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Glioblastoma multiforme 
restructures the topological 
connectivity of cerebrovascular 
networks
Artur Hahn  1,2, Julia Bode3, Thomas Krüwel3, Gergely Solecki4,5, Sabine Heiland1, 
Martin Bendszus1, Björn Tews3, Frank Winkler4,5, Michael O. Breckwoldt  1,6 & Felix T. Kurz1

Glioblastoma multiforme alters healthy tissue vasculature by inducing angiogenesis and vascular 

remodeling. To fully comprehend the structural and functional properties of the resulting vascular 
network, it needs to be studied collectively by considering both geometric and topological properties. 
Utilizing Single Plane Illumination Microscopy (SPIM), the detailed capillary structure in entire healthy 
and tumor-bearing mouse brains could be resolved in three dimensions. At the scale of the smallest 
capillaries, the entire vascular systems of bulk U87- and GL261-glioblastoma xenografts, their 
respective cores, and healthy brain hemispheres were modeled as complex networks and quantified 
with fundamental topological measures. All individual vessel segments were further quantified 
geometrically and modular clusters were uncovered and characterized as meta-networks, facilitating 
an analysis of large-scale connectivity. An inclusive comparison of large tissue sections revealed that 
geometric properties of individual vessels were altered in glioblastoma in a relatively subtle way, 
with high intra- and inter-tumor heterogeneity, compared to the impact on the vessel connectivity. A 
network topology analysis revealed a clear decomposition of large modular structures and hierarchical 

network organization, while preserving most fundamental topological classifications, in both tumor 
models with distinct growth patterns. These results augment our understanding of cerebrovascular 
networks and offer a topological assessment of glioma-induced vascular remodeling. The findings 
may help understand the emergence of hypoxia and necrosis, and prove valuable for therapeutic 
interventions such as radiation or antiangiogenic therapy.

Vascular networks are transport networks that provide vital substances such as oxygen and nutrients to living tis-
sue and remove biological waste products. Their characteristic morphology allows regulation of the surrounding 
biological environment, including thermoregulation and physiological ion balance to maintain tissue homeosta-
sis1. Motivated by energy cost minimization (Murray’s law2,3), healthy vasculature typically follows a hierarchical 
arterio-venous branching scheme, with blood flowing through thick arteries, successively branching into thinner 
arterioles, followed by capillaries and a similarly organized venous system, draining the tissue in vice-versa4. 
Forming efficient transport networks, healthy vessel constructs are inherent to tree-structured arterial and venous 
parts, interwoven by dense, regular capillary beds5–7.

Malignant tumors disrupt the local biochemical environment and regulation of pro- and antiangiogenic 
factors, such as vascular endothelial growth factor, angiopoietins and Ang-28,9. As a solid tumor grows, the 
pre-existing vasculature is adapted and constantly modified by several mechanisms including angiogenesis10, 
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vessel dilation11, regression, constriction, and occlusion12,13. The complex interplay of these processes, dynam-
ically regulated during tumor progression by biochemical, metabolic, mechanical, and hydrodynamic influ-
ences14,15, leads to highly heterogeneous vessel architectures throughout the tumor volume8,16, that may impact 
response to radiotherapy17.

Extensive research has been conducted to investigate the structure of tumor vasculature and how it sets itself 
apart from healthy vessel constructs. Most studies of this nature have focused on local vessel properties, such as 
microvascular density (MVD), vessel segment geometry and space-filling properties (see, e.g.18–21 and references 
therein). Although sophisticated models have been developed to analyze global properties of large-scale vessel 
architectures in theory22,23, topological analyses of vascular networks that consider properties such as local clus-
tering of vascular nodes or inter-node connectedness remain scarce and either focus on two-dimensional vascular 
networks24, smaller three-dimensional networks, e.g., of lymph nodes25, or subnetworks, including only certain 
vessel types26–30.

In general, experimentally extracted vessel networks are usually constrained to either small imaging volumes 
or limited resolution; full vascular networks in brain tissue, including small capillaries, could only be obtained 
histologically or by laborious combinations of multi-scale imaging modalities, as, e.g., in31,32. A recent approach 
using fluorescence ultramicroscopy, however, made it possible to image detailed micro- and mesoscopic vascular 
structures of entire organs33,34 and was successfully applied to mice brain35,36. A detailed structural and functional 
quantification of such entire vascular networks may unveil previously unknown consequences of vascular remod-
eling and aid the development of targeted antiangiogenic therapies.

In this study, we present numerical quantifications of blood vessel networks from entire GL261 and U87 glio-
blastoma xenografts in mice, as well as comparable healthy brain regions in a mouse model, including capillaries 
with diameters down to approximately 3 µm. Geometric properties of the vasculature, extracted from tumors and 
healthy brain hemispheres, were quantified using custom-written, highly scalable codes in Matlab (Mathworks, 
Natick, MA, USA). As in other quantitative studies of multi-scale vessel data, e.g.37, the fractional blood Vessel 
Volume (fVV), vessel length density ρ

L
, and vascular surface density ρ

A
 were determined and the individual vessel 

segments were characterized by their mean radius r , length l, tortuosity τ  and surface area A. Augmenting the 
geometric analysis with graph theoretical analysis tools, the vessel architectures are modeled as undirected net-
works to reveal local and nonlocal topological properties. The connectivity characteristics are studied on multiple 
length scales with the help of a network theoretical community paradigm38.

High local heterogeneity within and among tumors makes a global geometric characterization of tumor vas-
culature difficult. Nevertheless, one would expect the mechanisms of vascular remodeling during tumor growth 
to reflect in the global network topology of the emerging vessel constructs. The graph theoretical framework 
offers powerful tools for the assessment of global network characteristics of large vascular systems, encompass-
ing 105–106 constituent segments. We present network theoretical quantifications on the largest cerebrovascular 
networks studied so far, resolve basic topological characteristics of healthy brain vasculature, and show how the 
vascular connectivity changes in U87 and GL261 glioblastoma.

Methods
Data acquisition. Tissue preparation and imaging. 3D vessel morphology was imaged ex vivo using fluo-
rescence light sheet microscopy as described before35. In brief, we injected . ⋅7 5 104 U-87MG (ATCC HTB-14) 
cells in 9 week old, male NOD Scid Gamma mice (NSG, DKFZ, Heidelberg) and 105 GL261 glioma cells (National 
Cancer Institute NCI, Bethesda, MD, USA) in 6–8 week old, female C57Bl/6J mice (Charles River Laboratories, 
Sulzfeld, Germany; n = 6 mice). The cells were tested biweekly for mycoplasma contamination with negative 
outcome. Cells were diluted in 5 µl sterile phosphate and buffered saline (PBS, Sigma-Aldrich Chemie GmbH, 
Taufkirchen, Germany) and injected in the striatum of the right hemisphere, 2 mm lateral and 2 mm ventral of the 
bregma. Respectively, =n 6 animals with glioblastoma were compared against =n 6 brain hemispheres from 

=n 3m  healthy mice as controls. All animal experiments were conducted in accordance with appropriate guide-
lines and approved by the regional ethics committee in Karlsruhe, Germany (permit numbers G223/14, G187/10, 
G188/12, G145/10, and G287/15).

21 days post tumor cell implantation for U87 specimens and 28 days post injection for GL261 mice, the 
animals were injected intravenously with 300 µl of lectin-FITC (Sigma-Aldrich, St. Louis, MO, USA) at a con-
centration of 1 mg/ml. After 3 minutes of incubation, mice were sacrificed by a ketamine/xylazine overdose. Mice 
were transcardially perfused with 20 ml PBS and 20 ml 4% PFA. The brain was explanted and optically cleared 
using the FluoClearBABB protocol34. Upon successful tissue clearing, Selective Plane Illumination Microscropy 
(SPIM) was employed to image the microvasculature in the entire brain by fluorescent excitement of the lectin 
marker (3.25 × 3.25 µm in-plane resolution and 5 µm between slices in the transverse plane) with the following 
acquisition parameters on an Ultramicroscope II (LaVision Biotec, Bielefeld, Germany): 100% laser power, 5 µm 
stepsize, dynamic focus on (5–10 steps), Andor camera exposure time of 686.345 ms, 16-bit low noise gain, left 
and right light sheet together.

Post-processing. The acquired image stacks were segmented using the interactive learning and segmenta-
tion toolkit ilastik39. To reduce noise, the binary vessel representations attained this way were smoothed with 
a 3D-Gaussian filter with isotropic standard deviation σ = 1 (voxel units), using the 3D-smoothing plugin in the 
ImageJ-distribution Fiji 2.0.0-rc-43/1.51r40. The volume was again binarized with intensity threshold at half of the 
maximum voxel value. A self-written script in Matlab was used to fill holes in the binary structures (i.e. “hollow” 
vessels) to correct for segmentation artefacts. A self-written Matlab script further reduced noise by removing 
isolated voxel bunches with a volume of less than a sphere with a 6 µm radius (based on 6-connectivity41).
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The skeletonization algorithm42 in ImageJ was used to extract the vessels’ center lines. The plugin 
AnalyzeSkeleton43 assigned a tag to each skeleton voxel, identifying end-points (with less than two neighboring 
skeleton voxels), junctions (with more than two neighbors), and so-called slab voxels (with exactly two neigh-
bors). The tagged skeletons were later used for vessel/node labeling and connectivity list construction.

Binary masks were manually drawn over each image stack to select the tumor volume and corresponding 
regions in the healthy brain hemispheres for analysis. Care was taken that only well-resolved regions with min-
imal blurring were incorporated in the control datasets. This comprised the inner parts of the brain, including 
the midbrain, hippocampus, thalamus, hypothalamus, septum, striatum, caudate, putamen, amygdala, and inner 
sections of the cerebral cortex and cerebellum. The ventricular system, exhibiting false fluorescence, was blinded 
by the masks. Tumor boundaries were assessed visually by two neuroradiologist physicians based on microvas-
cular anomalies (increased irregularity and overall tortuosity) in the tumor region. Tumor cores were masked 
separately based on a transition within the tumor vasculature from a more dense outer shell to a less vascularized 
center, presumed to exhibit hypoxia.

As detailed in41, segmentations are often ambiguous at structure boundaries, which can have great effects on 
vessel geometry at the given resolution. We suspect the images to be subject to “fluorescent overexposure”, which 
would cause background voxels to be illuminated and registered in the segmentation, causing vessels to appear 
thicker. To compensate for this over-fluorescence and over-segmentation, we implemented a circumferential 
thinning in Matlab, which eliminates the boundary layer voxels from the segmented structures, with the excep-
tion of voxels constituting the skeleton. All processing steps conducted leave the network topology unchanged 
by definition.

Geometric and topological analysis. Vessel geometry. The masked, binary image stacks were processed 
in Matlab R2016b (Mathworks, Natick, MA, USA) using custom written codes. The fraction of blood-filled tissue 
volume marked by perfused vessels was determined in a tiling box approach, quantifying the fractional vessel 
volume, fVV, with an isotropic resolution of 500 µm on the shrunken tissue. The same cubic subvolumes were 
used to determine the microvascular density, MVD, here defined as the number of individual vessel segments per 
mm3 tissue volume (after shrinkage due to tissue clearing). The vessel length density, ρ

L
, and vascular surface 

density ρ
A

, were defined as the total vessel length per shrunken tissue volume in each sample (mm/mm3), and as 
lumen surface area per tissue volume (mm2/mm3), respectively.

Geometric properties of the individual vessel segments, including mean radius r , segment length l and surface 
area A, were determined using custom Matlab codes on the binary and skeletonized image stacks. A detailed 
mean radius calculation was implemented along branch lines. The tortuosity τ of each vessel segment was quan-
tified by the ratio of true vessel length l and Euclidean endpoint separation d as τ = l d/ , often referred to as the 
distance metric44,45.

Network topology. To quantify the topology of the vasculature, the branching point connections were modelled 
as an undirected network by interpreting vessel branching and end points as nodes, interconnected by vessel 
segments as edges. Utilizing graph theory, the entire systems’ connectivity properties could be quantified, which 
enables an assessment of topological characteristics on different scales and allows for comparisons with random 
graph models and other types of complex networks. The topological properties under consideration are described 
in the following.

Scale-free characteristic. In each vascular network, the degree k of every node, i.e. the number of attached vessel 
branches, was determined, delivering the degree distribution P(k). The relative frequency distributions P(k) were 
modelled with a power law: ∼ γ−P k k( ) , introducing the degree exponent γ. It has been found that many real 
networks exhibit such degree distributions, often with γ≤ ≤2 3, identifying them as “scale-free networks46–48”.

Small-world characteristic. The “small-world” properties49,50 can be assessed with three topological measures: 
the characteristic path length L, the network diameter D, and the average clustering coefficient C. While, along 
with the total number of nodes N, L and D mirror global network traits, C offers insight into the nature of local 
node connectivity and the tendency towards forming graph theoretical cliques51.

The mean clustering coefficient C of a network is determined as the average of the clustering coefficients Ci of 
the individual nodes ∈ …i N{1, , }n . The clustering coefficient Ci can be defined as the ratio of the number of 
edges between the direct topological neighbors of vertex i and the maximum number of edges connecting all of 
its neighbors51. For a node i with ki neighbors and Ei connections between these neighbors, the clustering coeffi-
cient of the vertex is given by = −C E k k2 / ( 1)i i i i .

The characteristic path length L, also called the average shortest path length, describes the mean number of 
edges on a geodesic to link any two nodes connected by a path on the graph. An implementation of Johnson’s 
algorithm for the shortest paths problem was used from the MatlabBGL library version 4.052. The small-world 
property is associated with an exceptionally slow rise in L as the network size Nn grows53. The network diameter 
D is given by the maximum of all shortest paths, i.e. the greatest node pair separation in the topological sense. The 
diameter D can reflect the degree to which the small-world property is globally persistent.

Community unfolding. Expecting a hierarchical branching scheme2,3,6,7,54 with a tolerance for locally clustered, 
lattice-like capillary structures55–57, a modularity-based clustering approach was taken in this study. Using the 
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Louvain community unfolding algorithm58,59, the networks were partitioned recursively with the aim of maximiz-
ing the intracommunity connectivity while keeping intercommunity connections sparse.

The relative dominance of intracommunity edges in a partitioned network can be quantified by the modularity 
Q, defined as58:

∑ δ=





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−




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with −1 ≤ Q ≤ 1. For a weighted network, the adjacency matrix element Aij holds the weight of the edge connect-
ing nodes i and j, = ∑k Ai j ij is the weighted degree of node i, ci is the community that node i is assigned to, 

= ∑m Aij ij
1

2
 is a normalization factor (the sum over all edge weights) and δ(u, v) is the Kronecker-Delta with 

δ =u v( , ) 1 for =u v and δ =u v( , ) 0 otherwise.
Briefly, the Louvain method starts with every vertex assigned to its own community and then iteratively moves 

nodes to neighboring communities, always seeking an increase in modularity Q. Once a local maximum in Q is 
reached, the algorithm delivers a level of clustering with each node assigned to a community. In the next step, 
these communities are taken as meta-nodes with the intercommunity connections as edges. The clustering pro-
cess is repeated recursively on the resulting meta-networks until no more reassignments can increase the mod-
ularity and a global maximum in Q is reached. Each local maximum in Q is expected to reflect the modular 
structure of the network at a different scale58.

Community structure. In order to get a more comprehensible view of the giant networks concerning large-scale 
structures, the spatial distribution and structure of the uncovered communities were studied. We consider a com-
munity j, comprised of a subset ⊆ …Q N{1, , }j n  of = | |n Qj j  nodes from the total of Nn vertices. With the spatial 
coordinates →xq, ∈q Qj, of each node assigned to community j, the cluster’s node centroid →rj  could be determined: 
→= ∑

→
∈r x n/j q Q q jj

.

The spatial extent Rj of community j can be parametrized by the mean Euclidean distance of its constituent 
nodes ∈q Qj from the community centroid →rj : = ∑ |→ − →|∈R x rj n q Q q j

1

j j
. In the topological sense, the size of a 

community is usually determined by its number of nodes nj
53. In the context of vascular networks, another sensi-

ble cluster size parametrization is the number of vessel segments (edges) ej included in cluster j.
A community’s topological perimeter is typically understood as the number of nodes in the community which 

are involved in connections to other communities53. A closely related quantity in the vascular context is the num-
ber of connecting edges of cluster j to other communities, reflecting the cluster’s supply situation. This measure is 
regarded as the perimeter P in this study.

Community connectivity. Each community was treated as a meta-node with weighted intercommunity edges, 
inherited from connected basic nodes in different clusters. The location of meta-node j was interpreted as the 
community centroid →rj , while its size is reflected by the parameters nj, ej and Rj. The community degree, defined 
as = +k e P2c j j j, , is a measure for the importance of cluster j as a supply entity in the network, summarizing size 
and connectivity in analogy to unclustered networks with allowed self-connectivity.

Graph theoretical quantifications of the clustered meta-networks include the assessment of degree distribu-
tions P(kc) and degree relations of neighboring communities, clustering coefficients Cc, as well as characteristic 
path lengths Lc and network diameters Dc. With the spatial location of every cluster, →rj , the shortest paths between 
communities were studied depending on their physical separation ∆ (∆ = |→ − →|r rij j i  for communities i and j).

All statistical testing was conducted using the Kruskal-Wallis-Test, available with Matlab. This is a nonpara-
metric one-way ANOVA, which does not assume a Gaussian distribution of samples.

Results

Glioblastoma can mimic the large scale vessel geometry in healthy brain tissue. The data acqui-
sition process for the results presented is illustrated in Fig. 1a. In healthy controls, we found a mean fractional 
vessel volume of 〈 〉 = . ± .fVV 9 8 3 3%h  (with standard error of mean), which is in reasonable agreement with 
documented values of an intracranial mean 〈 〉 = . ± .fVV 5 8 0 4%ic  and maximum 〈 〉 ≈ .fVV 7 9%max  in the 
medulla and cerebral cortex, determined from micro-CT measurements at 20 µm isotropic resolution60. The 
incorporated 3D volume tiling with 500 µm cubes comprised a total of 1265 boxes in healthy tissue, 871 in U87 
tumors (101 in the core), and 364 in GL261 tumors (76 in the core). In total, approximately 4.4 million healthy 
vessel segments were compared to 1.8 million vessels in U87 glioblastoma (21 400 in the core region) and 380 000 
vessels in GL261 tumor tissue (22 200 in the core). Table 1 summarizes the mean geometric properties of the tis-
sue samples under consideration.

Distributions of the fractional vessel volume fVV and microvascular density MVD, determined over 500 µm 
cubes, were positively skewed in all tissue types (Fig. 1b,c). Values were significantly lower in full GL261 tumors 
(fVV: p = 0.007; MVD: p = 0.004 from testing with 6 vs. 6 sample means), while U87 glioblastoma showed density 
distributions similar to the healthy controls, when including the periphery (Table 1). The U87 tumor cores exhib-
ited more heterogeneity than the GL261 models. On the 500 µm scale, the U87 tumors featured regions with 
considerably decreased branching density MVD, while the fVV did not show matching voids (Fig. 1b,c). While 
vessel calibres and lengths were virtually unchanged in the full U87 specimens, the core vessels showed consider-
ably larger radii and branching lengths, which can account for heightened fVV at relatively low MVD. The GL261 
model showed opposite trends in the core, with shorter, thinner vessels, resulting in lower fVV despite higher 
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MVD. The vessel length density ρ
L
 was significantly lower in all tumor samples compared with healthy controls 

(U87 full: = .p 0 01; GL261 and cores: = .p 0 004 from testing with, respectively, 6 sample means, Table 1).
The increased vessel length in U87 glioblastoma, and especially its core, suggests suppressed branching and 

vessel occlusion, while the shift towards shorter segment lengths and smaller radii suggest more active 

Figure 1. Data acquisition and processing with geometric quantifications. (a) Schematic illustration of 
experimental procedures, including tumor cell and fluorescent marker injections, brain resection and clearing, 
with photographs of uncleared and cleared brains with cm scale, and Selective Plane Illumination Microscropy 
(SPIM). In the second row, an original image from a stack of a healthy mouse brain is presented on the right, 
with the binary segmentation overlay in red to the left (see Supplementary Movies 1, 2 and 3 for segmentation 
results in more detail). Below the brain segmentation image, an average intensity projection from a 200 µm 
thick section of a segmented, noise-filtered, and hole-filled image stack of a U87 glioblastoma is shown. To the 
right, the skeletonized version of the same dataset is presented, with branch voxels in orange and branching 
points in magenta. The vascular network quantifications on this post-processed data are illustrated in the last 
row. The vascular morphology assessment is clarified in a cube of 130 µm side length, marking a radius value r, 
length l and endpoint-separation d, as well as a segment’s surface area A. Using the vascular skeleton, the 
network topology is studied, which is illustrated by a clustered graph, presenting the spatial distribution of 
vessel communities in a U87 glioblastoma. From the geometric quantifications, relative frequency distributions 
of (b) fractional vessel volume fVV and (c) microvascular density MVD in cubes with 500 µm side length, and 
distributions of geometric characteristics of all individual vessel segments are presented: (d) mean vessel radius 
r , (e) segment length l, (f) surface area A, and (g) segment tortuosity τ.
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angiogenesis in the GL261 tumor core (Fig. 1d–f). The more sharply peaked radius distribution suggests a flat-
tened branching hierarchy in glioblastoma with respect to healthy vasculature3. The lumen surface area A per 
vessel segment is correlated with the length l and radius r , showing more clearly the opposing trends in U87 and 
GL261 vessel remodeling. The vessel tortuosity τ approximately followed shifted exponential distributions (with 
τ ≥ 1 by definition) in all tissue types (Fig. 1g) and is characterized by the median τ and 95%-quantile τ95 in 
Table 1.

The vessel tortuosity τ  again showed distinct alterations in each tumor model. In U87 glioblastoma and its 
core, both the median τ and upper quantile τ95 increased moderately from healthy controls to tumor cores 
( < .p 0 01 for core vs. control). In contrast, in GL261 models, the median τ decreased towards the core, while τ95 
strongly increased ( < .p 0 01 for full networks and cores vs. controls); the GL261 tumors upheld a large number 
of relatively straight segments with several very tortuous ones. Such heterogeneity with a tendency towards 
increased tortuosity is consistent with the findings of previous studies37. Analogous tests against healthy tissue on 
the remaining geometric vessel properties did not indicate statistical significance (〈 〉r : > .p 0 4; 〈 〉l : > .p 0 1; 〈 〉A : 

> .p 0 1 for all tumor sets, including cores). Extended sample sizes could show that the mean vessel tortuosity, if 
accessible, may serve as a biomarker for tumor vasculature, supporting previous findings in humans61,62.

Altered network topology in glioblastoma multiforme. We present the first topological quantifi-
cations on cerebrovascular networks of such size and resolution. The custom-written codes were validated on 
functional human brain networks previously quantified63 to assure correct numerical implementations.

Heterogeneous effects on local vessel connectivity in different glioblastoma types. By modeling branching and 
vessel end points as the nodes of a network, interconnected by vessel segments as edges, the connectivity in such 
large systems can be characterized using graph theory41,64. In accordance with an elevated MVD (edge density), 
the larger healthy tissue samples also featured higher node densities ρ

n
, leading to healthy networks of larger size 

Nn and Ne compared with tumor networks (Table 2).
The degree k of a node corresponds to the number of vessels meeting at that vertex. The vascular skeletons 

exhibited high degree nodes, presumably at the intersection between arterial and venous tree branches with the 

〈V〉 mm3 〈fVV〉% 〈MVD〉 · 103 mm−3 〈ρ
L
〉 mm−2 〈ρ

A
〉 mm−1 〈R〉 µm 〈l〉 µm 〈A〉 µm2 τ τ95

Healthy networks 14.7 ± 4.1 10.3 ± 3.7 53 ± 10 980 ± 99 25.4 ± 10.0 .
+ .
− .

4 9
1 7
1 2

+
−

19
15
9

+
−

505
472
240

1.071 1.453

U87 full networks 8.3 ± 4.3 7.2 ± 1.6 38 ± 12 734 ± 145 16.8 ± 4.4 .
+ .
− .

4 9
1 7
1 2

+
−

20
16
10

+
−

547
566
267

1.079 1.463

U87 core networks 0.3 ± 0.3 3.0 ± 1.4 11 ± 8 268 ± 146 6.1 ± 3.9 .
+ .
− .

5 4
2 2
1 5

+
−

25
24
13

+
−

806
1089
446

1.080 1.481

GL261 full networks 2.8 ± 1.0 4.8 ± 0.9 23 ± 7 413 ± 74 13.8 ± 8.4 .
+ .
− .

5 0
1 7
1 3

+
−

18
16
9

+
−

491
466
235

1.070 1.553

GL261 core networks 0.3 ± 0.2 1.9 ± 0.1 13 ± 9 214 ± 103 7.5 ± 5.7 .
+ .
− .

4 4
1 3
1 0

+
−

17
16
8

+
−

386
361
177

1.066 1.557

Table 1. Global tissue properties from n = 6 healthy brain hemispheres (healthy networks) and tumor 

specimens (full networks and exclusively tumor cores). Means with standard deviation (SD) are given for the 

tissue volume of each specimen V (after shrinkage from clearing), fractional vessel volume fVV, microvascular 

density MVD, total vessel length density ρ
L
 (in mm/mm3), and vascular surface density ρ

A
 (in mm2/mm3). 

Arithmetic means and average directed deviations of geometric vessel properties with log-normal distributions, 

namely mean radius r , segment length l and surface area A. The exponentially distributed segment tortuosity τ 

is characterized by the median τ and 95%-quantile τ95.

〈ρ
n
〉 · 103 mm−3 〈Nn〉 · 103 〈Ne〉 · 103 〈k〉 〈kmax〉 〈γ〉 〈C〉 〈β〉

Healthy networks 35.7 ± 13.7 505 ± 207 817 ± 330 3.24 ± 0.11 20.7 ± 4.1 8.72 ± 1.18 0.049 ± 0.012 2.36 ± 0.01

U87 full networks 27.4 ± 13.0 196 ± 99 286 ± 150 2.89 ± 0.15 17.3 ± 3.4 8.53 ± 1.38 0.056 ± 0.010 2.36 ± 0.01

U87 core networks 9.3 ± 6.4 3 ± 3 4 ± 4 2.29 ± 0.26 8.5 ± 2.6 2.79 ± 4.52 0.078 ± 0.021 2.2 ± 0.4

GL261 full networks 19.1 ± 5.1 52 ± 21 80 ± 36 3.06 ± 0.16 31.5 ± 9.2 5.35 ± 0.87 0.123 ± 0.019 1.4 ± 0.2

GL261 core networks 10.5 ± 7.0 3 ± 3 5 ± 5 2.67 ± 0.36 15.7 ± 8.6 4.18 ± 2.20 0.144 ± 0.004 1.6 ± 0.3

Random networks 31.6 ± 13.4 358 ± 216 561 ± 359 3.22 ± 0.19 14.3 ± 0.9 n.a. (1 ± 1) · 10−5 n.a.

Table 2. Mean basic network properties with SD among, n = 6 healthy and tumor-bearing specimens, respectively. 
Node density in (shrunken) tissue volume ρ

n
, as well as the total number of branching nodes Nn and edges  

Ne per specimen. Mean local connectivity measures from all healthy and tumor specimens, including mean  
node degree k, maximum degree per specimen kmax, and clustering coefficient C; the scaling exponent β from 
fitting ∼ β−C k k( )i i i  is given with SD among samples. For comparison, corresponding quantities are also given 
for nr = 12 Erdös-Rényi graphs66 with node and edge numbers equal to the healthy and full U87 networks.  
n.a.: not applicable.
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dense capillary mesh5,20 or in angiogenic hotspots65, especially in the tumor periphery. In Supplementary Movies 4 
and 5, we show vascular nodes with degree k = 24 from a healthy network, and k = 14 from the U87 tumor 
periphery. The healthy microvascular networks consistently featured higher degree vertices than the U87 vessel 
networks, while the GL261 periphery yielded the highest kmax (Table 2 and Fig. 2a). The increased abundance of 
terminal branches with degree k = 1 in both tumor models is a strong indicator for angiogenesis (see inlay in 
Fig. 2a). Vessel endpoints constituted 20 ± 3% of all nodes in full U87 networks (36 ± 7% in the core) and 23 ± 2% 
of nodes in the GL261 networks (32 ± 4% in core), in contrast to 11 ± 2% in healthy networks (with SD among 
samples). In consequence, the mean node degree 〈 〉k  was decreased in both tumor models (Table 2). Nodes with 
degree =k 2 are an artefact of skeletonization and dealt with in the discussion.

In Table 2, mean local connectivity measures are given for the vascular networks, as well as comparable ran-
dom graphs66. Since the random networks were constructed from the same number of constituents as the healthy 
and U87 tumor networks, the node density ρ

n
, the size parameters Nn and Ne, and the mean node degree 〈 〉k  are 

identical to the weighted means over the reference networks. Yet, as expected, the vascular networks are subject 
to greater organization and heterogeneity, which reflects in the considerably higher maximum degree kmax at 
unchanged mean degree k.

The degree distributions of the vascular networks approximately obey a power law ∼ γ−P k k( )  for higher 
degrees, with least squares fits for ≥k 5 showing good approximations of the vascular data (Fig. 2a). Despite 
unusually large exponents, this classifies the healthy and pathological vasculature as scale-free networks53, placing 
them in line with many complex networks in nature, including the human brain63, metabolic67, and protein net-
works68. While both tumor models decreased the exponent γ with respect to healthy networks, the change was 
much stronger in GL261 tumors when comparing full networks, whereas U87 cores showed the highest hetero-
geneity, followed by GL261 cores (see mean γ〈 〉 in Table 2).

Figure 2. Vascular network topology. (a) Degree distributions (mean with SD among samples) from n = 6 
healthy brain hemispheres, full U87 and GL261 tumors, and tumor cores, respectively. For comparison, the 
mean degree distribution from =n 12r  random Erdös-Rényi graphs66 with the corresponding node and edge 
numbers, is displayed as well, following a Poisson distribution. The large plot presents the distributions for 
≥k 3 on logarithmic axes, while the inlayed plot shows the full distributions on linear scales. The logarithmic 

plot includes straight lines in corresponding colors, representing power law fits to the vascular data. (b) 
Bivariate distributions of node clustering coefficients Ci with corresponding node degrees ki, including all nodes 
with ≥k 3 from all datasets and power law fits in corresponding colors. The marginal distributions of clustering 
coefficients Ci are displayed with a logarithmic ordinate axis to better illustrate differences along the entire 
range.
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The clustering coefficient C quantifies the degree to which a node’s neighboring nodes are well interconnected. 
Real, scale-free networks often have much higher clustering coefficients than comparable random networks, even 
with quasi-identical degree distributions53,69. Generally, the studied vascular networks presented much higher 
clustering than corresponding random graphs with mean 〈 〉 = ± ⋅ ≈ 〈 〉−C k N(1 1) 10 /r e

5 53. The tumor vascula-
ture exhibited an increased mean clustering coefficient 〈 〉C  compared to healthy networks, which, by definition, 
indicates a higher abundance of local vessel loops. Both pathological models showed stronger clustering in the 
tumor core, but the effects were much more amplified in GL261 tumors (Table 2).

Distributions of individual node clustering coefficients Ci with corresponding degrees ki are presented in 
Fig. 2b. U87 tumor networks had a slightly higher relative number of cliques around low degree branching points 
( ≤k 5), increasing the abundance of =C 1i  nodes. Although in rare occurrence, the healthy vessel networks 
featured nodes with slightly elevated clustering for most degree values above =k 5, as compared to the U87 tum-
ors, while GL261 tumors showed significantly increased clustering, also for high degree nodes ( < .p 0 004 for 
GL261 cores and full tumors; = .p 0 025 for U87 cores and > .p 0 1 for full U87 networks compared to controls, 
tested with mean C per tissue specimen).

The approximate scaling of node clustering coefficients with ∼ β−C k k( )i i i  has been identified as a hallmark of 
networks with hierarchical structure70. Robust power-law fits on the individual node values yielded the scaling 
exponents β given in Table 2. Despite the large spread of clustering coefficients Ci (Fig. 2b), the healthy and patho-
logical networks studied here can be classified as hierarchical networks.

Reshaped nonlocal connectivity. In order to quantify the vascular networks’ nonlocal topology, the branching 
nodes were clustered based on modularity, using the Louvain community unfolding algorithm58. An exemplary 
consecutive community unfolding process on a full U87 glioblastoma and healthy brain hemisphere is presented 
graphically in Fig. 3a. For the topological quantifications reported in the following, the partitioning schemes cor-
responding to global maximum modularity Q were used for each network (in Fig. 3a, the rightmost community 
networks). To suppress boundary effects, isolated communities (disconnected vessel clusters) including less than 
twenty edges were removed from our analysis.

Tumor-induced decomposition of large-scale community structures. The Louvain algorithm unveiled consider-
ably larger clusters in healthy vessel networks than it did in glioblastoma vasculature, with dramatic differences 
in tumor cores and amplified effects in the GL261 model. This reflects in the communities’ number of nodes n, 
number of vessel edges e, and the mean physical extent R, as well as the community perimeter P, i.e. the number 
of vessels to neighboring communities, with broader distributions in healthy networks and much smaller modu-
lar communities in all tumors (Table 3 and Fig. 3b–d).

At the highest partitioning level, determined by Eq. (1), the mean maximum modularity in healthy control 
networks was approximately 0.5. This modularity was maintained in tumors, but with much smaller vessel clus-
ters (see modularities 〈 〉Q  and node numbers 〈 〉n  in Table 3). While the modularity was slightly lower in tumor 
cores, it was even increased in GL261 tumors, compared to healthy controls, following a drastic breakdown of 
large vessel communities. Corresponding Erdös-Rényi networks, clustered with the same procedure, yielded 
maximum modularity close to zero, with mean value = ± ⋅ −Q̂ (6 32) 10r

7 from =n 12r  random networks. 
Practically, the same modularity was maintained in healthy and pathological vessel networks, but on substantially 
different community size scales.

The clustering sequence in Fig. 3a demonstrates that the healthy brain exhibits a more uniform distribution of 
differently sized clusters throughout the tissue, while the glioblastoma upholds large vessel communities asym-
metrically at its boundaries. The rightmost images show that modular clusters are disrupted and separated in the 
glioblastoma, and vessel communities are not as dense or large as they are in the healthy brain. This indicates 
that tumor-induced vessel remodeling leads to a breakdown of pre-existing topological clusters in order to form 
smaller supply entities, which could be regulated more independently.

The correlation between community size e and perimeter P can be associated with the isolation of modular 
vessel communities. Robust power-law fits to the roughly linear relationship on logarithmic axes (Fig. 3e), assum-

ing ∼ ξP e e( ) , yielded the exponents ξ in Table 4 (corresponding to the slopes plotted in Fig. 3e). An analogous 
quantification on large parts of the cortical vasculature in a mouse model documented an exponent of . ± .0 83 0 0430,  
where values between 2/3 and 1 were interpreted as a manifestation of weak community structure, while lower 
scaling exponents ξ would indicate the persistence of strongly isolated communities. Our results show that com-
munity interconnectivity differs in tumor core and periphery, but both tumor models showed consistent changes 
from healthy vasculature. Full tumor networks showed an increased exponent ξ with relatively little deviation 
from the assumed relationship. In contrast, tumor cores had lowered exponents with large uncertainty and 
stronger variance, with more pronounced differences to healthy tissue in the GL261 models.

For each vessel segment connecting a cluster to another, on average, a vessel community incorporated 〈 〉e P/  
internal edges (sample mean with SD from all communities given in Table 4). All types of vascular networks 
exhibited pronounced modular structures. Tumor vasculature exhibited higher heterogeneity in community iso-
lation with a tendency towards reduced cluster connectivity (Fig. 3e). Whereas communities were most modular 
in full GL261 networks including the periphery, the U87 model showed stronger community isolation in its core, 
with higher heterogeneity in tumor peripheries for both models.

Furthermore, the vessel communities in tumor tissue presented higher heterogeneity in vessel segment den-
sities, especially towards lower values (Fig. 3f; tumor networks featured communities with relatively large spatial 
extent R and low edge number e). The glioblastoma upheld vessel clusters with a low number of intercommunity 
segments P in a wide range of edge numbers e (Fig. 3e) and mean cluster radii R (Fig. 3g). The tumor networks 
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not only presented a significant breakdown of vascular community size, but also decomposed connectivity among 
existing communities.

The identified vessel communities form meta-networks on larger length-scales of several hundred microme-
ters. The connections between communities can be interpreted as weighted edges between community nodes (see 
graph illustration in Fig. 3a). Standard graph theoretical measures, derived from the undirected meta-networks 
of healthy and pathological vascular communities, revealed profound characteristics in the organization of 

Figure 3. Modular network structure. (a) Schematic graphs of the community unfolding process on an entire 
vascular network in a healthy brain hemisphere (top) and full U87 glioblastoma (bottom). Each level of 
partitioning represents a local maximum in modularity Q, attained with increasing community sizes. The 
rightmost graph shows the clustering scheme with global maximum modularity over a central slice of the 
original SPIM-image. Communities are depicted by circles with diameter and brightness (blue) proportional to 
cluster size ej, while the weight of a connection (the number of intercommunity vessel segments) is encoded in 
the edge thickness and brightness (red). Cluster positions are given by their centroid →rj . The specimens 
encompass comparable (shrunken) tissue volumes of = .V 12 11 mmh

3 and = .V 12 87 mmg
3 in healthy control 

and tumor tissue, respectively (excluding ventricular space in the healthy brain, blinded for analysis). To the 
right of the partitioning chains, projections of 100 µm thick sections of the skeletonized vessel data show 
community affiliation (at global maximum Q) through the color of each branch segment. Relative distributions 
of community size properties from all specimens follow, namely (b) internal number of edges e, (c) mean 
physical extent R, and (d) community perimeter P. Panel (e) presents the relationship between a community’s 
number of internal edges e and its perimeter P. Linear fits to the log-log-representation are plotted in lighter 
colors over the datapoints, presenting slopes ξ. The following plots illustrate the relationships between (f) 
community edges e and mean physical extent R, as well as (g) perimeter P and R.
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tumor-specific vessel clusters. Effects were again more pronounced in GL261 tumors, but from both models 
studied here, general trends may be extracted from our results.

The importance of a community as a supply entity is reflected by the community degree = +k e P2c , adapting 
the classical notion of the degree of a node with P connections to other nodes and e connections to itself (internal 
vessel edges). The clustered meta-networks did not show scale-free properties and degree distributions mainly 
reflected the breakdown of large vessel communities in healthy tissue. This effect was more pronounced in full 
GL261 networks, but produced similar degree distributions in the cores of both tumor models (Table 4 and 
Fig. 4a). In contrast to the basic vessel networks analyzed before, the meta-networks presented reduced clustering 
coefficients Cc between communities in glioblastoma, with higher heterogeneity and lower interconnectivity in 
tumor cores (Table 4 and Fig. 4b). The community clustering coefficients Cc did not present a distinct dependence 
on the degree kc, advocating a loss of the basic networks’ hierarchical organization in the large-scale 
meta-networks (Fig. 4b).

We observed a positive correlation between the degrees of directly connected communities in all vascular 
networks (Fig. 4c), which indicates that vessel communities are subject to assortative mixing71,72. Such mixing is 
based on large, well-connected communities that are preferentially attached to other communities of similar 
importance; an unexpected finding, as spatial networks typically yield flat 〈 〉kc1  distributions73. As robust power 
law fits assuming 〈 〉 ∼ κk k k( )c c c1  emphasized, the assortativity was more pronounced in glioblastoma vasculature 
(exponents κ in Table 4 shown as slopes of straight lines in Fig. 4c). Both tumor models presented very similar 
community sorting in the core, with little difference in entire GL261 networks, but more similarity of full U87 
networks with healthy cerebrovasculature. A significant increase of assortative mixing in tumor vasculature is 
clear in both models.

The communities in GL261 tumor tissue and all tumor cores tended to be connected to a smaller number of 
distinct neighboring clusters, while in the full U87 networks, communities had slightly more topological neigh-
bors than healthy networks. This indicates abnormally high community interconnectivity in the U87 periphery 
(Fig. 4d). A comparison of the mean number of unique neighboring clusters 〈 〉kc u,  (Table 4) with the mean com-
munity perimeter 〈 〉P  (Table 3) shows that intercommunity connections in a healthy network are often enforced 
by many more individual vessel segments. With much larger healthy communities (Table 3), this observation 
makes sense when considering the supply and drainage functions of the intercommunity connections to the clus-
ters, and it supports the notion of reduced community interconnectivity in tumor tissue.

In nonlocal connectivity, U87 and GL261 tumor-derived community networks presented diverse properties. 
Considerably higher densities ρc of much smaller vessel communities in tumor tissue can be associated with a 
rise in mean topological diameter Dc, i.e. the longest path through the network over communities, and mean path 
length Lc between any pair of connected communities, in relativity to reduced tumor network sizes in compari-
son to healthy controls (Table 4). Nevertheless, the vascular networks in tumor tissue exhibited relatively small 

〈Q〉 〈Nc〉 〈Nice〉 · 103 〈ρ
c
〉 mm−3 〈ρ

ice
〉 · 103 mm−3 〈n〉 · 103 〈e〉 · 103 〈R〉 µm 〈P 〉

Healthy networks 0.51 ± 0.01 88 ± 21 25.18 ± 9.35 6 ± 2 1.8 ± 0.8 5.6 ± 3.1 8.8 ± 5.1 275 ± 74 573 ± 344

U87 full networks 0.50 ± 0.02 112 ± 30 8.17 ± 4.35 14 ± 7 1.2 ± 0.7 1.9 ± 1.3 2.8 ± 2.1 211 ± 65 173 ± 143

U87 core networks 0.43 ± 0.06 36 ± 24 0.08 ± 0.12 179 ± 147 0.3 ± 0.4 0.07 ± 0.06 0.09 ± 0.08 94 ± 35 5 ± 6

GL261 full networks 0.57 ± 0.03 204 ± 50 1.38 ± 0.89 77 ± 18 0.5 ± 0.3 0.3 ± 0.3 0.4 ± 0.5 110 ± 51 14 ± 26

GL261 core networks 0.48 ± 0.12 45 ± 30 0.06 ± 0.08 176 ± 58 0.2 ± 0.3 0.06 ± 0.05 0.09 ± 0.08 70 ± 25 3 ± 5

Table 3. Structural properties of communities uncovered in the vascular networks. Mean values with SD among 
samples are given for the final partitioning modularity Q, the number of communities per specimen Nc, the 
number of intercommunity edges Nice, the mean number of communities and intercommunity edges per mm3 
(shrunken) tissue volume, ρ

c
 and ρ

ice
, respectively, the mean number of nodes n and edges e  per community, as 

well as mean physical extent R  and perimeter P  of the communities within each sample.

ξ 〈e/P〉 〈kc〉 κ 〈kc u, 〉 〈Cc〉 〈Lc〉 〈Dc〉

Healthy networks 0.99 ± 0.01 18 ± 11 17780 ± 5930 0.18 ± 0.01 8.8 ± 1.7 0.51 ± 0.02 3.1 ± 0.4 7.3 ± 1.1

U87 full networks 1.11 ± 0.01 22 ± 35 5360 ± 2760 0.37 ± 0.01 9.2 ± 0.9 0.50 ± 0.04 3.1 ± 0.4 7.5 ± 1.4

U87 core networks 0.99 ± 0.12 27 ± 23 140 ± 130 0.88 ± 0.03 2.3 ± 1.1 0.28 ± 0.22 2.6 ± 1.0 5.7 ± 2.2

GL261 full networks 1.43 ± 0.01 58 ± 71 780 ± 370 0.87 ± 0.02 5.5 ± 0.9 0.40 ± 0.05 4.4 ± 0.4 11.0 ± 1.8

GL261 core 
networks

0.86 ± 0.15 39 ± 33 140 ± 100 0.87 ± 0.03 2.0 ± 0.8 0.17 ± 0.21 2.4 ± 1.3 6.0 ± 4.2

Table 4. Connectivity between communities. Isolation scaling exponents ξ from robust fits assuming ∼ ξP e e( ) , 
mean number of internal vessel segments per intercommunity edge e/P, mean community degree = +k e P2c  
and assortativity exponent κ from fits approximating the neighboring degree relationship with 〈 〉 ∼ κk k k( )c c c1 , 
mean number of unique topological neighbor-communities kc u, , community clustering coefficient Cc, 
characteristic path length Lc and diameter Dc of the meta-networks, averaged from all specimens, and given 
with SD.
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topological path length increases, which becomes more apparent in dependence of the physical separation ∆ 
between the community centroids (Fig. 4e; the number of occurrences for each pair separation bin is presented 
in Fig. 4f).

The mean path length Lc(∆) in full U87 tumor networks was not appreciably higher than in healthy tissue, 
even for large distances between community centroids in the millimeter range (Fig. 4e). U87 tumor cores and 
GL261 specimens were subject to more heterogeneity, with mean path lengths exhibiting a steeper rise with phys-
ical separation, but also over considerably smaller communities (see n, e, R in Table 3). Our results show that the 
well-connected U87 tumor periphery facilitates short path lengths between virtually all communities in the 
tumor. Despite a decreased intercommunity edge density ρ

ice
 and communities with considerably smaller physical 

extent R and vessel numbers n (Table 3 and Fig. 3b,c), tumors maintained relatively short topological separations 
between communitites, even over large distances through the tissue.

Figure 4. Community interconnectivity. (a) Mean log-binned frequency distributions of community degree 
= +k e P2c  (with SD among samples), (b) community clustering coefficients Cc vs. kc, and (c) mean degree of 

neighboring communities 〈 〉kc1  vs. kc with fits 〈 〉 ∼ κk k k( )c c c1 . (d) Relative frequency distributions of the number 
of unique topological neighbor communities kc,u, (e) separation-dependent shortest path length Lc between two 
connected communities, separated by the Euclidean distance ∆ ± δ/2 with increments of δ = 50 µm. The 
datapoints represent individual community-pair instances and the brighter lines connect the mean values over 
all datasets for each distance bin in ∆. (f) The number of community pairs with centroid separation ∆ ± δ/2 
(with SD among samples).
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Discussion
We characterized entire, perfused vascular systems in healthy mice brain, U87- and GL261-glioblastoma xen-
ografts using basic geometric and network theoretical measures. The U87 cell line is known to have undergone 
genetic drift over recent years, growing in a solid, bulky manner instead of promoting diffuse infiltration of the 
brain parenchyma, like most human gliomas74. Furthermore, this tumor model has been found to have anoma-
lous microvascular properties, with vessel distributions rather resembling healthy vasculature than other tumors 
in some aspects75. The solid growth pattern of the U87-glioma aided in delineating the tumor tissue from healthy 
tissue to attain first quantifications of entire tumor-immanent vascular networks, with the highly angiogenic 
GL261 model serving for further comparison. The methods presented here can be applied to arbitrary 3D-image 
data, independent of the imaging technique, and therefore, they are transferable to humans and other pathologies.

Our results render the tumor tissue to be irregularly perfused with a high variation in local vessel densities and 
characteristic differences in core and periphery, consistent with general knowledge76,77. We did not observe any 
significant increase in blood volume fraction fVV or mean vessel radii r , as has been documented with different 
experimental methods and brain tumors, including the U87 cell line78–82. This is expected to be attributed to the 
tumor stage examined and the collective character of the geometric comparisons, which stand in contrast to local, 
selective analyses of angiogenic regions83.

In our integrative study of the full vascular network, we found U87 tumor tissue to feature very low vessel 
densities MVD, but relatively unchanged blood volume fractions fVV in some regions on the 500 µm scale. 
Increased vessel calibre in the U87 tumor core indicates hypoxic vasodilation, which can compensate the tissue’s 
fractional blood volume with very little perfused vessels84. While the main hallmarks of tumor angiogenesis are 
believed to be an elevated vessel density MVD and fractional blood volume fVV, dilated vessel radii r , higher 
tortuosity τ, and decreased branching lengths l85, our comparisons with vasculature from different regions of the 
healthy brain did not reveal elevated vessel densities significant on a global scale. The MVD and fVV were overall 
decreased in glioblastoma, while branching lengths l and vessel radii r  changed distinctly in both tumor models. 
Previous studies have shown that the above-mentioned properties, relating to vascular density, can change and 
decrease with tumor progression83, shifting angiogenic activity to the tumor periphery, while reducing the perfu-
sion density in the core77,86.

Our quantifications of healthy cerebrovascular networks included many brain regions with heterogeneous 
perfusion densities, without a differentiation of vessel types. The healthy networks featured high calibre arteries 
and veins that increased the average vessel radius. The tumor networks were in deficit of such large vessels, but 
presented a shift of small capillaries towards higher calibres, with the exception of GL261 tumor cores, which 
possibly included necrotic tissue. From our results, the dilation of small capillaries, related to tumor angiogen-
esis85,87, could be inferred in the GL261 periphery. In support of previous studies, we found that an elevated 
vessel tortuosity, even in singular, extreme cases, has the potential of serving as a geometric biomarker for tumor 
vasculature61,85,88.

Despite the disruptive effects of tumor growth on the local vasculature, the pathological vessel networks main-
tained basic classifications from graph theory that were also identified in healthy cerebrovascular networks, 
namely scale-free degree scaling with high exponents and the hierarchical clustering structure. This suggests that 
healthy and tumor-nurturing vascular networks both belong to the same class of transport networks with charac-
teristic properties and topological scaling in size. Nonetheless, the uncovered network topology provides hints as 
to how vascular networks in the glioblastoma form. The dramatically increased relative abundance of terminal 
branches with degree k = 1 (vessel endpoints) in the tumor networks is a strong indicator for neovascularization89, 
pointing to sprouting angiogenesis, vascular mimicry, or vasculogenesis as likely mechanisms90,91. Elevated vessel 
tortuosities τ and local clustering coefficients C in the glioblastoma support the impression of angiogenesis play-
ing an important role in the network formation, while promoting an increased abundance of vessel loops86. Not 
all signs point to angiogenesis, though; the decreased branching density MVD and longer vessel segments in 
tumor tissue are atypical for brain tumor angiogenesis85.

The breakdown in node diversity towards lower degree intersections, observed in tumor cores, indicates 
a degeneration of the preexisting vasculature during tumor development. This is supported by the significant 
decomposition of modular community sizes and general decrease in vascular density. Vessel occlusions on a large 
scale must have broken down the original, healthy network, eliminating high degree nodes and splitting existing 
vessel clusters. While tumor cores were supplied by sparse, very small and scarcely interconnected vessel com-
munities, the periphery was found to maintain larger communities with more diversity and higher community 
clustering.

In glioblastoma networks, practically the same modularity was maintained by smaller community structures 
with stronger assortative mixing. Large supply entities were abandoned during tumor growth with focus on local 
metabolic needs and the effective transport of nutrients and oxygen. With small, light vessel clusters, nutrient rich 
blood can be transported long distances without being deprived along the way through large, dense community 
structures. The prospective gain in long-range transport efficiency leaves regions along the way undersupplied. 
The topological remodeling observed here may play an important role in the formation of hypoxic and necrotic 
regions and should be further investigated over a time course during tumor progression.

Albeit a decreased volume density of intercommunity vessel edges ρ
ice

 at considerably higher density, ρ
c
, of 

smaller communities, the clustered glioblastoma networks presented relatively short characteristic path lengths 
Lc. The assortative mixing may be related to this aspect, which is, in effect, again geared towards the transport 
efficiency of the network. The small-world property has been investigated briefly on relatively large sections of the 
vibrissa primary sensory cortex of mice30. There, the absence of strict graph theoretical cliques was interpreted as 
an indicator that the studied microvasculature did not form small-world networks (cf.30, Online Methods). A 
reliable assessment of the small-world property should evaluate the scaling of the characteristic path length Lc 
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with the number of meta-nodes Nc
53. This is not possible with, respectively, 6 samples in similar size ranges, but 

one should note the short mean path length of 〈 〉Lc  ≈ 3–5, that separates most of the roughly 102 communities in 
each network.

Vasculature as a complex network. From a graph theoretical standpoint, the vascular networks quan-
tified in this study present very unusual topological properties. Many factors can be involved in forming these 
networks, but a consensus in most theoretical models, treating the formation of scale-free networks, is that the 
dynamic growth process plays a central role in the emergence of a power law degree distribution. This is an 
important aspect in the original Barabási-Albert model46, as well as most methods thereafter, incorporating, e.g., 
preferential attachment, fitness models, and edge dynamics (for review, see, e.g.53,69).

Although recent years saw numerous publications on scale-free networks with degree exponents γ ≤ 3, scien-
tific literature lacks the documentation and treatment of large, complex networks with high degree exponents, as 
encountered here. The similarity of γ-exponents in both types of networks suggests that the scale-free property 
with high degree exponents is immanent to large intracranial vessel networks, healthy and pathological, at the 
capillary scale. A previous study, modeling the Havers and Volkmann channels in cat humeri, revealed scale-free 
characteristics with degree exponents γ ≈ 3.7–3.892. Although arguably in a different system, these vascular net-
works also present unusually high scaling exponents.

It has been shown that scale-free networks can be very resilient against random failures, since, if a fraction of 
nodes chosen randomly is lost, a majority of them is expected to have low degree. In random networks, highly 
connected vertices, often called hubs, are usually responsible for the global connectedness in the graph53. Thus, 
for random networks, a certain abundance of hubs is important for a system’s stability and some models have 
shown that exponents γ < 3 result in increased robustness against random failures, while higher exponents lead 
to a quicker loss of global connectivity53,93. In the context of blood vessel networks, a node with high degree is not 
necessarily a node of central importance for nonlocal connectivity. Adapting the earlier argument, an increased 
exponent γ should result in a decreased likelihood of losing locally important high degree nodes from random 
failures. In this case, this speaks for a strong sustainability of the system’s diversity against stochastic damaging 
events.

The vascular networks exhibit relatively high clustering coefficients compared to random graphs. In the vascu-
lar context, high clustering coefficients manifest in local vessel loops consisting of only three edges, which guaran-
tees high network stability, but, in abundance, is inefficient for nutrient and waste transport. The predominance 
of closed paths in intracranial vasculature, though mostly formed by a larger number of edges, has been shown 
to serve in flow rebalancing upon vessel occlusion28,94. Large vessel loops were not investigated in this study, but 
increased clustering coefficients in the pathological networks indicate that glioblastoma promotes good condi-
tions for flow rebalancing and ensures local supply somewhat redundantly.

The vessel networks’ clustering with ∼ β−C k k( )i i i  is reminiscent of hierarchical networks. Such scaling has 
been found in some real networks and can be reproduced by several models, incorporating different network 
evolution mechanisms70,95. Although it has been reported that the scaling exponent in true hierarchical networks 
often takes on values β ≈ 1, and this has been proven analytically for two hierarchical network models96,97, devi-
ating values still present the power-law scaling with degree. To our knowledge, hierarchical clustering has not 
been observed in real networks embedded in Euclidean space. It has been assumed, so far, that the spatial con-
straints, linked to cost factors in connectivity, suppress the formation of such hierarchical structures in spatial 
networks70,73.

The basic vascular networks combined scale-free degree distributions with hierarchical scaling of clustering 
coefficients, while strictly embedded in Euclidian space. The scale-free property supports the stability of the net-
work over long time periods93, while the hierarchical organization can be expected to be related to the optimiza-
tion of transport efficiency7. To our knowledge, no comparable real network with such high degree and clustering 
exponents, γ and β, has been quantified before. The findings suggest that tissue vasculature, when modeled as 
an undirected network, may form a distinct class of networks with unprecedented properties. Such a conclusion 
demands further investigations, including more statistics and different vascular networks, but the motivation for 
such studies should hereby be established.

Methodological challenges. Intracranial vascular networks are composed of a myriad of individual vessel 
branches with different geometries. An attempt to study the full range of blood vessel instances pervading any 
animal tissue bears great experimental and computational challenges. The trade-off between high resolution and 
large acquisition volumes, that most imaging modalities are bound to, limits the capabilities to attain detailed and 
extensive anatomical information about full vascular systems. Regarding this compromise, the data acquisition 
enabling this study pushes the current frontiers of easily reproducible, large-scale biological imaging without 
need for co-registration or stitching.

The segmentation process plays a critical role in data treatment. Due to differently expressed imaging artefacts, 
each dataset was segmented individually with great care to reproduce the visual perception of vessels in the orig-
inal image stacks. It may be argued that this produces subjective segmentations with no clear thresholds or fixed 
parameters between datasets, but, on the available data, the results are superior to alternative, threshold-based 
methods. Furthermore, any masking procedure used to differentiate healthy and tumor tissue suffers a certain 
ambiguity in tissue boundaries, which can influence statistical results.

It should be noted that the SPIM imaging procedure only incorporates perfused vessels. This is a positive fea-
ture in our context, since occluded vessels do not contribute to the network’s function, and are, a fortiori, not of 
interest in this study. However, a caveat regarding the presented geometric quantifications arises from the tissue 
clearing, where dehydration leads to an isotropic volume shrinkage of up to 40%35, which translates to vessel 
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lengths and radii with a factor of . ≈ .0 6 0 841/3 . Since the smallest capillaries typically present in vivo diameters of 
around 4 µm98,99, a shrinkage of 40% would correspond to a reduced vessel diameter of 3.37 µm. In such extreme 
cases, with a resultion of 3.25–5 µm in our study, more than 90% of the enclosing voxel will still be illuminated by 
vascular contrast, thus still safely registering the voxel as containing vasculature in accordance with Risser et al., 
who validated that a resolution in our range is just high enough to register the entire microvasculature100.

A highly accurate quantification for small capillaries was not possible in this study, as vessels with radii below 
approximately 3 µm appear with single-voxel thickness. This pitfall was acceptable, as the aim of this paper was 
not to advance the large body of literature dealing with absolute geometric vessel properties, but to provide a 
detailed topological analysis of the entire microvasculature. The vascular network topology is not affected by tis-
sue shrinkage or vascular radius distortion, since it only considers connections between vessels. One exception 
are distance-dependent measures, in which case physical separations are expected to scale linearly with a factor 

close to . ≈ .−0 6 1 1861/3  in the original tissue before clearing35. The vessel connectivity, however, is robust under 
the imaging and post-processing and the geometric properties are comparable within the scope of an experiment. 
The inclusion of the smallest vessels in our analysis was crucial to uncover the true network topology, as the cap-
illary bed has been shown to have dense, mesh-like properties5,18.

A general issue with topological studies of biological data is the skeletonization process. Irregular surfaces and 
boundary perturbations cause single voxel stubs in the skeleton, which are by definition nodes with degree =k 241.  
Even though such nodes do not contribute to the vessel network in any sensible way, they were not removed from 
our analysis. Although pruning can help eliminate such nodes41, we refrained from such manipulations with 
arbitrary parameter choice in pruning length and method to avoid unnecessary data manipulation.

Another systematic effect of discrete image data is the emergence of high degree nodes. With high local node 
densities, neighboring branching points in the skeleton, e.g., consecutive bifurcations, can combine to vertices of 
high degree41. Examples are shown in Supplementary Movies 4 and 5. This effect produces long tails in the degree 
distributions, which, at first glance, may seem unphysiological. While higher resolution acquisitions are expected 
to break the high-degree nodes up into multiple low-degree branching points, the emerging power law in degree 
distributions is nonetheless meaningful at the treated length scale. From a large-scale perspective, branching 
points, which are separated by less than the diameter of the network’s smallest vessels, can sensibly be modeled as 
single meeting points of multiple vessels. When considered during the interpretation of the results, the implica-
tions of this caveat on our understanding of such large transport networks are rather constructive.

General topological properties of the cerebral vasculature have barely been quantified in the past. Although 
graph theoretical modeling has been applied to more and more anatomical systems in recent years22,64, our work 
provides the first multi-scale topological quantifications of the cerebral vasculature in a mammal to this detail. 
Furthermore, over the past decades, many studies have elucidated geometric and structural abnormalities of 
tumor vasculature in diverse settings and contexts14,15,23, but none have investigated the topological consequences 
of tumor growth on an entire vascular network.

The topological quantifications presented here only utilize a small subset of tools available in network theory 
to delineate the nature of complex networks. As the amount of data describing large systems and the availability 
of computational power have increased, a multitude of methods has been developed in the field of graph theory 
(see59 for a recent overview). Our quantifications of such large samples of the cerebral angiome are, to our knowl-
edge, the first of this scale and detail. The undirected graph framework was employed in order to deliver first basic 
network characteristics. On such large systems made up of many similar constituents, this approach has proven to 
be successful in uncovering previously veiled system properties. Future studies should build on these results and 
extend our understanding of large vascular systems as complex networks, how tumor development alters these 
networks, and how we can use this in treatment.

Conclusions
In conclusion, we found that tumor growth can alter the vascular topology without substantial reflections in 
geometric features of individual vessels in large-scale considerations. Tools from network theory are capable of 
grasping collective changes to the vascular network that are concealed in local analyses. This could better facilitate 
the delineation and grading of different forms of vascular remodeling, as demonstrated with the glioblastoma 
models U87 and GL261. The fundamental graph properties characterizing the cerebrovascular network were 
maintained in the glioblastoma, but local and nonlocal clustering, as well as long-range connectivity were char-
acteristically rearranged, with more assortative mixing of strongly decomposed vessel communities. This may 
have profound implications on oxygenation and nutrient distribution to the tissue, which could be used for the 
development of tailored treatment strategies.
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