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Abstract: The niche concept was originally developed to describe the location of normal neural stem

cells (NSCs) in the subependymal layer of the sub-ventricular zone. In this paper, its significance has

been extended to the location of tumor stem cells in glioblastoma (GB) to discuss the relationship

between GB stem cells (GSCs) and endothelial cells (ECs). Their interaction is basically conceived as

responsible for tumor growth, invasion and recurrence. Niches are described as the points of utmost

expression of the tumor microenvironment (TME), therefore including everything in the tumor

except for tumor cells: NSCs, reactive astrocytes, ECs, glioma-associated microglia/macrophages

(GAMs), myeloid cells, pericytes, fibroblasts, etc. and all intrinsic and extrinsic signaling pathways.

Perivascular (PVNs), perinecrotic (PNNs) and invasive niches were described from the pathological

point of view, highlighting the basic significance of the EC/tumor stem cell couple. PNN development

was reinterpreted based on the concept that hyperproliferative areas of GB are composed of

GSCs/progenitors. TME was depicted in its function as the main regulator of everything that

happens in the tumor. A particular emphasis was given to GAMs, pericytes and reactive astrocytes as

important elements affecting proliferation, growth, invasion and resistance to therapies of tumor cells.
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1. Introduction

Glioblastoma (GB) is the most aggressive primary brain tumor in adults accounting for >50% of

the tumors of the brain. After surgery, radio- and chemotherapy, survival remains dismal and less than

15 months [1].

Three main properties of the tumor hampers its successful treatment: (i) The occurrence of GB

stem cells (GSCs); (ii) the tumor heterogeneity; (iii) the microenvironment and the niches. All these

features represent crucial points in the tumor therapy.

The hypothesis of a GSC origin of the tumor is based on the assumption that they represent

a rare subset of cells within GB with significant expansion capacity and the ability to generate

new tumors [2]. The rest of the tumor is composed of variously differentiated cells with limited

progenitor capacity or terminally differentiated non-tumorigenic cells [3]. Therefore, cell heterogeneity

and hierarchical organization of GB largely depends on its origin from stem cells or progenitors.

Other possible origins of GB are: (i) From mature astrocytes that may acquire stemness properties
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through a dedifferentiation process [4,5]; (ii) from neuron glial antigen 2 (NG2) or chondroitin

sulphate proteoglyacan 4 (CSPG4)-positive cells, mostly in tumors arising far from the ventricles

or with (secondary) Isocitrate Dehydrogenase (IDH)-mutant GB [6]. Reactive astrocytes may contribute

to glioma development, too [7,8]. In fact, they are derived from precursors with a stem-like

phenotype [9]. Alternatively, GSCs may represent a sheer functional status [10], depending on the

microenvironment regulation [11–14]. The location and generation of GSCs inside the tumor have long

been discussed [3]. They may occur either throughout the tumor [15] or, most probably, in proximity

of the central necrosis [16–18]. They can be found in the highly proliferative areas of GB close to

central necrosis [12,19]. These areas are characterized by high cell and vessel density, high values of

proliferation markers, high expression of hypoxia and by the occurrence of circumscribed necrosis;

they are in contiguity with the infiltration edges of the tumor.

There is a general agreement that GSCs in the tumor reside in niches that are similar to those

hosting normal neural stem cells (NSCs) in the subventricular zone (SVZ) [20]. In these niches,

neuroblasts, quiescent NSCs and transit-amplifying cells (A, B and C cells, respectively) occur [21].

They are surrounded by ependymal cells projecting an apical process toward the ventricle. They also

develop close to vessels, essential for the stemness maintenance [22]. The main function of the niche in

the SVZ is thus to preserve stemness of NSCs [22,23].

The niche concept in malignant gliomas was originally developed to describe the sites where

GSCs reside in the tumor and where the tumor microenvironment (TME) exerts its maximum influence.

Therefore, for the definition of niche, two conditions must be respected: (i) That GSCs do occur and

(ii) that they have direct contact with endothelial cells (ECs). These conditions are fully realized only in

perivascular niches (PVNs) that develop in exchange vessels and not in larger transport vessels with a

well-defined layer wall. However, in a broader sense, the term niche also includes perinecrotic niches

(PNNs) that do contain GSCs, but not ECs, the occurrence of which precedes necrosis development,

being not a reactive phenomenon. On the other hand, GSCs/progenitors in different differentiation

stages populate solid proliferative areas of GB, apparently not associated with necrosis or vessels; their

differentiation stage is regulated by the TME.

2. Pathology of Niches

2.1. Perivascular Niches

A census of the possible cell components, besides tumor cells, would include normal and reactive

astrocytes, pericytes, glioma-associated microglia/macrophages (GAMs), myeloid cells, fibroblasts,

and, obviously, GSCs and normal NSCs [24–27]. In their simplest form, PVNs are represented by

capillaries or arterioles where ECs are in direct contact with stem cells [28] (Figure 1a). Larger vessels

with defined layers, such as transport vessels, cannot function as niches, because they do not allow

direct contact between GSCs and ECs. Therefore, not all areas containing vessels and tumor cells would

deserve the name niche and are crucial for tumor growth, diffusion, and resistance to therapies [27–30].

The non-cellular component is given by intrinsic and extrinsic signaling pathways [25].

Niches are mainly found in infiltration and invasion areas of the tumor, where they are called

invasive niches [29,31]. In invasion areas, tumor cells infiltrate normal tissue as single cells and grow

along the basal lamina of vessels to form the so-called vessel co-option (Figure 1b,c), slipping between

vessels and reactive astrocytes [32]; the detachment of their end-feet from vessels contributes to the

brain-blood-barrier (BBB) disruption (Figure 1d–f) [33].
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Figure 1. Glioblastoma, IDH wild type. (a) CD34+ endothelial cells of arterioles and capillaries in direct

contact with Nestin+ tumor cells; double immunostaining with CD34 (DAB) and Nestin (Fast Red),

original magnification (OM) ×400. (b) Vessel co-option. Sleeve of tumor cells around capillaries;

CD34, DAB, OM ×400. (c) Id., with several Nestin+ tumor cells; DAB, OM ×200. (d) Mild infiltration.

Reactive astrocytes on small vessels; GFAP, DAB, OM ×200; (e) More intense infiltration. Reactive

astrocytes on vessels; GFAP, DAB, OM ×200; (f) High infiltration. Reactive astrocytes with end-feet on

small vessels; GFAP, DAB, OM ×400. IDH, isocitrate dehydrogenase; DAB, 3,3′-Diaminobenzidine.

Reactive astrocytes produce angiopoietins 1 (Ang-1) and 2 (Ang-2) and vascular endothelial

growth factor (VEGF) [34–36]. Nestin+ and Sox2+ tumor cells representing the neoplastic counterpart

of normal progenitor cells. They trigger pericyte dissociation, matrix and basal lamina degradation,

vessel dilation, leakiness and extracellular deposition of fibrin, to form the so-called “mother vessels”

or chronic hyperplasia [37]. In the absence of inhibition from pericytes, ECs proliferate (Figure 2a,b); a

switch from an avascular to a vascular state follows and sprouts are formed through EC proliferation

(Figure 2c,d). BBB undergoes disruption with leak of macrophages from the vessels (Figure 2e–g).

Pericytes, recruited by platelet-derived growth factor receptor β (PDGFRβ) [38], dissociate and ECs

proliferate to form new channels that cover with an increased number of pericytes (Figure 2h,i).

Whether they are venules or arterioles or neo-formed tumor vessels that do not correspond to any

type of normal vessels is difficult to demonstrate. Hypoxia obviously occurs, as everywhere in GB.

Glomeruli appear later, surrounded by macrophages and reactive astrocytes. In gliomas, glomeruli

formation during angiogenesis takes place as in normal embryos, with the difference that, in the tumor,

it is dysregulated and bumpy structures are built that do not contribute to the supply of nutrients and

oxygen to the tumor [39].

Angiogenesis is not the only possibility the vasculature has to expand, since vasculogenesis and

trans-differentiation of tumor cells into ECs may occur as well [35,40,41].
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Figure 2. Glioblastoma, IDH wild type. (a) Mild infiltration with inital vessel increase; H&E, original

magnification (OM) ×200. (b) Id., CD34+ endothelial cells; DAB, OM ×200. (c) More advanced

tumor infiltration, small vessel with endothelial proliferation and sprouts; H&E, OM ×400. (d) Id.,

CD34+ endothelial cells; DAB, OM ×400. (e) Mild infiltration with perivascular macrophages; CD163,

DAB, OM ×200. (f) Infiltration area with leaked perivascular macrophages; CD163, DAB, OM

×200. (g) Ramified microglia in tumor parenchyma and perivascular macrophages; Iba-1, DAB,

OM ×200. (h) Proliferated tumor vessels with NG2/CSPG4+ endothelial cells and pericytes; DAB,

OM ×200. (i) Glomeruli with α-SMA pericytes; DAB, OM ×200. IDH, isocitrate dehydrogenase; H&E,

hematoxylin and eosin; DAB, DAB, 3,3′-Diaminobenzidine.

2.2. Perinecrotic Niches

Classically, circumscribed necrosis has been interpreted as due to a vessel occlusion or an

intravascular thrombosis [42]. Perinecrotic pseudopalisades have been considered as due to tumor

cells fleeing necrosis [43]. GSCs would be induced by hypoxia and hypoxia-inducible factor 1 (HIF-1)

and 2 (HIF-2) [35]. Alternatively, or additionally, GSCs/progenitors are believed to regularly populate

hyperproliferative areas of GB near central necrosis with high cell and small vessel density, several

mitoses and a high Ki-67/MIB-1 labeling index [3]. These areas are regulated by the microenvironment

and are recognizable because of their Nestin, Sox2 and CD133 positivity (Figure 3a–k). In these areas,

circumscribed necrosis develops as the result of the imbalance between the high proliferation rate

of tumor cells and the low one of ECs [44,45]. Indeed, circumscribed necroses are always found in

avascular areas of hyperproliferative districts (Figure 3a), close to central necrosis of GB. The cell

population expressing Nestin, Sox2 and other stemness markers, including CD133, remains to border

the necrosis as remnants of GSCs/progenitors that populated the area and escaped necrosis [12,13]

(Figure 3d,e,h–k).

A recent paper took into consideration all niche types described in the literature (perivascular,

hypoxic, immune, extracellular matrix niches, etc.) concluding that they are not distinct from one

another but they are parts of a single GSC niche, according to the hypoxic periarteriolar niche

model [46,47] in which cathepsin K would play a functional role [48]. Roughly, they correspond

to the one described as prototype of the PVN.
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Figure 3. Glioblastoma, IDH wild type. (a) Circumscribed necrosis in a hyperproliferative area;

H&E, original magnification (OM) ×200. The hyperproliferative zone bordering necrosis is almost

GFAP-negative; DAB, OM ×200 (b) and ×400 (c). The same area is highly Nestin-positive; DAB, OM

×200 (d) and ×400 (e). The same area shows a high Ki-67/MIB-1 labeling index; DAB, OM ×200 (f)

and ×400 (g). The same area is highly Sox2-positive; DAB, OM ×200 (h) and ×400 (i). The same area

is positive for Musashi-1, cryostat section, immunofluorescence (green) (j) and highly CD133-positive,

cryostat sections, immunofluorescence (red), both OM ×400 (k). IDH, isocitrate dehydrogenase; H&E,

hematoxylin and eosin; DAB, DAB, 3,3′-Diaminobenzidine [49].
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3. Tumor Microenvironment (TME)

TME represents the non-cancerous cells inside the tumor, including normal and reactive astrocytes,

GSCs, fibroblasts, immune cells, microglia/macrophages, ECs and vascular pericytes. It also includes

proteins and non-protein biomolecules (polysaccharides, hormones, nitric oxide (NO), etc.) produced

by all cell types within the TME to support the tumor growth. TME can be mainly detected and

demonstrated in niches, but is supposed to regulate everything in the tumor and in the tissue around

the tumor or in the brain adjacent to the tumor. GSCs, for instance, mainly occur in niches, but they

can also be found in proliferative areas of GB as well [13,50,51], even conceived as being of hypoxic

origin. As a matter of fact, hypoxia occurs in the whole tumor, distributed with variable intensity.

In necrotic foci, it assumes the typical phenotype of necrosis [52,53], but it may occur in a spot-like

manner, with minor intensity and with a not yet modified phenotype. Therefore, besides central and

circumscribed necrosis, isolated tumor cells may undergo death as phenotypic hypoxia translation

because of individual tumor cell responses to a range of oxygen tension [29]. Other examples are

available in the brain tumor pathology. Single apoptotic cells may occur in proliferative areas, due

to both the intrinsic, transcriptional pathway of apoptosis associated with duplication, and to the

extrinsic pathway associated with a phenotypically subliminal necrosis [3].

In PVNs, the most important signaling is supposed to occur between GSCs/progenitors and

ECs [3] (Figure 4).

 

γ
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Figure 4. Relationship between a stem cell/progenitor and an endothelial cell [13].

The stemness status of GSCs/progenitors is maintained by ECs via pathways such as NO, cyclic

guanosine monophosphate (cGMP) [46] and Notch activation [13,25,54]. Notch-1 and Notch-2 are

expressed on GSCs whereas their ligands, Delta-like ligand 4 (DLL4) and Jagged 1 (JAG1), are expressed

on the ECs [55]. GSCs/progenitors would promote EC proliferation, eliciting angiogenesis through

VEGF, and hosting the bone marrow-derived endothelial precursor cells (EPCs) at the tumor. After

activation through its ligands Notch also leads to the final activation of target genes such as HES1

and HEY1 [51,56]. This has been confirmed by the blockade of Notch by γ-secretase inhibition that

reduces the expression of stemness antigens such as Nestin, CD133 and Bmi-1. It also inhibits in vitro

human GB-derived neurosphere formation and xenografts [57] promoting their differentiation into

blood vessels inserted into the pre-existing vasculature [27].

Another efficient factor is hypoxia, considered to be a hallmark of GB [53,58–61] that activates

pro-angiogenic factors, such as Ang-1/2, transforming growth factor β (TGF-β), PDGF-BB/PDGFR
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and VEGF/VEGFR through HIF-1/2 [62]. Therefore, hypoxia triggers multiple signaling pathways

that affect GSCs self-renewal, proliferation, cell invasion and survival [63]. In addition, it also

influences therapeutic resistance of GB and enhances genetic instability of tumor cells. The low

oxygen content in the tumor tissue attenuates the expression of DNA Mismatch Repair (MMR) genes

and inhibits free radicals generated from radiation treatment thus impeding therapeutic efficacy.

The Multi-Drug Resistance Gene 1 (MDR1/ABCB1) encoding for P-glycoprotein (P-gp) is activated

in response to hypoxia [64]. A complicated series of spatially heterogeneous tissue events follows

hypoxia in GB [including energetic metabolism (29)] promoting the malignant phenotype and tumor

heterogeneity [65].

Finally, TME may control the regulation of the equilibrium between tumor stem and non-stem

cells (Figure 5).

 

 

γ

Figure 5. (a) Development of circumscribed necrosis. (b) Equilibrium between tumor non-stem cells

and tumor stem cells [66].

4. Glioma-Associated Microglia/Macrophages (GAMs)—Inflammatory Microenvironment

GAMs cannot be interpreted using the same criteria as for macrophages in other pathological

conditions. A fundamental distinction is made between: (i) Resident microglia-derived cells (i.e., the

so-called reactive microglia with a typical histological appearance) and (ii) blood-borne macrophages.

The described dichotomy is given with a certain degree of approximation as, often, the distinction

between the two cell types is not so sharp. However, different types of myeloid cells occur. It is

worth considering that both resident microglia and blood-borne monocytes derive from the yolk sac in

different times during embryonic development, the former earlier and directly, and the latter later and

through the bone marrow.

The great amount of GAMs, almost equal to the number of tumor cells, raises many still

unanswered questions. For instance, GAMs are mainly identified as reactive ramified microglia in

low-grade gliomas (LGGs) and as blood-borne monocytes in high-grade gliomas (HGGs) (Figure 2e–g).

Since microglia/macrophages and other myeloid cells are strictly connected with the immunological

features of gliomas, there is wide literature on the subject suggesting various therapeutic strategies.

Basically, there is compelling evidence that GAMs favor tumor progression [67–79], but uncertainties

concerning the M1/M2 polarization and the extent of phagocytosis still exist. Very likely, the dilemma

whether they are “friends or foes” [80] has not been completely solved because of some demonstrations

on the “good” role of GAMs. Scavenger receptors and phagocytosis seem to be completely lacking;

however, Fc-γ receptor expression occurs in the solid tumor and, at a lesser extent, in the peritumoral

tissue [81,82].
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Monocytes [83], tumor-associated neutrophils (TANs) [84] and myeloid-derived suppressor cells

(MDSCs) [85] are commonly found within the TME [70,86–88]. An intense signaling exchange takes

place among MDSCs, ECs, macrophages, tumor cells and reactive cells [29]. In addition, the influence

of chemokines and their receptors must be considered. The most studied signal axes include CXCL12

(SDF-1)-CXCR4, CXCL2-CXCR2, CCL2-CCR2, CX3CL1-CX3CR1, but the problem is far from being

completely clarified. The first interaction occurs between macrophages and GSCs [83,89] with the

latter activating M2 anti-inflammatory macrophages and, conversely, being maintained in stemness

through CXCL12 (SDF-1)-CXCR4 axis. GSCs secrete periostin that recruits M2 tumor-associated

macrophages (TAMs) and promotes glioma growth through intergin αvβ3 [90]. Moreover, TGF-β,

released from TAMs, induces matrix metalloproteinase 2 (MMP-2) and 9 (MMP-9) expression from the

tumor to enhance GSC invasion [91–94]. On the other hand, TGF-β, shed from GSCs, promotes the

polarization of microglia/macrophages into the M2 immunosuppressive phenotype enhancing the

capacity of TAMs to inhibit T cell proliferation, thereby promoting tumor progression [25,95]. MDSCs

mediate immune suppression and support glioma growth, also interacting with GSCs [96], mainly by

immunosuppressing monocytes and other T cell populations [29].

GB can be classified into Proneural (PN), Neural (N), Mesenchymal (MES) and Classical (CL)

subtypes, each with its own GSC content [97]. MES GSCs show a preferential activation of the Notch

signaling pathway and PDGF receptor, whereas activation of the nuclear factor-κB (NF-κB) pathway

and glycolysis-mediated metabolism pathway prevail in PN GSCs. Radiation therapy may induce

in GSCs a cellular transformation resembling the epithelial-mesenchymal transition (EMT), called

proneural-mesenchymal-transition (PMT) [98]. Triggering PMT GSCs are maintained, and in this step

crucial is osteopontin (OPN) that, secreted by immune cells, promotes GSCs phenotype by activating

CD44 [99]. A complicated mechanism involves PN and MES GB expression subtypes, PMT, CD44,

tumor necrosis factor α (TNF-α), but how GSCs, ECs and TAMs interact has not yet been completely

understood. Several studies on microglia/macrophages in gliomas focused on improving patient

survival [70,100,101]; some of them, mainly in recent times, concerned the use of dendritic cells (DCs).

DCs are granular lymphocytes with cell surface markers: major histocompatibility complex (MHC)

class I molecules, MHC class II molecules and CD86, all of which can help to identify DCs from

other myeloid lineage cells [102]. They recognize and bind antigens in their immature state and

then migrate to lymphoid organs where they present processed peptides to T cells in the context of

MHC I or II molecules [103,104] inducing tumor antigen-specific immune responses. Additionally, DCs

display various features in the immune system that balance the complex system of inflammatory and

inhibitory immune reactions in the TME [105]. Several studies have been designed with a therapeutic

task [106–109].

5. Pericytes

There is a cross-talk among vascular pericytes and the other components of the TME, mainly ECs

and GSCs. Their interactions during tumor angiogenesis have been widely discussed. Basically,

aberrations in pericyte-EC signaling networks have been regarded as contributing to tumor

angiogenesis [110]. Pericytes promote vascular maturation, express PDGFRβ, α-smooth muscle

Actin (α-SMA), Desmin and NG2/CSPG4 (Figure 2h,i). Pericytes originate from mesoderm-derived

mesenchymal stem cells (MSCs) or from neuroectoderm-derived neural crest cells. They are an essential

element of the neurovascular unit and participate in the function of BBB. Their reciprocal signaling

with ECs, mainly through PDGFRβ and CXCL12 (SDF-1)-CXCR4, TGF-β and Ang-1 has been widely

discussed [111]. Pericytes may derive from GSCs undergoing mesenchymal differentiation and support

vessel function and tumor growth. GSCs are recruited toward ECs via the CXCL12 (SDF-1)-CXCR4

axis and induced to become pericytes predominantly by TGF-β. Thus, GSCs contribute to vascular

pericytes that may actively remodel PVNs [112].

NG2/CSPG4 promotes tumor growth as a component of both tumor and stromal cells; it is

expressed by other cell types, mainly oligodendrocyte precursor cells (OPCs). In myeloid-specific and
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pericyte-specific NG2/CSPG4 null mice, a reduced growth of the tumor was observed. The loss of

pericyte-EC interactions reduces the formation of endothelial junctions, assembly of the basal lamina

and reduces macrophage recruitment [113]. MSCs injected into brain tumors in mouse models resulted

in close associations with the tumor vasculature, also with up-regulation of the expression of pericyte

markers [25]. Through the NG2/CSPG4 knockdown in pericytes by small interfering RNA (siRNA)

transfection, 60% reduction of β1 integrin activation and 40% of FAK phosphorylation occur with a

concomitant decrease of pericyte proliferation and migration [114]. The NG2/CSPG4 ectodomain,

shed from pericytes due to a proteolytic cleavage, may recruit at a distance ECs to sites of angiogenesis

and may activate β1 integrin on ECs.

In the neo-angiogenesis of GB, pericytes start increasing together with the disruption of BBB

becoming a good marker of neo-vascularization [31].

6. Reactive Astrocytes

Reactive astrocytes are a constant phenomenon associated with gliomas [115]. They can surround

the tumor or can be located inside. Outside the tumor, they can be found in early or in mature stages.

In the first case, they are GFAP+ and Nestin+, regularly distributed with round cytoplasms and short

processes, often in mitosis. In the second case, they are more regularly distributed, mainly GFAP+

and with several and long processes. Inside the tumor, they can be observed in continuity with the

peritumoral gliosis or entrapped in the advancing tumor with a large, gemistocytic type cytoplasm.

They are often distributed around vessels, or they may form areas with a dense GFAP+ fibrillary net.

Reactive astrocytes can also be located in highly proliferative areas, around circumscribed necrosis.

This means that they may persist for a long time inside the tumor, often in the form of round, GFAP+

cells. The tumor growth speed plays an important role in the reactive astrocyte morphology; in fact,

slow growing tumors may include mature astrocytes. The distinction between reactive astrocytes and

tumor cells is not easy [116]: the finding of a GFAP+ cell in mitosis does not rule out the possibility that

it could be a reactive astrocyte. However, their histological aspect and distribution has been known

for a long time and most GFAP positivity of cells in (primary) IDH-wild type GB, must be ascribed to

entrapped reactive astrocytes [39]. From the functional point of view, peritumoral gliosis cannot be

compared with gliosis in other pathological conditions and, for this reason, it must deserve a different

interpretation. Notably, reactive astrocytes from tumor infiltration areas send end-feet to arterioles

and capillaries, from which they are detached by infiltrating tumor cells, thus contributing to BBB

disruption. In addition, reactive astrocytes play a major role in the TME.

There are recent and exhaustive reviews on the subject [117]. Currently, the general opinion is

that reactive astrocytes favor invasion and progression of gliomas exerting a chemoprotection and

an immune protection of tumor cells. Reactive astrocytes interact with glioma cells and facilitate the

progression, aggression and survival of tumors by releasing different cytokines. This interaction is

further promoted through ion channels and ion transporters that enhance the migratory capability and

invasiveness of tumor cells by modifying H+ and Ca2+ concentrations and stimulating cell volume

changes [115].

Several mechanisms involved in the cross-talk between reactive astrocytes and gliomas favor

their proliferation, invasion and resistance to radio- and chemotherapy:

(i) Expression of MMP-2, which favors infiltration and secretes CXCL12 (SDF-1) for proliferation

and migration [118];

(ii) synergistic relationship with tumor cells concerning the p53 function between apoptosis and

proliferation [119];

(iii) regulation through NF-κB activated by receptor activator of NF-κB ligand (RANKL) and

lipopolysaccharides (LPS) that decreases IkBα [120,121];

(iv) the gap junction channel protein 43 (Cx43) that confers resistance to glioma cells and prevents

apoptosis [122];
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(v) indirect cross-talk via chemokines (interleukin 6, IL-6), TGF-β, insulin-like growth factor 1

(IGF-1), monocyte chemotactic protein 4 (MCP-4), interleukin 19 (IL-19), VEGF and leukemia inhibitory

factor (LIF), promoting tumor cell invasion [123,124];

(vi) microRNAs [125,126], oncogene astrocyte elevated gene-1 (AEG-1), which is associated with

poor survival of gliomas [127] and acts modulating PI3K/Akt, NF-kB, MMP-2 and MMP-9 [128,129]

the inhibition of which induces apoptosis [130];

(vii) L-Glutamin [117].

In a murine glioma resection and recurrence model, surgical resection has been showed to alter the

reactive astrocyte component of the peritumoral microenvironment and injured astrocytes to induce

in vitro alterations of transcriptome and secretome that significantly influence tumor biology. This

may be important for therapies [131].

All available speculations on the significance of reactive astrocytes are based on in vitro

experiments or on the demonstration that certain pathways play a role in tumor progression. It is

possible that these pathways belong to the tumor cells themselves. Moreover, there is no direct

demonstration of a negative influence of reactive astrocytes on survival in human gliomas. The

possibility that reactive astrogliosis opposes tumor invasion, without success, cannot be completely

ruled out. Another unanswered question is whether entrapped reactive astrocytes in the advancing

tumor may transform into tumor cells.

7. Conclusions

The great amount of contributions on radio- and chemotherapy did not substantially modify

survival of GB patients. Studies on cell death-based treatments continue [132] and new approaches are

suggested [133], but more recently, studies on immunity of GB have appeared in the literature and

special attention is being paid to vaccines, cytokines, DCs, gene therapy and viruses [134–136]. This

seems to be a possible path to advantageous novelties.
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