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3. Abbreviations 

   Gyromagnetic ratio unique for each isotope possessing a spin 

   Inter-observer agreement value used in Kappa statistics 

-SVM   Support vector machines with a  parameter related to the number of support 

vectors used and the ratio of the training error 

   Magnetic susceptibility constant of the tissue (unitless) 

0   Angular rotation frequency in units of s
-1

2D  2-dimentional 

3D  3-dimentional 

AIF  Arterial input function 

ASL   Arterial spin labeling 

AUC  Area under the curve 

Az  Area under ROC curve 

B   Magnetic flux density in units of Tesla 

C(t)  Concentration-versus-time curve 

CAD  Computer aided diagnostics 

CBF  Cerebral blood flow measured in ml of blood per 100g of tissue per min 

CBV   Cerebral blood volume measured in ml of blood per 100g of brain tissue 

CNS   Central nervous system 

CSF  Cerebrospinal fluid 

DCE  Dynamic contrast enhanced MR imaging 

DSC  Dynamic susceptibility contrast MR imaging 

EPI  Echo-planar imaging 

F Flow, refer CBF 

FCM  Fuzzy c-means clustering 

FLAIR  Fluid attenuation inversion recovery  

fmAUC First moment of the area under the curve 

FSE  Fast spin-echo 

GRE  Gradient-echo 

HGG  High-grade gliomas 

k   Slope of linear correlation between contrast agent concentration in plasma 

and change in R2
*
 in tissue in units of s

-1 
mmol

-1

LGG  Low-grade gliomas 
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LOH  Loss of heterozygosity 

M  Magnetization of a medium in units of A/m 

MTT  Mean transit time measured in units of s 

NMR   Nuclear magnetic resonance 

NPV  Negative predictive value 

PACS  Picture archiving and communication system 

PPV  Positive predictive value 

q0  Quantity of bolus tracer in mmol 

R(t)  Residue function 

R1 Longitudinal relaxation rate in units of s
-1

R2  Transverse relaxation rate in units of s
-1

R2
*
  Effective transverse relaxation rate in units of s

-1

RBF  Radial basis function 

RF  Radio frequency 

ROC  Receiver operator characteristic 

ROI  Regions of interest 

S(t)  Signal intensity-versus-time curve 

SE  Spin-echo 

SI  Signal intensity 

SVD   Singular value deconvolution 

T0   Bolus arrival time to tissue of interest measured in s 

T1  Longitudinal relaxation time (spin-lattice) in units of ms 

T2  Transverse relaxation time (spin-spin) in units of ms 

T2*-  Effective transverse relaxation time in units of ms 

TE  Echo time in units of ms 

TI  Inversion time 

TNR  True negative rates 

TPR  True positive rates 

TR  Repetition time in units of ms 

VS  Voxel size 

WHO  World health organization 
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4. Introduction 

Epidemiological data from the Cancer Registry of Norway suggests an annual incidence of 

tumors in the central nervous system (CNS) of 21 per 100,000 persons in Norway. As of 

2007, CNS tumors are now the most frequent tumor diagnosis in children and young adults. 

More than 70% of malignant primary CNS tumors are gliomas, a somewhat heterogeneous 

group of neoplasms
1
. In spite of important advances in surgery, radiotherapy and 

chemotherapy, treatment of gliomas constitutes a considerable challenge. Traditionally, the 

diagnosis and classification of gliomas is based on histopathological characterization of 

tissue samples from tumor resection or biopsy using the World Health Organization (WHO) 

classification system
2
. Here, gliomas are graded according to the degree of malignancy (I-

IV) of which glioma grades I-II typically are referred to as low-grade gliomas while grades 

III-IV represent high-grade gliomas. Although different survival estimates may show large 

variations, there is a strong correlation between survival rate and glioma grade
1
. Less than 

2% of patients diagnosed with a grade IV glioma (Glioblastoma) survive five years after 

initial diagnosis whereas approximately 60% of patients diagnosed with a grade II glioma 

(Astrocytoma) survive five years. Because survival rates are strongly correlated to glioma 

grade, correct tumor grading at an early stage is critical in order to ensure an optimal 

treatment plan. Furthermore, accurate glioma monitoring is important for the life-long 

follow-up of tumor recurrence after partial or full tumor resection, and may also become 

increasingly important for evaluating the response to new chemotherapeutic treatment 

regimes. Well recognized limitations to invasive grading procedures include sampling error 

associated with stereotactic biopsy techniques and suboptimal resection due to tumor 

inaccessibility. Compared to open tumor resection, it was reported in a study that biopsy 

accuracy of frameless- and frame-based stereotaxis was 89% and 69%, respectively
3
. Also, 

compared to a small tumor volume (<50cm
3
), results of a biopsy sample from a large tumor 

volume (>50cm
3
) were 8-fold less likely to coincide with the results from open surgery. In 

addition, repeated invasive procedures to follow tumor growth, tumor recurrence and 

treatment response are not commonly used. 

Based on its high level of soft tissue contrast, magnetic resonance (MR) is the imaging 

modality of choice to non-invasively characterize brain tumors prior to, during and after 

treatment. The mainstay of clinical MR brain tumor imaging usually include T2-weighted 

images with fluid attenuation (FLAIR images) conveying hyper-intense image regions 
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secondary to tumor infiltration, vasogenic edema and gliosis and T1-weighted images prior 

to and following administration of a gadolinium-based MR contrast agent. In the latter, high 

malignancy is commonly (but not always) associated with disruption of the blood-brain 

barrier which is seen as hyper-intense regions on the contrast enhanced T1-weighted 

images. Structural tumor appearance and degree of contrast enhancement, however, have a 

relatively poor correlation with tumor grade and convey little information on tumor 

patophysiology
4,5

. Furthermore, contrast enhancement as seen on post-contrast T1-weighted 

images is an unreliable marker for separating tumor recurrence from necrosis induced by 

radiotherapy, because the two conditions may show similar contrast agent uptake 

characteristics
6
. As anatomical MR images convey little information about the functional 

status of the tumor or adjacent tissue, rapid so-called functional MR techniques measuring 

tumor parameters such as tissue perfusion, permeability and water diffusion have been 

introduced, thereby allowing further insights into tumor pathophysiology. Among these, 

perfusion MR imaging shows promise through direct assessment of increased tissue 

vascularity and tumor malignancy. While contrast agent uptake is restricted to brain tumors 

with disrupted or absent blood-brain-barriers, MR perfusion imaging provides functional 

information in all vascularized brain tissues. From this, measures of blood flow, blood 

volume and tissue permeability can be derived, usually by injection of an MR contrast 

agent. Several studies have shown a stronger correlation between MR perfusion metrics and 

glioma grade compared to conventional contrast enhanced MR imaging findings
5,7,8

. Also, it 

has been suggested that MR perfusion may aid in predicting time to progression of glioma 

grade or survival as an adjunct to histopathology
9,10

. Furthermore, while contrast 

enhancement on post-contrast T1-weighted images is a relatively unreliable method to guide 

stereotactic biopsy, it has been suggested that MR perfusion images may aid neurosurgeons 

in identifying the most malignant tumor area
7,11,12

.

4.1 Basics of MR imaging 

As a detailed deduction of the principles behind MR imaging is outside the scope of this 

thesis, only a brief review will be given. The topic, however, is covered in great depth in 

many textbooks
13

.

4.1.1 Image generation 

The essence of MR imaging is based on the work by Bloch and Purcell
14,15

 in the first half 

of the 19
th

 century showing that a nucleus with a spin angular momentum (spin) can interact 
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with a magnetic field. This interaction, known as nuclear magnetic resonance (NMR) is 

described by the linear relationship: 

00 B     [1] 

 where 0 is the angular rotation frequency (Larmor frequency),  is the gyromagnetic 

ratio unique for each isotope possessing a spin and B0 is the static magnetic field. As 

described by classical physics, each nuclear spin will induce a dipolar magnetic moment and 

the total sum of the individual magnetic moments of all protons in a given macroscopic 

sample can be described as the net macroscopic magnetization, M. In its general form, as a 

result of magnetic interaction, the behavior of M can be described by the Bloch equation: 

)( BM
dt

dM
   [2] 

 Here, the rate of change of M is perpendicular to B and M. In its equilibrium state, M

points in the direction of B0, generally referred to as the z-direction and hence the net 

magnetization is denoted Mz. Information on Mz is obtained by introducing a second 

magnetic field B1, perpendicular to B0. In the presence of both B0 and B1, the Bloch 

equation [2] can be written as: 

)( 10 BBM
dt

dM
  [3] 

 Since Mz is rotating at the Larmor frequency, B1 is also made to oscillate at this 

frequency which is in the radiofrequency (RF) range (1-100MHz) and the application of the 

B1-field is typically referred to as an RF-pulse. During, and immediately after applying the 

RF-pulse, a component of M will be in the xy-plane. This component is known as Mxy and 

oscillates about the z-axis. The Mxy component can be detected through the induction of a 

current in a coil placed in the oscillating field. Following the RF-pulse, because of proton 

interactions and subsequent loss of energy, the observed signal in the Mxy plane will decay 

rapidly towards zero and the Mz will return back to its equilibrium state.  

The use of NMR in clinical imaging, first described in the 1970’s
16,17

, is based on the 

decomposition of an object-of-interest into small sub-volumes in which Mxy of each sub-

volume must be obtained from the measured MR signal. This is done by introducing 

additional so-called magnetic gradient fields in all three orthogonal directions where the 

strength of the fields varies as a function of position. By applying multiple RF-pulses in 

combination with different gradient fields, it is possible to select limited volumes within the 
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object. The delay time between each RF-pulse is called the repetition time, TR, and the time 

between the RF-pulse and the actual image sampling is called the echo time, TE. A large 

variety of methods exist in which these parameters are sampled in different ways to generate 

various MR images with unique image contrasts. Such an imaging scheme is typically 

referred to as a pulse sequence.

4.1.2 Proton relaxation 

The process of magnetization decay in the Mxy plane following a RF-pulse and subsequent 

magnetization recovery in the Mz plane is known as proton relaxation. In the Mz direction, 

the magnetization will recover with a time constant referred to as the T1 relaxation time with 

a relaxation rate R1. The T1 relaxation time is influenced by fluctuations in the magnetic 

fields due to thermal motion and chemical exchange, and is therefore also known as spin-

lattice relaxation. At physiological temperature, the T1 relaxation times vary in different 

tissue types from a few hundred milliseconds in fat to several seconds in fluids. Using MR 

pulse sequences sensitive to variations in T1 relaxation times, so-called T1-weighted 

sequences, the tissue-specific T1 relaxation times result in a range of image contrasts. A 

sequence is made T1-sensitive by using a short TR compared to the longest T1 relaxation 

times.  

In the Mxy direction, the magnetization will decay with a second time constant referred to as 

the T2 relaxation time with a relaxation rate R2. The T2 relaxation time is influenced by local 

field inhomogeneities because of proton interactions and is therefore also known as spin-

spin relaxation. For all mediums except pure water, the T2 relaxation time in a given tissue 

type is considerably shorter than the T1 relaxation time. The reason for this is that local field 

inhomogeneities introduce variations in the Larmor frequency with consequent loss of phase 

coherence between proton spins. As for T1 relaxation, T2 relaxation times are longer in 

fluids than in solid tissue types. A T2-weighted sequence, is made optimally T2-sensitive 

and minimally T1-sensitive by using a TR of several seconds and a short TE of a few 

milliseconds.  

The relaxation effects described above are commonly referred to as dipolar relaxation 

because they result from direct interactions between spin dipoles. In addition to the dipolar 

relaxation, proton spins always experience a dephasing effect from bulk inhomogeneities in 

the B0 field: 

)1(00 BB    [4] 
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 where B0 is the bulk inhomogeneity in a voxel in the final MR image and  is a so-

called magnetic susceptibility constant of the tissue. The  parameter is a physical constant 

describing the ability of a medium to become magnetized when exposed to a magnetic field. 

Almost all biological tissues are diamagnetic (  < 0), whereas air, certain iron containing 

blood products and gadolinium based contrast agents are paramagnetic (  > 0).  

Susceptibility variations therefore results in inhomogeneities between different tissue types 

and interfaces between tissue and air. The susceptibility effect can have a dramatic impact 

on the final MR image through acceleration of T2 relaxation times and consequent signal 

loss. Thus, the actual T2 decay is referred to as T2
*
 (with corresponding relaxation rate R2

*
)

and can be approximated by: 

0

2

*

2

*

2

11
B

TT
R   [5] 

 In MR perfusion imaging, the susceptibility effect may also be used advantageously in an 

imaging scheme known as dynamic susceptibility contrast (DSC) imaging, which will be 

discussed in this thesis. 

4.2 MR perfusion imaging 

Perfusion, or blood flow, is a biological process which assures a sufficient supply of cell 

nourishment, removal of metabolic waste and upkeep of an adequate body temperature. 

Lack of perfusion in any vital organ can lead to temperature alteration, loss of tissue 

viability and ultimately cell death. MR perfusion imaging is a collective term describing 

methods for deriving tissue blood flow or perfusion related parameters from MR images
13,18

.

These methods are based on the principle that the temporal effect of a blood tracer (such as 

a contrast agent) on the MR image signal intensity in a given tissue type can be related to 

tissue perfusion, blood volume or both. Although alternative methods based on completely 

non-invasive tracers such as arterial spin labeling (ASL) exist
19

, the focus of this thesis is 

MR perfusion imaging by intravenous administration of an MR compatible contrast agent. 

The contrast agent alters the biophysical properties of tissue, thereby, increasing the proton 

relaxation rates which result in a local MR signal change in the tissues where the contrast 

agent is distributed. By injecting the contrast agent as a rapid, intravenous bolus injection 

and monitoring the change in MR image intensity with sufficient temporal resolution 

(typically 1-second intervals), the dynamic image intensity curves as a function of time can 
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be related to blood flow. In this thesis, only cerebral MR perfusion imaging will be 

addressed.

4.2.1 Tracer kinetic modeling 

The concept of deriving functional information from a blood tracer is referred to as tracer

kinetic modeling of which the methodology was developed in the 1950’s
20

. Perfusion 

imaging is based on the central volume principle, stating that the blood volume of a given 

tissue (i.e brain tissue) is equal to the blood flow into the tissue multiplied by the mean 

transit time (MTT) of the blood tracer passing through the capillary structure of the tissue:  

MTTCBFCBV   [6] 

 where CBV is cerebral blood volume and CBF is cerebral blood flow. The CBV 

parameter is defined as the total volume of blood per volume brain tissue and is measured in 

milliliters of blood per 100 grams of brain tissue [ml/100g]. The CBF parameter is defined 

as the net blood flow per volume brain tissue and is measured in milliliters of blood per 100 

grams of tissue per minute [mL/100 g/min]. The MTT parameter is measured in seconds [s]. 

In MR perfusion imaging, it is assumed that there is a well-defined linear relationship 

between the observed signal change in the MR images due to the presence of the contrast 

agent and the tissue concentration of the contrast agent. In general, this argument holds true 

if the contrast agent is distributed in the intravascular space of the CNS only, and if the 

blood-brain barrier is intact. There are two main techniques for contrast enhanced MR 

perfusion imaging; T1- and T2- or T2*-weighted perfusion imaging. All gadolinium-based 

MR contrast agents induce enhancements in both T1- and T2/T2* proton relaxation and the 

effect of the agent on the MR signal intensity depends on whether the acquisition is made 

T1- or T2/T2* sensitive. In a T1-weighted acquisition, the MR signal intensity increases 

dynamically as a function of local contrast agent concentration, whereas in a T2/T2*-

weighted acquisition the signal intensity decreases as a function of contrast agent 

concentration. When applied to dynamic MR perfusion analysis, T1-weighted imaging is 

commonly referred to as dynamic contrast enhanced (DCE) imaging whereas T2/T2*

weighted imaging is referred to as DSC imaging.  

The main advantage of DCE imaging over DSC imaging is that T1-weighting can be 

obtained with sufficient temporal resolution using conventional MR imaging techniques that 

are inherently insensitive to unwanted susceptibility effects. Image distortion and artificial 
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signal loss can therefore to a large extent be avoided. The main advantage of DSC imaging 

compared to DCE imaging is the large MR signal change (high contrast agent sensitivity) 

combined with a high temporal resolution. The T2*-effect is long reaching and affect a large 

proportion of the extravascuclar water protons in the brain, resulting in a large dynamic MR 

signal change. The T1-effect however, is primarily a local effect which requires the water 

protons to come in direct contact with the paramagnetic centre of the contrast agent in order 

to be affected (i.e. induce T1-relaxation). The result is that less than 10% of local tissue 

protons are affected. Because all MR contrast agents are confined to the intravascular space 

in the brain, T1-enhancement is restricted to the intravascular volume in the absence of 

contrast agent extravasation. The sensitivity of the DCE methodology in terms of the 

achievable dynamic MR signal change is, therefore, limited by the low blood volume and 

the rate of intra- extra-vascular water exchange in normal brain tissue. T1-effects do, 

however, become much larger in the event of extravascular leakage secondary to tumor 

pathology, and T1-weighted imaging is therefore the preferred technique for estimation of 

tumor induced changes in capillary permeability
7,18,21

. Permeability estimation typically 

requires images to be acquired over a period of several minutes in order for appreciable 

leakage effects to be detected.  In contrast, perfusion metrics from DSC imaging can be 

measured from just the first passage of the contrast agent through the tissue (of the order of 

1 minute acquisition time). In this thesis, with focus on the CBV parameter, DSC imaging 

was used in all studies (Papers I-IV) and discussed from here on out. 

Prior to deriving perfusion metrics from T2*-sensitive DSC images, the signal intensity-

versus-time curve S(t) in a given image voxel or region is converted into a concentration-

versus-time curve C(t) by assuming a mono-exponential signal decay as a function of 

increase in relaxation rate R2*:

)()
)0(

)(
ln()(

*

2 tR
S

tS

T

k
tC

E

  [7] 

 where k is an unknown proportionality constant and T1-effects are assumed negligible
22

.

In practice, as shown in Figure 1, a R2
*
(t) curve proportional to C(t) is derived from S(t) 

because of the assumed linear relationship between C(t) and R2
*
(t) in tissue

23
.
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Figure 1: Measured effect of the contrast agent bolus on the MR signal (black line) in a DSC sequence and the 

corresponding estimated change in the relaxation rate R2
* (gray line). Relaxation rates are estimated relative 

to the baseline rate, which is measured from the bolus arrival time T0. During the first-pass bolus passage, the 

relaxation rate increases and decreases with a full-width half-maximum equal to MTT. Because of 

recirculation, a second, smaller bolus peak is observed (at approximately 40-45 seconds) during the post-bolus 

phase. 

It can be shown that CBV is proportional to the integral of the concentration-versus-time 

curve in a given tissue, CTissue(t), but this integral needs to be normalized to the 

corresponding concentration-versus-time curve of a feeding artery, known as the arterial 

input function (AIF) and denoted CAIF(t), in order to derive (semi-) quantitative CBV 

estimates
22,24

:

0

0

)(

)(

dC

dC

CBV

AIF

Tissue

  [8] 

 In MR tumor perfusion imaging, CBV values are commonly not normalized to the AIF 

since AIF determination is time-consuming and lacks the required robustness in a clinical 

setting. A relative CBV estimate is instead obtained by assuming the AIF to be constant
22,25

.

This simplification of equation [8] is based on the principle that the bolus inflow originate 
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from a common site (i.e. the injection site). In order to deduct the mathematics behind this, a 

general flow model is introduced as shown in Figure 2.

Figure 2: A model of a closed, one-way flow system, from the arterial inflow phase (Fa), through the capillary 

microvasculature (Fi) and the venous outflow phase. For simplicity, Fa is assumed administrated as a tight 

bolus with zero duration (i.e. a delta input function) at t=0. In the image voxel volume, the microvascular tubes 

are assumed to have equal cross-section areas, but various lengths and input functions (in gray). The resulting 

MR signal is the sum of all Fi in the voxel volume.

In this model, it is assumed that blood flow (or volume) can be assessed from the input 

tracer and that the total flow in a given region is the sum of all the different vessel branches 

the tracer use when passing through the system (i.e. image voxel). From figure 2, for a tight 

bolus in a closed system with known quantity, q0, the regional C(t) is equal to:  

)()( 0 tRF
F

kq
tC t

a

   [9] 

 where Ft is tissue blood flow in the brain region, Fa is the arterial blood flow and R(t) is a 

residue function describing the total amount of the bolus that remains in the vasculature at 

time t. The shape of R(t) is generally unknown (and tissue specific) but for simplicity, as 

shown in Figure 2, R(t) at time t can be expressed as a mono-exponential function of 

MTT
24

:

MTT

t

eMTTtR ),(    [10] 
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 From equations [6], [9] and [10], the area under C(t) in a given brain tissue region can be 

related to CBV: 

CBV
F

kq
MTTF

F

kq
dttRF

F

kq
dttC

a

t

a

t

a

Tissue
00

0

0

0

)()(   [11] 

 Equation [11] is a restatement of equation [8], and estimations of qualitative CBV can be 

made by assuming kq0/Fa to be constant, making CBV proportional to the area under 

C(t)
22,25

. Furthermore, measurement of qualitative CBF values can be made from equation 

[6] by first estimating an MTT index
25

:

0

0

)(

)(

dttC

tdttC

AUC

fmAUC
MTT

Tissue

Tissue

index           [12] 

 where fmAUC is the first moment of the area under the curve. Originally, according to 

the area/height theorem, MTTindex was estimated as the AUC divided by the peak height of 

the R2
*
(t) curve

26
, and both these approaches are currently used for MTTindex estimations. 

Examples of qualitative CBV, CBF and MTT maps are shown in Figure 3. 

Figure 3: Qualitative CBV (A), CBF (B) and MTT maps (C) in a healthy brain region of a 29-year old male. 

The perfusion maps were computed from DSC data during administration of an intravenous contrast agent. 

According to the central volume principle, CBV is the product of CBF and MTT. As shown in (A) and (B)

respectively, values of CBV and CBF are higher in gray matter (green areas) compared to white matter regions 

(blue areas). The highest CBV and CBF values are observed in vessels (red/yellow areas). In (C), high MTT 

values (red/yellow) are observed in tissue areas with long transit times. 
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Estimation of quantitative perfusion metrics from DSC is challenging because the exact 

relationship between contrast agent concentration and corresponding MR signal change is 

generally not known. It is, however, possible to estimate perfusion indices which can be 

compared on an inter-patient basis by assuming the dose-response to be the same in all 

individuals (and also for all MR scanners used)
22

.  To account for the physiological effects 

of the AIF on the dynamic MR signal in brain tissue (tissue response), a mathematical 

technique known as deconvolution is used. When the tissue response is deconvolved with 

the AIF one can estimate what the response would be like for an ‘ideal’ AIF in the form of a 

spike input with negligible duration (i.e. the delta function shown in Figure 2). This 

assumption illustrates an ideal situation with no contrast agent dispersion taking place 

between site of injection and the tissue of interest. The corresponding tissue response to 

such a spike input is described by the residue function: 

t
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 By measuring the AIF in each subject individually, quantitative values of CBV can be 

obtained from equations [8] or [11], whereas CBF and MTT can be estimated quantitatively 

from the residue function. As shown in equation [13] and Figure 2, quantitative values of 

CBF can be derived from the initial height of the residue function, at R(0)=1, obtained by 

deconvolution of the CTissue(t) curve from the CAIF(t) curve. 

Although a detailed deduction of the mathematics behind equation [13] is beyond the scope 

of this thesis and the focus of much research and debate
27

, the most common deconvolution 

routine of the tissue response curves (in all image pixels) is based on the mathematical 

method known as singular value deconvolution (SVD)
24

. It should be emphasized that the 

final output is semi-quantitative perfusion values only, as absolute quantification requires 

exact knowledge about tissue density and large/small vessel hematocrit values as well as the 

exact relaxation properties of the contrast agent used.  

4.3 Dynamic susceptibility contrast (DSC) imaging regimes 

The susceptibility effects induced by a gadolinium based contrast agent are especially 

dominant in the brain due to the intravascular distribution of the agent, causing large local 

variations in the magnetic field in the vicinity of the capillaries and consequent signal 

change in DSC images. In T2*-sensitive DSC imaging, so-called echo-planar imaging (EPI) 
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techniques must be used in order to obtain good T2*-sensitivity with sufficient temporal 

resolution. While conventional MR imaging sequences acquire only a small sample of the 

total MR image per TR, the complete MR image from an EPI-based sequence is formed in 

just one TR
13

. The EPI technique is inherently sensitive to T2*-effects of the contrast agent, 

but is also very sensitive to unwanted susceptibility effects present in the brain which cause 

signal loss and image distortion, especially in brain regions close to air-filled cavities.

Figure 4: (A) R2-image from SE-EPI and (B) R2*-image from GRE-EPI. The corresponding bolus curves 

from a ROI in (1) the middle cerebral artery, (2) superior sagittal sinus vein and (3) normal appearing white 

matter tissue are shown as black lines, gray lines and dotted lines in (C) and (D), respectively. For both 

techniques, note the reduced signal change (i.e. reduced CBV) in brain tissue compared to arteries and veins. 

Compared to (C), the signal change in (D) is approximately twice as high because of the susceptibility effect. 

However, the high sensitivity of the GRE-EPI sequence to susceptibility effects may introduce signal dropouts 

in brain areas close to air filled cavities as indicated by the white arrow in (B).

Two different types of EPI sequences have been applied in DSC imaging; either based on a 

spin echo (SE-EPI) readout or a gradient echo (GRE-EPI) readout. Here, SE and GRE refer 

to two different methods used for encoding the MR signal, and a SE based sequence is 

mainly T2-sensitve while a GRE based sequence is mainly T2*-sensitive. A potential 
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advantage of the SE-EPI sequence over GRE-EPI is a more selective sensitivity to 

relaxation effects occurring at a capillary level (1-2μm), with reduced sensitivity to large 

vessel relaxation effects (at 3-4μm)
28,29

. The main disadvantage of SE-GRE compared to 

GRE-EPI, however, is reduced overall sensitivity to the susceptibility induced T2*-

relaxation effect, thereby giving a smaller dynamic MR signal response to the contrast bolus 

as shown in Figure 4. One could, therefore, speculate that the SE-EPI approach better 

reflects true tumor pathophysiology compared to GRE-EPI due to increased sensitivity to 

capillary relaxation effects. However, it has been reported that GRE-EPI based DSC 

imaging provides a stronger correlation between glioma grade and tumor CBV compared to 

SE-EPI sequences
30,31

. Also, GRE-EPI sequences may be a better aid in the differentiation 

between infiltrating vessels and true tumor CBV elevation
32

. In this thesis, the GRE-EPI 

sequence was used in all studies (Papers I-IV). 

A further issue with DSC imaging is that the kinetic models used to derive CBV values 

assume the tracer to be confined to the intravascular space. Hence, in areas of extravascular 

leakage this assumption is no longer valid. The situation is further complicated by the 

unpredictable relaxation effects which dominate once the contrast agent extravasates. 

Depending on imaging parameters and probably also local extravascular concentration, the 

resulting relaxation effect may be predominant T1- or T2/T2*- dependent
33

. Several 

methods exist for correction of contrast agent extravasation in DSC imaging
7
. One approach 

is to administer a small contrast bolus prior to the standard bolus injection in order to 

‘saturate’ possible T1-induced relaxation effects caused by extravascular leakage
33

.

Alternative methods exist which are based on pure post-processing, either by fitting the 

dynamic curve to a predefined function which  is ‘forced’ to return to its expected baseline 

level
34

 or to account for the leakage by using a kinetic model similar to the one used in DCE 

imaging
35

.

4.4 DSC-based glioma imaging 

The use of MR perfusion imaging in brain tumor patients was first reported in the early 

1990’s. In one study, areas of strongly enhanced tumor regions during the bolus inflow and 

a rapid, but incomplete washout effect was observed in five of six patients suggesting a 

method that might provide useful information when assessing tumor vascularity
36

. Today, 

MR perfusion sequences are incorporated in the clinical MR protocols at many hospitals 
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with a comprehensive MR imaging program. Although still relatively new, and the subject 

of much research and debate, the added value of glioma grading from DSC imaging to 

conventional MR imaging is promising. Especially qualitative CBV measurements from 

relative (r)CBV maps (CBV values normalized to a reference CBV value measured in 

unaffected brain tissue) show a higher correlation to glioma malignancy than conventional 

MR image metrics
34,37,38

 and may also aid in the selection of the optimal target area for 

biopsy
11

. In addition, as new anti-angiogenic cancer drugs are developed, DSC-based 

perfusion imaging may aid in assessing anti-angiogenetic treatment effects
39

. Current DSC-

based methods for differentiating high-grade gliomas from low-grade are based on 

measuring the ratio (rCBVmax) between the most elevated CBV area within the glioma and a 

CBV value in an unaffected, reference tissue. The regions-of-interests (ROIs), identified by 

a neuroradiologist, or an operator with good anatomical knowledge, are typically a few 

voxels wide. This method is often referred to as the hot-spot method and the rCBVmax

parameter shows a strong correlation to glioma grade, as high-grade gliomas tend to have 3-

4 times higher mean rCBVmax values than low-grade gliomas
34,37,40

. In a study including 160 

patients, the hot-spot method resulted in sensitivity and specificity values of 95.0% and 

57.5%, respectively, when identifying high-grade gliomas from low-grade
41

. Recently, it has 

also been reported that the hot-spot method may predict median time to tumor progression 

in glioma patients independent of histopathologic findings
10

. In that study, tumor 

progression was defined as a decline in neurologic status or an increase in tumor size of 

more than 25% as seen on MR images. The results showed that patients with a rCBVmax

value of < 1.75 had a median time to tumor progression of 3585 days whereas patients with 

a rCBVmax value of > 1.75 had a median time to tumor progression of 265 days. Despite 

their widespread use in stroke imaging, there has been less focus on assessment of CBF and 

MTT as predictors for glioma grade. It should be noted, however, that studies have shown 

that CBF correlates well with both CBV and glioma grade
40,42

 whereas MTT does not 

appear to correlate with glioma grade
43

.

Although quantitative assessment of permeability parameters in glioma patients are reported 

in DCE imaging
44

, similar quantitative perfusion assessments in DSC-based glioma grading 

is rare. This is probably because high diagnostic accuracy
45

 values are obtained even using 

qualitative methods, and also because qualitative analysis is much easier to implement in a 

clinical setting. However, it has been reported that quantitative values from DSC imaging 

may also correspond to glioma grade
43

.



23

4.4.1 Current challenges in DSC-based glioma grading 

Although current methods for DSC-based glioma grading show promise, some challenges 

remain. 

 First, current hot-spot methods suffer from inherent user-dependency. The main reason 

for this is related to the manual selection of tumor ROIs used in the glioma grading analysis. 

Even though it has been shown that the metabolic active tumor area is mainly restricted to 

the tumor border as seen on T2-weighted images, it is well known that malignant tumor 

infiltration extends beyond the MR visible tumor margins
46,47

. Also, glioma area 

identification on MR images is inherently difficult because glioma tissue might mimic both 

unaffected brain tissue and cerebrospinal fluid (CSF) depending on the MR image 

parameters used. Furthermore, for the hot-spot method, the few voxels that constitute the 

glioma ROI are inherently prone to image noise and other sources of spurious pixel values 

(e.g. spikes introduced by the algorithms used to generate the rCBV maps). Consequently, 

partial or whole tumor area identification is difficult, even for an experienced 

neuroradiologist making current manual glioma grading methods inherently operator-

dependent and time consuming.  

 Second, separating glioma regions with high rCBV values from similar rCBV values in 

macroscopic vessels is difficult. Including high rCBV values from vessels in the glioma 

ROI may result in a false-positive misclassification of a low-grade glioma as a high-grade 

glioma
48

. For DSC-based glioma imaging, because of the large T2* shortening effect 

outside the vessel lumen
49,50

, anatomical MR images do not reflect the outmost macroscopic 

vessel margins. To correct for this, vessels can be excluded manually by using coregistered 

rCBV maps as overlays on the anatomical MR images. This method, however, is very user-

dependent.    

 Third, oligodendroglial tumors (oligodendrogliomas and oligoastrocytomas) tend to 

show high rCBVmax values irrespective of glioma grade
11,51

. A reason for this might be that 

most oligodendroglial tumors are located in cortical areas and have direct involvement with 

grey matter with a higher capillary density compared to white matter
51

. Also, the higher 

oligodendroglial tumor vascularity may be associated with loss of heterozygosity (LOH) on 

the short arm of chromosome 1 (1p) and the long arm of chromosome 19 (19q), seen in 40-

90% of oligodendroglial tumors
52,53

. Consequently, cut-off rCBVmax values between glioma 
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grades may be harder to establish if oligodendroglial tumors are included. Because 

oligodendroglial tumors constitute approximately 10% of all gliomas
1
, it would represent a 

major limitation to any DSC-based grading method if these tumors had to be characterized 

by other diagnostic means.  

 Fourth, reported rCBVmax threshold values for optimal differentiation between glioma 

grades show large variations with values ranging from 1.75 to 5.58
40,41,54

. Although these 

studies showed high diagnostic accuracy values, this discrepancy suggests that the optimal 

rCBVmax threshold depends on several method specific parameters including contrast agent 

properties and dose, imaging technique and post-processing routines. This method 

dependency on the rCBVmax threshold may suggest that the applied threshold value must be 

determined specifically at each site, which complicates comparison of data between sites 

and also places restrictions on modification of any of the model sensitive parameters in a 

given institution. Prospective, predictive grading of gliomas from DSC imaging has 

received little attention in the literature. One possible reason for this is that current rCBVmax

threshold values are difficult to generalize into a useful model. A predictive model based on 

one single value per subject will inherently lack sufficient robustness.

4.5 K-means clustering 

Classification of data into sub-classes is desirable in medical imaging for separation of 

image regions or image metrics with similar properties, such as CBV values above or below 

a threshold value. In statistical analysis, cluster analysis is a common term for 

discrimination of data based on iterative algorithms that computes the optimal separation 

between a given set of classes. One simple, partitional (non-overlapping) cluster algorithm 

is the k-means algorithm
55,56

. Here, n objects are divided into a user-specified number of 

cluster classes, k, of which the objects in a specific class share a common set of attributes. 

For image segmentation, the algorithm initially selects a set of random cluster centroids 

positions, and the objective of the clustering algorithm is then, through an iterative process, 

to minimize the within-class deviation from the class centroid and at the same time 

maximize the between-class centroid distance.  

K-means clustering is commonly implemented as a two-step iterative process. First, based 

on the complete image or a smaller sub-sample, all points (i.e. image intensity values) are 
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reassigned at once to their nearest cluster centroid, followed by a recalculation of the cluster 

centroids. This iteration results in an approximate solution, which reduce the computation 

time of the second step. Second, each data point is individually reassigned in order to assess 

whether the new distance reduces the sum of all distances. Although several methods exist, 

the distance d between the m-dimensional data point x1, x2,…, xm and a centroid position y1,

y2,…, ym is typically assessed by deriving the squared Euclidean distance: 

m

i

ii yxd
1

2)(

   [14] 

 Finally, the cluster centroids are recomputed until a global minimum is reached which is 

the optimal separation of the k cluster classes. Although a true global minimum can only be 

achieved by performing an exhaustive search over all starting points, a procedure with 

several varying staring points will generally converge towards a global minimum.  

The advantage of using k-means clustering in medical imaging is that the algorithm is fast, 

even for a large datasets, and produce tight clusters equivalent to homogenous, compact 

brain tissue areas such as white or gray matter. Because a data point can belong to one 

cluster class only, a disadvantage of the k-means cluster algorithm is that it is relatively 

intolerant of imprecise data from heterogeneous image regions. Also, the number of cluster 

classes is an input parameter which must be selected carefully in order to avoid poor 

discrimination.

4.6 Summary of introduction 

The added value of MR imaging in the diagnosis of glioma patients is unquestioned, 

providing excellent anatomical and functional tumor information. Since the early 1990’s, 

considerable progress has been made within the field of MR perfusion imaging with respect 

to MR sequence development and post-processing routines. With focus on cost-benefit and 

cost-effectiveness in the medical workflow, fast user-friendly diagnostic methods are 

becoming increasingly important with potential for improved diagnostic efficacy. Current 

DSC-based glioma grading methods however, suffer from inherent user-dependence and 

inter-institutional variations suggesting that these methods may not provide the required 

robustness and reproducibility for a non-invasive alternative to biopsy. Hence, introduction 

of objective, user-independent methods for glioma characterization is warranted and the 

focus of this thesis. 
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5. Aims of the study

The aim of this study was to introduce and evaluate alternative methods for DSC-based 

glioma characterization with focus on minimal user-dependency. The diagnostic efficacy
45

of the proposed methods was assessed in patients diagnosed with a glioma after an MR 

exam and subsequent surgery and compared to current methods in the literature. 

5.1 Specific aims 

Paper I: To retrospectively compare the diagnostic accuracy of an alternative method 

to grade gliomas, based on histogram analysis of rCBV values from the entire tumor 

volume (histogram method), with the hot-spot method, using histology as the 

reference standard.

Paper II: To compare the diagnostic efficacy of DSC MR imaging, in terms of pre-

surgical diagnostic accuracy and expected patient survival, using automatically 

segmented and manually selected glioma volumes. 

Paper III: To assess whether macroscopic vessels could reliably be removed 

automatically from DSC-based rCBV maps and whether the proposed vessel 

removal procedure improved the diagnostic efficacy of glioma grading using 

histology as reference. 

Paper IV: To implement a predictive model for glioma grading using tumor blood 

volume histogram signatures derived from DSC images and to assess whether the 

diagnostic accuracy of the predictive model improved with the size of the reference 

database.
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6. Summary of papers 

Paper I. Glioma grading by using histogram analysis of blood volume heterogeneity 

from MR-derived cerebral blood volume maps. Radiology 2008 Jun;247(3):808-817. 

Purpose: To introduce an alternative method to DSC-based glioma grading based on 

histogram analysis of rCBV values from the entire tumor volume with the overall aim of 

reducing user-bias. 

Materials and Methods: Summaries of patient data and MR imaging parameters are shown 

in Tables 1 and 2, respectively. Relative (r)CBV maps were created using established tracer 

kinetic models
22,24

 and coregistered to the anatomical MR images. Four neuroradiologists 

performed the image analysis independently as follows; ROIs of the complete tumor were 

drawn in each slice according to the combined rCBV map overlay / anatomical MR image 

underlay information taking care to avoid areas of necrosis, edema or nontumor 

macrovessels evident on the post-contrast T1-weighted images
30,35

. Signal hyper-intensities 

thought to represent tumor tissue as seen on the T2-weighted images were used to define the 

outmost tumor margin, and areas of contrast enhancement seen on the post-contrast T1-

weighted images were always included. Examples of glioma ROI identifications in a low-

grade, grade II diffuse astrocytoma and a high-grade, grade IV glioblastoma are shown in 

Figure 5. Each observer recorded the time used to perform the analysis, and evaluated how 

difficult the two methods were to perform (easy, intermediate or difficult). 

Based on the glioma ROIs defined by the four observers, the distribution of whole tumor 

rCBV values was normalized to a mean white matter rCBV value and analyzed by 

classifying the complete distribution of rCBVmax values into an area-normalized histogram 

with a predefined number of histogram bins. The reason for the area-normalization is to 

account for inter-patient variations in tumor size, ensuring that the area under the 

normalized histogram is always equal to one. Another advantage of normalizing the rCBV 

histogram distribution is that the heterogeneity is then inversely proportional to the peak 

height of the normalized distribution. Glioma grade was determined by assessing the peak 

height of the normalized histogram distribution, under the hypothesis that rCBVmax

heterogeneity is related to tumor malignancy, and inversely proportional to the peak height 
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of the histogram distribution. Using logistic regression, McNemar’s test, receiver operator 

characteristic (ROC) curves and inter-observer agreement (Fleiss-Kappa analysis
57

), the 

proposed method was compared to a reference “hot-spot” method
58

.

Figure 5: (A) Axial T2-weighted FSE image, (B) axial post-contrast T1-weighted SE image and (C)

coregistered rCBVmax map overlaid on (A), respectively, of a patient with a low-grade, grade II diffuse 

astrocytoma. (D) Axial T2-weighted FSE image, (E) axial post-contrast T1-weighted SE image and (F)

coregistered rCBVmax map overlaid on (D), respectively, of a patient with a high-grade, grade IV glioblastoma. 

Tumor areas as identified by a neuroradiologist are shown as white ROIs in (C) and (F). Note the higher 

rCBVmax values in the high-grade glioma area in (F) compared to the low-grade glioma (C).

Results:

Examples of histogram distributions for glioma grades I-IV are shown in Figure 6. On 

average, the four observers reported using 7 minutes and 11 minutes per patient when using 

the reference hot-spot method and the proposed histogram method, respectively. The two 

methods were reported equally difficult to perform by all observers (intermediate). 

For the hot-spot method, optimal rCBVmax cut-off values between high-grade and low-grade 

gliomas ranged from 3.75 to 5.58. For the histogram method, optimal histogram peak height 

cut-off values between high-grade and low-grade gliomas ranged from .10 to .12. For the 

histogram method, the diagnostic accuracy was equal for all observers. There was an 
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increase in sensitivity (90%) and negative predictive value (NPV) (87%) when using the 

histogram method compared to the sensitivity (55-76%) and NPV (54-74%) of the hot-spot 

method. For one observer, the sensitivity values of the histogram method was significantly 

higher than those of the hot-spot method (McNemar’s test; P=.002). The specificity and 

positive predictive value (PPV) was 83% and 87% when using the histogram method and 

63-88% and 64-88% when using the hot-spot method, respectively. The mean areas (Az

values ±standard errors) under the ROC curves were larger for all observers when using the 

histogram method (Az=.905±.041-.914±.039) compared to the hot-spot method 

(Az=.698±.072-867±.055). For one observer, the Az value when using the histogram method 

was significantly higher than the Az value when using the hot-spot method (P<.001).

For the Fleiss-Kappa ( ) analysis, there was a moderate inter-observer agreement between 

the four observers when using the hot-spot method ( =.559) and an almost perfect inter-

observer agreement ( =.923) when using the histogram method.
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Figure 6: Normalized histogram distributions of rCBVmax values from total glioma areas in four patients 

diagnosed with glioma grades I-IV. Note the lower histogram peak values and wider distributions of the high-

grade gliomas (III-IV) compared to the low-grade gliomas (I-II), attributed to increased vascular 

heterogeneity. 
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Paper II. Automated Glioma Characterization from Dynamic Susceptibility Contrast 

Imaging. Brain Tumor Segmentation using Knowledge-based Fuzzy Clustering. 

(Submitted)

Purpose: To assess whether glioma volumes from knowledge-based fuzzy c-means (FCM) 

clustering of multiple MR image classes can provide similar diagnostic efficacy values as 

manually defined tumor volumes when characterizing gliomas from DSC imaging. 

Materials and Methods: Summaries of patient data and MR imaging parameters are shown 

in Tables 1 and 2, respectively. Relative (r)CBV maps were created using established tracer 

kinetic models
22,24

 and coregistered to the anatomical MR images. Two methods for 

identifying the glioma areas were performed; (1) four neuroradiologists manually defined 

the glioma areas as described in Paper I, (2) glioma areas were automatically segmented 

from all anatomical image types using a previously published knowledge-based FCM 

clustering routine shown to correspond well with manually defined tumor volumes
59-61

.

A fuzzy clustering approach differ from a k-means clustering approach in that each data 

element (single pixel) can belong to more than one cluster thereby providing a more flexible 

approach than the k-mean clustering. The strength of the association between a data element 

and a class is indicated using a value between zero and one, in which a value closer to 1 

indicate a sharper partitioning. One common fuzzy clustering approach is the FCM 

algorithm
59

. This approach is based on the selection of an initial guess for the n cluster 

centroids, representing the mean location for each cluster. From this starting point, the 

cluster centroids are iteratively updated to its optimal location by minimizing an object 

function:
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 where uij is the strength of the association between a given data point xi and a cluster 

class j, and cj is the cluster centroid. The object function in equation [15] represents the 

distance from xi to cj weighted by uij. The complementary knowledge-based operation 

consists of a linear sequence of low-level image processing operations based on known MR 

image properties secondary to brain structures or pathology
59,60

. Here, for all anatomical 

MR image types, the glioma class was identified as the FCM cluster class with the highest 
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image intensity (Figure 7). Finally, a set of binary morphological operations
60

 was 

performed to clean the cluster image and a 3D seed growing algorithm was applied on the 

complete image stack to identify and connect tumor regions in neighboring image slices. 

To compare how well (on a pixel-by-pixel basis) the automatically segmented glioma 

volumes corresponded with the manual glioma volumes, sensitivity values and PPV were 

derived for high- and low-grade gliomas separately. Using the histogram method (Paper I), 

sensitivity and specificity values when using manually defined and automatically segmented 

glioma volumes to pre-surgically grade gliomas were assessed by pair-wise comparisons of 

the areas (Az) under the ROC curves. Also, regardless of glioma grade, Kaplan-Meier 

survival curves with log-rank tests (Mantel-Cox) were used to compare the manual and 

automatically segmented glioma volumes with respect to separating a “high-risk” patient 

group from a “low-risk” group. Here, the high-risk group was defined as those patients with 

an expected survival from MR examination date to death of less than 2 years, whereas the 

low-risk group was defined as those patients with an expected survival of more than 2 years.

Figure 7: Schematic flow-diagram of the entire automatic segmentation procedure performed in our study. 

Prior to glioma segmentation, the images were standardized using adaptive histogram equalization62 and brain 

tissue pixels were identified using an intra-cranial brain mask procedure in Statistical Parametric Mapping 

(SPM5)63. After FCM cluster analysis, a set of 2D and 3D binary morphological image operations was 

performed on the segmented glioma images to remove non-tumor pixel areas mimicking tumor tissue60.

Results:

Examples of the knowledge-based FCM cluster analysis are shown in Figure 8. Across the 

four observers, the pixel-by-pixel sensitivity and PPV when identifying glioma pixels 
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manually was 59% (±2%) and 89% (±1%) for the low-grade gliomas and 57% (±2%) and 

87% (±1%) for the high-grade gliomas, respectively. For the automatically segmented 

glioma volumes, the pixel-by-pixel sensitivity values for the low-grade gliomas (83%±2%) 

and high-grade gliomas (69%±4%) were significantly higher than the manual method 

(Mann-Whitney; P<.001 and P=.005, respectively). The corresponding pixel-by-pixel PPVs 

for the low-grade gliomas (66%±3%) and high-grade gliomas (73%±4%) were significantly 

lower than the manual method (P<.001 and P=.004, respectively). For all observers, there 

was no significant difference (P=.576-.970) between the areas under the ROC curves when 

using manually defined glioma volumes (Az=.875±.049-.908±.040) and automatically 

segmented glioma volumes (Az=.890±.046) to grade gliomas. For the survival analysis, a 

higher log-rank value between the low-risk group and high-risk group (Chi-Square = 

14.984, P<.001) was observed when using the automatically segmented glioma volumes 

compared to the manually defined glioma volumes (9.441-12.022, P=.001-.002).

Figure 8: Results of the FCM clustering procedure in a low-grade, grade II oligodendroglioma patient (A-D)

and high-grade, grade IV glioblastoma patient (E-H). Using anatomical MR images such as T2-weighted (A, 

E) and post-contrast T1-weighted (B, F) images, the resulting cluster class representative of the highest mean 

pixel values was thought to represent the tumor class (C, G). The final glioma volumes (D, H), used in the 

histogram analysis, were assessed by performing a set of knowledge-based operations, thereby removing non-

tumor pixels with similar properties as tumor tissue.  
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Paper III. Automatic Vessel Removal in Gliomas from Dynamic Susceptibility 

Contrast Imaging. In press, Magn Reson Med 2009 

Purpose: To propose an automatic vessel segmentation technique based on clustering of 

multiple parameters derived from the DSC first-pass curve with the aim of reducing user-

dependency in DSC-based glioma grading. 

Materials and Methods: Summaries of patient data and MR imaging parameters are shown 

in Tables 1 and 2, respectively. Relative (r)CBV maps were created using established tracer 

kinetic models
22,24

 and coregistered to the anatomical MR images. Glioma ROIs were 

identified manually by a neuroradiologist as follows; (1) as described in Paper I and (2) as 

described in Paper I but with vessel included in the glioma ROIs. 

Using an iterative 5-class k-means cluster analysis approach
64

, pixels in the DSC images 

thought to represent arteries and veins were separated from tissue based on the temporal 

characteristics of the first-pass curve, including the parameters T0, AUC and wash-out 

characteristics of the contrast agent which can be assessed by deriving fmAUC as shown in 

equation [12]. From this, it was expected that both arteries and veins would exhibit a high 

AUC (high rCBV). Additionally, arteries (veins) would exhibit a short (long) T0 and a low 

(high) fmAUC
65,66

. Combining these features, it was hypothesized that arteries and veins 

could be distinguished from highly perfused tumor tissue. The remaining three cluster 

classes were thought to represent tumor and/or gray- and white matter and cerebrospinal 

fluid.

Since malignant tumor tissue can mimic arterial signal with similarly short T0 and large 

rCBV, two additional pre-cluster steps were also tested; (1) a MTT corrected vessel 

masking procedure and (2) a signal intensity (SI) corrected vessel masking procedure. In 

both cases, an initial iterative 5-class k-means cluster analysis routine was performed to 

identify and remove the cluster class with the (1) highest mean MTT value and (2) highest 

mean SI values as seen on T2*-w baseline DSC images during T0. For the uncorrected- , the 

MTT corrected- and the SI corrected vessel masks, pixels thought to represent vessels by the 

automatic method were removed from the glioma ROIs with vessels included. Examples of 

binary vessel maps from the three vessel segmentation procedures are shown in Figure 9. 
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Figure 9: (A) Axial T2-weighted images of a patient with a low-grade, grade II oligodendroglioma. Binary 

vessel masks overlaid on (A) using; (B) uncorrected vessel masks, (C) MTT corrected vessel masks and (D) SI 

corrected masks. Note the identification of the main arteries and veins in (B-D), also recognized on (A).

Compared to the uncorrected (B) and SI corrected (D) vessel masks, the MTT corrected vessel masks (C) are 

generally more conservative in masking out pixels representing vessels in normal appearing tissue regions. 

To compare the automatic vessel segmentation procedure with manual vessel removal, the 

neuroradiologist recorded the time used to perform the analysis and how difficult it was to 

perform (easy, intermediate or difficult). Glioma grades were assessed for both methods 

using the histogram analysis method described in Paper I. Logistic regression was used to 

derive sensitivity values, specificity values, NPV and PPV when separating high-grade 

gliomas from low-grade. In addition, areas (Az) under the ROC curves and Kaplan-Meier 

survival analysis over a 900 day period was performed as described in Paper II.

Results:

The neuroradiologist used approximately 10 minutes per patient when drawing the glioma 

ROIs with vessels excluded and 5 minutes with vessels included. When excluding vessels, 

the degree of difficulty was intermediate. When including vessels, the degree of difficulty 

was easy to intermediate. Compared to the manual method with vessels excluded by the 

neuroradiologist, applying the MTT corrected vessel mask resulted in a change of estimated 

glioma grade in 9 patients. Here, for the 32 patients diagnosed with a histopathological low-
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grade glioma, three low-grade gliomas were correctly classified as low-grade whereas and 

one high-grade glioma was misclassified as low-grade. For the 45 patients diagnosed with a 

histopathological high-grade glioma, three high-grade gliomas were correctly classified as 

high-grade whereas two low-grade gliomas were misclassified as high-grade. The three low-

grade gliomas with a correct change of glioma grade were all located within the M1 or M2 

segments of the middle cerebral artery distribution, whereas none of the misclassified high-

grade gliomas were located in close proximity to any of the larger intra-cranial vessels.  

For all measures of diagnostic accuracy, the highest value was obtained using the MTT 

corrected vessel mask. For the manual reference method, the sensitivity, specificity, NPV 

and PPV was 87%, 78%, 81% and 85%, respectively. For the MTT corrected vessel 

masking, the corresponding values were 91%, 81%, 87% and 87%, respectively. For the 

ROC analysis, the Az value for the reference method was .881 (±.038) and .935 (±.026) for 

the MTT corrected vessel masking. Similarly, a higher log-rank value was observed 

between the low-risk and high-risk group when using the MTT corrected vessel masking 

(Chi-Square = 20.390, P<.001) compared to the manual reference method (11.484, P=.001).

Figure 10 show results of the MTT corrected vessels segmentation routine on the CBV map. 

Figure 10: Axial T2-weighted (A) and T1-weighted post-contrast (B) MR images of a patient with a low-

grade, grade II oligoastrocytoma. Coregistered rCBV maps with vessel included and vessel excluded by the 

MTT corrected vessel masking procedure are shown in (C) and (D), respectively. Note the removal of rCBV 

values from the middle cerebral artery in (D) compared to (C), in immediate proximity to the tumor area.
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Paper IV. Predictive modeling in glioma grading from MR perfusion images using 

support vector machines. Magn Reson Med 2008 Oct;60(4):945-952. 

Purpose: To implement a predictive model based on support vector machines (SVM) for 

glioma grading using tumor blood volume histogram signatures derived from DSC images 

and to assess the diagnostic accuracy of the model and the sensitivity to sample size. 

Materials and Methods: Summaries of patient data and MR imaging parameters are shown 

in Tables 1 and 2, respectively. Relative (r)CBV maps were created using established tracer 

kinetic models
22,24

 and coregistered to the anatomical MR images. Glioma ROIs were 

identified manually as described in Paper I. Four neuroradiologists drew tumor ROIs in 53 

of the 86 patients, whereas a fifth neuroradiologist drew tumor ROIs in the remaining 33 

patients. The four sets of 53 histogram signatures from the four observers were used to 

create a training dataset whereas the remaining 33 histogram signatures from the fifth 

observer were used to create a test dataset. 

To predict glioma grades in the test dataset based on the information in the training dataset, 

a SVM model was applied. A predictive SVM model is based on generalized linear 

classification algorithms, which can be used to create a model for classification of new 

objects based on a set of training data
67,68

. In this, the SVM model creates a separating 

hyperplane, a higher-dimensional generalization, so that it optimally discriminates two or 

more classes. During a minimization procedure, the hyperplane is tuned so that the SVM 

model generalization error is minimized, thus achieving an optimal solution to the 

classification problem: 

bxwxf ,)(    [16]

 Here, )(xf defines a hyperplane with parameters w  (the direction perpendicular to the 

hyperplane), input data Xxxx n,,1  and b (position vector). However, this 

classification may be difficult since real-world data are noisy, which limits the accuracy 

with which the resulting hyperplane can be determined in feature space
67

. One approach to 

address this problem is to transform the original input space into a higher dimensional space 

by using so–called kernel functions that optimally discriminates the two classes. The choice 

of kernel function has to be selected carefully in order to avoid poor discrimination power
69
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and a non-linear radial basis function (RBF) kernel was found to conform to the low-

dimension histogram data used in our study
70

:

0,),(
2|||| ji xx

yi exxK  [17] 

Here, a Gaussian based RBF kernel is used. The parameter  is related to the standard 

deviation, i.e. the width of the Gaussian distribution. Maximal reduction of the 

generalization error is reached by optimizing the distance between the margin of the 

function separating the classes (functional margin) and the input examples during a training 

process. Figure 11 depicts an illustration of the optimal margin (dotted lines) and 

hyperplane (solid line) for a 2 dimensional binary example. 

Figure 11: Illustration of the optimal margins (dotted lines) and hyperplane y  (solid line) for arbitrary binary 

data ( , x). The data points defining the margins are called support vectors and their positions should be such 

as to maximize the distance between the support vectors and the hyperplane. 

Although numerous SVM models exists
69

, a SVM model known as -SVM was considered 

practical for our data
71,72

. The -SVM has the advantage of using a parameter, , which is 

related to the number of support vectors used and the ratio of the training error. The range of 

the -parameters is between [0,1]. A low  value result in less softness of the classification 

margins (i.e. less generalized) but fewer misclassifications, whereas a high  value result in 

more softness of the classification margins but with more misclassifications allowed. The 

optimal -SVM model has a  value giving minimal misclassifications and maximal 

generalization.
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For all values of  and , the diagnostic accuracy of the -SVM model on the test dataset 

was evaluated by assessing true positive rates (TPR) and true negative rates (TNR) of the 

glioma grading using histology as a reference. Based on the optimal  and  parameter 

values only, the effect of increasing the sample size (including more patients) of the training 

dataset was evaluated using linear regression and Fleiss-Kappa ( ) statistics
57

 as described 

in Paper I. 

Results:

To correct for over-adaptation of the -SVM model and to provide high generalization, the 

optimal  value (0.56) was found within 99% of the maximal filtered accuracy value. 

Similarly, the optimal  value (0.0065) was found within 99% of the maximal filtered 

accuracy value. Using these values, the TPR and TNR of the model on the test dataset was 

0.76 and 0.82, respectively.

A significant increase (R
2
=0.46, P<0.001) in the Fleiss-Kappa agreement values was 

observed when including more patients in the training dataset (5 patients; =0.139 up to 53 

patients; =0.766). As shown in Figure 12, including more patients in the training dataset 

resulted in a significant increase in TPR (R
2
=0.311, P<0.001). The TNR however, remained 

unchanged (R
2
=0.004, P=0.692).

Figure 12: For an increasing number of patients included in the training dataset (5-53), the scatter plot shows 

mean TPR across the four observers when using the -SVM model on the test dataset (using optimal  and 

values only). The error bars indicate standard errors of the mean values. As illustrated by the dotted trend line, 

TPR increased significantly with sample size (R2=0.311, P<0.001). 
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7. Discussion 

7.1 General discussion 

The infiltrative and aggressive natures of many intra-axial brain tumors make these 

neoplasms a formidable challenge to treatment. Both accurate preoperative assessment of 

tumor location and function as well as lifelong monitoring of postoperative tumor 

recurrence and growth are important. Non-invasive methods for glioma characterization are 

desirable as sampling error and inaccessible tumors may limit stereotactic biopsy sampling. 

It has been suggested that DSC imaging can provide an alternative to histopathology for 

early identification of high- and low-risk patient groups with respect to time to progression 

of glioma grade or patient survival
10

. Hence, including DSC imaging on a routine basis will 

provide clinicians with important information concerning treatment planning
9
.

Furthermore, as most patients suspected of an intra-axial tumor will undergo surgery and 

subsequently receive a histopathological diagnosis, a second important application of MR-

based glioma imaging methods will be related to the evaluation of therapy response from 

anti-angiogenetic markers
39,47,73,74

. Invasive procedures to follow tumor growth and 

treatment response cannot be performed repeatedly, and non-invasive imaging methods may 

convey similar information with minimal patient discomfort. On conventional anatomical 

MR images, tumor response to therapy is currently based on changes in tumor volume or 

contrast enhancement patterns on T1-weighted images
6
. These changes may take time to 

develop and slow the decision making as to whether the ongoing treatment strategy should 

be continued, terminated or changed. It has been suggested, however, that DSC-based 

glioma imaging can demonstrate significant increases in tumor rCBV, secondary to 

malignant transformation, up to 12 months before contrast enhancement changes are 

apparent on T1-weighted MR images
75

. With such exciting results, the need for robust, 

reproducible DSC-based glioma characterization methods with short processing times and 

minimal user-dependence is evident. This argument is further strengthened by the focus on 

cost-benefit and cost-effectiveness in the medical workflow.  
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7.2 The histogram analysis method (Paper I) 

Results from histopathology show that low-grade gliomas tend to incorporate preexisting 

vessels whereas high-grade gliomas no longer can rely on this vascular supply and 

consequently develop new vessels
74,76

. Tumor angiogenesis with vessel tortuosity, apoptosis 

and necrotic tumor components will result in reduced intra-tumoral vascular homogeneity. 

To exploit this phenomenon and to address some of the shortcomings of the hot-spot 

method discussed in this thesis, the histogram analysis approach has been proposed as an 

alternative method to grade gliomas from DSC imaging. Instead of measuring a single 

rCBVmax value, it is suggested that assessing the complete distribution of glioma rCBV 

values from either a single MR image slice or the complete glioma volume provides a more 

robust and reproducible estimate of tumor malignancy. In concordance with histopathology, 

and as suggested by others
77

, our results from the histogram analysis show that the rCBV 

distribution in a high-grade glioma conveys a more heterogeneous spectrum of rCBV values 

than a low-grade glioma.  

The most important result from our study was that the interobserver agreement between the 

four observers for the histogram method was almost perfect. As confirmed by others
78

, the 

histogram method may be less sensitive to user-bias in glioma grading thereby providing a 

more robust method for potential life-long monitoring of treatment response from 

angiogenetic inhibitors which require low observer variability. Furthermore, compared to 

the reference hot-spot method
58

, our study and other studies using a histogram analysis 

approach convey similar or higher diagnostic accuracy values than the reference 

method
78,79

. As shown in Paper I, at similar specificity (~ 83%), the sensitivity of the 

histogram method was higher for all observers (90%) compared to the reference hot-spot 

method (55-76%).  In another study excluding oligodendroglial tumors
78

, a battery of 

histogram measures was compared showing that mean values and standard deviations of the 

histogram distribution also correlated to glioma grade. In that study, however, the histogram 

peak height was not correlated to tumor grade. With the other histogram metrics showing 

good correlation, this discrepancy from our results is somewhat surprising and may be 

related to the choice of histogram bin numbers (40 bins) and the use of an ellipsoid tumor 

ROI from a single slice. In our study, an iterative procedure was used to derive the 

histogram bin number giving highest diagnostic accuracy (108 bins) and the histogram 

signatures included rCBVmax values from whole tumor ROIs with vessels excluded.
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Furthermore, the shape of the normalized rCBV histogram distribution for a specific glioma 

is fixed even though the rCBV values are in arbitrary units. Thus, the histogram method can 

in theory be independent of reference tissue
79

. Because rCBV values in gray matter of a 

healthy individual is approximately twice as high as rCBV values in white matter, the hot-

spot method is however, critically dependent on correct selection of reference tissue because 

the determination of rCBVmax is based on this parameter alone. Nevertheless, because 

estimation of CBV scales with global flow Fa as shown in equation [11], a normalization 

procedure may be warranted in order to reduce inter-patient variations due to differences in 

cardiac output. Also, the normalization procedure may reduce the effect of variations in the 

dynamic response between image slices. 

The histogram analysis method has also been used to differentiate between low-grade 

oligodendroglial tumors with or without loss of LOH on 1p/19q
80

. In concordance with the 

higher rCBVmax values observed in low-grade oligodendrogliomas with LOH on 1p/19q
53

, it 

has been reported that low-grade oligodendrogliomas with LOH on 1p/19q convey a more 

heterogeneous distribution of rCBV values compared to low-grade oligodendrogliomas 

without LOH on 1p/19q
80

. However, contrary to studies using the hot-spot method
53

, this 

difference is not sufficient to consistently misclassify a low-grade oligodendroglioma as 

high-grade. This feature of the histogram method is attractive, in that a glioma grading 

method aiming at optimal differentiation between high- and low-grade gliomas should have 

minimal variations within each grade.  

A controversial issue related to the histogram method is the choice of tumor area included in 

the histogram analysis
6
. Although identification of correct tumor areas as seen on 

anatomical MR images is notoriously difficult
46,47

, approaches using ellipsoid ROIs or 

peritumoral glioma ROIs on a single MR image
78

, freehand ROI drawings in all tumor-

slices
54

 or semi-automatically segmented ROIs
79

 all show high diagnostic accuracy values. 

As shown in Papers I and II, even though glioma ROI definitions between the four 

observers show large variations, the high diagnostic accuracy obtained by all observers 

suggest that potential imperfect glioma delineation is relatively unimportant when using the 

histogram method. Also, the large number of pixels included in the glioma ROI may limit 

the influence of rCBV values from non-tumor pixels erroneously included in the tumor ROI. 
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A further challenge with the histogram method was that the observers reported using longer 

analysis time per patient for the histogram method compared to the hot-spot method. The 

reason for this was that the tumor volume had to be identified in every slice. However, the 

methods were considered equally difficult to perform. With recent advents in advanced 

tumor segmentation routines from anatomical MR images, an automated method for total 

volume identification as suggested in Paper II may further improve the utility of the 

histogram analysis method. 

7.3 Automatic tumor segmentation in DSC-based glioma grading (Paper II) 

In spite of obvious potential advantages, automatic tumor segmentation procedures in DSC-

based glioma grading have received little attention. The additional gain of replacing the 

manual tumor definition with an automatic procedure includes removal of inter-observer 

variations, time efficiency and standardized criteria for tumor characterization. A reason for 

the lack of automated segmentation procedures in DSC-based glioma imaging might be that 

a traditional brain tumor MR imaging protocol used in the clinical routine typically consist 

of several 2D anatomical MR images sets which are sub-optimal for tumor segmentation 

compared to 3D MR images
81,82

. Furthermore, an automated tumor segmentation model 

must include tumor areas with contrast enhancement without including contrast enhanced 

blood vessels. While automatic methods for tumor identification in DSC-based glioma 

grading are rare, several approaches based on supervised (template based) and unsupervised 

segmentation methods for identification of brain tissue structures from anatomical MR 

images only, have been proposed. Automatic tissue or tumor segmentation based on multi-

spectral data analysis
83

, neural networking
84

, support vector machines
85

 and knowledge-

based FCM clustering techniques
59,60

 all show great promise. While a supervised 

segmentation routine require a very large volume of data in order to create a robust training 

template
81,84

, an unsupervised procedure combining identification of various image classes 

and prior knowledge of image properties is not dependent on sample size.  

One unsupervised segmentation approach yielding promising results when segmenting 

grade IV glioblastoma from anatomical MR images is the FCM clustering approach. In one 

study
60

, a tumor segmentation method based on multi-spectral analysis of multiple MR 

image types conveyed good correspondence to radiologist-labeled ‘ground truth’ tumor 

volumes. In Paper II, a similar approach based on knowledge-based FCM clustering was 
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used. The main advantage of this approach is that the proposed segmentation routine is user-

independent, thereby removing user-induced variations in the glioma grading. A second 

attractive feature of the FCM procedure is that it is tolerant of imprecise image data, often 

experienced in heterogeneous tumor tissue. Our results suggest that using the proposed 

segmentation routine on DSC-based glioma grading correspond well with the results using 

manually defined tumor volumes. The diagnostic accuracy values obtained in our study 

were similar to those reported in the literature and there was no significant difference 

between the Az values of the automatic and manual method
34,41,86,87

. The significantly lower 

PPV of the FCM clustering routine compared to the manual method suggest that the 

automatic segmentation routine is less conservative, consequently including more hyper-

intense areas as seen on the T2-weighted and FLAIR images. Although the metabolic active 

tumor area is mainly restricted to the visible T2 tumor border
46,47,88

, the infiltrating nature of 

gliomas should in turn favor a less conservative method for tumor delineation such as the 

proposed automatic segmentation method. 

A potential drawback with knowledge-based FCM is that a perfect delineation between the 

resulting tissue classes is difficult since each pixel can belong to more than one cluster class. 

Hence, although not a focus of Paper II, the manual and automatic segmentation routine 

used in our study may not be an adequate measure of tumor volume for quantitative 

assessment of tumor growth and for aiding neurosurgeons intra-operatively. However, it 

was shown in Papers I and II that imperfect glioma delineation is relatively unimportant in 

pre-surgical glioma grading by histogram analysis of DSC images. Thus, using a histogram 

analysis method on DSC values from automatically segmented tumor volumes should favor 

the unsupervised knowledge-based FCM approach used in Paper II. 

Also, no special care was taken to exclude rCBV pixels from large vessels within the 

segmented glioma volume. Although large vessels can be appreciated as dark areas on T2-

weighted images and thus should be excluded during the knowledge-based operations
88,89

, it 

is well known that the T2*-effect from large vessels in a GRE-EPI sequence result in an 

over-estimation of the intravascular susceptibility effect in pixels adjacent to large 

vessels
49,50

. The consequence of this is overestimated rCBV values in pixels not recognized 

as vessel tissue by the segmentation procedure. To address this problem, we have proposed 

an automatic vessel removal approach based on cluster analysis of the DSC dynamic first-

pass parameters (Paper III). 
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7.4 Automatic vessel segmentation (Paper III) 

Presence of elevated rCBV values from large vessels within the tumor area may confound 

the glioma grading
11,48,58

. Low-grade gliomas are typically located in the frontal- or 

temporal lobes
2,89,90

, in close proximity to the anterior- or middle cerebral arteries, which 

might result in an overestimation of glioma grade
48

. To correct for this, large vessels within 

the tumor area can be manually excluded from the glioma ROI prior to glioma grading
54,58

,

which make current glioma grading methods inherently user-dependent. However, manual 

(Paper I) or automatic (Paper II) glioma segmentation from anatomical MR images do not 

account for the extravascular susceptibility effect in DSC imaging
49

. A second approach is 

to introduce a cut-off rCBV value to remove the high-end spectrum of rCBV values thought 

to represent vessels
78

. This approach however, does not discriminate between arterial, 

venous and tissue image pixels as the AUC can convey similar characteristics even though 

the shapes of the first-pass curves are different. 

The proposed vessel segmentation technique in Paper III is fast and provides a direct 

estimate of pixels which are actually affected by the vascular susceptibility effect. Hence, 

the need for an expert user with good anatomical knowledge to mask out vessel regions is 

removed. In the case of both manually defined and automatically segmented tumor area 

identification, tumor ROI drawings with vessels included are easier and faster to perform 

compared to tumor ROIs with vessel excluded. In clinical routine, this feature is attractive 

as it reduces the time spent on post-processing and potentially increases the reproducibility 

of a DSC-based glioma grading method. 

The diagnostic accuracy values obtained in our study was similar to other studies using the 

histogram method on gliomas
54,78,87

. Compared to the manual reference method, the use of a 

pre-mask to exclude areas of elevated MTT values, secondary to glioma malignancy, was 

found to improve the diagnostic accuracy of the glioma grading. The uncorrected vessel 

masking procedure, however, resulted in reduced sensitivity, NPV and PPV whereas the 

specificity increased. The increased number of false negatives and reduced number of false 

positives suggest that the uncorrected vessel masking routine is too radical in removing 

rCBV values in the tumor bed. This result suggests that the main challenge of the proposed 

vessel segmentation routine in glioma grading is to differentiate vessels from elevated rCBV 

values at the capillary level. A similar result was observed when using the SI corrected pre-

mask. In order to avoid rapid signal changes between the first image (with full 
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magnetization) and subsequent (saturated) baseline images, the DSC sequence used in our 

study included several dummy scans resulting in mainly proton density weighted baseline 

images. In spite of the GRE-EPI sequence being strongly T2*-weighted in steady state, the 

image contrast in the very first image (following a single 90 degree RF pulse) will have a 

significant T2-weighting. For the purpose of obtaining a SI pre-mask based on differences 

in T2 relaxation times, it would therefore be a clear advantage to include this unsaturated 

EPI image in the analysis. Nevertheless, in DSC-based imaging of patients suggestive of 

non-neovascular diseases, such as stroke or multiple sclerosis, the radical vessel removal of 

the uncorrected or SI corrected vessel masking procedure may be attractive. 

In our study, the vessel segmentation procedure was based on GRE-EPI imaging. 

Alternatively, SE-EPI imaging alone, or as a combination of both, have been proposed in 

order to reduce the sensitivity to susceptibility effects and thereby reducing the influence of 

macroscopic vessels in the resulting perfusion maps
11,28-31,91

. The disadvantage, however, as 

discussed in this thesis, is lower contrast agent sensitivity (effective contrast relaxivity) 

especially in normal appearing brain tissue structures and tumor tissue without contrast 

leakage and limited brain coverage for a given temporal resolution. Nevertheless, as shown 

in Figure 4, the bolus shape of arteries, veins and brain tissue from both techniques convey 

fairly similar characteristics and the proposed vessel segmentation technique may provide 

similar results in DSC-based glioma grading using SE-EPI. Thus, a study applying the 

vessel segmentation procedure in SE-EPI glioma grading is warranted.  

Furthermore, in order to obtain optimal results, the proposed vessel segmentation procedure 

should be applied to DSC images with high spatial and temporal resolution. In particular, 

because separation of vessels from vascular tissue is mainly based on small differences in 

contrast dynamics, the temporal resolution should be as low as possible in order to increase 

the sampling steps. Although this would imply a compromise with the temporal resolution, 

the same principle applies for the spatial resolution. As the size of the capillaries is typically 

below 1mm, the image resolution should be as high as possible.  

7.5 Predictive modeling (Paper IV) 

An attractive potential of any diagnostic method is the ability to use prior knowledge from 

previous patients to predict status or outcome of new patients or to compare MR images of a 
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single patient from different examination dates. However, the use of predictive modeling in 

glioma grading from DSC imaging has not received much attention. A reason for this may 

be that current grading methods rely on threshold values between patient groups that are 

difficult to generalize into an accurate predictive model. As shown in numerous studies 

using the hot-spot method from DSC imaging, current threshold values show large 

variations
40,42,54

. The histogram analysis method however, may provide a more attractive 

starting point for predictive modeling because each new case is described by the normalized 

histogram signature curve of the rCBV distribution within the glioma volume. By using this 

signature curve rather than a single threshold, a more robust base for prediction is created, 

which can readily be compared to a database of histologically confirmed gliomas with 

signatures representative for each glioma grade.  

One potential feature of the SVM model is that multiple channels of information can be 

included. In addition to MR perfusion parameters described in this thesis, a standard MR 

imaging protocol in patients suspected of a glioma may consist of conventional MR 

imaging
89

, MR diffusion imaging
92

 and MR spectroscopy
41

 all with diagnostic parameters 

that can be included in the analysis. Also, measures of tumor growth and location as well as 

information on patient age, gender and treatment strategies are all important predictors in 

the continued patient care and in the decision making of further therapy  

The perfect accuracy of 100% obtained in Paper IV when using the SVM model to 

retrospectively grade 53 gliomas as either high-grade or low-grade, and the corresponding 

lower accuracy values obtained when using the SVM model on new data obtained by a new 

observer (TPR = 0.76 and TNR 0.82), illustrate the problem of over-adaptation which is 

inherent in any retrospective glioma grading study. Thus, although this problem is reduced 

with increasing sample size, the development of a robust glioma grading method should not 

rely solely on retrospective analysis. Furthermore, the availability of the proposed SVM 

model to third-part users should be investigated across institutions with different MR 

machine vendors, at different MR field strengths and using different imaging protocols. For 

the SVM model to become independent of these parameters and to have clinical utility, the 

diagnostic accuracy of the model should be as high as possible. Thus, the accuracy of about 

0.8 obtained with the proposed SVM model may not be sufficient for extensive clinical use. 

However, TPR was shown to significantly increase with increasing sample size suggesting 

that the diagnostic accuracy will reach an acceptable level with a sufficient increase in the 
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sample size. In addition, the inter-observer agreement between the four observers increased 

significantly with increasing sample size suggesting higher generalization and robustness of 

the SVM model with increasing sample size of the training dataset. 

Although the standard RBF kernel used in our study has previously been shown to fit 

histogram data
70

, it is likely that the model could be further optimized by a more careful 

selection of the kernel function. Especially, when including additional MR image metrics in 

the SVM model, the choice of kernel function will influence the final result. When the 

number of feature vectors is much larger than the number of subjects in the training and test 

dataset, mapping the data to a higher dimensional space using a non-linear kernel may 

reduce the performance and speed of the SVM model
69

. Thus, a final SVM model applied to 

the clinical routine should include an iterative procedure that not only updates the support 

vector parameters ( , ) as more patients and imaging feature vectors are included in the 

training database, but also iteratively derive the optimal kernel function with respect to 

glioma grade, tumor progression or patient survival.  
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8. Conclusion and future aspects 

8.1 Conclusion 

Current methods for DSC-based glioma grading suffer from high user-dependence, a clear 

limitation towards assessment of whether the technique may actually have an impact on 

patient care
93

. To address this issue, this thesis has focused on introducing and validating 

alternative approaches with the aim of minimizing user-bias in glioma grading from DSC 

images. One of these approaches is the analysis of cerebral blood volume heterogeneity as 

shown in Paper I. This method is based on the hypothesis that blood volume heterogeneity 

is related to vascular proliferation secondary to tumor malignancy. While the selection of 

multiple, small region-of-interests in the tumor area (hot-spot method) is inherently prone to 

user-bias, the large number of pixels included in the whole-tumor histogram analysis results 

in a procedure relatively insensitive to suboptimal tumor area selection. The histogram 

approach may, therefore, be less dependent on expert users, and more amenable to 

automatic tumor segmentation approaches as shown in Paper II. Here, the use of an 

automated tumor segmentation procedure provides a further reduction in user-dependency. 

Thus, in combination with the automatic vessel segmentation procedure shown in Paper III, 

implementing these methods in the clinical routine is expected to improve the diagnostic 

efficacy of DSC-based glioma imaging. Furthermore, the complete distribution of blood 

volume values in terms of a histogram signature provides a strong measure for comparing 

MR perfusion metrics from different patients and examination dates. From this, large 

databases of histogram signatures can form the basis for predictive models as shown in 

Paper IV. 

In conclusion, our results suggest that the proposed methods provide objective measures for 

tumor vascularity and malignancy with minimal user-bias, an important step towards a fully 

automated MR-based glioma characterization regime. Furthermore, the methods described 

in this thesis can readily be implemented in clinical routine; thereby, providing fully 

automated methods amendable for third-part users with little experience with DSC-based 

glioma grading. 
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8.2 Future aspects

The studies presented in this thesis included patient data from Rikshospitalet University 

Hospital only. However, in order to validate the stability of the proposed methods, measures 

of reproducibility and diagnostic efficacy should be assessed through large, multi-

institutional studies. In this, the methods proposed in this thesis may also be applied to other 

MR perfusion imaging techniques, such as SE-EPI, T1-weighted perfusion and potentially 

ASL.

Furthermore, with the current advents of automatic glioma grading methods from DSC-

imaging with minimal user-dependency, the need for a systematic framework encompassing 

the complete chain of techniques is warranted. This may be achieved by developing a 

computer aided diagnostics (CAD) software program, involving every step from MR 

examination to a final report summarizing the results from the DSC-based glioma analysis. 

In theory, this report can be sent back to the hospital-wide picture archiving and 

communication system (PACS) as an additional source of information for the clinician. It is 

hypothesized that the availability of the proposed methods directly in PACS will increase 

their acceptability and clinical utility substantially. Thus, the methods may also be 

capitalized in new commercial software for the benefit of health care.  
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Tables

Table 1. Summary of patients with histopathological results included in papers I-IV 

Patient population Histopathological diagnosis* 

Paper I: 53 patients (24 females, 29 males) LGGs: 2 grade I, 22 grade II 

mean age 48 yrs, range 14-76 yrs HGGs: 10 grade III, 19 grade IV 

Paper II: 50 patients (21 females, 29 males) LGGs: 1 grade I, 21 grade II 

mean age 49 yrs, range 14-76 yrs HGGs: 9 grade III, 19 grade IV 

Paper III: 77 patients (32 females, 45 males) LGGs: 32 grade II 

mean age 52 yrs, range 19-78 yrs HGGs: 10 grade III, 35 grade IV 

Paper IV: 86 patients (37 females, 49 males) LGGs: 4 grade I, 34 grade II 

mean age 49 yrs, range 9-78 yrs HGGs: 11 grade III, 37 grade IV 

LGGs = low-grade gliomas, HGGs = high-grade gliomas, yrs = years 

*Using the WHO classification of the central nervous system 

Table 2. Overview of pulse sequences used in papers I-IV* 

Anatomcial MR sequences 

T2-w FSE T1-w SE FLAIR (Paper II only)

TR: 4000 ms TR: 500 ms TR: 9050 ms 

TE: 104 ms TE: 7.7 ms TE: 114 ms 

Flip: 150º Flip: 90º Flip: 150º 

VS: 0.45x0.45x5 mm3 VS: 0.45x0.45x5 mm3 VS: 0.9x0.9x5 mm3

19 axial slices 19 axial slices 25 coronal slices 

pre- and post-contrast TI = 1500 ms 

Dynamic Susceptibility Contrast (DSC) sequence 

GRE-EPI** 

TR: 1430 - 1720 ms 

TE: 46 - 48 ms 

Flip: 90º 

VS: 1.80x1.80x5mm3

12 - 14 axial slices X 50 images per slice 

0.2 mmol/kg of gadobutrol (5 mL/sec) 

TR = repetition time, TE = echo time, Flip = flip angle, VS = voxel size, TI = inversion time, SE = spin-echo, 

FSE = fast spin-echo, GRE-EPI = gradient-echo echo-planar imaging  

*All imaging was performed on a 1.5Tesla Siemens Sonata, Symphony or Avanto (Siemens AG, Erlangen, Germany) using an 8-

channel- (Symphony/Sonata) or a 12-channel (Avanto) head-coil.  

**GRE-EPI parameters values were not constant because of varying tumor sizes 
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Glioma Grading by Using

Histogram Analysis of Blood

Volume Heterogeneity from

MR-derived Cerebral Blood

Volume Maps1
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Purpose: To retrospectively compare the diagnostic accuracy of an
alternative method used to grade gliomas that is based on
histogram analysis of normalized cerebral blood volume
(CBV) values from the entire tumor volume (obtained with
the histogram method) with that of the hot-spot method,
with histologic analysis as the reference standard.

Materials and

Methods:

The medical ethics committee approved this study, and all
patients provided informed consent. Fifty-three patients
(24 female, 29 male; mean age, 48 years; age range, 14–76
years) with histologically confirmed gliomas were exam-
ined with dynamic contrast material–enhanced 1.5-T mag-
netic resonance (MR) imaging. CBV maps were created
and normalized to unaffected white matter (normalized
CBV maps). Four neuroradiologists independently mea-
sured the distribution of whole-tumor normalized CBVs
and analyzed this distribution by classifying the values into
area-normalized bins. Glioma grading was performed by
assessing the normalized peak height of the histogram
distributions. Logistic regression analysis and interob-
server agreement were used to compare the proposed
method with a hot-spot method in which only the maxi-
mum normalized CBV was used.

Results: For the histogram method, diagnostic accuracy was inde-
pendent of the observer. Interobserver agreement was
almost perfect for the histogram method (� � 0.923) and
moderate for the hot-spot method (� � 0.559). For all
observers, sensitivity was higher with the histogram method
(90%) than with the hot-spot method (55%–76%).

Conclusion: Glioma grading based on histogram analysis of normalized
CBV heterogeneity is an alternative to the established
hot-spot method, as it offers increased diagnostic accuracy
and interobserver agreement.
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M
agnetic resonance (MR) imag-
ing is the imaging method of
choice for characterization of

brain tumors prior to treatment. Al-
though conventional contrast material–
enhanced MR imaging may indicate the
degree of tumor malignancy, studies
have shown that the degree of contrast
enhancement is not a reliable indicator
of the tumor grade (1,2). Consequently,
authors have suggested that contrast-
enhanced dynamic perfusion imaging
can improve the accuracy of MR-based
glioma grading (3). Perfusion MR imag-
ing involves the use of first-pass bolus-
tracking analysis to derive relative cere-
bral blood volume (CBV) maps, and
studies have shown that the maximal
relative CBV of gliomas correlates with
the glioma grade (4–7).

Differentiation of high-grade gliomas
(HGGs) and low-grade gliomas (LGGs)
with MR-derived relative CBV maps is
based on measurement of the ratio be-
tween the most elevated relative CBV
area within the glioma (ie, the hot-spot
method) and the relative CBV of unaf-
fected tissue. This value is often re-
ferred to as the normalized CBV, and
HGGs tend to have higher normalized
CBVs than do LGGs (7). It should be
noted, however, that this approach has
some inherent limitations. First, the se-
lection of a glioma hot spot is highly user
dependent because differentiation be-
tween vessels and the tumor region of
true blood volume elevation can be chal-
lenging and a source of error. Second,
since only a few image pixels are typi-
cally used to determine the relative CBV
hot spot, the method is inherently sensi-
tive to image noise and other sources of
spurious pixel values (eg, spikes intro-

duced by the algorithms used to gener-
ate the normalized CBV maps). Third,
unaffected white matter relative CBV is
generally used to derive the normalized
CBV. This is based on the assumption
that most gliomas are located in the
white matter. However, incorrect selec-
tion of reference relative CBVs might
result in either under- or overestima-
tion of normalized CBVs. Fourth, oligo-
dendrogliomas tend to have high nor-
malized CBVs regardless of the glioma
grade (1). As a result, cutoff normalized
CBVs between HGG and LGG might be
harder to establish if oligodendroglio-
mas are included.

In view of these facts, the purpose of
our study was to retrospectively com-
pare the diagnostic accuracy of an alter-
native method used to grade gliomas
that is based on histogram analysis of
normalized CBVs from the entire tumor
volume (obtained with the histogram
method) with that of the hot-spot
method, with histologic analysis as the
reference standard.

Materials and Methods

Patient Selection

One author (A.B.) is a consultant for
Nordic Imaging Lab (Bergen, Norway).
Authors without a financial interest con-
trolled data and information that could
have caused a conflict of interest. The
regional medical ethics committee ap-
proved this study, and patients were in-
cluded only if they provided written in-
formed consent. Between June 2005
and March 2007, primary glioma was
diagnosed at histologic analysis in 75
patients after MR perfusion imaging and
subsequent surgery. Fifty-three of these
patients (24 female, 29 male; mean age,
48 years; age range, 14–76 years) al-
lowed us to use their data in our study.
Two experienced neuropathologists (D.S.,

O.C.B.) performed histologic evaluation
based on examination of tissue obtained via
resection (n � 42) or stereotactic image-
guided biopsy (n � 11), with use of the
World Health Organization classifica-
tion of central nervous system tu-
mors (8).

Observers

Four experienced neuroradiologists (B.N.,
T.N., P.D., J.K.H.) with 4–5 years of
experience with brain perfusion MR
imaging independently performed all
measurements. Patient-related infor-
mation was removed from all images,
and observers were blinded to the his-
topathologic diagnosis.

MR Imaging and Postprocessing

Imaging had been performed at 1.5 T
(Sonata, Symphony, or Avanto; Sie-
mens, Erlangen, Germany) with an
eight-channel (Sonata or Symphony im-
agers) or 12-channel (Avanto imager)
head coil. The imaging protocol in-
cluded an axial T2-weighted fast spin-
echo sequence (repetition time msec/
echo time msec, 4000/104) and an axial
T1-weighted spin-echo sequence (500/
7.7) performed before and after intra-
venous administration of gadobutrol
(Gadovist; Schering, Berlin, Germany).
The voxel size was 0.45 � 0.45 � 5 mm,
with 19 sections acquired with both se-
quences.
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Advances in Knowledge

� Use of histogram analysis, com-
pared with use of the current hot-
spot glioma grading method, can
increase diagnostic accuracy
when grading gliomas.

� Use of histogram analysis, com-
pared with use of the current hot-
spot glioma grading method, can
increase interobserver reproduc-
ibility when grading gliomas.

Implication for Patient Care

� The improved diagnostic accuracy
and interobserver reproducibility
of the histogram analysis method
could potentially improve the care
of patients with gliomas.
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Dynamic contrast-enhanced perfu-
sion MR imaging was performed with
gradient-echo echo-planar imaging dur-
ing contrast agent administration. The
imaging parameters were as follows:
1430/46 and 1345 Hz/pixel bandwidth
for acquisition of 12 axial sections and
1720/48 and 1500 Hz/pixel bandwidth
for acquisition of 14 axial sections. We
also used a 230 � 230-mm field of view,
1.80 � 1.80 � 5-mm voxel size, and
1.5-mm intersection gap in these exam-
inations. For each section, 50 images
were obtained at intervals equal to the
repetition time. After eight to 10 time
points, 0.2 mmol of gadobutrol per kilo-
gram of body weight was injected at a
rate of 5 mL/sec and immediately fol-
lowed by a 20-mL bolus of saline (B. Braun
Melsungen, Melsungen, Germany) injected
at a rate of 5 mL/sec.

The images were postprocessed with a
dedicated software package (Nordic ICE;
Nordic Imaging Lab). The relative CBV
(measured in milliliters per 100 g) maps
were generated by using established
tracer kinetic models applied to the
first-pass data (9,10). To reduce the ef-
fects of recirculation, the �R2* (change
in 1/T2*) curves were fitted to a gam-
ma-variate function, which is an ap-
proximation of the first-pass response
as it would appear in the absence of
recirculation or leakage. Although po-
tentially more rigorous correction
methods exist (11), the gamma-variate
approach was used to conform to the
reference method described later in this
article. Normalized CBV maps were cal-
culated on a pixel-by-pixel basis by di-
viding every relative CBV value by a
contralateral unaffected white matter
relative CBV value defined by a neurora-
diologist (B.N.) (12). The normalized
CBV maps were displayed as color over-
lays on the structural images. Coregis-
tration between the conventional MR
images and the normalized CBV maps
was performed on the basis of geomet-
ric information stored in the respective
data sets (13).

Image Analysis

The four observers performed image
analysis independently over a 3-month
period. Two observers (B.N., T.N.) re-

viewed conventional MR findings for
each patient. As described in previous
studies (11,14), regions of interest that
contained the complete tumor were
drawn in each section according to the
combined overlay and underlay infor-
mation, with care taken to avoid areas
of necrosis, cysts, or nontumor mac-

rovessels evident on the postcontrast
T1-weighted images (Fig 1). High-sig-
nal-intensity areas thought to represent
tumor tissue on the T2-weighted images
were used to define the outermost tu-
mor margin, and areas of contrast en-
hancement seen on the postcontrast T1-
weighted images were always included.

Figure 1

Figure 1: MR images of grade II diffuse astrocytoma in patient 44 (Table E1, http://radiology.rsnajnls.org

/cgi/content/full/247/3/808/DC1) show how normalized CBV overlay maps are used to identify vessels within

the tumor region. (a) Axial normalized CBV map. (b) Coregistered normalized CBV map overlaid on an axial

T2-weighted fast spin-echo image (4000/104). (c) Axial T2-weighted fast spin-echo image (4000/104). (d)

Axial postcontrast T1-weighted spin-echo image (500/7.7). In b, the arrow indicates a potential hot-spot area,

as seen on the normalized CBV map. However, the underlying vessel-like structure identified in both

c and d might indicate that this is not a hot spot.
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The observers recorded the time needed to
perform the analysis and evaluated how dif-
ficult the methods were to perform (easy,
intermediate, or difficult).

Histogram analysis was performed
as follows: Histograms were gener-
ated by classifying the normalized
CBVs in each region of interest into a

predefined number of bins (one to
1000 bins). The area under the result-
ing histogram curve was normalized to
the value of one. The range of normal-
ized CBVs along the x-axis was kept
constant (between zero and 20). Gli-
oma malignancy was assessed by mea-
suring the maximum normalized peak
height of distribution (ie, the relative
frequency of normalized CBVs in a
given histogram bin), with the hypoth-
esis that normalized CBV heterogene-
ity is related to tumor malignancy and
is inversely proportional to the peak
height of the normalized CBV distribu-
tion. In the reference-standard hot-
spot method (12), which was shown to
have the highest intra- and interob-
server reproducibility among a num-
ber of reported hot-spot methods,
each observer selected a minimum of
four regions of interest that were be-
lieved to represent high normalized
CBV regions, and the maximum value
was used. The size of the tumor re-
gions of interest remained constant
(radius, 1.8 mm). In the case of mul-
tiple lesions, the largest lesion was

Figure 2

Figure 2: Flowchart shows 75 eligible patients received a histologic diagnosis of primary glioma after MR

perfusion imaging and subsequent surgery over a 21-month period (June 2005 to March 2007). Only patients

who agreed to participate in the study were included in the analysis.

Table 1

Normalized CBV Values and Optimal Cutoffs between LGG and HGG for Hot-Spot and Histogram Methods

Technique Observer 1 Observer 2 Observer 3 Observer 4

Hot-spot method

Mean normalized CBV values for LGG (mL/100 g) 3.48 � 2.29 3.50 � 2.32 4.29 � 2.18 3.89 � 3.95

Mean normalized CBV values for HGG (mL/100 g) 6.58 � 3.31 6.14 � 4.67 8.46 � 4.07 8.30 � 4.33

Optimal cutoff between LGG and HGG (mL/100 g)* 4.36 3.75 5.58 4.96

Histogram method

Mean LGG histogram peak height (mL/100 g) 0.15 � 0.08 0.16 � 0.07 0.16 � 0.08 0.17 � 0.08

Mean HGG histogram peak height (mL/100 g) 0.07 � 0.03 0.08 � 0.03 0.08 � 0.03 0.08 � 0.05

Optimal cutoff between LGG and HGG (mL/100 g)* 0.10 0.11 0.11 0.12

Differentiation between grade III and grade IV gliomas†

Hot-spot method .060 .271 .551 .927

Histogram method .002 .035 .090 .060

Differentiation between grade II oligodendroglial tumors and grade II astrocytomas†

Hot-spot method .036 .346 .247 .128

Histogram method .311 .247 .277 .128

Differentiation between LGG and HGG†

Hot-spot method �.001 .014 �.001 �.001

Hot-spot method with grade II oligodendroglial tumors excluded .012 .269 .007 .002

Histogram method �.001 �.001 �.001 �.001

Histogram method with grade II oligodendroglial tumors excluded �.001 �.001 �.001 �.001

Note.—Unless otherwise indicated, data are mean CBV values � standard deviations. Histogram analysis was performed with 108 histogram bins.

* Data are cutoff points and were obtained by minimizing the number of glioma grade misclassifications and maximizing the average sensitivity and specificity.

† Data are P values and were calculated with the Mann-Whitney test.
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chosen. For the hot-spot method, mean
normalized CBV values and standard de-
viations were recorded for LGG and
HGG. For the histogram method, mean
histogram peak heights and standard de-
viations were recorded.

Statistical Analysis

The diagnostic accuracy of the two meth-
ods was evaluated by using binary logistic

regression to derive sensitivity, specific-
ity, and positive and negative predictive
values for LGG versus HGG. A glioma
classified as an HGG or an LGG with both
observer data and histologic analysis was
considered a true-positive finding or a
true-negative finding, respectively. As de-
scribed previously, optimal cutoff values
between LGG and HGG for each observer
were obtained by minimizing the number

of glioma grade misclassifications and
maximizing the average sensitivity and
specificity (7,15,19). To compare our re-
sults with the results of previous studies,
the diagnostic accuracy of the hot-spot
method was also calculated by using a
previously published cutoff normalized
CBV of 1.75 (15). The sensitivity and
specificity for each observer were com-
pared by using the McNemar test and a

Figure 3

Figure 3: (a–d) Normalized CBV maps overlaid on axial T2-weighted fast spin-echo MR images (4000/104) in patients with (a) grade I pilocytic astrocytoma, (b)

grade II diffuse astrocytoma, (c) grade III anaplastic astrocytoma, and (d) grade IV glioblastoma. The patients are subjects 28, 2, 18 and 7, respectively (Table E1, http://

radiology.rsnajnls.org/cgi/content/full/247/3/808/DC1). Note the middle cerebral artery encased by the tumor volume in b. (e) The corresponding histogram signatures

derived from the total tumor volume of these patients is shown. The histogram signatures for each patient were derived by using the mean normalized CBVs (nCBV) ob-

tained by all four observers. Note the low maximum peak height and wide distribution in c and d compared with that in a and b.
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pairwise comparison of the area under
the receiver operating characteristic
curve (Az). The number of histogram bins
that yielded the highest Az was derived by
using an in-house developed Matlab rou-
tine (R2006a; MathWorks, Natick, Mass)
that was used to calculate the Az values

for all bin numbers between one and
1000.

Mann-Whitney tests were used to
assess the ability to differentiate (a) be-
tween grade II oligodendroglial tumors
(oligodendrogliomas or oligoastrocyto-
mas) and grade II diffuse astrocytomas

and (b) between grade III gliomas and
grade IV gliomas with the two methods.
Mann-Whitney tests were also used to
assess whether excluding grade II oligo-
dendroglial tumors affected glioma
grading. To account for multiple-com-
parison effects, a significance level of
P � .01 was used. This value was ob-
tained by dividing a default P value of
.05 by the number of observers and ap-
plying the Bonferroni correction.

Interobserver reproducibility between
the four observers was assessed by us-
ing Fleiss � statistics based on whether
the observers graded a glioma as HGG
or LGG. A � value of less than zero
indicated poor agreement; a � value of
0.00–0.20, slight agreement; a � value
of 0.21–0.40, fair agreement; a � value
of 0.41–0.60, moderate agreement; a �

value of 0.61–0.80, substantial agree-
ment; and a � value of 0.81–1.00, al-
most perfect agreement (16). Statistical
analysis was performed by using
SPSS13 (SPSS, Chicago, Ill).

Results

Of the 53 gliomas investigated, 24 were
histologically confirmed to be LGGs
(World Health Organization grade I or
II) and 29 were histologically confirmed
to be HGGs (World Health Organiza-
tion grade III or IV) (Fig 2) (Table E1,
http://radiology.rsnajnls.org/cgi/content
/full/247/3/808/DC1). Signs of necrosis
were seen on conventional MR images in
six patients with LGGs and 17 with HGGs
(one with grade III glioma and 16 with
grade IV glioma). On average, the four
observers reported examination times of
7 minutes per patient when using the hot-
spot method and 11 minutes per patient
when using the histogram method. All ob-
servers reported that the two methods
were equally difficult to perform (inter-
mediate difficulty).

Glioma Grading

Optimal normalized CBV cutoff values
between LGG and HGG ranged from
3.75 to 5.58 mL/100 g (Table 1). Opti-
mal histogram peak values between
LGG and HGG ranged from 0.10 to 0.12
mL/100 g. One observer did not ob-

Figure 4

Figure 4: Curve shows the mean Az for all four observers. The histogram method yielded larger mean Az

values than did the hot-spot method (0.801 � 0.063, straight line), regardless of the bin number. Averaged

over the four observers, the maximum Az value was found at 108 histogram bins (0.909 � 0.004).

Table 2

Diagnostic Accuracy of Hot-Spot and Histogram Methods

Observer and Method

Sensitivity

(%)

Specificity

(%)

Positive

Predictive

Value (%)

Negative

Predictive

Value (%)

Observer 1

Hot-spot method 76 (56, 89) 83 (62, 89) 85 (65, 95) 74 (53, 88)

Hot-spot method with 1.75 mL/100 g cutoff 97 (82, 99) 21 (7, 42) 60 (44, 73) 83 (35, 99)

Histogram method with 108 bins 90 (72, 97) 83 (62, 95) 87 (69, 96) 87 (66, 97)

Observer 2

Hot-spot method 55 (35, 73) 63 (40, 81) 64 (42, 82) 54 (33, 72)

Hot-spot method with 1.75 mL/100 g cutoff 100 (88, 100) 29 (12, 51) 63 (47, 76) 100 (59, 100)

Histogram method with 108 bins 90 (72, 97) 83 (62, 95) 87 (69, 96) 87 (66, 97)

Observer 3

Hot-spot method 72 (52, 87) 88 (67, 97) 88 (67, 97) 72 (52, 87)

Hot-spot method with 1.75 mL/100 g cutoff 97 (82, 99) 8 (1, 27) 56 (41, 70) 67 (9, 99)

Histogram method with 108 bins 90 (72, 97) 83 (62, 95) 87 (69, 96) 87 (66, 97)

Observer 4

Hot-spot method 76 (56, 89) 83 (62, 95) 85 (65, 95) 74 (53, 88)

Hot-spot method with 1.75 mL/100 g cutoff 97 (82, 99) 21 (7, 42) 60 (44, 73) 83 (35, 99)

Histogram method with 108 bins 90 (72, 97) 83 (62, 95) 87 (69, 96) 87 (66, 97)

Note.—Data in parentheses are 95% confidence intervals.
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serve a significant difference between
LGG and HGG with the hot-spot method.
Excluding 13 grade II oligodendroglial tu-
mors from glioma grading led to re-
duced P values for all observers when
they used the hot-spot method, whereas
P values obtained with the histogram
method remained unchanged. One ob-
server (observer 1) was able to differen-
tiate (P � .002) between grade III (n �

10) and grade IV (n � 19) gliomas with
the histogram method (Fig 3). Neither
method enabled us to differentiate be-
tween grade II oligodendroglial tumors
(n � 13) and grade II diffuse astrocyto-
mas (n � 8).

For the histogram method, diagnostic
accuracy was observer independent
(Table 2). For all observers, sensitivity
(90%, 26 of 29 HGG patients) and neg-
ative predictive value (87%, 20 of 23
patients) increased with use of the his-
togram method compared with the sen-
sitivity (55%–76%, 16–22 of 29 pa-
tients) and the negative predictive value
(54%–74%, 15 of 28 patients to 20 of 27
patients) obtained with the hot-spot
method. For observer 2 (Table 2), sen-
sitivity values obtained with the histo-
gram method were significantly differ-
ent from those obtained with the hot-
spot method (McNemar test, P � .002).
Specificity was 83% (20 of 24 patients
with LGG) with the histogram method
and 63%–88% (13–20 of 24 patients
with LGG) with the hot-spot method.
The McNemar tests did not reveal a sig-
nificant difference between specificity
values obtained with the histogram
method and those obtained with the
hot-spot method. The positive predic-
tive value was 87% (26 of 30 patients)
with the histogram method and 64%–
88% (16 of 25 patients to 22 of 26 pa-
tients) with the hot-spot method. Com-
pared with the optimal hot-spot cutoff
value, the 1.75 mL/100 g cutoff value
resulted in improved sensitivity (97%–
100%, 28–29 of 29 patients with HGG)
in all observers and improved negative
predictive value in three of four observ-
ers (67%–100%, between two and
seven of seven patients). Both the spec-
ificity (8%–29%, between two and
seven of 24 patients with LGG) and the
positive predictive value (56%–63%,

between 28 of 50 and 29 of 46 patients)
were reduced in all observers.

The mean Az values (� standard
errors) were larger for all observers
when they used the histogram method
(range, 0.905 � 0.041 to 0.914 �

0.039) than when they used the hot-
spot method (range, 0.698 � 0.072 to
0.867 � 0.055). For one observer, Az

was significantly higher when the his-
togram method was used than when
the hot-spot method was used (P �

.001). Averaged over the four observ-
ers, the maximum Az was found at 108

histogram bins (mean Az � 0.909 �

0.004) (Figs 4, 5).

Interobserver Reproducibility

For the hot-spot method, there was
moderate interobserver agreement be-
tween the four observers with use of the
optimal cutoff value (� � .559) and the
1.75 mL/100 g cutoff value (� � .459).
Although the size and shape of the re-
sulting tumor regions of interest varied
between the four observers (Fig 6), the
interobserver agreement between the
four observers was almost perfect (� �

Figure 5

Figure 5: Receiver operating characteristic curves for the histogram method obtained by using 108 histo-

gram bins (solid line) and the hot-spot method (dotted line) for observers (a) 1, (b) 2, (c) 3, and (d) 4. For all

observers, the mean Az values obtained with the histogram method were larger than those obtained with the

hot-spot method. In a, the mean Az obtained with the histogram method was 0.905 � 0.041, whereas the

mean Az obtained with the hot-spot method was 0.822 � 0.062. In b, the mean Az obtained with the histogram

method was 0.909 � 0.041, whereas the mean Az obtained with the hot-spot method was 0.698 � 0.072. In

c, the mean Az obtained with the histogram method was 0.909 � 0.040, whereas the mean Az obtained with

the hot-spot method was 0.818 � 0.061. In d, the mean Az obtained with the histogram method was 0.914 �

0.039, whereas the mean Az obtained with the hot-spot method was 0.867 � 0.055.
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.923) when the histogram method was
used.

Discussion

In our study, we evaluated an alterna-
tive method with which to differentiate
HGG from LGG on the basis of the nor-
malized CBV heterogeneity of the entire
tumor volume. Our results suggest that
the histogram method has higher inter-
observer agreement and yields higher
sensitivity and negative predictive val-
ues and equal specificity when com-
pared with the hot-spot method. The
influence of increased diagnostic accu-
racy on clinical outcome is difficult to
establish and was not investigated in
our study. However, high diagnostic ac-
curacy combined with high interobserver
reproducibility are critical criteria for any
diagnostic test (17). One potential advan-
tage of the histogram method is that the
results are independent of the choice of

reference tissue, as long as the reference
is kept the same throughout the cohort.
For example, the effect of changing refer-
ence tissue from white to gray matter is
simply a shift in the position of the peak
distribution bin; the actual peak value
does not change. However, the hot-spot
method is critically dependent on correct
selection of reference tissue since deter-
mination of normalized CBV is based
solely on this parameter. Arguably, the
objective of an optimal grading method
should be identification of the most malig-
nant part of the tumor, which should favor
the hot-spot method. However, our re-
sults suggest that observers are not able
to consistently identify the most malig-
nant tumor region with current hot-spot
methods and that there is a consequent
loss in sensitivity or specificity depend-
ing on the cutoff value used.

The results we obtained with the
hot-spot method are consistent with
previously published data (6,15,18,19).

However, the optimal cutoff values be-
tween HGG and LGG in our study
(3.75–5.58 mL/100 g) were higher than
those in previous studies (1.5–1.98 mL/
100 g) (7,15,19). In a study in which the
hot-spot method was used in 160 pa-
tients, authors reported a sensitivity of
95.0% and a specificity of 57.5% when
they used a CBV cutoff of 1.75 mL/100 g
(15). When we applied a normalized
CBV cutoff of 1.75 mL/100 g to our
data, we obtained similar values but
with wide confidence intervals. Hence,
our results suggest that to obtain maxi-
mum diagnostic accuracy, the choice of
an optimal cutoff value should be based
on perfusion data generated at a given
site. One further observation in the cur-
rent work was the trade-off between
high sensitivity and high specificity with
both methods investigated. Lowering
the cutoff values increased sensitivity at
the cost of reduced specificity. It could
be argued that a low false-negative rate
is more important than a low false-posi-
tive rate because of the serious conse-
quences of false-negative findings. How-
ever, both types of errors are poten-
tially critical, given the different treatment
strategies for LGG and HGG (20).

The only difference between grade
III gliomas and grade IV gliomas was
seen by one observer who used the his-
togram method. In previous studies in
which the hot-spot method was used in
26 (6) and 120 (15) patients with HGGs,
no difference between these groups was
reported. Furthermore, as described
previously (21), necrosis was a specific
marker for distinguishing grade III glio-
mas from grade IV gliomas, but it was
not a sensitive one.

We were unable to differentiate be-
tween grade II astrocytomas and grade
II oligodendroglial tumors with either
method. Excluding grade II oligodendro-
glial tumors affected glioma grading
only when the hot-spot method was
used; this finding suggests that the diag-
nostic accuracy of the hot-spot method
is more dependent on the number of
patients than is the histogram method.
When we compared the use of different
histogram bin numbers, the maximum
Az was found at 108 bins. The reduced
diagnostic accuracy at lower bin num-

Figure 6

Figure 6: MR images obtained in a patient with grade II oligodendroglioma (patient 9) (Table E1, http:

//radiology.rsnajnls.org/cgi/content/full/247/3/808/DC1) show the manual glioma volume delineation

for two observers (red and white regions of interest). (a) Coregistered relative CBV map overlaid on a T2-

weighted fast spin-echo image (4000/104). (b) T2-weighted fast spin-echo image (4000/104). Although the

variation between observers is evident, resulting histograms correctly depicted LGG in both cases. Almost

perfect interobserver agreement (� � .923) obtained with the histogram method suggests that the variations

between observers caused by imperfect tumor delineation are relatively unimportant, given the large number

of data points included in the histogram.
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bers can be explained by the large range
of relative CBVs contained in each of
the resulting bins, which tends to mask
small hypervascular regions in patients
with HGGs. Also, the reduced diagnos-
tic accuracy at higher bin numbers may
be explained by increasing noise in the
resulting histogram, since each bin con-
tains fewer pixel averages.

In our study, we used gradient-echo
echo-planar imaging rather than spin-
echo echo-planar imaging because a
higher temporal resolution can be achieved
with this sequence. Also, previous stud-
ies have shown a stronger correlation
between tumor grade and CBV with use
of gradient-echo techniques (14,22,23).
Gradient-echo echo-planar imaging se-
quences have also been shown to be
more sensitive to macrovascular struc-
tures, aiding in the differentiation be-
tween infiltrating vessels and true tumor
CBV elevation (24).

Our study had limitations. It would
have been preferable to include more
patients to strengthen the statistical
power. However, the number of pa-
tients included in our study (n � 53) is
similar to that in other studies on glioma
grading (3,5–7,12–14,18,19,23). Fur-
thermore, only one observer obtained a
significant difference between the sensi-
tivity values of the two methods. How-
ever, the mean Az values were higher
for all observers when they used the
histogram method compared with when
they used the hot-spot method. There-
fore, our data suggest that the histo-
gram method has higher diagnostic ac-
curacy. A further limitation of both
methods is the need for an optimal
coregistration between normalized CBV
maps and conventional MR images.
Hence, the increasing availability of in-
tramodal image coregistration methods
in clinical image software will be of ben-
efit for the clinical utility of both meth-
ods. An obvious challenge with the his-
togram method is that of identifying the
appropriate tumor region. Optimal op-
erational definition of tumor volume is
complicated because gliomas are infil-
trating tumors with indistinct borders
beyond the radiologic margins (25,26).
However, the high interobserver agree-
ment of the histogram method suggests

that variations between observers caused
by imperfect tumor delineation are rela-
tively unimportant, given the large num-
ber of data points included in the histo-
gram. The observers reported that they
spent more time per patient for the his-
togram method than for the hot-spot
method because the tumor volume had
to be identified in every section. How-
ever, with both methods, the observer
had to exclude vessels that infiltrated
the glioma region, and, consequently,
the methods were considered equally
difficult to perform. On the basis of
these observations, there was a clear
need for more user-independent and
automated methods with which to iden-
tify total tumor volume and regions rep-
resenting unaffected reference tissue.
Studies have shown that cluster analysis
techniques can be used to quantify and
classify similar tissue components on
MR images (27), and such methods are
currently being implemented as part of
our histogram analysis software.

Histogram analysis was performed
by assessing the peak height of the nor-
malized histogram distribution of nor-
malized CBVs in the tumor. This ap-
proach was chosen because the result-
ing height was directly determined on
the basis of the underlying heterogene-
ity of the normalized CBV distribution.
It is hypothesized that histogram-based
analysis can be further improved with
parametric analysis of the histogram
shape rather than just the peak value.

In conclusion, our results suggest
that the proposed histogram method is
a diagnostically accurate and reproduc-
ible method with which to grade gliomas
on the basis of MR-derived blood vol-
ume maps. Compared with the hot-spot
method, the histogram method had
higher interobserver agreement, sensi-
tivity, and negative predictive value and
equal specificity. Future developments
in cluster methods for automated seg-
mentation of tumor volume may further
enhance the clinical utility of this
method.
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ABSTRACT:

Purpose: Current methods for pre-surgical MR-based glioma characterization from dynamic 

susceptibility contrast (DSC) imaging are time consuming and user-dependent. We have 

assessed whether glioma volumes from knowledge-based fuzzy c-means (FCM) clustering of 

multiple MR image classes can provide similar diagnostic efficacy values as manually defined 

tumor volumes when characterizing gliomas from DSC imaging.  

Materials and Methods: Fifty patients with newly diagnosed gliomas were imaged using 

DSC MR imaging at 1.5 Tesla. To compare our results with manual tumor definitions, glioma 

volumes were also defined independently by four neuroradiologists. Using a histogram 

analysis method, diagnostic efficacy values for glioma grade and expected patient survival 

were assessed. 

Results: The areas under the receiver operator characteristics (ROC) curves were similar 

when using manual and automated tumor volumes to grade gliomas (P=.576-.970). When 

identifying a high-risk patient group (expected survival <2 years) and low-risk patient group 

(expected survival >2 years), a higher log-rank value from Kaplan-Meier survival analysis 

was observed when using automatic tumor volumes (14.984, P<.001) compared to the manual 

volumes (9.441-12,022, P=.001-.002).

Conclusion: Our results suggest that knowledge-based FCM clustering of multiple MR image 

classes holds promise as a user-independent approach to selecting the target region for pre-

surgical glioma characterization. 

Key words: DSC MR imaging, tumor segmentation, pre-surgical glioma grading, histogram 

method, fuzzy clustering. 
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INTRODUCTION:

Magnetic Resonance (MR) is the imaging modality of choice to characterize brain tumors 

prior to surgical intervention. The high level of soft tissue contrast makes MR images an 

important aid in the identification and treatment of gliomas(1-3). Further, in combination with 

conventional MR imaging, several studies have shown that dynamic susceptibility contrast 

(DSC) MR imaging of gliomas can be used as a pre-surgical indicator for glioma grade(4-6) 

and patient outcome(7;8). Typically, glioma grading from DSC is based on analysis of 

cerebral blood volume (CBV) values within the glioma area, using either a hot-spot 

method(4;9) or a histogram analysis method(10;11). Correct identification of glioma tissue 

however, may be dependent on experienced operators with good anatomical knowledge, 

making current grading methods inherently operator-dependent and time consuming(6;10;11). 

Recently, both supervised and unsupervised segmentation methods for identification of brain 

tissue structures have been proposed. Automatic tissue or tumor segmentation based on multi-

spectral data analysis(12;13), neural networking(14;15), support vector machines(16;17) and 

knowledge-based fussy c-means (FCM) clustering techniques(18;19) all show great promise. 

The potential advantages of automatic tumor segmentation include removal of inter-observer 

variations, time efficiency and standardized criteria’s for tumor characterization(18). To the 

author’s knowledge, no study has investigated whether automatically segmented glioma 

volumes can substitute manually selected glioma volumes when characterizing gliomas from 

DSC imaging pre-surgically. A reason for this might be that traditional brain tumor MR 

imaging protocols consist of 2 dimensional (2D) anatomical MR images which are sub-

optimal for tumor segmentation compared to 3D MR images(20;21). Also, glioma 

segmentation from MR images is inherently difficult because gliomas are known to be highly 

infiltrative and might mimic both unaffected brain tissue and cerebrospinal fluid (CSF) 

depending on image parameters. Finally, an automatic tumor segmentation model must 
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include tumor areas with contrast enhancement without including contrast enhanced blood 

vessels. Because glioma appearance on MR images and anatomical localization may differ 

between glioma grades and patients(1-3), a supervised training of a brain atlas from a sub-

sample of the data is dependent on a very large sample size in order to derive a robust 

template(14;20). An unsupervised segmentation procedure combining FCM clustering of 

anatomical MR images and knowledge-based operations(18;19;22) however, is not dependent 

on sample size. Here, FCM differ from a standard k-means clustering technique in that each 

data element (single pixel) can belong to more than one cluster. The strength of the 

association between a data element and a class is indicated using a value between zero and 

one(19). The knowledge-based operation consists of a linear sequence of low-level image 

processing operations based on known MR image properties secondary to brain structures or 

pathology. A drawback with knowledge-based FCM is that a perfect delineation between the 

resulting tissue classes is difficult, especially in heterogeneous tissue. However, it has been 

shown that imperfect glioma delineation is relatively unimportant in pre-surgical glioma 

grading by histogram analysis of DSC images(10). Thus, using a histogram analysis method 

on DSC values from automatically segmented tumor volumes should favor the unsupervised 

knowledge-based FCM technique(18).

In view of the above, the purpose of our study was to compare the diagnostic efficacy values 

of DSC MRI, in terms of pre-surgical diagnostic accuracy and expected patient survival, 

using automatically segmented and manually selected glioma volumes. 

MATERIALS AND METHODS: 

Patient Selection 
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Study approval was obtained from the Regional Medical Ethics Committee and patients were 

included only if informed consent was signed. Between June 2005 and June 2007, fifty 

previously untreated patients (21 females, 29 males, mean age 49 years, range 14-76 years) 

were imaged using an MR imaging protocol with relevant sequences for tumor segmentation. 

All patients received a diagnosis of glioma after MR perfusion imaging and subsequent 

surgery (resection or biopsy). The histological evaluation was based on the World Health 

Organization (WHO) classification system(23). 

Observers

Manual glioma identification was performed independently by four neuroradiologists with 

several years of experience with brain MR perfusion imaging. The observers were blinded to 

patient related information and the histopathological diagnosis.

MR Imaging and Manual Post-Processing 

Imaging was performed at 1.5 Tesla (Siemens Sonata, Symphony or Avanto, Siemens AG, 

Erlangen, Germany), using an 8-channel- (Symphony/Sonata) or a 12-channel (Avanto) head-

coil. The protocol included a 19 slice axial T2-weighted (T2-w) fast spin-echo sequence with 

4000/104 (repetition time msec /echo time msec), a 25 slice coronal FLAIR sequence 

(9050/114) with inversion time of 1500ms and a 19 slice axial T1-weighted (T1-w) spin-echo 

sequence (500/7.7) obtained before and after i.v. contrast agent injection. The voxel size of 

the axial images was 0.45x0.45x5mm
3
 and 0.9x0.9x5 mm

3
 for the coronal images. DSC MR 

imaging was performed using a gradient-echo echo-planar imaging sequence acquired during 

contrast agent administration. The imaging parameters were: 1430/46, bandwidth 1345 

Hz/pixel (12 axial slices) or 1720/48, bandwidth 1500 Hz/pixel (14 axial slices), field of view 

230x230mm, voxel size 1.80x1.80x5 mm
3
, inter-slice gap 1.5mm. For each slice, 50 images 
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were recorded at intervals equal to the repetition time. After approximately 8 time-points, 0.2 

mmol/kg of gadobutrol (Bayer Schering Pharma AG, Berlin, Germany) was injected at a rate 

of 5mL/sec, immediately followed by a 20mL bolus of saline (B. Braun Melsungen AG, 

Melsungen, Germany) also at 5 mL/sec.  

The images were post-processed using a dedicated software package (nordicICE, 

NordicImagingLab, Bergen, Norway) and Matlab R2007a (MathWorks, Natick, US). The 

CBV maps were generated from the area under the 1/T2* converted first-pass curves(24;25) 

and corrected for possible extra-vascular contrast agent leakage(26). Relative (r)CBV maps 

were derived by dividing every CBV value in each slice with an unaffected white matter CBV 

value in the same slice defined by a neuroradiologist(9) and displayed using a black-blue-

green-yellow-red-white colormap. All images were automatically coregistered using a 

normalized mutual information algorithm(27).  

Manual Glioma Definition 

As described elsewhere(10;26;28), the four observers determined the glioma area in each slice 

based on the rCBV overlay / MR image underlay information taking care to avoid areas of 

necrosis, cysts or non-tumor macro-vessels readily evident on the post-contrast T1-w images 

and the rCBV images. Although gliomas may extend beyond hyper-intensities as seen on the 

T2-w images, this parameter was used to define the outmost glioma margins as studies have 

shown that the metabolically active tumor area is restricted mainly to the T2 tumor 

border(29;30).

Automatic Glioma Segmentation 

Prior to glioma segmentation, the image intensity values were standardized across MR image 

types, MR image slices and patients using adaptive histogram equalization(31). Also, using 
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pre-contrast T1-w images only, an intra-cranial brain mask procedure in Statistical Parametric 

Mapping (SPM5) was applied to isolate brain tissue pixels from the remaining non-brain 

pixels(32). Here, brain tissue pixels were identified using a standard T1-w image template 

from SPM5. After applying an affine transformation that best matched the patient MR image 

with the template image, a maximum likelihood mixture model cluster algorithm(32) was 

applied to identify each image pixel as either gray matter, white matter or CSF. Using a-priori 

information, the final binary brain mask was derived from the combination of image pixels 

most likely to be either gray or white matter. Image pixels most likely to be CSF was not 

included in the brain mask. In the tumor region, intensity values similar to CSF were thought 

to be non-tumor edema or cysts, and were subsequently removed from the brain mask. 

Glioma volumes were automatically segmented from the T2-w and FLAIR images using a 

previously published knowledge-based FCM cluster technique shown to correspond well with 

manually defined tumor volumes(18;19;22). For the T2-w images, a 3-class FCM algorithm 

was applied on the complete image stack to identify the cluster class representative of the 

highest mean pixel values thought to represent glioma. The other two cluster classes were 

thought to represent (a) non-brain areas (i.e. zero-valued pixels as defined by the brain mask) 

and (b) normal appearing gray and white matter. In order to identify the correct glioma class, 

Otsu’s method(33) was used to reduce the continuously scaled FCM cluster images (with 

values ranging from 0 to 1) to binary images. Here, the optimal threshold separating classes is 

found by minimizing the within-class variance.  

For the FLAIR images, a 4-class FCM algorithm was applied on the complete image stack to 

identify the cluster class representative of the highest pixel values thought to represent glioma 

tissue only. The other three classes were thought to represent (a) non-brain areas, (b) normal 

appearing gray or white matter and (c) fluids or vessels. Similar to the T2-w image clustering 
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routine, the Otsu method was applied a second time to derive binary images from the 

continuously scaled FCM cluster images. The final glioma image was a combination of the 

binary T2-w and FLAIR glioma cluster classes.  

A set of 2D and 3D binary morphological image operations was performed on the final 

glioma image to remove non-tumor pixels mimicking tumor tissue(18). First, on the 2D 

binary glioma images, H-connected pixels (i.e. single 1’s connecting two areas of 1’s) were 

removed. Second, a pixel was assigned a value of 1 if five or more pixels in its 3-by-3 

neighborhood was 1’s, otherwise, it was set to zero. Third, the most compact object, thought 

to represent the glioma only (called “First Tumor” (18)), was separated from remaining non-

tumor regions. Here, First Tumor was assessed by deriving circularity values for all remaining 

objects across all slices: 

2

4
:

Perimeter

Area
yCircularit  [1] 

From this, a 3D seed growing algorithm was applied to the complete image stack to identify 

pixels connected to the First Tumor. In the case of multiple lesions, the largest lesion was 

chosen.

In addition, using a 3-class FCM algorithm after brain masking, areas of contrast 

enhancement as seen on post-contrast T1-w images were always included. Binary cluster 

classes were assessed using Otsu’s method and presence of contrast enhanced was assumed if; 

(a) the mean intensity value minus the standard deviation of a cluster class was higher than 

the mean value plus standard deviations of the other two classes, (b) the variance of a cluster 

class was 4 times higher than the variance of the other two classes. In addition, as described 

above, the binary morphological image operations were used to clean the final binary contrast 
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enhancement mask. A schematic flow-diagram of the entire automatic segmentation 

procedure is shown in Figure 1. 

Glioma Characterization 

Histogram signatures were generated for each patient using rCBV values from the complete 

manual and automatic glioma volumes. In order to conform to the histogram method(10), the 

range of the rCBV values along the x-axis was kept constant (values; 0-20). The area under 

each histogram curve was normalized to one and the histograms were divided into 108 bins, a 

number shown to give the maximal diagnostic accuracy. Glioma malignancy was assessed by 

measuring the maximum peak height of the normalized histograms. Also, two observers in 

consensus determined the degree of T1-w contrast enhancement in each glioma as (a) none, 

(b) moderate or (c) extensive. 

Statistical Analysis 

To compare how well (on a pixel-by-pixel basis) the automatic glioma volumes corresponded 

with the manual glioma volumes, sensitivity values and positive predictive values (PPV) were 

derived for high- and low-grade gliomas separately. Specificity values and negative predictive 

values (NPV) were not assessed as these parameters were considered redundant as such an 

analysis would include all non-tumor pixels in the MR image stack. Because of variations 

between observers, pixels classified as glioma by at least three of four observers were thought 

to represent true glioma tissue. From this, pixels identified as glioma tissue by both manual 

and automatic tumor segmentation were considered true positives, whereas pixels identified 

as glioma tissue by manual or automatic tumor segmentation only were considered false 

negatives and false positives, respectively. The correlation between presence of contrast 

enhancement as identified by both observers and the FCM cluster algorithm was assessed 
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using Spearman correlation tests (Yes / No). Sensitivity and specificity values when using 

manual and automatic glioma volumes to pre-surgically grade gliomas were assessed by 

pairwise comparisons of the areas (Az) under the Receiver Operating Characteristic (ROC) 

curves.

Finally, regardless of glioma grade, Kaplan-Meier survival curves with log-rank tests 

(Mantel-Cox) were used to compare the manual and automatic tumor volumes with respect to 

separating a “high-risk” patient group from a “low-risk” group. Here, the high-risk group was 

defined as those patients with an expected survival from MR examination date to death of less 

than 2 years, whereas the low-risk group was defined as those patients with an expected 

survival of more than 2 years. Based on available survival data, optimal histogram peak 

height cut-off values between the high- and low-risk patient groups were derived using binary 

logistic regression. Statistical analysis was performed using SPSS 15 (Apache Software 

Foundation, Chicago, US). 

RESULTS: 

Of the 50 patients investigated, 28 received a histological diagnosis of a high-grade glioma 

(WHO grade III-IV), and 22 patients received a diagnosis of a low-grade glioma (WHO grade 

I-II). There were 1 grade I pilocytic astrocytoma, 8 grade II diffuse astrocytomas, 5 grade II 

oligodendrogliomas and 8 grade II oligoastrocytomas, 2 grade III anaplastic astrocytomas, 3 

grade III anaplastic oligodendrogliomas, 4 grade III anaplastic oligoastrocytomas and 19 

grade IV glioblastomas. 

Manual and Automatic Glioma Segmentation 

Figure 2 shows results from the T1-w image brain masking of a patent diagnosed with a low-

grade diffuse astrocytoma and a patient diagnosed with a high-grade glioblastoma. Figure 3 
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shows results from the FCM cluster analysis and binary morphological image operations, 

respectively, in the same patients. When comparing the manually defined glioma volumes on 

a pixel-by-pixel basis across the four observers, the mean sensitivity (± st.errors) when 

identifying true glioma pixels was 59% (±2%) for the low-grade gliomas and 57% (±2%) for 

the high-grade gliomas. The corresponding pixel-by-pixel PPV for the manually defined 

tumor volumes was 89% (±1%) for the low-grade gliomas and 87% (±1%) for the high-grade 

gliomas.  

For the automatic tumor volumes, the pixel-by-pixel sensitivity values for the low-grade 

gliomas (83%±2%) and high-grade gliomas (69%±4%) were significantly higher than the 

sensitivity values of the manual method (Mann-Whitney; P<.001 and P=.005, respectively). 

The corresponding pixel-by-pixel PPVs for the low-grade gliomas (66%±3%) and high-grade 

gliomas (73%±4%) were significantly lower than the PPVs of the manual method (P<.001

and P=.004, respectively). Examples of manual and automatic glioma volume are shown in 

Figure 4. Compared to the observer readings, the FCM cluster algorithm was able to identify 

20/20 gliomas with no reported contrast enhancement (i.e. no enhancement detected), 6/7 

gliomas with moderate enhancement and 23/23 gliomas with extensive enhancement. The 

correlations between (a) moderate- and no enhancement and (b) extensive- and no 

enhancement were significant at the .01 level (Rs=.904 and Rs=1.00, respectively).

Glioma Characterization: 

Figure 5 show the resulting histogram rCBV distribution signatures when using the manual 

and automatic glioma volumes on the rCBV maps of the patients shown in Figures 2-4. Here, 

the histogram signatures from the manual method were mean signatures across the observers. 

For all observers, there was no significant difference (P=.576-.970) between the Az values (± 

st.errors) from the glioma grading using manual glioma volumes (Az=.875±.049-.908±.040)
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and automatic glioma volumes (Az=.890±.046). The ROC curves for the manual glioma 

volume (based on mean histogram peak values across observers) and the automatic glioma 

volumes are shown in Figure 6. 

For the Kaplan-Meier survival analysis, the log-rank value between the low-risk group and 

high-risk group (Mantel-Cox Chi-Square = 14.984, P<.001) for the automatic method was 

higher than the log-rank values from the manual method (9.441-12,022, P=.001-.002). In 

Table 1, log-rank comparisons between actual survival data (i.e. survival status from last two 

years) and the survival curves of the manual and automatic method is shown. The 

corresponding Kaplan-Meier survival curves for (a) actual survival data, (b) the manual 

method (based on mean histogram peak values across observers) and (c) the automatic glioma 

volumes are shown in Figure 7. 

DISCUSSION: 

Although current methods for pre-surgical glioma characterization from DSC imaging show 

promise(4-9), the availability of these methods is mainly restricted to large institutions with 

research focus. This may be partially due to the relatively complex image analysis with high 

inherent user-dependence. Recently, histogram analysis methods have been proposed in order 

to address this issue(10;11). Based on distribution analysis of rCBV values within the glioma 

volume, results suggest that histogram analysis methods provide reproducible data with high 

inter-observer agreement. However, although promising, the current utility of the histogram 

method in clinical practice is relatively ineffective. It has been reported that observers use 

longer time per patient for the histogram method compared to other glioma grading methods 

as the tumor volume has to be manually identified across several MR image slices(10). Also, 

a study reported an average of 28% ± 12% in inter-observer variations and 20% ± 15% in 

intra-observer variations when performing manual tumor volume definition over a period of 
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one month(34). Thus, there is a clear need for more time-efficient, user-independent methods 

for identifying total tumor volume when characterizing gliomas from DSC imaging. 

In our study, we have compared the diagnostic efficacy of pre-surgical glioma 

characterization from DSC imaging using manually defined and automatically segmented 

glioma volumes. In agreement with other studies related to automatic tumor 

segmentation(15;17), our results suggest that the diagnostic efficacy of DSC glioma 

characterization when using a knowledge-based FCM glioma segmentation method 

correspond well with the results from manually defined tumor volumes. The diagnostic 

accuracy values obtained in our study were similar to those reported in the 

literature(5;11;34;35) and there was no significant difference between the Az values of the 

automatic and manual method. Further, the highest log-rank value from the Kaplan-Meier 

survival analysis was observed when using the automatic method. Also, compared to actual 

survival data, the log-rank values for the histogram analysis using the automatic segmentation 

method was similar, or better, than the manual method. Although the correlation to other 

diagnostic methods was not within the scope of our study, high diagnostic efficacy is critical 

for any diagnostic method(36). As shown by others(8), the use of DSC imaging for 

identification of high- and low-risk patient groups with respect to time to progression of 

glioma grade or patient survival provides important information concerning treatment 

planning. As sampling error and inaccessible tumors may limit stereotactic biopsy sampling, 

alternative non-invasive methods are desirable. 

Compared to the manually defined tumor volumes, significantly higher sensitivity values 

were observed for both low-grade and high-grade gliomas when using automatic tumor 

segmentation. This result suggests that the automated segmentation method produces less 
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false negative tumor pixels than the manual method. However, although our values are 

consistent with FCM methods reported in the literature(22), the significantly lower pixel-by-

pixel PPVs of the automatic method suggest that the proposed segmentation routine is less 

conservative than the manually defined glioma volumes, consequently including more hyper-

intense areas as seen on the T2-w and FLAIR images. Although the metabolically active 

tumor area is mainly restricted to the visible T2 tumor border(29;30), it is well know that 

gliomas are infiltrating tumors with indistinct borders on anatomical MR images. This 

argument should in turn favor a less conservative method for tumor delineation such as the 

automatic segmentation method, and that a high sensitivity value is more important than a 

high PPV. Furthermore, although not a focus of our study, this result also indicates that both 

the manual and automatic segmentation routine used in our study may not be an adequate 

measure of tumor volume for quantitative assessment of tumor growth and for aiding 

neurosurgeons intra-operatively. For quantification of tumor volume, growth and invasion, 

alternative methods such as threshold-based, semi-automated methods(37) or adaptive 

template–moderated classification routines(20) may be more suitable. Nevertheless, when 

grading gliomas pre-surgically, it has been shown that potentially imperfect tumor volume 

definition has little influence on the diagnostic accuracy and reproducibility of the histogram 

method(10). Alternatively, brain lesion delineation may be improved by multi-spectral 

segmentation of both anatomical and perfusion images(38) or by diffusion tensor imaging 

(DTI)(39). However, in our experience, the relatively low spatial resolution of current 

perfusion and diffusion MR sequences do not improve the proposed segmentation routine 

with respect to pixel-by-pixel tumor area comparisons or pre-surgical glioma characterization 

from DSC imaging. Also, in our study, higher CBV values in the tumor penumbra outside the 

tumor borders as suggested by the T2-w images was not observed on a consistent basis. 
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The FCM cluster algorithm detected presence of contrast enhancement in all 23 gliomas with 

extensive enhancement and no false positives in the 20 gliomas with no contrast 

enhancement. However, 1 of 7 gliomas with moderate contrast enhancement was not 

identified by the FCM clustering routine as having contrast enhancement. Although these 

areas are typically within the hyper-intense areas seen on the T2-w and FLAIR images, and 

thus included in the final glioma mask, our results suggest that the current clustering scheme 

might not be sensitive enough to consistently identify vague post-contrast T1-w image 

intensity variations. Hence, manual selection of image slices with confirmed presence of 

contrast enhancement prior to FCM clustering might further improve the automatic 

segmentation routine. 

The segmentation procedure used in our study was unsupervised(18;19). Compared to a 

supervised segmentation procedure(14-17), an unsupervised procedure does not use manually 

defined training data. A drawback with unsupervised tumor segmentation is that the final 

glioma mask may be erroneous if initial steps of the knowledge-based operations are violated. 

This is especially a problem in areas with heterogeneous MR image intensity values or 

indistinct borders between tissue types. In addition to not being dependent on a large training 

data sample, an advantage of using unsupervised methods is the lack of subjective human 

interactions associated with user variability. Hence, the optimal segmentation procedure on 

our data may be a combination of the two. We hypothesized that manual inspection of the 

different segmentation steps may further improve the diagnostic efficacy of the automatic 

segmentation method. In this, the operator will be able to approve or disapprove the results of 

each step and potentially remove non-tumor slices prior to image analysis. However, in order 

to minimize user variability, the operator will not be able to interfere with the FCM clustering 
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procedure. This procedure is currently being implemented as part of our segmentation routine 

and will be evaluated in future studies.  

A limitation to our study is that segmentation techniques based on pixel intensities are 

inherently prone to partial volume effects and intra- / inter-slice intensity variations due to 

inhomogeneities in the MR imaging field. This problem may be prominent if the glioma 

volume as seen on the anatomical MR images is relatively small compared to non-tumor areas 

mimicking tumor characteristics. To reduce the influence of these confounding factors, an 

adaptive histogram equalization procedure was used. Furthermore, the final binary glioma 

mask was a combination of coregistered 2D axial T1-w and T2-w images and 2D coronal 

FLAIR images with a slice thickness of 5mm and an inter-slice gap of 1.5mm which may 

result in suboptimal glioma volume definitions. Although the high diagnostic efficacy values 

obtained in our study suggest that these confounding factors have relatively little influence on 

pre-surgical glioma characterization., the additional gain of replacing the 2D sequences with 

isotropic 3D sequences is currently been investigated at our institution. Finally, no special 

care was taken to exclude rCBV pixels from large vessels within the segmented glioma 

volume. Although large vessels can be appreciated as dark areas on T2-w images and thus 

should be excluded during the knowledge-based operations(1;3;29), it is well known that the 

T2*-effect from large vessels in gradient-echo echo-planar perfusion imaging result in an 

over-estimation of the intravascular susceptibility effect in pixels adjacent to large vessels. 

The consequence of this is over-estimated rCBV values in pixels not recognized as vessel 

tissue by the segmentation procedure. To address this problem, we are currently developing 

routines for automatic vessel removal based on cluster analysis of the DSC dynamic first-pass 

parameters(40). This approach is attractive in that it provides a mask which covers all pixels 
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affected by the intravascular susceptibility effect as seen on the DSC images and not vessel-

like pixels as seen on anatomical MR images.  

In conclusion, we have shown that using automatically segmented glioma volumes from 

knowledge-based FCM clustering provides similar values for diagnostic accuracy and patient 

outcome as using manually selected volumes when characterizing gliomas from DSC MR 

imaging pre-surgically. This simple segmentation technique holds promise as a user 

independent approach to selecting the tumor area used in pre-surgical glioma characterization, 

a vital step towards a fully automated MR-based analysis tool. 
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ABBREVIATIONS: 

DSC = dynamic susceptibility-contrast, MR = magnetic resonance, CBV = cerebral blood 

volume, 2D = 2 dimensional, 3D = 3 dimensional, FCM = fuzzy c-means, WHO = world 

health organization, T2-w = T2-weighted, T1-w = T1-weighted, CSF = cerebrospinal fluid, 

PPV = positive predictive values, NPV = negative predictive values, ROC = receiver 

operating characteristic, DTI = diffusion tensor imaging. 
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Table 1: Log-rank values from Kaplan-Meier survival curves when trying to identify a low-

risk patient group (expected survival >2 years) and a high-risk patient group (expected 

survival <2 years). The log-rank values with P-values illustrate the difference between actual 

survival data and (a) the manual (Observers 1-4) and (b) the automated method. A lower log-

rank value and a higher P-value indicate stronger correlations with actual survival data. 

Observer 1 Observer 2 Observer 3 Observer 4 Automated 

Log-rank (P-value) Log-rank (P-value) Log-rank (P-value) Log-rank (P-value) Log-rank (P-value) 

Low-risk group 2.976 (.085) 4.487 (.034) 4.487 (.034) 4.617 (.032) 5.589 (.018) 

High-risk group 9.795 (.002) 8.485 (.004) 9.013 (.003) 9.877 (.002) 5.566 (.018) 
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FIGURES AND LEGENDS: 

FIGURE 1 

Schematic flow-diagram of the entire automatic segmentation procedure performed in our 

study. The method utilizes anatomical images (in brackets) part of a typical brain tumor MR 

imaging protocol. The entire segmentation procedure took approximately 4 minutes using 

Matlab 2007a and a standard desktop computer.
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FIGURE 2 

Axial pre-contrast T1-w images of patients diagnosed with a grade II oligodendroglioma (A)

and a grade IV glioblastoma (C). The resulting images after applying intra-cranial brain 

masking are shown in (B) and (D), respectively. Non-brain pixels are removed using a 

template-based, intra-cranial brain mask procedure in Statistical Parametric Mapping (SPM5). 

The binary brain mask is used on all MR images prior to the FCM clustering. The tumor 

region is recognized as brain tissue and is not removed. 
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FIGURE 3 

Results of the FCM clustering procedure in the low-grade glioma patient (A-D) and high-

grade glioma patient (E-H) shown in Figure 2. Using anatomical MR images, such as T2-w 

(A, E) and T1-w post contrast (B, F) images, the resulting cluster class representative of the 

highest mean pixel values is thought to represent the tumor class. Examples of the resulting 

‘tumor class’ images from the 3-class FCM clustering of the T2-w images is shown in (C, G).

These images are continuously scaled with values ranging from [0-1], illustrating the strength 

of the association between a given pixel and the cluster class. From this, Otsu’s method is 

used to reduce the continuous cluster images into binary tumor masks and a set of knowledge-

based operations is applied to “clean” the binary tumor mask in order to remove spur non-

tumor pixels mimicking tumor tissue (D, H). Finally, a 3D seed growing algorithm is applied 

on the complete image stack to identify tumor regions in neighboring image slices. 
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FIGURE 4 

Manual- and automatic binary tumor masks superimposed on T2-w images of the low-grade 

(A, B) and high-grade (C, D) glioma patients shown in Figures 2 and 3. For the manual tumor 

definitions (A, C), the sensitivity values of the four observers (in colors yellow, blue, green 

and red) were significantly lower and the PPV were significantly higher than the automatic 

method (in red) (B, D), respectively. Despite the large variations between the manual 

observers shown in (A, C), the diagnostic accuracy of the pre-surgical glioma grading was 

high for all observers. 
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FIGURE 5 

Axial rCBV maps of the low-grade (A) and high-grade (C) glioma patients shown in Figures 

2-4. The resulting areas from the FCM clustering used in the pre-surgical glioma 

characterization are shown in (B) and (D), respectively. After deriving rCBV values from all 

tumor areas in all slices, normalized histogram signatures of the complete distribution of 

rCBV values from the manual (dotted lines) and automatic (solid lines) tumor volumes of the 

high-grade (gray lines) and low-grade (black lines) glioma patients can be assessed (E). The 

manual histogram signatures are average signatures across the four observers. Note the 

reduced histogram peak height in the high-grade histogram signatures attributed to increased 

vascular heterogeneity. 
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FIGURE 6 

Using histology as reference (high-grade/low-grade gliomas), the plot shows receiver operator 

characteristics (ROC) curves for the manual (gray line) and the automatic method (black line). 

The manual ROC curve is based on mean histogram peak values across observers. For any 

observer, the Az values (± st.errors) from on the manual tumor volumes (Az=.875±.049-

.908±.040) were not significantly different (P=.576-.970) from the automatic method 

(Az=.890±.046).
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FIGURE 7 

Kaplan-Meier survival curves from actual survival data (red lines), the manual method across 

observers (gray lines) and the automatic method (black lines). Based on actual survival data 

over a two year period, logistic regression was used to derive optimal histogram peak height 

cut-off values between a high-risk and a low-risk patient group. Here, the high-risk group was 

defined as those patients with an expected survival from MR examination date to death of less 

than 2 years, whereas the low-risk group was defined as those patients with an expected 

survival of more than 2 years. All patients were included in the analysis and a higher log-rank 

value between the high- and low-risk group was observed when using the automatic method 

(14.984, P<.001) compared to the manual method (9.441-12,022, P=.001-.002).
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ABSTRACT:

The presence of macroscopic vessels within the tumor region is potentially a confounding 

factor in MR-based dynamic susceptibility contrast (DSC) enhanced glioma grading. In order 

to distinguish between such vessels and the elevated cerebral blood volume (CBV) of brain 

tumors, we propose a vessel segmentation technique based on clustering of multiple 

parameters derived from the dynamic contrast enhanced first-pass curve. Seventy-seven adult 

patients with histologically confirmed gliomas were imaged at 1.5 Tesla and glioma region-

of-interests (ROIs) were derived from the conventional MR images by a neuroradiologist. The 

diagnostic accuracy of applying vessel exclusion by segmentation of glioma ROIs with 

vessels included was assessed using a histogram analysis method and compared to glioma 

ROIs with vessels included. For all measures of diagnostic efficacy investigated, the highest 

values were observed when the glioma diagnosis was based on vessel segmentation in 

combination with an initial mean transit time (MTT) mask. Our results suggest that vessel 

segmentation based on DSC parameters may improve the diagnostic efficacy of glioma 

grading. The proposed vessel segmentation is attractive because it provides a mask which 

covers all pixels affected by the intravascular susceptibility effect. 

Key words: DSC MRI, glioma grading, histogram analysis, vessel segmentation, k-means 

clustering
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INTRODUCTION:

Dynamic susceptibility contrast (DSC) enhanced MR imaging is a widely used technique for 

assessing the microvascularity of brain tumors
1
. Several studies have shown high correlation 

between histopathological glioma grade and cerebral blood volume (CBV) derived from DSC 

imaging
2-8

. However, presence of elevated CBV values from large vessels within the tumor 

area may be a confounding factor
8-10

. Low-grade gliomas (LGGs) are typically located in the 

frontal- or temporal lobes
11-13

, in close proximity to the anterior- or middle cerebral arteries, 

which might result in an overestimation of glioma grade
9
. To correct for this, large vessels 

within the tumor area is manually excluded from the glioma region-of-interest (ROI) prior to 

glioma grading
10,14

. Hence, current glioma grading techniques are inherently operator-

dependent, time consuming and reliable results may only be obtained by experienced 

operators with good anatomical knowledge
8,14,15

. This problem becomes increasingly relevant 

as automated tumor segmentation techniques are introduced as an alternative to manual tumor 

identification
16

. One important consideration when attempting to identify vessels in DSC 

images is that the susceptibility effect – and consequent elevation in CBV values – due to 

vessels containing contrast agent will expand outside the vessel itself
17

. Therefore, the 

anatomical images cannot be used to identify and remove vessels since such an approach will 

not address the extravascular effects.  

To date, little focus has been placed on automatic routines for identification and removal of 

large vessels from CBV maps. However, studies have reported using an automatic procedure 

for identification of the arterial input function (AIF) based on k-means cluster analysis
18,19

. In 

a k-means cluster algorithm, n objects are divided into a given number of cluster classes of 

which the objects in a specific class share a common set of attributes. One study reported 

excellent agreement between manual AIF selection and the automatic routine
18

. It is our 

hypothesis that a similar k-means cluster analysis approach
20

 can be used to automatically 

identify all image pixels which are affected by large vessels (arteries and veins), and hence 

eliminate these from the final CBV maps. The separation of vessels from tissue is based on 

the temporal characteristics of the first-pass curve, including contrast arrival time (T0), area 

under the first-pass curve (AUC) and wash-out characteristics of the contrast agent which can 

be assessed by deriving the first moment of the AUC (fmAUC): 

dtttRfmAUC )(2           [1] 
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Here, R2 is the change in transverse relaxation rate, assumed to have a linear relationship 

with contrast agent concentration. It is expected that both arteries and veins will exhibit a high 

AUC. Additionally, arteries (veins) will exhibit a short (long) T0 and a low (high) fmAUC
18

.

Combining these features, it is then hypothesized that arteries and veins can be distinguished 

from highly perfused tumor tissue.   

In view of the above, the purpose of our study was to assess whether macroscopic vessels 

could reliably be removed from DSC-generated CBV maps and whether the vessel removal 

can improve the diagnostic efficacy of glioma grading, using histology as reference. 

MATERIALS AND METHODS: 

Patient Selection 

Study approval was obtained from the Regional Medical Ethics Committee and patients were 

included only if informed consent was signed. Between July 2005 and November 2007, 

seventy-seven adult patients (aged 19-78 yrs, mean age 52; 45 males, 32 females) received a 

histological diagnosis of primary glioma after MR perfusion imaging and subsequent surgery, 

and agreed to allow the use of their data in our study. The histological evaluation was 

performed by a neuropathologist using the World Health Organization (WHO) classification 

of central nervous system (CNS) tumors
13

. As WHO grade I pilocytic astrocytomas have been 

reported to have elevated CBV values irrespective of tumor grade
21

, and these tumors can 

usually be differentiated based on additional criteria
22

, only WHO glioma grades II (low-

grade gliomas; LGGs) and grades III-IV (high-grade gliomas; HGGs) were included. 

MR Imaging 

Imaging was performed at 1.5 Tesla (Siemens Sonata, Symphony or Avanto, Siemens AG, 

Erlangen, Germany), using an 8-channel- (Symphony/Sonata) or a 12-channel (Avanto) head-

coil. The protocol included a 19 slice axial T2-weighted fast spin-echo sequence with 

4000/104 (repetition time msec /echo time msec) and a 19 slice axial T1-weighted spin-echo 

sequence (500/7.7) obtained before and after i.v. contrast agent injection. The voxel size of 

the axial images was 0.45x0.45x5mm
3
.

DSC MR imaging was performed using a single-shot gradient-echo echo-planar imaging 

(GRE-EPI) sequence acquired during contrast agent administration. The imaging parameters 

were: 1430/46, bandwidth 1345 Hz/pixel (12 axial slices) up to 1720/48, bandwidth 1500 
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Hz/pixel (14 axial slices), field of view 230x230mm, voxel size 1.80x1.80x5 mm
3
, inter-slice 

gap 1.5mm. For each slice, 50 images were recorded at intervals equal to the repetition time. 

After approximately 8 time-points, 0.2 mmol/kg of gadobutrol (Bayer Schering Pharma AG, 

Berlin, Germany) was injected at a rate of 5 mL/sec, immediately followed by a 20 mL bolus 

of saline (B. Braun Melsungen AG, Melsungen, Germany) also at 5 mL/sec.  

Post-processing and Vessel Segmentation 

The images were post-processed using a dedicated software package (nordicICE, 

NordicImagingLab, Bergen, Norway) and Matlab R2007a (MathWorks, Natick, US). Relative 

(r)CBV maps were generated from the area under the 1/T2* converted first-pass curves and 

corrected for possible extra-vascular contrast agent leakage effects
23

. Based on the first-pass 

curves, fmAUC, T0 and relative mean transit time (rMTT) were estimated for each pixel. 

rMTT maps were estimated as the ratio rCBV/ R2max where R2max is the peak height of the 

first-pass curve. Normalized (n)CBV maps were created from the original rCBV maps by 

voxel-vise division of the rCBV values with an unaffected slice-specific white matter rCBV 

value defined by a neuroradiologist
10

. The images were displayed using a black-blue-green-

yellow-red-white colormap. All nCBV maps were automatically coregistered with the 

conventional MR images using a normalized mutual information algorithm
24

. Since malignant 

tumor tissue can mimic arterial signal with similarly short T0 and large rCBV, three different 

methods for automatic vessel segmentation were implemented; 

Method 1: Uncorrected vessel masks - an iterative 5-class k-means cluster analysis
20

 was 

performed to identify arteries and veins from the estimated parameters, rCBV, fmAUC and 

T0. Arterial pixels were identified as the pixel class with the shortest T0 combined with the 

highest rCBV and lowest fmAUC values. Venous pixels were identified as the pixel class 

with the largest fmAUC combined with the highest rCBV and longest T0 values. The 

remaining cluster classes were thought to represent gray- and white matter and cerebrospinal 

fluid. The resulting binary masks consisted of arterial and venous pixels only and vessel 

segmented nCBV maps were created by removing pixels in the nCBV maps corresponding to 

the binary masks. Since malignant tumor tissue can mimic arterial signal with similarly short 

T0 and large rCBV, two different additional pre-cluster steps were tested as follows: 

Method 2: MTT corrected vessel masks - Prior to identification of arterial and venous pixels 

(Method 1), an initial iterative 5-class k-means cluster analysis was performed on the standard 
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rMTT maps to identify and remove the cluster class with the highest mean rMTT value. This 

was based on the hypothesis that highly vascular tumor tissue would exhibit increased rMTT 

values relative to unaffected tissue or blood due to a more complex vascular structure
25

. A 

recent study reported rMTT values of 3.2±0.3s and 3.7±0.6s in unaffected white matter tissue 

and tumor tissue, respectively
26

. Then, on the four remaining cluster classes, the iterative 5-

class k-means cluster algorithm was applied to identify arteries and veins as described above.

Method 3: SI corrected vessel masks - The initial cluster step using the rMTT cluster 

approach (Method 2) was replaced by a similar 5-class k-means cluster routine removing the 

cluster class with the highest mean signal intensities (SI) as seen on the T2*-w baseline DSC 

images prior to the bolus arrival. This was based on the hypothesis that, high intensities on 

T2-w images are secondary to pathology whereas large blood vessels appear dark.

Manual glioma definition 

Based on previously published criteria
14,23,27

, a board-certified neuroradiologist with several 

years experience with MR perfusion imaging defined freehand glioma ROIs based on the 

anatomical MR image information. All patient-related information and histopathological 

results were removed from the images. As the diagnostic accuracy of the histogram method is 

relatively unaffected by imperfect glioma definitions
14

, the outmost glioma margins was 

defined based on the hyper-intensities as seen on the T2-weighted images. For each patient, 

two sets of glioma ROIs were defined in all MR image slices suggestive of tumor; one with 

vessels excluded (as identified on the post-contrast T1-weighted images) and one with vessels 

included.

Comparison of automated and manual vessel identification 

The vessel segmentation masks were applied to the glioma ROIs with vessels included, 

yielding vessel-removed nCBV maps. These maps were then compared to the CBV maps 

from the glioma ROIs with vessels excluded by the neuroradiologist. To compare the manual 

ROI definition with results in the literature
14

, the neuroradiologist recorded the time used to 

perform the analysis and how difficult it was to perform (easy, intermediate or difficult). 

Glioma Grading 

The grading was performed using a previously reported histogram method
14

. Histograms 

signatures were generated for each patient using nCBV values from the complete glioma 
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volumes. The range of the nCBV values along the x-axis was kept constant (values; 0-20) and 

the area under each histogram curve was normalized to one. Glioma malignancy was assessed 

by measuring the maximum normalized peak height of the distributions. The histograms were 

divided into 108 bins, a number shown to give the maximal diagnostic accuracy
14

.

Statistical analysis 

Mean histogram peak heights with standard errors for glioma grade II, III and IV were 

assessed from the glioma ROIs with and without vessels included and for the vessel 

segmentation. In order to conform to similar studies
14,15,28

, logistic regression was used to 

derive sensitivity values, specificity values, negative predictive values (NPV) and positive 

predictive values (PPV) between LGGs and HGGs. A glioma classified as HGG or LGG by 

both observer data and histology was considered as a true-positive/true-negative finding, 

respectively. In addition, the areas Az (with standard errors) under the Receiver Operating 

Characteristic (ROC) curves were assessed. Here, an Az value of 1 suggest perfect 

discrimination between HGG and LGG whereas an Az value closer to .5 suggest a weaker 

discrimination between the two groups. Kaplan-Meier survival curves were derived from the 

glioma ROIs with and without vessel included and for the vessel segmentation. Here, optimal 

histogram peak height cut-off values between a low risk and a high risk group were derived 

using binary logistic regression. To test for equality of the survival curves for the high- and 

low risk groups, log-rank tests (Mantel Cox) were performed. In the log-rank test, all time 

points were weighted equally. Statistical analysis was performed using SPSS 13 (SPSS, Inc., 

Chicago, IL, USA). 

RESULTS: 

Of the 77 patients investigated, 45 received a histological diagnosis of a HGG and 32 patients 

received a diagnosis of a LGG. Of the LGGs, there were 19 grade II diffuse astrocytomas, 5 

grade II oligodendrogliomas and 8 grade II oligoastrocytomas. Of the HGGs, there were 3 

grade III anaplastic astrocytomas, 3 grade III anaplastic oligodendrogliomas, 4 grade III 

anaplastic oligoastrocytomas and 35 grade IV glioblastomas. 

Vessel segmentation 

Figure 1 show the result of using the different vessel masks on nCBV maps of a patient 

diagnosed with a low-grade diffuse astrocytoma (WHO grade II). Figure 1 also shows the 

resulting binary vessel mask when using the uncorrected, MTT corrected and SI corrected 
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vessel masking, respectively. Figure 2 show the difference between the uncorrected- and 

MTT corrected vessel mask on a patient diagnosed with a high-grade glioblastoma (WHO 

grade IV). Figure 2 also shows the binary rMTT cluster mask representative of the cluster 

class with the highest rMTT values which was excluded from the MTT corrected vessel 

masks. The resulting histograms for the low-grade and high-grade gliomas with and without 

vessel segmentation are shown in Figure 3. 

Manual glioma definition 

The neuroradiologist recorded using approximately 10 minutes per patient when drawing the 

glioma ROIs with vessels excluded and 5 minutes when drawing glioma ROIs with vessels 

included. When excluding vessels, the degree of difficulty was intermediate. When including 

vessels, the degree of difficulty was easy to intermediate.  

Glioma grading

Mean histogram peak heights with standard errors for glioma grades II, III and IV from the 

nCBV maps with and without vessel segmentation are shown in Figure 4. The biggest 

absolute difference between grades II and III and between grades II and IV were observed 

when using the MTT corrected vessel masks (.030 and .054, respectively). The corresponding 

sensitivity values, specificity values, NPV and PPV when grading the gliomas as LGGs or 

HGGs are shown in Table 1. For all measures of diagnostic accuracy, the highest value was 

obtained using the MTT corrected vessel mask. The lowest values were obtained when using 

the uncorrected vessel segmentation mask. For the 32 patients diagnosed with LGGs, using 

the MTT corrected vessel masks resulted in a change of glioma grade in 4 patients compared 

to the ROIs with vessels excluded. Three LGGs were correctly classified as LGGs and 1 HGG 

were misclassified as LGG. The 3 LGGs correctly classified as LGGs were all located within 

the M1 or M2 segments of the middle cerebral artery distribution, whereas the HGG 

misclassified as LGG was not located in close proximity to the main artery distributions. For 

the 45 patients diagnosed with HGGs, using the MTT corrected vessel masks resulted in a 

change of glioma grade in 5 patients compared to the ROIs with vessels excluded. Three 

HGGs were correctly classified as HGGs and 2 LGG were misclassified as HGG. None of the 

HGGs were located in proximity to one of the main artery distributions. The resulting ROC 

curves with Az values (± standard error) for all methods investigated in our study are shown in 

Figure 5. In terms of manual ROI definition, a higher Az value was observed when the 
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radiologist included vessels in the ROIs compared to the ROIs with vessels excluded 

(.915±.030 and .881±.038, respectively). 

The log-rank (Mantel-Cox Chi-Square) values describing the difference between the survival 

curves for the low- and high risk group were as follows; glioma ROIs with vessels excluded = 

11.484 (P=.001), glioma ROIs with vessels included = 14.806 (P<.001), uncorrected vessel 

masks = 16.603 (P<.001), MTT corrected vessel masks = 20.390 (P<.001) and SI corrected 

vessel masks = 15.825 (P<.001). Figure 6 show the resulting Kaplan-Meier survival curves 

for the glioma ROIs with vessels excluded versus (a) the glioma ROIs with vessels included, 

(b) uncorrected vessel masks, (c) MTT corrected vessel masks and (d) SI corrected vessel 

masks, respectively.

DISCUSSION: 

It is well known that GRE-EPI sequences are sensitive to T2* effects from large vessels and 

this effect may cause significant T2* shortening outside the vessel lumen
17,29

. Hence, vessel 

identification from anatomical images only, is likely to underestimate the true extent of the 

intravascular susceptibility effect in the DSC images. In our study, we propose a novel vessel 

segmentation technique which can be applied to parameters derived directly from the DSC 

images. Although the importance of intra-tumoral macroscopic vessel exclusion has been 

reported in several studies
9,10,14,30

, automatic and user-independent approaches for vessel 

removal in glioma characterization from MR perfusion imaging are, to the authors 

knowledge, not reported in the literature. Typically, exclusion of intra-tumoral macroscopic 

vessels is performed manually by an experienced operator
9,10,14,30

 or by applying an upper cut-

off value to reduce the effect of very high CBV values related to noise, blood vessels and 

severe blood-brain-barrier breakdown
28

. However, our results suggest that manual removal of 

macroscopic vessels from static MR images does not provide the same diagnostic accuracy 

values as automatic vessel removal based on the dynamic DSC information. Further, a cut-off 

CBV value is unable to discriminate between arterial, venous and tissue image pixels as the 

AUC can be similar even though the shapes of the first-pass curves are different. The vessel 

segmentation technique proposed in our study is fast and provides a direct estimate of pixels 

which are actually affected by the vascular susceptibility effect, thereby offering a better 

correction for vessel-induced elevation in tumor CBV values. Further, the method does not 

require an expert user with good anatomical knowledge to mask out vessel regions prior to 

glioma area identification. For automated tumor area segmentation routines
16

, this feature is 
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attractive as optimal tumor area identification may rely on hyper-intensities as seen on T2-

weighted images or similar MR image types, only. With respect to the manual glioma 

definition, the ROI drawings with vessels excluded took approximately twice as long to 

perform as when the vessels were included
14

. Also, the ROI drawings were easier to perform 

when the vessels were included. In clinical routine, this feature is attractive as it reduces the 

time spent on post-processing. Also, as the ROI drawing becomes easier to perform and thus 

the reproducibility of the method may potentially increase. 

The diagnostic accuracy obtained in our study is similar to other studies using the histogram 

method on gliomas
14,15,28

. Compared to the glioma ROIs with vessels excluded, the sensitivity 

and NPV of the glioma grading increased and the specificity and PPV decreased when using 

the glioma ROIs with vessels included. This result suggests that correct manual vessel 

removal is difficult as the border between tumor- and vessel induced elevations in CBV is 

diffuse and difficult to distinguish in the static images. Interestingly, the Az value and log-

rank value was higher when using the glioma ROIs with vessels included. As high-grade 

glioblastomas account for the majority of gliomas in adults
31

, this result suggest that a higher 

diagnostic accuracy may be obtained by using less conservative criteria when drawing the 

glioma volumes. However, not correcting for the inherent overestimation of nCBV values in 

low-grade gliomas due to the inclusion of vessels may result in an over-aggressive treatment 

plan in these patients
12,22

.

For the vessel segmentation, the uncorrected vessel masking resulted in reduced sensitivity, 

NPV and PPV whereas the specificity increased. The lowest Az value in our study was also 

obtained when using the uncorrected vessel masking. The increased number of false negatives 

and reduced number of false positives suggest that the uncorrected vessel masking routine is 

too radical in removing nCBV values in the tumor bed. Similarly, SI corrected masking also 

resulted in a lower sensitivity and equal specificity compared to the glioma ROIs with vessels 

excluded, suggesting to radical segmentation. It should be noted that our DSC sequence 

includes several dummy scans prior to dynamic acquisition. These are used to avoid rapid 

signal changes between the first image (with full magnetization) and subsequent (saturated) 

baseline images. The image contrast in the baseline images is therefore mainly proton density 

weighted. In spite of the GRE-EPI sequence being strongly T2*-weighted in steady state, the 

image contrast in the very first image (following a single 90 degree RF pulse) will have a 

significant T2-weighting. For the purpose of obtaining a SI tumor mask based on differences 
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in T2 relaxation times, it would therefore be a clear advantage to include this unsaturated EPI 

image in the analysis. We are in the process of modifying our DSC sequence for this purpose. 

Nevertheless, our results show that the main challenge of the vessel segmentation routine is to 

differentiate vessels from elevated nCBV values at the capillary level. As the purpose of 

vessel segmentation in DSC based glioma grading is to remove false positives without 

introducing false negatives, the use of a pre-mask to exclude areas of elevated MTT values, 

secondary to glioma malignancy, was found to improve the overall diagnostic accuracy of the 

vessel segmentation method. The MTT corrected vessel masking resulted in equal sensitivity 

to the ROIs with vessels included and the same specificity as the uncorrected vessel mask. 

Consequently, the biggest difference in mean peak height between glioma grades and the 

highest diagnostic accuracy values were observed when using the MTT corrected vessel 

masks. At an individual patient level, the uncertainty of these measures is illustrated by NPV 

and PPV of which higher values indicate less false negatives and false positives, respectively. 

Of the 9 gliomas with a change in glioma grade due to use of the MTT corrected vessel mask, 

the 3 gliomas located within the M1 or M2 segments of the middle cerebral artery distribution 

were correctly classified. The remaining 6 gliomas, of which 3 were correctly classified and 3 

misclassified, were not located in close proximity to one of the main arteries. As confirmed 

by others, this result suggests that glioma ROI definition in areas close to a prominent artery 

is difficult
9,10

. In these regions, use of glioma ROIs with vessels included in combination with 

the vessel segmentation routine should be warranted.

The Kaplan-Meier survival curves with log-rank values for the high- and low-risk groups 

obtained in our study are similar to previously reported survival curves in similar patient 

groups using MR perfusion based grading methods
2
. Ideally, the difference between the high- 

and the low-risk group (log-rank value) should be as large as possible. In our study, the 

highest log-rank value was obtained when using the MTT corrected vessel masking. As for 

the logistic regression analysis, a higher log-rank value was obtained for the glioma ROIs 

with vessel included compared to the glioma ROIs with vessel excluded. This result supports 

the conclusion that a higher diagnostic efficacy in glioma characterization from manually 

defined ROIs is obtained when vessels are included.

The results obtained in our study may be limited by low temporal and spatial resolution. High 

temporal resolution is of particular importance for the proposed method since separation of 

vessels from vascular tissue is mainly based on small differences in contrast dynamics. In our 
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study, the temporal resolution was between 1.4 and 1.7 seconds. Although a correlation 

between the accuracy of the vessel segmentation and temporal resolution was not performed 

in our study, the temporal resolution should be as short as possible in order to increase the 

sample steps resulting in optimal separation between the arterial, venous and tissue first-pass 

curves. Limited spatial resolution results in partial volume effects in the DSC images. The 

voxel size of the DSC images was 1.80x1.80x5mm
3
, potentially resulting in an 

underestimation of pixels identified as macrovessels. As the size of the capillaries is typically 

below 1mm, a higher image resolution would be desirable. Also, as shown in the literature
32

,

local variations in the dynamic DSC curves due to bolus delay or dispersions between tissue 

areas may confound the vessel segmentation. Hence, we are currently implementing methods 

for minimizing the effects of bolus dispersion. Further, the number of cluster classes used in 

our study was based on the number of tissue types in the DSC images. However, this may not 

be the optimal number of cluster classes with respect to glioma characterization and should be 

investigated in a future study. Also, both T2- and T1- weighted perfusion imaging have been 

proposed as alternatives to T2*-based perfusion imaging in the diagnosis of gliomas
27,33,34

.

The advantage of both these methods over T2*-weighted methods is reduced sensitivity to 

susceptibility effects and consequently better delineation of actual vessel containing pixels in 

the resulting perfusion maps. The disadvantage of both these methods is lower contrast agent 

sensitivity (effective contrast relaxivity) and limited brain coverage for a given temporal 

resolution.

In our study, we have shown that a vessel segmentation routine based on automatic k-mean 

clustering of dynamic first-pass parameters can improve the diagnostic efficacy of DSC 

imaging for glioma grading. The automated MTT corrected vessel segmented CBV maps 

provided a higher diagnostic efficacy than a manual method where the tumor ROI was 

defined by a neuroradiologist. The proposed method is attractive in that it is fast, easy to 

perform and provides a mask which covers all pixels affected by the intravascular 

susceptibility effect. In addition, the method can readily be implemented in a clinical 

radiological setting without transferring images to computers outside the hospital-wide picture 

archiving and communication system (PACS) and thereby further improving the usefulness of 

the histogram method. 
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Abbreviations: 

DSC = dynamic susceptibility contrast, MR = magnetic resonance, CBV = cerebral blood 

volume, LGG = low-grade glioma, AIF = arterial input function, MTT = mean transit time, 

fmAUC = first moment of the area under the curve, WHO = world health organization, CNS 

= central nervous system, HGG = high-grade glioma, ROI = region of interest, NPV = 

negative predictive values, PPV = positive predictive values, ROC = receiver operating 

characteristic, PACS = picture archiving and communication system



14

Acknowledgements: 

We thank Bard Nedregaard, MD, and Bjorn Tennoe, MD, from the Clinic for Imaging and 

Intervention, Rikshospitalet University Hospital, Oslo, Norway for selecting white matter 

areas and David Scheie, MD, The Pathology Clinic, Rikshospitalet University Hospital, Oslo, 

Norway, for performing the histopathological analysis. 



15

References

 1.  Covarrubias DJ, Rosen BR, Lev MH. Dynamic magnetic resonance perfusion imaging 

of brain tumors. Oncologist 2004;9(5):528-537. 

 2.  Law M, Oh S, Babb JS, Wang E, Inglese M, Zagzag D, Knopp EA, Johnson G. Low-

grade gliomas: dynamic susceptibility-weighted contrast-enhanced perfusion MR 

imaging--prediction of patient clinical response. Radiology 2006 Feb;238(2):658-667. 

 3.  Edelman RR, Mattle HP, Atkinson DJ, Hill T, Finn JP, Mayman C, Ronthal M, 

Hoogewoud HM, Kleefield J. Cerebral blood flow: assessment with dynamic contrast-

enhanced T2*-weighted MR imaging at 1.5 T. Radiology 1990 Jul;176(1):211-220. 

 4.  Aronen HJ, Gazit IE, Louis DN, Buchbinder BR, Pardo FS, Weisskoff RM, Harsh GR, 

Cosgrove GR, Halpern EF, Hochberg FH, Rosen BR. Cerebral blood volume maps of 

gliomas: comparison with tumor grade and histologic findings. Radiology 1994 

Apr;191(1):41-51.

 5.  Aronen HJ, Perkio J. Dynamic susceptibility contrast MRI of gliomas. Neuroimaging 

Clin N Am 2002 Nov;12(4):501-523. 

 6.  Knopp EA, Cha S, Johnson G, Mazumdar A, Golfinos JG, Zagzag D, Miller DC, Kelly 

PJ, Kricheff II. Glial neoplasms: dynamic contrast-enhanced T2*-weighted MR 

imaging. Radiology 1999 Jun;211(3):791-798. 

 7.  Lev MH, Rosen BR. Clinical applications of intracranial perfusion MR imaging. 

Neuroimaging Clin N Am 1999 May;9(2):309-331. 

 8.  Lev MH, Ozsunar Y, Henson JW, Rasheed AA, Barest GD, Harsh GR, Fitzek MM, 

Chiocca EA, Rabinov JD, Csavoy AN, Rosen BR, Hochberg FH, Schaefer PW, 

Gonzalez RG. Glial tumor grading and outcome prediction using dynamic spin-echo 

MR susceptibility mapping compared with conventional contrast-enhanced MR: 

confounding effect of elevated rCBV of oligodendrogliomas [corrected]. AJNR Am J 

Neuroradiol 2004 Feb;25(2):214-221. 

 9.  Caseiras GB, Thornton JS, Yousry T, Benton C, Rees J, Waldman AD, Jager HR. 

Inclusion or exclusion of intratumoral vessels in relative cerebral blood volume 



16

characterization in low-grade gliomas: does it make a difference? AJNR Am J 

Neuroradiol 2008 Jun;29(6):1140-1141.

 10.  Wetzel SG, Cha S, Johnson G, Lee P, Law M, Kasow DL, Pierce SD, Xue X. Relative 

cerebral blood volume measurements in intracranial mass lesions: interobserver and 

intraobserver reproducibility study. Radiology 2002 Sep;224(3):797-803. 

 11.  Walker DG, Kaye AH. Low grade glial neoplasms. J Clin Neurosci 2003 Jan;10(1):1-

13.

 12.  Talos IF, Zou KH, Ohno-Machado L, Bhagwat JG, Kikinis R, Black PM, Jolesz FA. 

Supratentorial low-grade glioma resectability: statistical predictive analysis based on 

anatomic MR features and tumor characteristics. Radiology 2006 May;239(2):506-513. 

 13.  Kleihues P, Cavenee W. Astrocytic tumors & Oligodendroglial tumors and mixed 

gliomas. The WHO classification of tumors of the nervous system. 2 ed. Lyon: 

International Agency for Research on Cancer; 2000. p 9-70. 

 14.  Emblem KE, Nedregaard B, Nome T, Due-Tonnessen P, Hald JK, Scheie D, Borota OC, 

Cvancarova M, Bjornerud A. Glioma grading by using histogram analysis of blood 

volume heterogeneity from MR-derived cerebral blood volume maps. Radiology 2008 

Jun;247(3):808-817.

 15.  Young R, Babb J, Law M, Pollack E, Johnson G. Comparison of region-of-interest 

analysis with three different histogram analysis methods in the determination of 

perfusion metrics in patients with brain gliomas. J Magn Reson Imaging 2007 

Oct;26(4):1053-1063.

 16.  Kaus MR, Warfield SK, Nabavi A, Black PM, Jolesz FA, Kikinis R. Automated 

segmentation of MR images of brain tumors. Radiology 2001 Feb;218(2):586-591. 

 17.  van Osch MJ, Vonken EJ, Bakker CJ, Viergever MA. Correcting partial volume 

artifacts of the arterial input function in quantitative cerebral perfusion MRI. Magn 

Reson Med 2001 Mar;45(3):477-485. 



17

 18.  Mouridsen K, Christensen S, Gyldensted L, Ostergaard L. Automatic selection of 

arterial input function using cluster analysis. Magn Reson Med 2006 Mar;55(3):524-

531.

 19.  Rausch M, Scheffler K, Rudin M, Radu EW. Analysis of input functions from different 

arterial branches with gamma variate functions and cluster analysis for quantitative 

blood volume measurements. Magn Reson Imaging 2000 Dec;18(10):1235-1243. 

 20.  Hadjiprocopis A, Rashid W, Tofts PS. Unbiased segmentation of diffusion-weighted 

magnetic resonance images of the brain using iterative clustering. Magn Reson Imaging 

2005 Oct;23(8):877-885. 

 21.  Ball WS, Jr., Holland SK. Perfusion imaging in the pediatric patient. Magn Reson 

Imaging Clin N Am 2001 Feb;9(1):207-30, ix. 

 22.  Grier JT, Batchelor T. Low-grade gliomas in adults. Oncologist 2006 Jun;11(6):681-

693.

 23.  Boxerman JL, Schmainda KM, Weisskoff RM. Relative cerebral blood volume maps 

corrected for contrast agent extravasation significantly correlate with glioma tumor 

grade, whereas uncorrected maps do not. AJNR Am J Neuroradiol 2006 Apr;27(4):859-

867.

 24.  Maes F, Collignon A, Vandermeulen D, Marchal G, Suetens P. Multimodality image 

registration by maximization of mutual information. IEEE Trans Med Imaging 1997 

Apr;16(2):187-198.

 25.  Jain RK, di Tomaso E, Duda DG, Loeffler JS, Sorensen AG, Batchelor TT. 

Angiogenesis in brain tumours. Nat Rev Neurosci 2007 Aug;8(8):610-622. 

 26.  Bastin ME, Carpenter TK, Armitage PA, Sinha S, Wardlaw JM, Whittle IR. Effects of 

dexamethasone on cerebral perfusion and water diffusion in patients with high-grade 

glioma. AJNR Am J Neuroradiol 2006 Feb;27(2):402-408. 

 27.  Schmainda KM, Rand SD, Joseph AM, Lund R, Ward BD, Pathak AP, Ulmer JL, 

Badruddoja MA, Krouwer HG. Characterization of a first-pass gradient-echo spin-echo 



18

method to predict brain tumor grade and angiogenesis. AJNR Am J Neuroradiol 2004 

Oct;25(9):1524-1532.

 28.  Law M, Young R, Babb J, Pollack E, Johnson G. Histogram analysis versus region of 

interest analysis of dynamic susceptibility contrast perfusion MR imaging data in the 

grading of cerebral gliomas. AJNR Am J Neuroradiol 2007 Apr;28(4):761-766. 

 29.  Boxerman JL, Hamberg LM, Rosen BR, Weisskoff RM. MR contrast due to 

intravascular magnetic susceptibility perturbations. Magn Reson Med 1995 

Oct;34(4):555-566.

 30.  Cha S, Knopp EA, Johnson G, Wetzel SG, Litt AW, Zagzag D. Intracranial mass 

lesions: dynamic contrast-enhanced susceptibility-weighted echo-planar perfusion MR 

imaging. Radiology 2002 Apr;223(1):11-29. 

 31.  Hess KR, Broglio KR, Bondy ML. Adult glioma incidence trends in the United States, 

1977-2000. Cancer 2004 Nov;101(10):2293-2299. 

 32.  Calamante F. Bolus dispersion issues related to the quantification of perfusion MRI 

data. J Magn Reson Imaging 2005 Dec;22(6):718-722. 

 33.  Cha S, Yang L, Johnson G, Lai A, Chen MH, Tihan T, Wendland M, Dillon WP. 

Comparison of microvascular permeability measurements, K(trans), determined with 

conventional steady-state T1-weighted and first-pass T2*-weighted MR imaging 

methods in gliomas and meningiomas. AJNR Am J Neuroradiol 2006 Feb;27(2):409-

417.

 34.  Haroon HA, Buckley DL, Patankar TA, Dow GR, Rutherford SA, Baleriaux D, Jackson 

A. A comparison of Ktrans measurements obtained with conventional and first pass 

pharmacokinetic models in human gliomas. J Magn Reson Imaging 2004 

May;19(5):527-536.



19

Table 1: Diagnostic accuracy values for the glioma grading using the nCBV maps with 

and without vessel segmentation. Absolute number of patients is shown in parentheses. 

Sensitivity Specificity NPV PPV

% (HGGs) % (LGGs) % (TN/TN+FN) % (TP/TP+FP) 

nCBV maps (-) 87  (39/45) 78 (25/32 LGGs) 81 (25/31) 85 (39/46) 

nCBV maps (+) 91 (41/45) 72 (23/32 LGGs) 85 (23/27) 82 (41/50) 

Vessel mask 82 (37/45) 81 (26/32 LGGs) 77 (26/34) 86 (37/43) 

MTT 91 (41/45) 81 (26/32 LGGs) 87 (26/30) 87 (41/47) 

SI 82 (37/45) 78 (25/32 LGGs) 76 (25/33) 84 (37/44) 

NPV = Negative Predictive Value, PPV = Positive Predictive Value, HGG = high-grade gliomas, LGG = low-grade gliomas, 

TN = true negatives, TP = true positives, FN = false negatives, FP = false positives 

nCBV maps(-) = vessels removed in the glioma ROIs, nCBV maps(+) = vessels included in the glioma ROIs, 

Vessel mask = uncorrected vessel segmentation, MTT = MTT corrected vessel segmentation, SI = SI corrected vessel segmentation 
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FIGURE CAPTIONS: 

FIGURE 1 

(A) Axial T2-weighted fast spin-echo image (TR=4000ms/TE=104ms) of a patient with a 

low-grade diffuse astrocytoma (WHO grade II). (B-D) Binary vessel mask overlaid on the T2-

weighted image using (B) uncorrected vessel masks, (C) MTT corrected vessel masks and (D)

binary SI corrected masks. (E) nCBV map with vessel included, coregistered to the T2-

weighted image. (F-H) nCBV map with vessels removed using (F) uncorrected vessel masks, 

(G) MTT corrected vessel masks and (H) SI corrected masks. Note the identification of the 

main arteries and veins in (B-D), also recognized on the structural T2-weighted image (A).

Compared to the uncorrected (F) and SI corrected (H) vessel masks, the MTT corrected 

vessel masks (G) are generally more conservative in masking out macroscopic vessels in 

normal appearing tissue regions. 
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FIGURE 2 

(A) Axial post-contrast T1-weighted spin-echo image (TR=500ms/TE=7.7ms) of a patient 

with a high-grade glioblastoma (WHO grade IV). (B) Corresponding nCBV map with vessel 

included. (C) nCBV map with vessels corresponding to the uncorrected vessel mask removed. 

(D) rMTT map with vessels included. (E) Binary rMTT cluster mask representative of the 

cluster class with the highest rMTT values. In the MTT corrected vessel masks, this cluster 

class was excluded from the vessel segmentation routine. (F) nCBV map with vessels 

corresponding to the MTT corrected vessel mask removed. Note the difference between the 

uncorrected- and MTT corrected vessel masks in (C) and (F).
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FIGURE 3 

Resulting normalized histograms for the LGG (grey lines) and HGG (black lines) shown in 

Figures 1 and 2, respectively. The figure show histograms using nCBV maps with vessels 

included (LGG peak height=.0623, HGG peak height=.0305), manually excluded (.0517, 

.0214), excluded by uncorrected vessel masks (.0555, .0367), excluded by MTT corrected 

vessel masks (.087, .0254) and excluded by SI corrected vessel masks (.0578, .0255). 
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FIGURE 4 

Mean histogram peak heights with standard error bars for glioma grade II (dark grey bars; 32 

patients), grade III (light grey bars; 10 patients) and grade IV (white bars; 35 patients) when 

using (A) nCBV maps with vessels manually excluded, (B) nCBV maps with vessels 

included, (C) nCBV maps with vessels removed by the uncorrected vessel masks, (D) nCBV 

maps with vessels removed by the MTT corrected vessel masks and (E) nCBV maps with 

vessels removed by the SI corrected vessel masks, respectively.  
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FIGURE 5 

(A) Receiver operator characteristics (ROC) curves for the histogram method when using the 

glioma ROIs with vessels manually excluded (gray line) and with vessels included (black 

line). The areas (± standard errors) under the ROC curve were .881 (±.038) and .915 (±.030), 

respectively. (B) ROC curves for the histogram method when using the vessels segmentation 

routine on the glioma ROIs with vessels included. The ROC curves represent the uncorrected 

vessel masking (dotted line), MTT corrected vessel masking (black line) and SI corrected 

vessel masking (gray line). The areas (± standard errors) under the ROC curve were .876 

(±.039), .935 (±.026) and .912 (±.031), respectively.
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FIGURE 6 

Kaplan-Meier survival curves for the different methods investigated. Based on available 

survival data in all 77 patients, logistic regression was used to derive optimal histogram peak 

height cut-off values between a high- and a low-risk patient group. The figures show survival 

curves for the reference histogram method using glioma ROIs with vessels removed by the 

radiologist (black lines) versus survival curves for the (gray lines); (A) glioma ROIs with 

vessels included, (B) uncorrected vessel masks, (C) MTT corrected vessel masks and (D) SI 

corrected vessel masks. The highest log-rank value between the high- and low-risk group was 

observed when using the MTT corrected vessel masks (20.390, P<.001).





IV





Predictive Modeling in Glioma Grading From MR
Perfusion Images Using Support Vector Machines

Kyrre E. Emblem,1,6* Frank G. Zoellner,4 Bjorn Tennoe,2 Baard Nedregaard,2

Terje Nome,2 Paulina Due-Tonnessen,2 John K. Hald,2 David Scheie,3 and

Atle Bjornerud1,5

The advantages of predictive modeling in glioma grading from

MR perfusion images have not yet been explored. The aim of

the current study was to implement a predictive model based

on support vector machines (SVM) for glioma grading using

tumor blood volume histogram signatures derived from MR

perfusion images and to assess the diagnostic accuracy of the

model and the sensitivity to sample size. A total of 86 patients

with histologically-confirmed gliomas were imaged using dy-

namic susceptibility contrast (DSC) MRI at 1.5T. Histogram sig-

natures from 53 of the 86 patients were analyzed independently

by four neuroradiologists and used as a basis for the predictive

SVM model. The resulting SVM model was tested on the re-

maining 33 patients and analyzed by a fifth neuroradiologist. At

optimal SVM parameters, the true positive rate (TPR) and true

negative rate (TNR) of the SVM model on the 33 patients was

0.76 and 0.82, respectively. The interobserver agreement and

the TPR increased significantly when the SVM model was based

on an increasing sample size (P < 0.001). This result suggests

that a predictive SVM model can aid in the diagnosis of glioma

grade from MR perfusion images and that the model im-

proves with increasing sample size. Magn Reson Med 60:

945–952, 2008. © 2008 Wiley-Liss, Inc.

Key words: DSC MRI; histogram analysis; glioma grading; sup-

port vector machines; predictive modeling

Several studies have shown that cerebral blood volume

(CBV) maps derived from dynamic susceptibility contrast

(DSC) MRI can improve differentiation between high-

grade (grades III–IV) and low-grade (grades I–II) gliomas,

using the World Health Organization (WHO) classification

system (1–4). Based on normalized CBV (nCBV) maps,

viable malignant tumor tissue can be identified as regions

of elevated microvascular blood volume (maximum nCBV;

“hotspot method”) compared to unaffected tissue (5).

However, applying these grading methods prospectively

requires some prior knowledge about the appropriate
threshold values that provide optimal differentiation be-
tween high- and low-grade gliomas. In studies using the
hotspot method on gradient-echo perfusion images, the
reported maximum nCBV threshold for optimal differen-
tiation show large variations (6–8). This suggests that the
optimal nCBV threshold depends on several method-spe-
cific parameters, including contrast agent properties and
dose, imaging technique, and postprocessing routines.
This method-dependency on the critical nCBV threshold
means that the threshold value must be determined spe-
cifically at each site, which complicates the comparison of
data between sites and also places restrictions on modifi-
cation of any of the model-sensitive parameters in a given
institution.

Although common in the literature on tumor growth and
invasion (9–11), application of predictive modeling to MR
perfusion images with the aim of predicting glioma grade
is, to our knowledge, not reported in the literature. One
possible reason for this is that current nCBV threshold
values are difficult to generalize into a useful model. A
predictive model based on one single value per subject
will inherently lack sufficient robustness. An alternative
histogram-based method for analysis of nCBV maps has
recently been proposed, which provides a measure of the
distribution of nCBV values in the entire volume affected
by the tumor; it has been shown that this approach may
improve differentiation between low- and high-grade gli-
omas compared to the hotspot method (8,12). Histogram
analysis also provides a more attractive starting point for
predictive modeling since each new case is now described
by a histogram “signature” curve of the nCBV distribution
within the tumor volume, which can readily be compared
to a database of histologically-confirmed gliomas with sig-
natures representative for each glioma grade.

From this, we hypothesize that a predictive model based
on support vector machines (SVM) can aid in the diagnosis
of gliomas. Thus, the purpose of our study was to imple-
ment a predictive model based on SVM for glioma grading
using tumor blood volume histogram signatures derived
from MR perfusion images. Also, we hypothesize that the
diagnostic accuracy of the SVM model will improve with
sample size. Thus, a second purpose was to assess the
diagnostic accuracy (13) of the SVM model and the sensi-
tivity to sample size.

THEORY

SVMs are generalized linear classification algorithms that
can be used to create a model for classification of objects
based on a set of training data (14,15). An SVM model

1Department of Medical Physics, Rikshospitalet University Hospital, Oslo,
Norway.
2Department of Radiology, Rikshospitalet University Hospital, Oslo, Norway.
3Department of Pathology, Rikshospitalet University Hospital, Oslo, Norway.
4Department of Computer Assisted Clinical Medicine, Faculty of Medicine
Mannheim, University of Heidelberg, Mannheim, Germany.
5Department of Physics, University of Oslo, Oslo, Norway.
6The Interventional Center, Rikshospitalet University Hospital, Oslo, Norway.

Abbreviations: SVM � support vector machines; CBV � cerebral blood
volume; DSC � dynamic susceptibility-contrast; MRI � magnetic resonance
imaging; WHO � World Health Organization; RBF � radial basis function;
ROI � region of interest; TPR � true-positive rate; TNR � true-negative rate.

*Correspondence to: Kyrre E. Emblem, The Interventional Center, Gaustad,
Rikshospitalet University Hospital, Sognsvannsveien 20, N-0027 Oslo, Nor-
way. E-mail: kyrre.eeg.emblem@rikshospitalet.no

Received 28 March 2008; revised 21 May 2008; accepted 30 May 2008.

DOI 10.1002/mrm.21736
Published online in Wiley InterScience (www.interscience.wiley.com).

Magnetic Resonance in Medicine 60:945–952 (2008)

© 2008 Wiley-Liss, Inc. 945



creates a separating hyperplane, a higher-dimensional gen-
eralization, so that it optimally discriminates between two
or more classes. During a minimization procedure (i.e., a
learning process), the hyperplane is tuned so that the SVM
model generalization error is minimized, thus achieving
an optimal solution to the classification problem. In linear
classifications, a binary decision is performed by a real-
valued function:

f:X � Rn3 R. [1]

The input x� � 	xl, . . . , xn
 � X is assigned a positive class
if f	x�
 � 0 and a negative class otherwise. In this case f is
a linear function and can be written as:

f	x� 
 � �w� ,x� � � b� . [2]

Here, f	x�
 defines a hyperplane with parameters w� (the
direction perpendicular to the hyperplane) and b� (position
vector). The SVM model is trained by a training dataset (of
size M) and divides the input samples into a predefined
number of classes. The training dataset can be written as
	x� i,y� i
�i � 1, . . . , M with yi �  � 1,1�. Classification per-
formed this way may be difficult, since real-world data are
noisy, which limits the accuracy with which the resulting
hyperplane can be determined in feature space (14). One
approach to address this problem is to transform the orig-
inal input space into a higher-dimensional space. Usually,
a high-dimensional space is sparse. Mapping the input
space into a higher-dimensional space thus simplifies the
identification of separating hyperplanes. To map the data,
so-called “kernel” functions are determined so that the
hyperplane optimally discriminates between the two
classes. Using a nonlinear kernel function � that maps the
input x� � Rn to a higher-dimensional space RN, n �� N,
where the input is linearly separable, the function sepa-
rating the input can be written as:

f	x� 
 � w� �	x� 
 � b� . [3]

Usually, a special transformation function (�) to build a
kernel can not be readily obtained. Instead already-known
kernels are used. The choice of kernel function has to be
done carefully to avoid poor discrimination power (16). In
addition, to be able to handle a large dataset and to reduce
processing time, this transformation is only implicitly ex-
ecuted; this is also known as the “kernel trick” (15). Max-
imal reduction of the generalization error is reached by
optimizing the distance between the margin of the func-
tion separating the classes (functional margin) and the
input examples during a training process. If x� i is classified
correctly, the functional margin y� i of the training example
	x� i, yi
 is defined as:

ỹi � yi	w�
Tx� i � b
fỹi � 0. [4]

Further, ỹi can be transformed into a so-called geometric
margin:

yi �

ỹi

�w�
. [5]

Here, an optimization procedure (15) can be applied to
find the optimal hyperplane. Figure 1 depicts an illustra-
tion of the optimal margin (dotted lines) and hyperplane
(solid line) for a two-dimensional (2D) binary example.
The data points defining the margins are called support
vectors and their positions should be such as to maximize
the distance between the support vectors and the hyper-
plane (y).

Although numerous SVM models exists (16), an SVM
model known as �-SVM is considered practical for our data
(17,18). The �-SVM has the advantage of using a parameter,
�, which is related to the number of support vectors used
and the ratio of the training error. The range of the �-pa-
rameters is between 0 and 1. A low � value results in less
softness of the classification margins (i.e., less generalized)
but fewer misclassifications, whereas a high � value result
in more softness of the classification margins but with
more misclassifications allowed. The optimal �-SVM
model has a � value giving minimal misclassifications and
maximal generalization.

If the input data are not linearly separable as in Eq. [3],
a nonlinear kernel has to be applied. A study using SVM
on histogram-based color image classifications suggested
using a nonlinear radial basis function (RBF) kernel when
analyzing low-dimension histogram data as in our study
(19):

K	xi,xy
 � e�y�xi�xj�2
. [6]

Here, a Gaussian-based RBF kernel is used. The parameter
� is related to the standard deviation (SD); i.e., the width of
the Gaussian distribution. By default, the � parameter is
defined as 1/M, where M is the number of samples in the
training data. To illustrate the effects of changing the two
parameters (�,�), Fig. 2 depicts a simulation on arbitrary
data for a �-SVM model at different settings of � and �.

FIG. 1. Illustration of the optimal margins (dotted lines) and hyper-

plane y (solid line) for arbitrary binary data. The data points on the

optimal margins are called support vectors, and define the position

of the margins. When searching for the most generalized model, the

distance between the hyperplane and the margins should be as

large as possible.
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MATERIALS AND METHODS

Patient Selection

Study approval was obtained from the Regional Medical
Ethics Committee and patients were included only if in-
formed consent was signed. Between July 2005 and No-
vember 2007, 86 patients (age � 9–78 years, mean age �

49 years; 49 males, 37 females) received a histological
diagnosis of primary glioma after MR perfusion imaging
and subsequent surgery. The histological evaluation was
performed by a neuropathologist using the WHO classifi-
cation of central nervous system tumors (20).

Observers

All image measurements were performed independently
by five experienced neuroradiologists with several years of
experience reading brain MR perfusion images. Patient-
related information was removed from all images, and the
observers were blinded to the histopathological diagnosis.

MRI

Imaging was performed at 1.5T (Siemens Sonata, Sym-
phony, or Avanto; Siemens AG, Erlangen, Germany), using
an eight-channel (Symphony/Sonata) or a 12-channel
(Avanto) head coil. The protocol included an axial T2-
weighted fast spin-echo sequence with repetition time/
echo time (TR/TE � 4000 ms/104 ms) and an axial T1-
weighted spin-echo sequence (TR/TE � 500 ms/7.7 ms)
obtained before and after intravenous (i.v.) contrast agent
injection. The voxel size � 0.45 � 0.45 � 5 mm3 with 19
slices in both sequences. DSC MRI was performed using a
gradient-echo echo-planar imaging sequence acquired dur-
ing contrast agent administration. The imaging parameters
were: TR/TE � 1430 ms/46 ms (12 axial slices) to TR/TE �

1590 ms/52 ms (14 axial slices), bandwidth � 1345 Hz/
pixel, field of view � 230 � 230 mm, voxel size � 1.80 �

1.80 � 5 mm3, and interslice gap � 1.5 mm. For each slice,
50 images were recorded at intervals equal to the TR. After
approximately eight time points, 0.2 mmol/kg of the high-
concentration (1 M) gadolinium-based contrast agent ga-
dobutrol (Bayer Schering Pharma AG, Berlin, Germany),
was injected at a rate of 5 ml/s, immediately followed by a
20-ml bolus of saline (B. Braun Melsungen AG, Melsun-
gen, Germany) also at 5 ml/s. Gadobutrol has been shown
to exhibit very similar physicochemical properties to other
low–molecular-weight gadolinium chelates that have been
used for MR perfusion imaging (21).

Image Postprocessing

The images were postprocessed using a dedicated software
package (nordicICE; NordicImagingLab, Bergen, Norway).
Relative CBV (rCBV) maps were generated using estab-
lished tracer kinetic models applied to the first-pass data
(22,23) and corrected for possible extravascular contrast
agent leakage (24). nCBV maps were created by voxel-wise
division of the rCBV values with an unaffected slice-spe-
cific white matter rCBV value defined by two observers (5).
The nCBV maps were displayed using a black-blue-green-
yellow-red-white color map, and automatically coregis-
tered with the conventional MR images using a normalized
mutual information algorithm (25). Four of the five observ-
ers drew tumor regions of interest (ROIs) in 53 of the
patients, whereas the fifth observer drew tumor ROIs in the
remaining 33 patients. To conform to the histogram
method, the five observers drew freehand tumor ROIs in
each slice according to the combined underlay/overlay
image information as described elsewhere (8,24,26). The
observers were asked to avoid areas of necrosis, cysts, or
nontumor macrovessels readily visible on the postcontrast
T1-weighted images and the CBV images. Although glio-
mas are known to infiltrate brain tissue beyond the radio-
graphic margins (27), signal hyperintensity thought to rep-
resent tumor tissue and edema as seen on the T2-weighted
images was used to define the outermost tumor margins.
Also, it has been shown that potentially imperfect tumor
volume definition has little influence on the reproducibil-
ity of the glioma grading when using the histogram method
(8).

The histogram grading method was performed as fol-
lows: histogram signatures were generated for each patient
using nCBV values from the complete tumor ROIs. The
range of the nCBV values along the x-axis was kept con-
stant (values � 0–20) and the area under each histogram
curve was normalized to 1. The histograms were divided
into 108 bins, a number previously shown to give the
maximal diagnostic accuracy (8).

Predictive Modeling by SVMs

The four sets of 53 histogram signatures from the four
observers were used to create a dataset: the “training data-
set”. The remaining 33 histogram signatures from the fifth
observer were used to create another dataset: “test data-
set”. To compare our results with previous studies on
glioma grading, a preliminary �-SVM model was derived

FIG. 2. Simulation of a �-SVM model with a Gaussian RBF kernel on

two-class (“�” and “o”) arbitrary data, using different values of � and

�. The parameter values are as follows: (a) � � 0.1 and � � 0.02; (b)

� � 0.9 and � � 0.02; (c) � � 0.5 and � � 0.2; and (d) � � 0.5 and

� � 0.002. In (a) and (b) the � parameter is kept constant at default

value (0.02 �1/53; 53 patients in training dataset), whereas in (c) and

(d) the � parameter is kept constant at a default value (� � 0.5).

Increasing the � parameter results in softer margins (i.e., higher

generalization) at the cost of more misclassifications. Reducing the

� parameter, affects the standard deviation in the Gaussian distri-

bution, resulting in a wider distribution and softer margins.
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with the only goal of optimally differentiating between
high-grade and low-grade gliomas in the training dataset
for each observer individually. Using histology as a refer-
ence, this �-SVM model was derived by varying the values
of � and � between 0.01 and 1 and between 0.00001 and 1,
respectively.

The second �-SVM model, used to predict glioma grades
in the test dataset, was created as follows: The diagnostic
accuracy of the model was derived by performing a 10-fold
cross validation on the training dataset (repeated testing of
the diagnostic accuracy of the model on 10 random selec-
tions based on the remaining 43 samples). First, the value
of � was varied between 0.01 and 1. Because the model is
more sensitive to the � parameter than the � parameter of
the RBF kernel (16–18), the � value at this point was kept
constant at default value (0.018 � 1/53; 53 patients in
training dataset). To reduce observer specific variations,
the final accuracy value for each value of � was taken as the
mean accuracy value across the four observers. The opti-
mal � value was assumed to be the � value providing the
maximal accuracy value of the cross validation. Using this
optimal � value, the value of � was then varied between
0.00001 and 1. The optimal � value was assumed to be the
� value providing the maximal accuracy value of the cross
validation. A schematic flow-diagram of the �-SVM model
design is shown in Fig. 3. For each value of � and �, the
�-SVM model was applied on the test dataset to evaluate
the accuracy of the model when predicting glioma grades
in new patients. Also, to remove random spikes in the
accuracy values from the cross validation, a low-pass filter
with a filter coefficient equal to the reciprocal of the span
(1/53) was applied to the curve of the accuracy values as a
function of � and �, respectively.

In addition, an iterative algorithm was created to evalu-
ate whether the �-SVM model improved with the number
of histogram signatures (i.e., data samples) included in the
training dataset. The sample size in the training dataset
was varied between five histogram signatures (randomly
sampled) up to all 53 signatures, adding one signature at a
time. To exclude selection bias, a new random sample of
signatures was selected for each step and for each ob-
server. At each step, the �-SVM model design as described
above was derived from the training dataset used on the
full test dataset to predict glioma grades.

Statistical Analysis

The diagnostic accuracy (13) of the �-SVM model on the
training dataset was evaluated by assessing the ratio of
gliomas in the training dataset that were correctly graded
as either high-grade or low-grade by the �-SVM model. The
diagnostic accuracy of the �-SVM model on the test dataset
was evaluated by assessing true-positive rates (TPR) and
true-negative rates (TNR). A glioma classified by both his-
topathology and the �-SVM model as high-grade/low-grade
was considered a true-positive/true-negative finding, re-
spectively. Final TPR and TNR values for the different
combinations of � and � were averaged across the four
observers.

Based on the optimal � and � parameter values only, the
effect of increasing the sample size (including more pa-
tients) of the training dataset was evaluated using linear
regression. Here, mean TPR and TNR of the �-SVM model
on the test dataset across the four observers was derived at
each sample size. Also, interobserver agreement values
between the four observers were assessed at each sample
size using Fleiss-Kappa (�) statistics (28). Statistical anal-
ysis was performed using Matlab R2007a (The MathWorks,
Natick, MA, USA), SPSS 13 (SPSS Inc., Chicago, IL, USA),
and Minitab 15 (Minitab, State College, PA, USA).

RESULTS

Of the 53 patients in the training dataset, 29 received a
histological diagnosis of a high-grade glioma (WHO grade
III–IV), and 24 patients received a diagnosis of a low-grade
glioma (WHO grade I–II). Of the 33 patients in the test
dataset, 19 received a histological diagnosis of high-grade
glioma, and 14 patients received a diagnosis of low-grade
glioma. Of the total 38 low-grade gliomas, there were four
grade-I pilocytic astrocytomas, one grade-II gemistocytic
astrocytoma, 18 grade-II diffuse astrocytomas, five grade-II
oligodendrogliomas, and 10 grade-II oligoastrocytomas. Of
the total 48 high-grade gliomas, there were four grade-III
anaplastic astrocytomas, three grade-III anaplastic oligo-
dendrogliomas, four grade-III anaplastic oligoastrocyto-
mas, and 37 grade-IV glioblastomas.

Figure 4 shows sample nCBV maps overlaid on axial
T2-weighted images for two patients diagnosed with a low-
grade glioma and a high-grade glioma, respectively. The
corresponding histogram signatures were derived from the
complete distribution of nCBV values from the total tumor
volume as defined as by the observers. Typically, the nor-
malized nCBV distribution of a low-grade glioma has a

FIG. 3. Schematic flow-diagram of the �-SVM model design used in

our study. Based on the histogram signatures in the training dataset,

the � and � parameters giving optimal diagnostic accuracy are

obtained by iteration. Then, the model is applied on the new histo-

gram signature for prediction of tumor grade. After a histological

diagnosis is obtained, the new histogram signature is added to the

training dataset, thereby continuously increasing the size of the

training dataset.
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high peak and narrow distribution compared to the lower
peak and broader distribution of a high-grade glioma.

The �-SVM Model

The entire procedure of generating an optimized �-SVM
model based on a training dataset with 53 patients took
approximately 1 min (standard desktop computer with
Pentium 4 CPU, 3.19 GHz, and 3 GB RAM). Using � �

0.07–0.09 and � at the default value (1/53), the �-SVM
model differentiated between high-grade and low-grade
gliomas in the training dataset with an accuracy of 100%
(53/53) for all four observers.

For the predictive �-SVM model, the maximal filtered
accuracy value (83.96%) of the cross-validation was found
at � � 0.31 when the � parameter was kept at the default
value. Figure 5 shows the mean diagnostic accuracy values
across the four observers for the �-SVM model as a func-
tion of the � parameter, keeping � at default value. The
boundary conditions of the �-SVM model did not allow a �

value above 0.9. The TPR and TNR of the �-SVM model on
the test dataset were 0.64 and 0.76 when using � � 0.31.
Keeping � at 0.31, the maximal filtered accuracy value

(83.96%) of the cross-validation was found at � � 0.02.
Here, the TPR and TNR of the �-SVM model on the test
dataset remained unchanged, at 0.64 and 0.76, respec-
tively.

However, for the � iteration, using the highest possible �

value (0.56) providing accuracy values of the cross-valida-
tion within 99% of the maximal filtered accuracy value
resulted in TPR � 0.75 and TNR � 0.81 when using the
�-SVM model on the test dataset. Further, for � � 0.56,
using the lowest possible � value (0.0065) providing accu-
racy values of the cross-validation within 99% of the max-
imal filtered accuracy value increased the TPR to 0.76 and
the TNR to 0.82 when using the �-SVM model on the test
dataset. Figure 6 shows the mean diagnostic accuracy val-
ues across the four observers for the �-SVM model as a
function of �, keeping � at 0.56.

Effect of Increasing the Training Dataset Sample Size

Figure 7 shows the Fleiss-Kappa agreement values be-
tween the four observers as a function of patients included
in the training dataset. A significant increase (R2 � 0.46,
P � 0.001) in the agreement values was observed from five
patients (� � 0.139) up to 53 patients (� � 0.766). Using
optimal � and � values only, Fig. 8 shows the effect of
increasing the number of patients in the training dataset on
the mean TPR and TNR values when using the �-SVM
model on the test dataset. Whereas TPR increased signifi-
cantly with sample size (R2 � 0.311, P � 0.001), no signif-
icant sample size dependence was observed for TNR (R2 �

0.004, P � 0.692).

DISCUSSION

In this study we propose a threshold-independent ap-
proach for prospective glioma grading using the �-SVM

FIG. 5. Mean diagnostic accuracy values across the four observers

for the �-SVM model as a function of changing the � parameter from

0 to 1 in steps of 0.01, keeping the � parameter at default value of

1/53). The boundary conditions of the �-SVM model did not allow a

� value above 0.9. Based on the resulting low-pass-filtered accuracy

values (percent of gliomas graded correctly) in the training dataset

(bold solid line), the maximal accuracy value (83.96%) was found at

� � 0.31. Using the highest � value (0.56) providing accuracy values

within 99% (�83.12%) of the maximal filtered accuracy value re-

sulted in higher TPR (thin solid line) and TNR (thin dotted line) when

using the �-SVM model on the test dataset. The values of TPR and

TNR are presented on a scale from 0% to 100%.

FIG. 4. Coregistered nCBV maps overlaid on axial T2-weighted fast

spin-echo images (repetition time [TR]� 4000 ms/echo time [TE] �

104 ms) of a patient with a low-grade (WHO grade-II) diffuse astro-

cytoma (a) and a patient with a high-grade (WHO grade-IV) glioblas-

toma (b). A tumor area (white ROIs) was defined by the observers in

each tumor slice. c: Final histogram signatures of the complete

distribution of nCBV values from the total tumor volumes. The black

line represents the histogram signature of low-grade glioma in (a),

whereas the gray line represents the histogram signature of the

high-grade in (b).

Predictive SVM Modeling 949



model on nCBV histograms derived from MR perfusion
data. Using the entire nCBV tumor distribution rather than
a single threshold, a more robust base for prediction is
created. One potential feature of the �-SVM model is that
multiple channels of information can be included in the
training dataset. In addition to MR perfusion imaging, a
standard MRI protocol in patients suspected of a glioma
typically consist of conventional MRI (29), MR diffusion

imaging (30), and MR spectroscopy (7). Also, including
parameters from alternative dynamic imaging techniques
such as permeability analysis (Ktrans) (31), vessel size im-
aging (32), and vascular-space-occupancy imaging (33)
might improve the diagnostic accuracy obtained with the
�-SVM model. A more comprehensive model including
multiple information channels is currently being devel-
oped and evaluated. Furthermore, it has been shown that
SVM models have very good generalization ability and are
well-founded in theory (34,35). In addition, besides han-
dling large dataset and large feature vectors efficiently, this
kind of classification approach also yields superior perfor-
mance in many real-world applications when compared to
classical approaches like nearest neighbor classifiers
(kNN) (35,36). All these properties are attractive in a clas-
sification task such as glioma grading since sufficient flex-
ibility and robustness against data variability can be pro-
vided.

FIG. 6. Mean diagnostic accuracy values across the four observers

for the �-SVM model as a function of changing the � parameter from

0.00001 (1/105) to 1 in steps of 1/10n (n�5: �0.1:1), keeping the �

parameter at 0.56. Based on the resulting low-pass-filtered accu-

racy values (percent of gliomas graded correctly) in the training

dataset (bold solid line), the maximal accuracy value (83.49%) was

found at � � 0.0112. Using the lowest � value (0.0065) providing

accuracy values within 99% (�82.66%) of the maximal filtered

accuracy value resulted in higher TPR (thin solid line) and TNR (thin

dotted line) when using the �-SVM model on the test dataset. The

values of TPR and TNR are presented on a scale from 0% to 100%.

FIG. 7. Fleiss-Kappa agreement values between the four observers

as a function of patients included in the training dataset (at optimal

values of � and �). For each observer, a random sample of five

histogram signatures up to all 53 signatures was included in the

training dataset, adding one signature at the time. As illustrated by

the trend line (dotted line), a significant increase (R2 � 0.463, P �

0.001) in the agreement values was observed as more patients were

included in the training dataset.

FIG. 8. For an increasing number of patients included in the training

dataset (5–53), the scatter plots show mean TPR (a) and mean TNR

(b) across the four observers when using the �-SVM model on the

test dataset. For each step, the �-SVM model was based on optimal

� and � values only. The error bars indicate standard errors of the

mean values. As illustrated by the trend lines (dotted lines), TPR

increased significantly with sample size (R2 � 0.311, P � 0.001),

whereas TNR (R2 � 0.004, P � 0.692) did not.
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The �-SVM model could differentiate between the
53 high-grade and low-grade gliomas in the training data-
set with a perfect accuracy of 100% (53/53) for all observ-
ers. When the histological diagnosis is known, our results
suggest that a SVM-based model might be a better method
for retrospective grading of gliomas than current grading
methods (1–4,6–8,12). The clinical utility of a diagnostic
test depends, however, on its ability to correctly diagnose
new cases based on historical data. As shown by our
results, this is a challenging task. Although the “retrospec-
tive” accuracy was not achieved when using this model on
new patient data, TPR and TNR values above 0.76 were
obtained with a modest training set sample size. To our
knowledge, there are no previous studies that have inves-
tigated the prospective diagnostic accuracy of glioma grad-
ing based on DSC imaging. It is therefore difficult to assess
the quality of the proposed method compared to other
potential prospective grading methods. Clearly, the diag-
nostic accuracy should be as high as possible to have
clinical utility, and the accuracy of about 0.8 obtained
with the proposed �-SVM model may not be sufficient for
extensive clinical use. However, the TPR was shown to
significantly increase with increasing sample size, suggest-
ing that the diagnostic accuracy will reach an acceptable
level with a sufficient increase in the sample size.

When iterating over the � parameter, the maximal fil-
tered accuracy value of the cross-validation was found at
� � 0.31. However, using � � 0.31 did not give optimal
TPR and TNR values for the test dataset. The diagnostic
accuracy for the test dataset could be increased by increas-
ing � beyond the optimal value for the training dataset,
with minimal influence (�1% reduction) on the accuracy
for the training dataset. The same result was observed
when iterating over the � parameter. Using the lowest �

value providing accuracy values in the training dataset
within 99% of the maximum accuracy value resulted in a
more generalized model (higher TPR and TNR in the test
dataset) without losing more than 1% accuracy in the
training dataset. This suggests that any grading model, or
threshold value, is inherently overadapted to the data from
which it was derived. Further, at least for the relatively
low sample size used in our study, the model was rather
insensitive to changes in the �-value. Hence, it is therefore
recommended to focus on optimizing the � parameter.

When increasing � toward the upper bound of the ad-
missible vales (0.9) (16), the accuracy of the �-SVM model
on the training data decreased, probably because the
model becomes too generalized, resulting in poor discrim-
inating power. Interestingly, this had little effect on the
prediction of glioma grades in the test dataset, as TPR and
TNR values were relatively unchanged for � � 0.7. As
confirmed by theory, this is because the � parameter alter-
ing the support vectors of the training dataset may not
result in a similar variation in the corresponding test data-
set (18,37). However, as confirmed by our data, this does
not imply that the optimal � value is found at the highest
� value (� � 0.9).

The �-SVM model on the test dataset provided higher
TNR than TPR. In our study, the final �-SVM model was
based on � and � values providing the highest accuracy
(combination of TPR and TNR) on the training dataset.
However, depending on the desired output, a model pro-

viding a high TPR at the cost of a reduced TNR might be

suitable. In glioma grading, it can be argued that a high

TPR is more important than a high TNR as the conse-

quence of treating a high-grade glioma as a low-grade

glioma is more severe than treating a low-grade glioma as

a high-grade glioma (7,38).

The TPR of the �-SVM model on the test dataset was

found to significantly increase with increasing sample

size, whereas TNR showed no significant sample-size de-

pendence. This result suggests a smaller interpatient vari-

ation in the histogram signatures from low-grade gliomas

compared to the signatures from high-grade gliomas. This

is confirmed by studies showing that the distributions of

nCBV values in high-grade gliomas are more heteroge-

neous than the distributions in low-grade gliomas (8,12).

Thus, by including more samples for training, the variabil-

ity within the histogram signatures of the high-grade glio-

mas allows a better optimization of the margin and the

separating hyperplane, thereby resulting in a higher gen-

eralization and robustness of the �-SVM model.

In addition, the interobserver agreement between the

four observers increased significantly with increasing sam-

ple size. Hence, as a larger sample size becomes available,

the �-SVM model should become less influenced by oper-

ator-induced variations in the input data. A further aim

with increasing sample size would be to obtain sufficient

discriminating power between classes to differentiate be-

tween WHO grades I, II, III, or IV instead of just low-grade

or high-grade tumors.

A potential limitation in our model was that a standard

RBF kernel function was used. Although the chosen kernel

has previously been shown to fit histogram data (19), it is

likely that the model could be further optimized by a more

careful selection of the kernel function (16). Also, all gli-

oma grades (I–IV) were included in our study. Even though

glioma grading might be difficult if patients with grade-I

pilocytic astrocytomas and grade-II oligodendroglial tu-

mors are included (39,40), it would represent a major

limitation to the predictive model if these tumors had to be

characterized by other diagnostic techniques. Another lim-

itation to the study is that the developed �-SVM model has

so far not been tested on data from other institutions, and

therefore, although the current histogram grading method

shows high interobserver agreement (8), the stability of the

model for interinstitutional data has not been shown. To

address this limitation, a multicenter evaluation of the

�-SVM model is currently being initiated by our group.

Potential confounding variability in the tumor ROI defini-

tions between observers and institutions will be addressed

in this evaluation.

In summary, we have shown that a �-SVM-based predic-

tive model can be applied to tumor histogram signatures

obtained from nCBV maps derived from MR-based DSC

imaging. The method enables prospective determination

of glioma grade with a significant increase in TPR and

interobserver agreement with increasing size of the train-

ing dataset. The �-SVM model as presented in this study

can readily be implemented in a clinical setting, providing

an important step toward a fully-automated MR-based gli-

oma grading procedure.
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