (fact l), causing the microtubule to glide in 
the retrograde direction while particles would be transported 
in both directions at similar velocities in the two directions 
relative to the microtubule (fact h). 

It is clear that some of the selectivity of the orthograde and 
retrograde transport mechanisms to the intact axon (23, 68) 
may be lost in some native microtubules (factJ). It is possible 
that selectivity may depend on the chemical nature or a charge 
distribution on particles, factors that could be altered when 
the cell is disrupted. Nevertheless, the asymmetry of the two 
transport systems (fact i) suggests that selectivity at least in 
part is a property of the native microtubule, which can even 
carry exogenous particles (fact j ;  compare references 2 and 
ll). 

Any mechanism proposed to explain continuous motion 
along a microtubule (7, 31, 72, 73) in terms of microtubule- 
associated mechanoenzyme molecules must assume cooper- 
ativity of some kind among these molecules. Shimizu (65) 
has developed a theory of dynamic cooperativity of molecular 
processes in muscle contraction and myosin- and ATP-in- 
duced streaming along actin filaments in streaming chambers, 
which may be fundamentally applicable to other organized 
motile processes in cells. The starting point for his theory was 
the question raised by Schrtdinger (61) about the applicability 
of equilibrium thermodynamics to living systems in which 
biological order would seem to demand nonequilibrium ther- 
modynamics to account for cooperativity phenomena. Shim- 
izu argues (reference 65, pp 228-232) that in muscle, coop- 
erativity requires a metachronal rotation of myosin heads in 
conjunction with local streaming along the filaments. If you 
reasoned along the same lines, our hypothelial mechanoen- 
zyme cycle could create a detailed model for a mechanically 
coupled, solid state transport system capable of conveying 
vesicles continuously in one direction while larger organelles 
would be transported continuously for some distance in the 
opposite direction. However, organelles that largely move in 
a retrograde direction often change speed or pause for varying 
periods, as if sometimes able either to respond to Brownian 
motion or ride the vesicle transport system. 

If the hypothetical model for the functional native micro- 
tubule is extrapolated back to the intact axon, where the 
microtubule is only slowly, if at all, transported (14, 46, 69, 
71), the gliding is no longer seen and organeUes and vesicles 
are expected to operate as they do (facts a and b). 

The Impact of Microtubular Motility on Other 
Models of Fast Axonal Transport 

It is interesting to note that the microstream hypothesis (31, 
72, 73) predicts that isolated microtubules should glide in the 
retrograde direction on the basis of the proposal that a longi- 
tudinal stream is produced on their surfaces. The hypothesis 
was proposed that the mechanism of axonal transport is not 
regulated but free running whether particles are present or 
not (70). Furthermore, this hypothesis suggested that the flow 
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might be produced by ATP-dependent conformational 
changes of a microtubule-associated mechanoenzyme or by 
electro-osmosis, but it did not predict simultaneous bidirec- 
tional particle motion on a single microtubule. The new 
model proposed in this paper specifies one way in which 
streaming in both directions along restricted sectors of a 
microtubule could be produced; in that sense it is a micro- 
stream hypothesis, except that the microstream would be the 
result of mechanochemical transducers transporting particles 
in a solid state system. In the original theory, the transport of 
particles in the microstreams assumes that forces that main- 
tain the particle in the stream are present and so strong that 
Brownian bombardment would not interfere. So far we do 
not know what such a force could be. If a further biophysical 
analysis of the movement showed that such attraction would 
be possible, by electrostatic or hydrodynamic forces, for ex- 
ample, then the scenario of the original microstream hypoth- 
esis would become acceptable (31, 73). Bidirectional flow is 
also reported to occur at various distances from the surfaces 
of swimming microorganisms (75). Much remains to be 
learned from a quantitative treatment of the phenomenon 
that would take into account the laws of hydrodynamics at 
very low Reynolds numbers (33, 54). 

The facts that microtubules glide on glass and can transport 
exogenous and chemically inert molecules do not favor any 
model or theory that places the motive force on the particle 
itself. Thus, we can discard the hypothesis that the particles 
have transducer mechanoenzyme molecules on their surfaces 
that interact with microtubules in the manner proposed for 
myosin-coated particle movement along F-actin in the sub- 
cortical fibrils and endoplasmic filaments in Nitella cells. 
Myosin-coated covaspheres will move along F-actin cables of 
Nitella cortices (63) but will not move on squid axoplasmic 
native microtubules (Sheetz, M. P., R. D. Vale, and R. D. 
Allen, unpublished observations). 

It has also been suggested that an actin-myosin interaction 
could play a central role in axonal transport (for review see 
reference 71). The results presented here seem to decrease 
further the likelihood that such a mechanism could be oper- 
ating. At least we could not explain microtubular motility in 
terms of microtubule-associated actin thin filaments that we 
and others have been unable to demonstrate ultrastructurally. 
The data that support a role for actin involvement (reviewed 
in references 17 and 62) seem to require another explanation, 
perhaps in terms of the possible nonspecificity of inhibitors, 
or, in the case of gelsolin inhibition (17), possibly a mechanical 
interference due to the fragmentation of actin. 

One hypothesis that can now be discarded is that Ca ÷+- 
dependent contractions of the microtrabecular lattice might 
provide the force for axonal transport (22, 52, 67). 

The Possible Significance of Microtubular Motility 
for Understanding Other Microtubule-dependent 
Transport Processes 

Microtubules are cytoskeletal elements that are almost 
ubiquitous in eucaryotic cells (21, 58). The fundamental 
processes of mitosis, meiosis, pronuclear transport leading to 
syngamy, intracellular transport associated with endocytosis, 
exocytosis and membrane processing, saltatory movements 
of organdies (55), the motions of pigment granules in some 
chromatophores, and the motile events associated with reti- 
culopodial motility and feeding in foraminifera, radiolaria, 



suctorians, and some other protists all fall in the category of 
microtubule-dependent movements because they are associ- 
ated with the presence of oriented microtubules and are 
inhibited by such specific microtubule inhibitors as colchicine, 
vinhlastine, and nocodazol (21, 58, 7 l). 

A feature shared by all of these processes is the lack of a 
known, demonstrable motive force-generating mechanism, 
although in many cases inhibitor experiments are consistent 
with the presence of a hypothetical dynein-like mechanoen- 
zyme, as has been suggested also for fast axonal transport (12, 
25, 26, 28, 39; compare reference 71). However, Buckley and 
Stewart (l 8) found vanadate ineffective in halting saltations 
in cells in which the same concentration inhibits ciliary move- 
ment. 

The demonstration that native microtubules from squid 
axoplasm can glide and simultaneously transport particles 
provides evidence for a testable general model that could 
explain some or all of the diverse microtubule-dependent 
motile and transport processes. The model for the general 
case is simple: if microtubules were anchored in or by the 
cytoskeleton, they could transport nuclei, cytoplasmic organ- 
elles, and vesicles, as in saltatory particle movement (55) and 
cytoplasmic transport including pigment migration in chro- 
matophores and nutritive transport in protists (58). If micro- 
tubules were incompletely anchored or unanchored, they 
could themselves move and/or displace other microtubules 
or organelles. Such a mechanism could be an important 
component of the processes of mitosis and meiosis by provid- 
ing the motive force for prometaphase and anaphase chro- 
mosomal transport, and could account for microtubular dis- 
placement as the mitotic apparatus changes form during 
mitosis. Such effects would be in addition to the well-known 
assembly and dissassembly of microtubules during mitosis 
(10, 41). 

The  a u t h o r s  are  gra tefu l  to  R o g e r  S loboda ,  G u e n t e r  Gross ,  H i rosh i  

S h i m i z u ,  a n d  R i c h a r d  W e i s e n b e r g  for va luab le  d iscuss ions .  The  he lp  

o f  Wi l l i  M a i l e  in  the  q u a n t i t a t i v e  e v a l u a t i o n  o f  the  d a t a  is gra teful ly  

a c k n o w l e d g e d  as is the  exce l l en t  p r e p a r a t i o n  o f  p h o t o g r a p h s  by  

K e n n e t h  Orndorf f .  W e  app rec i a t ed  the  loan  o f  a v ideo  casset te  

r ecorde r  f rom Dr.  S loboda  w h e n  ours  b r o k e  down .  T a x o l  was  the  

g e n e r o u s  gift  o f  the  N a t u r a l  P r o d u c t s  B ranch  o f  the  N a t i o n a l  Ins t i tu t e s  

o f  Hea l th .  D. G.  Weiss  was  s u p p o r t e d  by  the  B o e h r i n g e r - I n g e l h e i m  

Fonds .  T h i s  p ro jec t  was  s u p p o r t e d  by  a g ran t  (NS 19962) to  Dr.  A l l en  

f rom the  N a t i o n a l  Ins t i t u t e  o f  Neu ro log i ca l  a n d  C o m m u n i c a t i v e  

D i s o r d e r s  a n d  Stroke.  T h e  m i c r o s c o p e  used  was  p r o v i d e d  by  a 

g e n e r o u s  g ran t  f rom the  R o w l a n d  F o u n d a t i o n .  

R e c e i v e d  f o r  pub l i ca t ion  2 7  D e c e m b e r  1984, a n d  in rev i sed  f o r m  19 

F e b r u a r y  1985. 

NoteAdded in Proof. Since this paper was accepted, two articles (see 
below) appeared in Cell that contained results confirming some of 
our results presented here and in earlier publications (our references 
6, 34, 35). 

Work on the problem of the transport of organdies along micro- 
tubules began in our laboratory in 1982. We were pleased to have 
Michae l  Shee tz  a n d  R o n a l d  Vale  as  gues ts  in  o u r  l abo ra to ry  for a 

shor t  c o l l a b o r a t i o n  in  A u g u s t  1983. Howeve r ,  we  are  c o n c e r n e d  t h a t  

the  l i t e ra tu re  p u b l i s h e d  to  da te  m a y  h a v e  left  s o m e  d o u b t  as  to  the  

o r ig ina l i ty  o f  o u r  research  a n d  the  p r io r i ty  o f  o u r  respec t ive  d iscov-  

eries. W e  ra i sed  th i s  i ssue  in  a le t ter  d i r ec ted  to  Dr.  Shee tz  d a t e d  7 

J u n e  1984. W e  rece ived  Dr.  Sheetz '  rep ly  in  h is  le t ter  d a t e d  12 J u n e  

1984, a po r t i on  o f  w h i c h  we r e p r o d u c e  here:  

W e  ( T h o m a s  S. Reese,  Bruce  J. Schnapp ,  R o n a l d  D. Vale,  a n d  

Michael P. Sheetz) have always understood that you and your 
colleagues originally discovered vesicle movement on single 
filaments and we all make a point to acknowledge this both 
publicly and in private conversation. Like most major discov- 
eries it will give birth to many derivative studies; we all feel 
obliged to ensure your original contribution not be forgotten. 

W e  are gra t i f ied  to  h a v e  these  researchers  so u n e q u i v o c a l l y  a c k n o w l -  

edge  the  p r io r i ty  o f  o u r  o r ig ina l  work .  

The  two  ar t ic les  referred to  above  are: (a)  Vale,  R. D.,  B. J. 

Schnapp ,  T. S. Reese,  a n d  M. P. Sheetz.  1985. M o v e m e n t  o f  o rgan-  

el les a l o n g  f i l amen t s  d i s soc ia t ed  f rom the  a x o p l a s m  o f  the  g i an t  squ id  

axon .  Cell. 40:449--454. (b) Schnapp ,  B. J., R. D. Vale ,  M. P. Sheetz,  

a n d  T. S. Reese.  1985. Single  m i c r o t u b u l e s  f rom squ id  a x o p l a s m  

s u p p o r t  b id i r ec t iona l  m o v e m e n t  o f  organel les .  Cell. 40:455--462. 
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