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The application of tumor immunotherapy to glioblastoma (GBM) is limited by an

unprecedented degree of immune suppression due to factors that include high numbers

of immune suppressive myeloid cells, the blood brain barrier, and T cell sequestration

to the bone marrow. We previously identified an increase in immune suppressive

myeloid-derived suppressor cells (MDSCs) in GBM patients, which correlated with poor

prognosis and was dependent on macrophage migration inhibitory factor (MIF). Here

we examine the MIF signaling axis in detail in murine MDSC models, GBM-educated

MDSCs and human GBM. We found that the monocytic subset of MDSCs (M-MDSCs)

expressed high levels of the MIF cognate receptor CD74 and was localized in the tumor

microenvironment. In contrast, granulocytic MDSCs (G-MDSCs) expressed high levels of

the MIF non-cognate receptor CXCR2 and showed minimal accumulation in the tumor

microenvironment. Furthermore, targeting M-MDSCs with Ibudilast, a brain penetrant

MIF-CD74 interaction inhibitor, reduced MDSC function and enhanced CD8T cell

activity in the tumor microenvironment. These findings demonstrate the MDSC subsets

differentially express MIF receptors and may be leveraged for specific MDSC targeting.
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INTRODUCTION

Glioblastoma (GBM) is the most prevalent primary malignant
brain tumor and remains uniformly fatal despite aggressive
therapies including surgery, radiation, and chemotherapy (1, 2).
With limited treatment options, the success of immunotherapies
in other advanced cancers, including melanoma and non-
small cell lung cancer, has inspired investigation of immune
based therapies in GBM (3–6). However, early clinical trials
of immune checkpoint therapies in GBM have demonstrated
limited response, if any, and despite some evidence of immune
cell accumulation, GBM growth persists (7, 8). One explanation
for these failures could be the potent immunosuppressive
factors present in GBM, including the high tumor content
of myeloid-derived suppressor cell (MDSC) (9–12). MDSCs
are a heterogeneous population of bone marrow-derived cells
consisting ofmonocytic (M-MDSC) and granulocytic (G-MDSC)
subsets that accumulate in the tumor, spleen, and peripheral
blood of GBM patients, where they exert immune suppression by
dampening the function of natural killer (NK) cells and cytotoxic
T lymphocytes (CTLs) (13–18).

Recent work from our laboratory and others identified an
increase in circulating M-MDSCs in the peripheral blood of
GBM patients compared to benign and grade I/II glioma
patients (9, 19). However, this difference was not observed for
other immunosuppressive cell populations, such as macrophages
or T-regulatory cells, which were not different between
patients of different glioma grades. In addition, MDSCs
in the peripheral circulation and infiltrating in the GBM
microenvironment correlated with poor prognosis (9, 19). Based
on these observations in GBM and other cancers, attempts
to target MDSCs using multiple approaches, including low-
dose chemotherapy in a recent GBM trial are in clinical
evaluation (20). Notably, these approaches use non-specific
strategies that attenuate MDSCs, as opposed to targeted
approaches that are MDSC-specific and may have a higher
therapeutic utility.

In seeking to develop MDSC targeted therapies to reduce
immune suppression, we focused our attention on macrophage
migration inhibitory factor (MIF). MIF is highly conserved
in mammals, exhibiting approximately 90% homology across
species, and interestingly can also be found in parasites, plants
and cyanobacteria, possibly indicating its importance in basic
biological functions (21). MIF has also been shown to be
produced by many immune cells including T cells, monocytes,
macrophages, and neutrophils and has been shown to be
expressed in multiple cancers including GBM, lung cancer,
and breast cancer (21–23). In its secreted form, MIF is a
homotrimer and contains an enzymatic pocket at the interface
of two monomers (22). While the enzymatic pocket has been
clearly identified, there is no known natural substrate. There is
tautomerase activity with the substrate p-hydroxyphenylpyruvic
acid, although the Km/kcat is not in a physiologic range
(24, 25). MIF has been associated with multiple inflammatory
pathogeneses including sepsis, asthma, arthritis, inflammatory
bowel disease, malaria, and atherosclerosis (26, 27). Perhaps one
of the best examples of how MIF can alter the immune response
is that of sepsis, where inhibition of MIF has been demonstrated

to inhibit the inflammatory cascade induced by LPS that would
typically result in death (27). These early studies of MIF
also demonstrated that it is crucial for macrophage response
to pathogens, ultimately resulting in its name, macrophage
migration inhibitory factor (28, 29). In relation to GBM patients,
it is important to note that glucocorticoids, such as those used
to treat edema, induce MIF expression and that MIF is highly
expressed by GBM cells (30). Furthermore, MIF expression
is increased with glioma grade, and high levels of MIF in
The Cancer Genome Atlas (TCGA) datasets correlate with a
poor prognosis.

Targeting MIF is of interest due to our previous work where
we observed that MIF derived from GBM cells, specifically
therapeutically resistant cancer stem cells (CSCs), was necessary
for MDSC survival and function (31). Moreover, reducing
MIF levels in GBM cells did not alter their proliferation,
but when transplanted into an immune competent orthotopic
model, resulted in increased host survival and an increase in
the number of CD8T cells in the tumor microenvironment.
MIF has also been shown by other groups to enhance the
immune suppressive capacity of myeloid cells (32, 33); for
instance, MIF downregulation was demonstrated to aid in the
resistance of anti-VEGF therapies (34). In seeking to understand
exactly how MIF effects the immune response in GBM one
must consider that it has been shown to be highly context
specific, exerting both inflammatory and anti-inflammatory
effects depending on the disease and tissue (21, 31, 33, 35–
37). MIF signals through a variety of receptors, including via
its cognate receptor CD74, and by non-cognate interactions
with CXCR2, CXCR4, CXCR7. CD74 is the cell surface form
of the Class II invariant chain, but is expressed independently
of Class II to mediate MIF signal transduction (38–40). MIF
binding to CD74 leads to the recruitment of CD44 as a signaling
co-receptor, leading to downstream Src/MAPK signaling. By
contrast, MIF signaling through CXCR2 primarily through
PI3K/Akt-dependent signaling with Ca transients (41). The
pharmacologic targeting of MIF has also been of great interest
in a variety of inflammatory conditions including multiple
sclerosis, systemic lupus erythrematosus, rheumatoid arthritis,
inflammatory bowel disease, and other inflammatory disorders
(32, 42–49). Additionally, clinically approved MIF inhibitors
have been developed that could potentially be repurposed
for GBM (42). To gain a more mechanistic understanding
into the MIF signaling axis in MDSCs for potential targeting
in GBM, we examined the expression and function of
MIF receptors in MDSCs derived from mouse and human
GBMmodels.

METHODS

Co-culture Assay
Co-culture induction of MDSCs was adapted from previously
described work in melanoma (33). At day zero bone marrow
(BM) was freshly isolated from the tibias and femurs of male
000664-C57BL/6J. To obtain BM derived MDSCs, the freshly
isolated BM was incubated for 3 days in a medium consisting of
50% conditioned medium from a 24 h GL261 (glioma) cell line
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culture and fresh RPMImediumwith 10% FBS. Additionally, this
medium was supplemented with GM-CSF (40 ng/mL, Biolegend
Catalog # 575906), and IL-13 (80 ng/mL, Biolegend Catalog #
576306), which have been shown to increase MDSC expansion
and activity. BM was cultured in this medium in 6 well plates at
a density of 2,000,000 cells per well as previously described and
utilized for analysis on day 3 post initiation (33).

Flow Cytometry of Co-culture
At day 3 of the co-culture cells were extracted from the
wells using gentle washing with RPMI medium, blocked
in FcReceptor block (Miltenyi Biotec 130-092-575) and
then stained live on ice. Samples were then fixed using
eBioscience fixation buffer before analysis. Gating for MDSCs
was performed using FlowJOV10, andM-MDSCswere identified
by (Singlets/Live/CD45+/CD11b+/CD68-/IAIE-/Ly6G-/LyC+)
and G-MDSCs by (Singlets/Live/CD45+/CD11b+/CD68-/IAIE-
/Ly6C-/Ly6G+). Antibodies were obtained from Biolegend (San
Diego, CA) for analysis of mouse immune profile Fluorophore-
conjugated anti-Ly6C (Clone HK1.4, Catalog # 128024),
anti-Ly6G (Clone A8, Catalog # 127618), anti-CD11b (Clone
M1/70, Catalog # 101212), anti-CD68 (Clone FA-11, Catalog #
137024), anti-I-A/I-E (Clone M5/114.15.2, Catalog # 107606),
anti-CD11c (Clone N418, Catalog # 117330), anti-Ki-67 (Clone
16A8, Catalog # 652404), anti-CD45 (Clone 30-F11, Catalog
# 103132), anti-CD74 (Clone IN-1 Catalog # 740385), anti-
P2Ry12 (Clone S16007D, Catalog # 848004), anti-CXCR2 (Clone
SA044G4, Catalog # 149313), anti-CXCR4 (Clone L276F12,
Catalog # 146506), anti-CXCR7 (Clone 8F11-M16, Catalog #
331115), anti-CD44 (Clone IM7, Catalog # 103039). Antibody
compensation was performed using AbC Total Antibody
Compensation Bead Kit (Catalog # A10497).

Flow Cytometry Patient Tumor Samples
Flow cytometry data was utilized from Peereboom et al.
(20). Tumor tissue was received from recurrent GBM patients
undergoing treatment in clinical trial NCT02669173. Tissue
was digested in collagenase IV (STEMCELL Technologies) for
1 h at 37 degrees Celsius and then mechanical dissociated via
40-uM filter. Dissociated tumors were then washed in RPMI
medium before being viably frozen for flow cytometry analysis.
MDSC panel consisted of CD11b (Catalog # CD11b29), HLA-
DR (Catalog # 559866), CD14 (Catalog # 560180), CD15
(Catalog # 555400), CD33 (Catalog # 555450), CXCR2 (Catalog
# 551126), CD74 (Catalog # 555538 with Lightning-Link PE-
Cy7 Catalog # 762-9902). Staining and analysis were performed
using standard protocols previously described, with MDSCs
marked by CD11b+, CD33+, and HLA-DR–/lo and then further
subdivided into granulocytic MDSCs (CD15+) and monocytic
MDSCs (CD14+) (9, 20, 50). After gating for MDSC populations
the MFI of CXCR2 and CD74 was analyzed using FlowJo V10 for
each sample.

T Cell Suppression Assay
At day 3 post MDSC co-culture, T cell suppression was assessed.
Splenocytes were freshly isolated from male 000664-C57BL/6J
mice using sterile techniques. Post isolation the red blood cells

were lysed using RBC lysis buffer (Biolegend Catalog # 420301)
before being magnetically sorted using the (Pan T cell isolation
kit Catalog # 130-095-130, Miltenyi Biotec). Isolated T cells were
then stained using CFSE Cell Division Tracker Kit (Biolegend
Catalog # 23801). CFSE stained T cells were then collected and
distributed into round bottom 96 well plates at 100,000 cells
per well in IL-2(30 IU) as unstimulated control. Stimulated
controls additionally contained CD3/CD28 mAb-coated beads
(ThermoFisher Scientific) at a ratio of 3:1. T-cell activation was
measured by flow cytometry with the controls consisting of CFSE
labeled T cells alone and CFSE labeled T cells with beads. Co-
culture derived MDSCs, isolated by magnetic sorting (MACS
MiltenyiMDSC isolation kit Catalog # 130-094-538), were seeded
with T cells at a concentration of 1:2 (1MDSC for every 2 T cells).

Quantitative PCR
Quantitative PCR was performed for MDSC markers and
immune suppressive genes

Arg1 (Forward: AAGAATGGAAGAGTCAGTGTGG,
Reverse: GGGAGTGTTGATGTCAGTGTG) ,

iNOS (Forward: TGTGCTTTGATGGAGATGAGG,
Reverse: CAAAGTTGTCTCTGAGGTCTGG),

Ly6G (Forward:TTGTATTGGGGTCCCACCTG,
Reverse: CCAGAGCAACGCAAAATCCA),

CXCR2 (Forward: TCTTCCAGTTCAACCAGCC,
Reverse: ATCCACCTTGAATTCTCCCATC),

CD74 (Forward: ATGGCGTGAACTGGAAGATC,
Reverse: CAGGGATGTGGCTGACTTC),

MCP-1 (Forward: GTCCCTGTCATGCTTCTGG,
Reverse: GCTCTCCAGCCTACTCATTG).

RNA was isolated using Qiagen RNeasy Mini Kit and cDNA
was generated using aScript cDNA SuperMix (Quantabio). After
cDNA generation qPCR was performed using the Fast SYBRTM

Green Master Mix (ThermoFisher Scientific).

GBM-Seq Database Mining
Darmanis et al. data was utilized in this analysis where
normalized count data was acquired from http://www.gbmseq.
org/ (51). Subsequently, CD74 and otherMIF receptor expression
levels were graphed for the myeloid populations and other
immune populations as characterized by Darmanis et al. in their
supplemental data. All populations’ names were kept the same as
previously published and identified.

MIF Inhibitor Screen
The co-culture system was utilized to screen inhibitors of MIF
andMIF/CD74 interaction by dosing inhibitors at day zero when
the co-culture was initiated and then reading out % MDSCS of
live cells by flow cytometry. The same gating strategy as in the
co-culture methods section was used to determine if the MDSC
population was shifting. Screens were performed in biological
replicates of 3 on two separate experiments for a total of 6
biological replicates. The studied MIF inhibitors were anti-MIF
mAb (IIID.9), 4-IPP (Tocris Catalog # 3429) (52), Ibudilast (gift
of Medicinova) (53–55), ISO-1 (Tocris Catalog # 4288) (52),
MIF098 (56–58), AV1013(gift of Medicinova) (55), and the PDE4
inhibitor was Rolipram (Tocris Catalog # 0905).

Frontiers in Immunology | www.frontiersin.org 3 June 2020 | Volume 11 | Article 1191

http://www.gbmseq.org/
http://www.gbmseq.org/
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Alban et al. M-MDSCs Signal Through MIF/CD74

FIGURE 1 | Glioma educated MDSCS can be generated in vitro. MDSCs are induced using freshly isolated bone marrow cultured with 50:50 mix of fresh media and

conditioned media from a 24-h culture of GL261 cells with the addition of IL-13 and GM-CSF over 3 days (A). M-MDSCs were gated by

Live/CD45+/CD11b+/CD68−/MHC−/Ly6C+/Ly6G− while G-MDSCs were gated by Live/CD45+/CD11b+/CD68−/MHC−/Ly6C+/Ly6G+. Co-cultured MDSCs

from n = 6 mice were generated over 3 days and then isolated by magnetic bead sorting and subsequently used for T cell suppression assay where the controls were

T cells alone unstimulated without CD3/CD28 activation beads and T cells with CD3/CD28 activation beads (B). FACs sorting of M-MDSCs and G-MDSCs from 3 day

old co-cultures of n = 3 mice was used to isolate RNA and perform qPCR for Arginase (Arg1), Nitric oxide synthase (iNOS), and Ly6G (C). Two-Tailed T-Test was

performed for comparisons in (B,C) *<0.05, **<0.01, ***<0.001.

In vivo Syngeneic Glioma Model
Ibudilast treatment was assessed in two cohorts using the
syngeneic mouse model of glioma GL261 acquired from the NCI.
Six-week-old aged-matched male 000664-C57BL/6J mice were
anesthetized using isoflurane and then intracranially injected in
the left cerebral hemisphere with 20,000 GL261 cells in 5 µl
of RPMI medium using a stereotactic frame. This model has
been established in the laboratory with neurological symptoms
as an indicating endpoint and a median survival time of ∼20
days (31). Ibudilast treatment was via intraperitoneal injection
of 50 mg/kg 2x weekly starting day 5 post tumor implantation.
Ibudilast was suspended in a mixture of 50 µl PEG400 and 50
µl PBS for 100 µl injections as previously reported (54). Flow
cytometry was performed on mechanically dissociated tumors
isolated from the left hemisphere from sacrificed animals at

day 18 post implantation, and a terminal cardiac bleed was
analyzed for MDSC and T cell levels using the myeloid panel:
live/deadUV, CD45, CD11b, CD11C, IA/E, CD74, Ly6G, Ly6C,
CD68, and the lymphoid panel: live/deadUV, CD45, CD3, CD4,
CD8, LPD1, NK1.1, CD107a. Antibodies were obtained from
Biolegend (San Diego, CA) for analysis of mouse immune profile
Fluorophore-conjugated anti-Ly6C (Clone HK1.4, Catalog #
128024), anti-Ly6G (Clone A8, Catalog # 127618), anti-CD11b
(Clone M1/70, Catalog # 101212), anti-CD68 (Clone FA-11,
Catalog # 137024), anti-I-A/I-E (Clone M5/114.15.2, Catalog #
107606), anti-CD11c (Clone N418, Catalog # 117330), anti-CD3
(Clone 145-2C11, Catalog # 100330), anti-CD4 (Clone GK1.5,
Catalog # 100422), anti-CD8 (Clone 53-6.7, Catalog # 100712),
anti-NK1.1 (Clone PK136, Catalog # 108741), anti-CD45 (Clone
30-F11, Catalog # 103132). An initial study included 10 vehicles
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FIGURE 2 | Murine M-MDSCs express the MIF receptor CD74. n = 10 mice were intracranially injected with the syngeneic mouse glioma cell line GL261 at day 0 and

then at Day 18 post injection the tumor bearing and non-tumor bearing hemispheres were resected, dissociated, and analyzed by flow cytometry (A). M-MDSCs

Live/CD45+/CD11b+/CD68−/P2Ry12− /MHC−/Ly6C+/Ly6G−, and G-MDSCs Live/CD45+/CD11b+/CD68−/P2Ry12− /MHC−/Ly6C+/Ly6G+. n = 3 mice

were used for co-culture induction of MDSCs and at day 3 M-MDSCs and G-MDSCs were analyzed for the MIF receptors CD74, CD44, CXCR2 CXCR4, and CXCR7

by flow cytometry and gated for the % positive in each group (B, C). FACs sorting of G-MDSCs and M-MDSCs from co-cultures of n = 3 mice were performed and

then RNA isolated for qPCR analysis of the expression of MIF receptors (CXCR2, and CD74) as well as MCP-1, the CD74 downstream activation product (D). CD74

expression was assessed by flow cytometry using flow cytometry staining of co-cultures where the histogram demonstrates the expression level of CD74 on

M-MDSCs compared to G-MDSCs (E). Quantification of n = 3 co-culture derived M-MDSCs and G-MDSCs CD74 Mean Fluorescence intensity shows higher levels of

CD74 on M-MDSCs (F). Intracellular staining post permiablization of the same cohort of M-MDSCs and G-MDSs from (F) shows that CD74 levels were not

significantly different when staining internally (G). In vivo, the tumor bearing mice that were evaluated for MDSC levels in (A) were also evaluated for CD74 expression

on the surface of M-MDSCS, G-MDSCS and Microglia (H). Two-Tailed T-Test was performed for comparisons in (A, D, F, G, H). *<0.05, **<0.01, ***<0.001.

and 10 Ibudilast treated animals, but at day 18, the 2 vehicle
treated animals demonstrated neurological symptoms and were
euthanized prior to analysis time-point. Additionally, tumor

could not be identified visually at day 18 in 3 ibudilast treated
mice and 2 vehicle treated mice, so their matched non-tumor
bearing tissue was not included in analysis.
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FIGURE 3 | Human derived M-MDSCs express the MIF receptor CD74. Data mining of the GBM-seq database from Darmanis et al. (51), was used to analyze the

myeloid cell expression of the MIF receptors CD74, CXCR2, CXCR4, CXCR7 and CD44 showing that CD74 expressed by the myeloid populations in GBM tumor

(Continued)
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FIGURE 3 | single cell sequencing (A). Further analysis was performed separating the single cell populations into the previously published cell identities (B). Using a

previously published cohort of GBM patient tumors (20) n = 8 GBM patients the MIF receptors CD74 and CXCR2 were assessed on M-MDSCs and G-MDSCs

(M-MDSCs: CD11b+/HLA− DR−/CD33+/CD14+/CD15−, G-MDSCs: CD11b+/HLA− DR−/CD33+/CD14−/CD15+) (C,D). TCGA data analysis of GBMLGG

cohort identified MIF expression and CD74 expression levels correlating with survival with a similar hazard ratio (HR) (E,F). When a signature for both MIF and CD74 is

created where samples that were above the median for both MIF and CD74 expression compared to those below the median for both MIF and CD74 further

separates survival (F,G). Two-Tailed T-Test was performed for comparisons in (A,C,D) *<0.05, **<0.01, ***<0.001. Survival curve analysis was performed in GraphPad

Prism using Log-rank (Mantel-Cox) test for p-value and hazard ratio log rank was computed on the same data using GraphPad Prism.

Nanostring Analysis
RNA was isolated using RNeasy mini kit (Qiagen) and then
the nCounter R© Mouse Myeloid Innate Immunity Panel v2
was used to analyze the RNA expression of tumors isolated
from 6 endpoint vehicle tumors and 6 endpoint Ibudilast
treated animals.

Immunohistochemically Analysis
At endpoint, vehicle and ibudilast treated animals were perfused
with 4%PFA before removing the brain and fixing in PFA
overnight at 4◦C. Post Fixed brains were cryopreserved in sucrose
and embedded in O.C.T compound (Fisher Healthcare) to make
frozen sections (10µm thick). Endogenous peroxide activity
was quenched by 3% H2O2 incubation and blocked in 5%
normal goat serum/0.2%Triton in PBS for 30min before primary
antibodies were added. Phospho-Histone3 (1:500, catalog #
06-570, MillopreSigma) and Ki67 (1:1,000, catalog # ab15580,
Abcam) antibodies were allowed to bind overnight at 4◦C. After
rinsing with 1xPBS, biotinylated secondary antibodies (1:500,
Invitrogen) were added and incubated at RT for 1 h. Signal
was amplified using avidin-biotin complex staining (30min)
before DAB substrate was used to visualize the signal (Vector
Laboratories). Hematoxylin was used for counterstain. After
washing in PBS, the slides were dehydrated through alcohol series
and mounted with Permount (Fisher Chemical).

MCP-1 ELISA
R&D systems Mouse CCL2/MCP-1 DuoSet ELISA catalog#
DY479 was used to analyze MCP-1 in vitro from conditioned
media isolated at day 4 post treatment at varying doses 0–10µM
and in vivo from serum of n = 3 vehicle and n = 3 Ibudilast
treated mice at day 18 post tumor implantation following the
timeline for Ibudilast treatment described in the in vivo syngeneic
glioma model section.

Statistical Analysis
Graph-Pad Prism was utilized for statistical analysis of survival
curves for log-rank tests and also for T-tests throughout the
manuscript. ∗ <0.05, ∗∗ <0.01, ∗∗∗ <0.001. Nanostring statistics
were performed within nSolver software supplied by Nanostring
and the advanced analyzer V 4.0.

RESULTS

Development of MDSC Co-culture to Study
the MIF Signaling Axis
While MDSCs have been linked to GBM prognosis and
progression, technical hurdles including the inability for their

long-term expansion have been a challenge for mechanistic
insight and functional assessment (9, 19, 59). Our group
previously identified that MIF is secreted by GBM CSCs
and driving MDSCs, however the mechanism by which MIF
increased MDSC function remains unclear (31, 32). Initially
we sought to determine if the survival extension we previously
observed with MIF knockdown GBM cells was solely due to
an immunologic event. We performed the same studies in
immune compromised NSG mice and found that there was no
survival benefit when the adaptive immune response was absent
(Supplemental Figures 1A,B). Furthermore, when MIF was
depleted using an established neutralizing anti-MIF antibody
5-days post tumor implantation there was no survival benefit
(Supplemental Figure 1C). These findings confirm our previous
observations that MIF likely acts on the immune system, as
opposed to acting on GBM cells in an autocrine manner. To
further understand how GBM-derived MDSCs function, we
adapted a co-culture system previously developed in a melanoma
model (Figure 1A) (33). The co-culture utilizes freshly-isolated
bone marrow combined culture in 50% conditioned media from
a 24-hour culture of the mouse glioma cell line GL261 and
supplemented with GM-CSF and IL-13 to generate M-MDSCs
and G-MDSCs over a 3-day period. Day 3 was chosen for
MDSC generation assays based on a flow cytometry longitudinal
study of the culture showing a steep decline in viable CD45+
cells after day 4 (Supplemental Figure 1D). At day 3 of co-
culture, the numbers of M- and G-MDSCs were determined
by flow cytometry analysis where M-MDSCs were gated by
Singlets/Live/CD45+/CD11b+/CD68−/IAIE−/Ly6G−/Ly6C+

and G-MDSCs by Singlets/Live/CD45+/CD11b+/CD68-
/IAIE−/Ly6C−/Ly6G+. Furthermore, co-culture generated
MDSC function was determined by T cell suppression assay.
In this assay, CFSE labeled T cells which were activated by
CD3/CD28 mAb coated beads, were suppressed by MDSCs
at a ratio of 1 MDSC to 2 T cells (Figure 1B). Furthermore,
FACs sorted M-MDSCs and G-MDSCs were analyzed by QPCR
for Arginase-1, iNOS, and Ly6G to validate the subsets, and
G-MDSCs were observed to have increased Ly6G and iNOS,
while M-MDSCs highly expressed Arginase-1 (Figure 1C).
These data validate a model system for generating functional
GBM-educated MDSCs as a platform for functional assessment
and inhibitor studies.

In vivo and in vitro Analysis Demonstrate
M-MDSCs With Surface Expression of the
MIF Receptor CD74
In order to determine the MDSC subset driving immune
suppression GBM, we used a syngeneic model of glioma GL261,
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FIGURE 4 | Ibudilast inhibits the MIF disrupting M-MDSC generation in vitro. Utilizing the co-culture system described in Figure 1 MIF inhibitors were assessed for

their ability to inhibit MDSC generation (A). Inhibitors were added at 200µM at day 0 during the co-culture initiation and then assessed at day 3 for the % of

(Continued)
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FIGURE 4 | M-MDSCs of CD45+ cells (A) n = 6 mice from n = 2 separate experiments. As a control for Ibudilast off target effects on phosphodiesterase Ibudilast

was directly compared to Rolipram at 100 and 200µM doses n = 6 control and Ibudilast treated co-cultures from n = 6 mice and n = 3 Rolipram treated co-cultures

(B). n = 3 mice per co-culture were used and ibudilast evaluated at 10, 20, 50, 100, and 200µM and then assessed by flow cytometry at day 3 (C). To determine if

ibudilast was killing the M-MDSCs or G-MDSCs we isolated M-MDSCs and G-MDSCs from untreated co-cultures at day 3 from n = 3 mice by FACs sorting and then

treated them for 24 h with Ibudilast as an IC50 using celltiterglo as a readout for viability (D). Flow cytometry Ki67 staining of M-MDSCs at day 4 post treatment from

co-culture generation in n = 6 biological replicates (E). Shows The function of MDSCs treated with ibudilast was assessed by generating MDSCs in the presence of

ibudilast and then magnetically sorting for MDSCs comparing untreated and Ibudilast treated MDSCs (F). To assess the disruption of the MIF/CD74 signaling

mechanism M-MDSCs and G-MDSCs were FACs sorted from day 3 co-cultures and then subsequently 50 ng/ml MIF was added to each well containing 500,000

cells and then treated with Ibudilast at 200µM for 24 h prior to lysing the cells and performing western blot analysis for pERK and total ERK (G). MCP-1 ELISA was

performed on conditioned media from Co-cultures at day 4 post initiation, treated with Ibudilast ranging from 0 to 10µM, n = 3 biological replicates. (H)

Representative MCP-1 levels, y-axis normalized to mode and graphed in FlowJo using histogram plot comparing vehicle and Ibudilast treated M-MDSCs from

co-cultures treated with 200µM Ibudilast at day 4. (I) Quantification of n = 6 replicates from the experiment performed in (H), briefly, live M-MDSCs and G-MDSCs

were gated and then the mean fluorescent intensity of internally stained MCP-1 was measured and graphed for each replicate. T between Two-Tailed T-Test was

performed for comparisons in (A,B,D,E,H,J) *<0.05, **<0.01, ***<0.001.

which was intracranially implanted to generate syngeneic tumors.
At day 18 post implantation the tumor bearing (left) and
non-tumor bearing (right) hemispheres were removed and
analyzed by flow cytometry for MDSC subpopulations using
the same gating strategy as in the co-culture system with the
addition of pP2RY12 to exclude microglia. Analysis identified
higher levels of M-MDSCs in the tumor bearing and non-
tumor bearing hemispheres of the brain compared to G-MDSCs
(Figure 2A). In order to determine the MIF receptor profiles,
flow cytometry of the MIF receptors CD74, CXCR2, CXCR4,
and CXCR7 was performed 3-days post co-culture initiation
(Figures 2B,C). The percent positive for each receptor was
analyzed by flow cytometry, which identifiedM-MDSC as having
high expression of CD74 and its co-receptor CD44, while
G-MDSCS primarily expressed CXCR2 (Figures 2B,C). FACs
sorted M-MDSCs and G-MDSCS from co-cultures confirmed
these findings, showing CXCR2 expression in G-MDSCs, and
CD74 with the downstream effector MCP-1 as being highly
expressed, suggesting activation through MIF/CD74 signaling
axis (Figure 2D) (60). Furthermore, the analysis of M-MDSCs by
flow cytometry showed high levels of CD74 expression compared
to G-MDSCs (Figure 2E), and when quantified significantly
higher than in G-MDSCs (Figure 2F). Interestingly, when
MDSCs were permeabilized and stained for intracellular CD74
there was no difference between G- and M-MDSCs in the
intracellular amounts of CD74 (Figure 2G). In vivo analysis of
M-MDSCs in the tumor microenvironment using the syngeneic
glioma model further supports these findings by showing the
mean fluorescence intensity (MFI) of CD74 as higher on M-
MDSCs compared to G-MDSCs or microglia of the tumor
bearing hemisphere (Figure 2H). Taken together, these data
demonstrate differential MIF receptor expression in MDSC
subsets in mouse models.

GBM Patient Derived Specimens Show the
MIF Receptor CD74 Expressed on MDSCs
and Associate With Poor Prognosis
To determine if the findings in the mouse glioma model are
recapitulated in the tumor microenvironment of human GBM
patients, we utilized bioinformatics analysis of previously
published single-cell sequencing datasets and flow cytometry

analysis of GBM tumor specimens. The GBMseq dataset
provides single cell sequencing of 3,589 cells from a cohort
of 4 GBM patients annotated for their population names
(51). Utilizing this dataset, we isolated the log2 counts for
the myeloid populations identified and looked at the MIF
receptor expression of CXCR2, CXCR4, CXCR7, CD74, and
CD44 (Figure 3A) (40). Statistical analysis revealed that
CD74 was most highly expressed in the myeloid populations.
Furthermore, using the annotated populations, the level of
CD74 expression was compared across all populations in the
GBMseq dataset, which revealed highest levels on the myeloid
cells (Figure 3B). To validate these findings, a separate cohort
of 8 GBM tumors were analyzed by flow cytometry using a
human panel previously validated, where M-MDSCs were
identified by the following gating strategy singlets/live/HLA-
DR−/CD33+/CD11b+/CD14+/CD15− and G-MDSCs by
singlets/live/HLA-DR −/CD33+/CD11b+/CD14−/CD15+.
The expression of CD74 and CXCR2 were analyzed on each
subpopulation by MFI, where CD74 was shown to be more
highly expressed on M-MDSCs, while CXCR2 was more
highly expressed on G-MDSCs (Figures 3C,D). Based on these
findings, we tested the hypothesis that MIF and CD74 are
signaling together and driving GBM immune suppression. We
analyzed the cancer genome atlas (TCGA) GBMLGG database
for survival and MIF expression and CD74 expression and the
combination (Figures 3E–G). These data demonstrate that MIF
and CD74 expression individually predict a poor prognosis, but
when combined into MIF and CD74 double high as defined
by greater than median expression of MIF and CD74, then
the prognosis becomes poorer as demonstrated by hazard
ratios MIF alone HR: 1.51, CD74 alone HR: 1.69, MIF/CD74
HR:2.45 (Figure 3G). These data demonstrate that human GBM
specimens’ express the MIF receptor CD74 on M-MDSCs in the
tumor microenvironment and align with the murine models
used in these studies.

MIF Inhibitor Screening Identified the
MIF/CD74 Interaction Inhibitor Ibudilast
In order to identify a potential targeted therapy that acts
on the MIF/CD74 signaling axis and neutralizes M-MDSCs,
we utilized the in vitro co-culture system to generate glioma
educated MDSCS in the presence of different small molecule
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FIGURE 5 | Ibudilast inhibits the MIF disrupting M-MDSC generation in vitro. n = 6 vehicle and n = 6 Ibudilast treated mice (50 mg/kg 2x weekly starting day 5 post

tumor implantation) were sacrificed at endpoint and tumors were dissected from the brain for RNA isolation. RNA from isolated tumors of vehicle and ibudilast treated

(Continued)
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FIGURE 5 | mice was analyzed via Nanostring murine myeloid panel and PCA was performed showing separation of ibudilast vs vehicle (A). Volcano plot comparing

log2fold change in genes between Ibudilast and vehicle demonstrates significant changes in the myeloid populations between vehicle and ibudilast treated tumors (B).

Pathway analysis of Ibudilast treated tumors shows increased activation of many immune pathways including lymphocyte activation while there is a reduction in

antigen presentation (C). Summary of CD74 expression in histogram format comparing all Vehicle and all Ibudilast treated samples (D). Pathway analysis of

Nanostring data identifies the MAPK signaling pathway in Ibudilast treated tumors with a reduction in MEK2 (E). n = 3 mice treated with vehicle of 50 mg/kg 2x per

week Ibudilast were sacrificed at day 18 post tumor initiation and serum was isolated from their blood and measured MCP-1 by ELISA (F). A cohort of n = 8 vehicle

and n = 8 Ibudilast treated mice were sacrificed at day 18 post injection and tumor, non-tumor tissue, and blood were analyzed by flow cytometry for immune

populations where CD8T cells were shown to be significantly increased in the tumors of Ibudilast treated mice (G). Two-Tailed T-Test was performed for comparisons

in (F) * <0.05, ** <0.01, *** <0.001. All other statistics were performed in Nanostring Nsolver software including the PCA and volcano plot differential gene expression

and pathway analysis.

MIF inhibitors. In this system the generation of M-MDSCs
was monitored at day 3 post co-culture in the presence of
various MIF inhibitors at 200µM, a concentration achieved in
circulation with Ibudilast, a primary drug of interest due to its
known toxicity profile and ability to penetrate the blood brain
barrier (Figure 4A) (54, 61). Other MIF inhibitors previously
identified as either MIF tautomerase inhibitors (4-IPP, ISO-
1, AV1013, MIF098), or MIF/CD74 interaction inhibitors
(Ibudilast, MIF098), were compared to Ibudilast at similar
200µM concentrations to determine the specificity of Ibudilast
in reducing M-MDSCs (52, 55, 58). While Ibudilast has been
studied in different concentrations, it has recently been used at
a similar dose in a patient derived xenograft model of glioma
so we began with 200µM (43). For comparison, 4-IPP has
been used at 100µM in lung cancer studies along with ISO-1,
and MIF098 has been shown effective at 10µM (62–64). The
MIF/CD74 interaction inhibitor Ibudilast demonstrated an
effective reduction in M-MDSC generation (Figure 4A). This
reduction in M-MDSCs was not a result of a major change
in cell viability as assessed by live/dead staining. Additionally,
the MIF inhibitor 4-IPP, which does disrupt the interaction of
MIF with CD74 showed no efficacy (Figure 4A) (52). While
Ibudilast has been shown to inhibit the interaction of MIF and
CD74, it was first discovered as a phosphodiesterase inhibitor
(65, 66). To assess specificity, we compared Ibudilast at 100
and 200µM to Rolipram, which is a known specific and
potent phosphodiesterase inhibitor at the same concentrations

(Figure 4B) (67). Rolipram was unable to alter the generation of
M-MDSCs and thus the reduction of M-MDSCs is likely not due

to the ability of ibudilast to inhibit PDE activity. The reduction

in M-MDSC generation was not a result of a major change in cell

viability as assessed by live dead staining. M-MDSC generation

was reduced by ibudilast in a dose dependent manner treating

co-cultures at 10µM, 20µM, 50µM, 100µM, and 200µM

Ibudilast (Figure 4C). Also, to determine if MDSCs could be

killed by Ibudilast an IC-50 was performed using FACs sorted

M-MDSCS and G-MDSCs increasing doses of Ibudilast were

added to cultures for 24 h before being analyzed. No change

in viability of M- or G-MDSCs was detected, however the flow
cytometry analysis of Ki-67 on M-MDSCs treated with Ibudilast
demonstrated a reduction in proliferation (Figures 4D,E). The
function of MDSCs generated in co-culture with Ibudilast was
analyzed using the T cell suppression assay, and identified
as a reduction in the ability of MDSCs to suppress T cell
proliferation (Figure 4F). Additionally, untreated M-MDSCs
and G-MDSCs were isolated by FACs sorting and then treated

for 24 h with Ibudilast before western blot analysis for pERK,
a proximal downstream target of MIF/CD74 signaling (60).
This revealed a specific reduction of pERK signaling compared
to total ERK expression in M-MDSCs and not in G-MDSCs,
showing specific MIF/CD74 inhibition by ibudilast in M-MDSCs
(Figure 4G). Downstream of MIF/CD74 signaling, we analyzed
secretion of MCP-1 by ELISA. In these studies, conditioned
media from in vitro MDSC generation assays were used at
day 4 post initiation, with Ibudilast ranging from 0 to 10µM
(Figure 4H). MCP-1 secretion was demonstrated to be dose
dependent on Ibudilast within this assay (Figure 4H). To
ensure that MCP-1 secretion was inhibited in Ibudilast treated
M-MDSCs, we performed intracellular MCP-1 staining with
vehicle and Ibudilast treated groups (Figures 4I,J). In this
assay MCP-1 was shown to be increased intracellularly in M-
MDSCs treated with Ibudilast, compared to the vehicle control
(Figure 4J). In contrast G-MDSCs, which lack the MIF/CD74
signaling axis, had no change the intracellular storage of MCP-1
(Figure 4J). Internal accumulation of MCP-1 in Ibudilast treated
M-MDSCs also aligns with ELISA data showing reduced MCP-
1 in the media of Ibudilast tread co-cultures (Figure 4H).
Taken together, these data demonstrate that M-MDSC
expansion and function can be disrupted by pharmacologic a
MIF/CD74 inhibition.

Ibudilast Treatment Reduced MIF/CD74
Signaling in a Syngeneic Model
To determine the in vivo effects of Ibudilast treatment, a
cohort of tumor bearing animals were treated 5 days post
tumor implantation [at 50 mg/kg 2x weekly based on previous
experiments and the known effect dose effect of Ibudilast in a
murine model (54)]. Daily dosing has been demonstrated in
rodents to increase CYP enzymes and degrade ibudilast, reducing
the bioavailability (54), and thus high doses of bi-weekly ibudilast
was chosen for this treatment. Animals were analyzed at endpoint
and tumors were dissected from the brain for RNA analyses by
Nanostring Ncounter myeloid panel. Initial analysis by principal
component analysis revealed that vehicle tumors and ibudilast
tumors separate and the separation is driven by the vectors
of MIF, CD74, PTGS2, Arg1, CXCR2 (Figure 5A). A volcano
plot comparing the significantly differentially expressed genes
between vehicle and ibudilast treated tumors showed significant
change in immune genes upon treatment (Figure 5B). Pathway
analysis between vehicle and Ibudilast treated tumors showed
reduced antigen presentation, which coincides with reduced
CD74 and MHC expression following the hypothesis that
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Ibudilast is targeting CD74 in vivo as well as in vitro (Figure 5C).
Pathway analysis also demonstrated increased Lymphocyte
activation upon treatment showing possibly increased immune
response (Figure 5C) and CD74 expression was reduced upon
treatment (Figure 5D). Furthermore, analysis of Nanostring
data also revealed a predicted reduction of MEK2 expression,
which is downstream of MIF/CD74 signaling, but upstream of
the pERK reduction that we initially analyzed by western blot in
vitro (Figure 5E) and consistent with the western blot findings of
reduced pERK signaling upon Ibudilast treatment. Additionally,
MCP-1 was analyzed by ELISA in the serum of mice treated with
Ibudilast and identified a reduction of MCP-1 upon treatment

(Figure 5F). Flow cytometry analysis of tumor, non-tumor,
and blood from this cohort at day 18 post injection tumors,
14 days of Ibudilast treatment, identified an increase in CD8T
cells specific to the tumor, while other immune cell populations
were unchanged (Figure 5G, Supplemental Figures 2, 3).
Additionally, immunohistochemistry staining identified a
reduction of proliferation in Ibudilast treated tumors via reduced
p-Histone3 and ki-67 staining (Supplemental Figure 4).
Importantly, we saw no changes in other T cell or myeloid
cell populations, including the overall number of CD45+
cells (Supplemental Figures 2, 3). Taken together, these
data reveal that CD74/MIF inhibition via Ibudilast can

FIGURE 6 | Schematic depicting pathway described where MIF binds CD74 on M-MDSCs enhancing their activity to inhibit CD8T cells and also produce the

downstream target MCP-1. With the addition of Ibudilast to inhibit this process we show a reduction of the MDSCs generation and function removing the inhibitor

effect from CD8T cells.

Frontiers in Immunology | www.frontiersin.org 12 June 2020 | Volume 11 | Article 1191

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Alban et al. M-MDSCs Signal Through MIF/CD74

reduce MDSCs in vivo and increase immune activation in the
tumor microenvironment.

DISCUSSION

While multiple groups including our own have identifiedMDSCs
as being increased in GBM and other cancers (9, 11, 12, 19, 31),
our understanding of the factors driving these cells has been
lacking and strategies to target these cells has not matured.
Here we focused our efforts on MIF as a driver of MDSCs
based on our previous work showing that MIF depletion could
reduce MDSC function (31). Additionally, multiple groups have
indicated a link between MIF and MDSCs (32, 33, 68). Here
we found that the receptor CD74 may play a greater role in
GBM MDSC biology because the subset of MDSCs primarily
found in the tumor microenvironment were M-MDSCs, which
predominantly express CD74 as a MIF receptor. This is in
contrast to metastatic breast cancer models that show G-MDSCs
infiltrating tumors and driving metastasis (69, 70); where in
those cases we would hypothesize that CXCR2 or another MIF
receptor may play a more vital role. While our previous work
focused on the MIF/CXCR2 signaling pathway in GBM and
MDSCs the entirety of that was focused on G-MDSCs, marked by
CD244.2 positivity. These studies instead focus on the majority
population of MDSCs in our GBM mouse models, M-MDSCs,
and targeting their signaling pathway withMIF/CD74. In relation
we believe these pathways could be intertwined based the data
presented here showing that permeabilized G-MDSCs contained
CD74 levels similar to M-MDSCs. We hypothesize this could be
due to the known ability of M-MDSCs to differentiate into G-
MDSCs and during this process and maintain intracellular stores
of CD74 (18, 71). Further studies should be performed analyzing
the intracellular stores of CD74 during the differentiation process
to determine how this phenomenon occurs.

In seeking to target the interaction of MIF and CD74 on
MDSCs we identified Ibudilast as an agent of interest, and were
able to treat mice to reduce CD74 expression and increase
CD8T cells in the tumor. Importantly this inhibitor is blood
brain barrier penetrant, which overcomes one of the major
therapeutic obstacles in the treatment of brain tumors (54). One
difficulty in using Ibudilast in mouse models is the drug passage
effect, where daily treatment increases CYP enzymes leading to
rapid degradation (54). However, in humans the drug is stable
in the circulation and accumulates in the CNS with repeated
exposure such as daily dosing (53, 61). For these reasons in the
mouse model we settled on a 2x weekly dose of Ibudilast to
minimize the drug passage effect, but believe that Ibudilast may
be more efficacious in humans than in mouse models. Efforts are
currently underway to evaluate Ibudilast in GBM in a clinical
trial (NCT03782415) (43) and will likely provide more insight
into how this drug effects the anti-tumor immune response.
Additionally, Ibudilast recently demonstrated promising results
in a phase 2 clinical trial of multiple sclerosis, where it is thought
to have a protective effect by reducing brain atrophy, as compared
to anti-inflammatory drugs commonly used to treat multiple
sclerosis (44).

In summary we believe that the M-MDSCs driven by GBM
secreted MIF is signaling through the MIF receptor CD74

(Figure 6). Inhibition of the interaction between MIF and CD74
via ibudilast treatment results in reduced downstream signaling
of MCP-1, which has been shown to beMIF-dependent in studies
of autoimmunity (Leng et al., SLE study), and further drives
monocyte and MDSC recruitment to the microenvironment
and enhancing the expansion of M-MDSCs (Figure 6) (57,
60, 72, 73). The importance of MCP-1 in glioma MDSC
recruitment has recently been highlighted, where loss of CCR2,
the MCP-1 receptor, demonstrated a reduction of MDSCs in
the tumor and bone marrow of glioma bearing mice. (73)
While our data demonstrates these phenomena, we did not
readily observe enhanced survival in our model that involved
the use of Ibudilast as a single agent. Nonetheless, we observed
that Ibudilast produced an expansion of CD8T cells and
Nanostring analysis predicted an increase multiple pathways
including lymphocyte activation. These findings support an
interpretation that inhibition of immune suppression, alone, will
not be sufficient to produce an anti-tumor immune response.
This interpretation mirrors the clinical trial results to date that
indicate that treatment with an immune stimulatory therapy
alone has been an ineffective strategy. Instead, we hypothesize
that better clinical outcomes will be seen when the reversal of
tumor-induced immune suppression associated with Ibudilast is
combined with an immune stimulatory therapy.
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Supplemental Figure 1 | shRNA knockdown of MIF in GL261 was performed

using 2 separate shRNA’s which were the top targets from previously published

work from our group to generate stable knockdown cell lines of GL261 (A).

Comparing the survival of intracranially implanted tumors in NSG immune

incompetent mice demonstrate no survival difference in NSG mice (B). Treating n

= 10 GL261 tumor bearing mice 2x weekly with anti-MIF antibody (gifted from Dr.

Richard Bucala) vs. n = 10 IgG control treated mice demonstrated no survival

benefit (C). MDSC co-culture dynamics over time analyzing n = 3 mice in

separate co-cultures where one well was used each day over 7 days to check the

number of CD45+ cells by flow cytometry (D). Survival curve analysis was

performed in GraphPad Prism using Log-rank (Mantel-Cox) test for p value and

hazard ratio log rank was computed on the same data using GraphPad Prism.

Supplemental Figure 2 | Intracrainially injected tumors vehicle vs ibudilast

treated tumors, non-tumor tissue, and blood analysis from Figure 5 demonstrate

no significant difference in M-MDSCs, G-MDSCs, Macrophages, or Microglia

(A–D). Two-Tailed T-Test was performed for comparing vehicle vs. ibudilast in

each compartment ∗<0.05, ∗∗<0.01, ∗∗∗<0.001.

Supplemental Figure 3 | Intracrainially injected tumors vehicle vs ibudilast

treated tumors, non-tumor tissue, and blood analysis from Figure 5 demonstrate

no significant difference in total CD45+ cells, CD4T cells, ratio of CD8/ CD4T

cells, or NK cells (A–D). CD74 expression was analyzed on vehicle and Ibudilast

treated M-MDSCs demonstrating an increase in CD74 protein expression on the

cell surface of M-MDSCs upon treatment in the tumor compartment only (E).

Two-Tailed T-Test was performed for comparing vehicle vs. ibudilast in each

compartment ∗<0.05, ∗∗<0.01, ∗∗∗<0.001.

Supplemental Figure 4 | Intracrainially injected tumors vehicle vs ibudilast

treated mice were perfused at endpoint and tissue was paraffin embedded for IHC

analysis. Staining for p-Histone3 and Ki67 demonstrated a reduction in

proliferation in the ibudilast treated tumors. Two-Tailed T-Test was performed for

comparing vehicle (mock) vs. ibudilast treated tumors ∗<0.05, ∗∗<0.01, ∗∗∗<0.001.
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