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Abstract 

Gliomas are the common type of brain tumors originating from glial cells. Epidemiologically, gliomas occur among 
all ages, more often seen in adults, which males are more susceptible than females. According to the fifth edition 
of the WHO Classification of Tumors of the Central Nervous System (WHO CNS5), standard of care and prognosis of 
gliomas can be dramatically different. Generally, circumscribed gliomas are usually benign and recommended to early 
complete resection, with chemotherapy if necessary. Diffuse gliomas and other high-grade gliomas according to their 
molecule subtype are slightly intractable, with necessity of chemotherapy. However, for glioblastoma, feasible resec-
tion followed by radiotherapy plus temozolomide chemotherapy define the current standard of care. Here, we discuss 
novel feasible or potential targets for treatment of gliomas, especially IDH-wild type glioblastoma. Classic targets such 
as the p53 and retinoblastoma (RB) pathway and epidermal growth factor receptor (EGFR) gene alteration have met 
failure due to complex regulatory network. There is ever-increasing interest in immunotherapy (immune checkpoint 
molecule, tumor associated macrophage, dendritic cell vaccine, CAR-T), tumor microenvironment, and combination 
of several efficacious methods. With many targeted therapy options emerging, biomarkers guiding the prescription of 
a particular targeted therapy are also attractive. More pre-clinical and clinical trials are urgently needed to explore and 
evaluate the feasibility of targeted therapy with the corresponding biomarkers for effective personalized treatment 
options.
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Introduction
The most common malignant primary brain tumor 
in adults is glioma. Based on the previous histologi-
cal classification of gliomas from grade I to IV in WHO 
classification in 2016 [1], molecular biomarkers of differ-
ent tumor types were updated in WHO CNS5 in 2021, 
bringing more benefits and meaningful instructions to 
clinic. Generally, gliomas are divided into circumscribed 
gliomas and diffuse gliomas, with the former one being 

benign and curable after complete surgical resection 
and the latter one being more malignant and unable to 
be cured following surgical resection alone. According to 
that the fifth-edition WHO Blue Books have emphasized, 
use of Arabic numerals for grading is recommended [2]. 
In addition, WHO CNS5 has proclaimed the importance 
of grading within tumor type. Thus 4 different families 
are divided: 1) Adult-type diffuse gliomas; 2) Pediatric-
type diffuse low-grade gliomas; 3) Pediatric-type diffuse 
high-grade gliomas; and 4) Circumscribed astrocytic 
gliomas. Nevertheless, for convenience, here we review 
targeted therapy of gliomas still in an order of summing 
up different types of tumors in a certain grade. Thus 
overall, low-grade glioma (LGG) contains CNS WHO 
grades 1–2, while high-grade glioma (HGG) contains 
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CNS WHO grades 3–4. LGG, accounting for 6% of CNS 
primary tumors in adult, usually presents more promis-
ing prognosis [3]. The more common CNS WHO grade 
1 LGG in child have the best prognosis [4], while grade 2 
LGG usually relapses and progresses to HGG [5]. Besides 
diffuse midline glioma H3 K27M-altered, glioblastoma 
(GBM) is the majority of WHO grade 4. GBM is one of 
the most lethal and prone to recurrence malignant solid 
tumor, accounting for 57% of all gliomas and 48% of pri-
mary CNS malignant tumors [6], with median survival 
time less than 2 years. Currently, standard magnetic reso-
nance imaging could provide the most initial and sensi-
tive diagnosis to GBM, while GBM diagnosed with such 
method have usually developed into advanced stage [7].

Both The 2016 WHO classification and WHO CNS5 
have declared the mutational status of isocitrate dehy-
drogenase (IDH) should be considered regarding LGG, 
which emphasized IDH-wildtype (IDH-WT) as the criti-
cal biomarker of high-risk LGG since the molecular char-
acteristics and clinical manifestations of IDH-WT LGG 
are similar to those of GBM. Analogously, glioblastomas 
with mutant IDH are characteristically similar to ana-
plastic astrocytoma (though nomenclature “anaplastic 
astrocytoma” is no longer included in WHO CNS5 clas-
sification), thus treatment of glioma much relying on 
molecular diagnosis and classification.

Except for IDH status, MGMT methylation is hitherto 
regarded as another significantly prognostic biomarker. 
Other markers in CNS5 are merely related to grade and 
further estimate prognosis, such as CDKN2A/B homozy-
gous deletion in IDH-mutant astrocytoma, as well as 
1p/19q co-deleted, TERT promoter mutation, EGFR 
amplification or mutation, and + 7/ − 10 copy number 
changes in IDH-wildtype diffuse astrocytoma [2]. Among 
those, only EGFRvIII mutation is unequivocally clini-
cally instructional (see below). Recently researchers have 
also concentrated on mismatch repair (MMR) protein 
as a novel biomarker due to its high relevant associa-
tion with tumor mutational burden (TMB) [8], though it 
appears MMR status in recurrence GBM is not a prog-
nostic marker. Thus, treatment of glioma much relying 
on molecular biomarkers as criteria of diagnosis and 
classification.

Histologically, LGG tumor cells present nuclear atypia 
and increased mitotic activity, while GBM cells charac-
teristically remain areas of microvascular proliferation, 
focal necrosis, or both [9]. Histological distinction does 
not make a difference to the current clinical treatment. 
However, the variety of molecular subtypes is often 
related to the treatment and prognosis of patients. Spe-
cifically, IDH-WT glioblastoma usually contains higher 
level of epidermal growth factor receptor (EGFR) ampli-
fication, TERT promoter mutation and PTEN deletion, 

etc. [10]. Meanwhile, patients with MGMT promoter 
methylation, observed in 30% to 50% of IDH-WT glio-
blastoma [11, 12], may present better prognosis and 
treatment response. Pediatric LGGs and those in adults 
are distinct in molecular characteristics, though similari-
ties on histology exist a lot. Pediatric LGGs were thought 
to carry mutations of FGFR1 and BRAF, both concentrat-
ing on MAPK pathway, although recently in WHO CNS5 
pediatric-type low-grade diffuse gliomas include Diffuse 
astrocytoma, MYB- or MYBL1-altered; Angiocentric 
glioma; Polymorphous low-grade neuroepithelial tumor 
of the young; and Diffuse LGG, MAPK pathway-altered. 
Adult LGGs are characterized by mutations of IDH1/2 
and ATRX, with 1p/19q codeletion sometimes. TERT 
promoter mutation was also found in LGG, which has to 
do with oligodendroglioma. Moreover, Epithelioid glio-
blastoma, as a newly discovered GBM tissue subtype, 
often carries  BRAFV600E mutations. Since the consensus 
treatment currently is restricted to limited number of 
patients (as mentioned below) and most of gliomas failed 
to meet completely recovery, including either unexpected 
relapse or worse progression in LGGs and poor survival 
particularly in GBM, original insights into therapies are 
pressing. With regard to molecular heterogeneity, the 
importance of varying and adequate targeted therapy is 
self-evident in order to open up more possibility to treat-
ment of gliomas, to say nothing of the fact that since the 
discovery of PD1/PDL1 awarded as Nobel Prize more 
and more immunotherapy options have been proposed 
and developing. Correspondingly, predictive biomarkers 
are strongly recommended to be identified for optimizing 
the efficacy of immunotherapy. For instance, MHC class 
I-negative glioma cells were found to be associated with 
inactivation and resistance to immunotherapy [8].

Current standard of care
As discussed above, the prognosis of WHO grade 1 and 2 
glioma is the most promising [13], whereas differing from 
classification of molecular phenotype. IDH mutation 
and 1p/19q codeletion tumor (corresponding to oligo-
dendroglioma) has the best prognosis, followed by IDH 
mutation and 1p/19q intact tumor, and IDH wild type 
tumor [14]. Although it is previously thought that "wait 
and see" approach could be used safely and appropriately 
for LGGs, recent trials have found that surgical resection 
should be performed on patients as soon as possible to 
avoid subsequent malignant progression of the tumor 
and meanwhile to accurately identify the molecular sub-
types of the tumor [15]. For high-risk LGG, due to the 
high possibility of recurrence, the standard of postop-
erative care is necessary, including 50-54 Gy local radio-
therapy, followed by 6 cycles of adjuvant procarbazine or 
Lomustine or vincristine (PCV), in which Lomustine is 



Page 3 of 32Yang et al. Molecular Cancer           (2022) 21:39  

usually selected, due to its respectively mild toxicity and 
blood–brain barrier limitations [14]. Recent decades, the 
replacement or combination of radiotherapy with chem-
otherapy and target therapy and individualized treatment 
for different patients have been gradually proposed [16–
18]. For instance, for some patients with unresectable 
pediatric LGG, carboplatin and vincristine are regarded 
as standard treatment [19].

For GBM, a gross total resection, radiotherapy in the 
focal tumor area and concomitant Temozolomide (TMZ) 
chemotherapy and certain dose of radiotherapy should 
be taken as the standard treatment (Stupp treatment) 
[20, 21]. Tumor-treating field, as a novel strategy of care, 
improves progression-free survival (PFS) and overall 
survival (OS) [22], whereas not included in the current 
general consensus on GBM treatment. All glioblastomas 
will eventually progress or relapse, and there is no stand-
ard treatment for recurrent GBM (rGBM). Lomustine, 
another alkylating agent, most widely used in recurrent 
GBM and also in “control group” in the lately recurrent 
GBM randomized trial [23], is partially considered to 
be the standard choice for rGBM, but only effective in 
patients with MGMT methylation [6]. European asso-
ciation of neuro-oncology (EANO) proposed for patients 
with rGBM to continue using TMZ or Bevacizumab [20]. 
However, TMZ often produces drug resistance due to 
the non-methylated MGMT promoter in tumor cells of 
patients [24], and bevacizumab could only prolong the 
PFS of rGBM. Notably, the combined therapy presents 
better effect.

Glioblastoma
Alkylating agent and MGMT promoter methylation
Temozolomide, currently used in the standard treat-
ment of GBM, is an alkylating agent that induces 
tumor cell death by alkylating DNA at multiple sites. 
 O6-methylguanine DNA methyltransferase (MGMT) 
functions as a sort of repairing protein [25, 26], which 
is encoded by MGMT and could reverse this alkylation 
process by consuming itself. Hence, MGMT promoter 
methylation is a strong prognostic biomarker and brings 
benefits, at least theoretically, to patients treated with 
TMZ combined with radiotherapy [25, 27] (Table 1).

Studies have confirmed that it’s better to initiate post-
surgery TMZ chemotherapy within 6  months [28, 29]. 
Since the effect of TMZ combined with radiotherapy dif-
fers among patients, evaluating the status of MGMT pro-
moter has been recognized for its significance. Though 
there is no such thing as international consensus on the 
best diagnostic method of measuring MGMT promoter 
[30], there have been various development to evaluate 
the level of MGMT methylation in patients with GBM 
[30–33]. There is occasionally no predictive relationship 

between the methylation level of MGMT promoter and 
the level of the corresponding protein. Clinical trial 
showed that TMZ might lead to recurrence of GBM with 
high expression of MGMT [34], and resistance to TMZ 
was presumed related to MGMT gene fusion or rear-
rangement mutation [35]. Thus, more effective target 
therapies are urgently needed.

Recently, animal models present that Bortezomib could 
increase the sensitivity of GBM to temozolomide by 
reducing MGMT mRNA and protein [36]. Newly discov-
ered enhancer, namely K-M enhancer, increases MGMT 
expression thus inducing TMZ resistance despite of 
the hypermethylated MRMT promoter [37]. Therefore, 
the combination of TMZ and K-M enhancer inhibitors 
could be a potent treatment modality. Besides, Frenel 
et al. proved that the combination of folic acid, TMZ and 
radiotherapy in the treatment of unmethylated MGMT 
patients was feasible, suggesting the prospect of inducing 
MGMT methylation in GBM therapy (NCT01700569) 
[38].

Tyrosine kinase receptor
Epidermal growth factor receptor (EGFR)
Two measures are usually considered for treatment of 
GBM with EGFR as the target: one is to use EGFR inhibi-
tors, and the other is to use antibodies, vaccines, CAR-T 
and other therapies to limit the content of EGFR (Fig. 1). 
EGFR is one of the most common oncogenic mutation 
sites in IDH-WT GBM [10], relevant to proliferation, 
migration and escape from apoptosis of tumor cells [39]. 
EGFR mutations occur in about 50% of all GBM samples, 
of which more than 40% are gene amplification, and the 
rest include gene mutations, rearrangements, splicing 
site changes, etc. [10, 40–43]. The most common gene 
mutation of EGFR is EGFRvIII (deletion of exons 2–7) 
[10], as a potential marker of treatment for GBM.

EGFR inhibitors, Gefitinib and Dacomitinib, are not so 
effective in the treatment of EGFR-amplification GBM 
patients (NCT01520870, NCT02447419) [44, 45], which 
is conjectured to be related to the blockage of blood–
brain barrier (BBB). Osimertinib, as the third genera-
tion of inhibitor targeting EGFR in non-small-cell lung 
cancer (NSCLC), with better ability in BBB penetration, 
needs to be further verified before clinical application 
[46]. Recently, Osimertinib could not only inhibit EGFR-
negative glioblastoma patient-derived xenograft (PDX), 
possibly via regulation of MAPK pathway [47], but also 
inhibit transcription factor EGFR-TAZ [48], providing a 
novel insight for drug reuse of EGFR-targeted inhibitors.

Antibodies of EGFR mostly failed in trials out of expec-
tation [49, 50]. However, Nimotuzumab was more effec-
tive with patients carrying activated akt/mTOR [51]. 
Depatuxizumab (formerly ABT-806) showed limited 
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efficacy, but Depatuxizumab mafodotin (formerly ABT-
414), an antibody–drug conjugate using EGFR antibody 
as receptor-direction, seemed to be effective in recurrent 
GBM (rGBM) after standard treatment of TMZ [52, 53], 
but ineffective in newly-diagnosed GBM (NCT02573324) 
[54]. Novel methods are proposed to overcome the prob-
lem of BBB blockage with their feasibility to be verified 
before clinical application [55, 56]. Vaccination Rindo-
pepimut combined with TMZ in rGBM patients carrying 
EGFR-VIII is relatively active (originally NCT00458601) 
[57], but it failed to present effectiveness in a phase 
III trial (NCT01480479) [58]. CAR-T therapy is still 
under phase I trial and demonstrates expected effect 
(NCT02209376) [59, 60].

PI3K/AKT/mTOR pathway
PI3K/mTOR is one of the most common mutation path-
ways in patients with IDH-WT GBM [10]. Activation 
of PI3K in GBM is mainly due to the mutation of phos-
phatase and tensin homolog on chromosome ten (PTEN) 
[61, 62]. Early in 2005, it was proved that the mTOR 
inhibitor temsirolimus was inactive as a single drug in 
rGBM [63]. A recent phase I clinical trial exploring the 
combined Temsirolimus and AKT inhibitor perifosine 
demonstrated disappointing results, but it was observed 
that patients had higher tolerance to Temsirolimus, 
which was speculated to be related to the use of corti-
costeroids in the experiment (NCT01051557) [64]. As 

a new PI3K pan-inhibitor, Buparlisib was also proved 
to be ineffective against rGBM in experiments, either 
as a single dose [65] or combined with carboplatin or 
Lomustine (NCT01339052, NCT01934361) [66]. Further 
research for an oral PI3K inhibitor, Bevacizumab with 
BKM120, was terminated due to low tolerance in patients 
(NCT01349660) [67]. Combination of Perifosine and 
Temsirolimus for rGBM is under test in an ongoing trial 
(NCT02238496).

The mTOR inhibitor Everolimus was not effective 
in patients with newly diagnosed MGMT promoter-
unmethylated GBM, either used alone (NCT01019434) 
[68] or combined with radiotherapy or TMZ 
(NCT00553150) [69]. A recent phase I trial of Bupar-
lisib combined with TMZ and radiotherapy in newly 
diagnosed GBM patients was interrupted due to adverse 
events and dose-limiting toxicities of Buparlisib, sug-
gesting the deficiency of this combined treatment 
(NCT01473901) [70].

In short, PI3K pathway as a therapy target in GBM is 
often ineffective and followed with relatively low patient 
tolerance, which may be related to the complex molecu-
lar regulation of PI3K/AKT/mTOR. Some trials have 
shown that the tolerance of inhibitors will increase sig-
nificantly under certain conditions that have not yet been 
explored, and it is possible to find ways to help patients 
tolerate higher doses in the future to ensure effects of 
targeted therapy. In addition, the current effect of PI3K 

Fig. 1 Tyrosine kinase receptor
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inhibitors combined with other treatments is not ideal, 
which more combination strategies should be explored in 
the future.

MET
MET gene encodes hepatocyte growth factor receptor 
(also known as scatter factor), which is thought to play 
an important role in the migration, invasion, drug resist-
ance and recurrence of glioma cells, especially in radia-
tion resistance, inhibition of angiogenesis and hypoxia 
[71, 72]. About 30% GBM patients are charactered by 
MET hyper-expression [73]. The use of AMG102 (Rilo-
tumumab) antibody alone had no effect on inhibiting the 
progression of GBM [74]. A clinical trial of combined 
antibody Onartuzumab and antivascular drugs confirmed 
that there was no significant benefit for rGBM patients 
but those with high expression of HGF (NCT01632228) 
[75]. Cabozantinib, an inhibitor of MET, whether in com-
bination with antiangiogenic drugs or not, was mildly 
active in patients with rGBM (NCT00704288) [76, 77]. 
Combined Buparlisib and MET inhibitor Capmatinib 
failed to prolong the survival of PTEN-loss recurrence 
GBM patients (NCT01870726) [78]. Since mutations in 
c-MET often lead to drug resistance in GBM patients, 
influencing the efficacy of PI3K targeted therapy, the 
combination of MET inhibitors and PI3K inhibitors can 
be considered in follow-up trials.

Fibroblast growth factor receptor (FGFR)
FGFR is widely expressed in GBM, but its therapeutic 
value may be limited to a small number of patients with 
FGFR-TACC fusion [79]. One case with stable disease 
and one case with partial response were reported in 2 
FGFR3-TACC3-positive rGBM patients treated with 
oral pan-FGFR kinase inhibitor Erdafitinib [80]. Simi-
larly, only partial response in FGFR3-TACC3 positive 
GBM patients treated with this inhibitor was reported in 
another phase I trial (NCT01703481) [81]. In recent tri-
als, the use of Dovitinib, an oral inhibitor of FGFR and 
VEGFR, whether combined with anti-vascular therapy 
or not, was ineffective in prolonging survival in patients 
(NCT01753713) [82].

BRAF mutation
BRAF, a member of Raf kinase family, participates in 
activation of Mek/Erk signaling pathway and promotes 
cell proliferation [83]. Mutations of BRAF, particularly 
BRAFV600E missense mutation, are observed in multi-
ple types of cancer and have been proved to be a reliable 
target [84–87]. Although BRAF mutation was observed 
in several glioma subtypes, it was rare in high grade glio-
mas including GBM [88]. The low mutation rate of BRAF 
in GBM limited the therapeutic effect [89–92].

Neurotrophic tyrosine receptor kinases (NTRK)
NTRK is encoded by three different genes, namely 
NTRK1, NTRK2 and NTRK3. The genomic rearrange-
ment of NTRK gene leads to gene fusion [93], which 
may trigger the activation of carcinogenic TRK signaling 
pathway. The incidence of NTRK gene fusion seems to 
be quite rare in glioblastoma [94]. An adult GBM patient 
with IDH-WT and NTRK2 rearrangement was treated 
with Larotrectinib and Entrectinib successively, showed 
a robust but temporary response. Re-biopsy after disease 
progression showed that the tumor cells carrying rear-
ranged NTRK2 were eliminated and the tumor cells with 
amplification of PDGFRA survived [95]. Larotrectinib 
was also used in a female patient with infantile GBM, 
and the curative effect was significant [96]. Entrectinib 
was also effective in the treatment of infantile GBM [97], 
indicating the potential therapeutic value and diagnostic 
value of NTRK fusion for GBM.

Cell cycle control and apoptosis regulating pathways
The retinoblastoma (pRB) pathway
In most IDH wild-type GBM, the cell cycle control of 
pRB pathway is alternated due to homozygous deletion 
of CDKN2A/B, amplification of CDK4/6, and change of 
RB1 gene (Fig.  2). Challenging abstacles appears when 
applying pRB pathway as clinical target, due to the 
extensive existence of this pathway in normal cells [98]. 
CDK4/6 inhibitor Palbociclib for GBM was disappoint-
ing in a phase II trial (NCT01227434) [99]. Ribociclib 
as a single agent was also ineffective (NCT02933736) 
[100, 101]. SPH3643, as a newly-discovered inhibitor of 
CDK4/6 has not been tested in clinical trials, but its BBB 
permeability may indicate better clinical benefits than 
Palbpciclib [102]. TG02 is a multi-CDK inhibitor mainly 
targeting CDK9 rather than CDK4/6, currently being 
tested in clinical trials for rGBM and newly diagnosed 
GBM (NCT02942264, NCT03224104).

The p53 pathway
TP53, as a tumor suppressor, has been deeply elucidated 
in GBM. Given the key function of p53 in blocking cells 
in G0/1 and in inducing apoptosis in response to geno-
toxic stress [103, 104], how to restore the function of p53 
has been widely studied. Although drugs for promoting 
the refolding of mutant proteins into wild-type confor-
mations have not been successful, continuous efforts have 
been put in inhibiting the negative regulatory proteins 
of p53, MDM2 and MDM4, which aims at neutralizing 
defective MDM2 and MDM4 produced by amplification 
of MDM2 and MDM4 gene in GBM patients [105, 106]. 
The MDM2 inhibitor AMG 232 suppressed tumor pro-
gression in the course of the trial (NCT01723020) [107]. 
AZD1775, an inhibitor of Wee1 kinase, showed better 



Page 9 of 32Yang et al. Molecular Cancer           (2022) 21:39  

brain tumor penetration but further trials are needed to 
prove its curative effect [108].

TERT promoter mutation
TERT promoter mutation is one of the most common 
molecular markers in IDH wild-type GBM [10, 109]. Two 
hot spots of TERT mutation produce new E-twenty-six 
transcription factors binding sites and increase TERT 
transcription, thus increasing TERT activity [110].

It was previously thought that the effect of MGMT 
promoter methylation on chemotherapy sensitivity and 
prognosis may be different in tumors with and without 
telomerase reverse transcriptase (TERT) promoter muta-
tion [111]. However, recent studies have found that when 
patients with MGMT promoter methylation are treated 
with standard TMZ chemotherapy, TERT is likely to 
exert a positive effect [112].

TERT promoter mutation has not yet become the 
main pharmacological target for tumor therapy. Tubulin 
polymerization inhibitor Eribulin exerts TERT inhibi-
tory activity in GBM model, which proves the rational-
ity of its clinical application [113]. The mutation of TERT 

promoter creates a binding site for GABP transcription 
factor complex. Down-regulation of GABPB1L, an iso-
mer of a subunit of GABP, could significantly improve the 
survival rates when combined with TMZ in GBM model, 
shedding light on the significance of finding its inhibi-
tor [114]. Bases editing by CRISPR/Cas9 could correct 
TERT mutation and reduce the binding activity of ETS 
transcription factors to slow down tumor growth [115], 
but the prospect of gene therapy in clinic is still open to 
question.

Proteasome
As the vital mediator of intracellular degradation of use-
less or/and toxic proteins [116], proteasome promotes 
apoptosis by regulating p53 and ER stress, which criti-
cally regulates cell cycle and affects drug resistance of 
tumor cells [117]. Currently, bortezomib, Ixazomib, and 
Marizomib have been the clinically approved proteasome 
inhibitors.

Bortezomib combined with Vorinostat, a his-
tone deacetylase inhibitor, was ineffective in rGBM 
(NCT00641706) [118], while Bortezomib combined with 

Fig. 2 Cell cycle control and apoptosis regulating pathways
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standard radiotherapy was well-tolerated and presented 
promising survival rates (NCT00998010) [119]. Mari-
zomib combined with TMZ is ongoing a phase III trial 
(NCT03345095), and Marizomib combined with Beva-
cizumab is ongoing a phase I/II trial (NCT02330562). 
Ixazomib has distinct permeability to tumor tissues 
preclinically with its efficacy trials to be further verified 
[120].

Disulfiram not only restricts the proteasome from 
peripheral blood cells to a certain extent, but also has 
favorable BBB penetration ability and better drug resist-
ance to exert its anti-tumor effects [121] in newly-diag-
nosed GBM and rGBM models. However, a phase II trial 
reported that Disulfiram was limited in sensitizing TMZ 
(NCT03034135) [122].

Microenvironmental targets—Angiogenesis
Vascular Endothelial Growth Factor (VEGF)
GBM is characterized by the abnormality in vascular pro-
liferation (Fig.  3). VEGF is highly expressed in glioblas-
toma and promotes the abnormal proliferation of tumor 
blood vessels. VEGFR1 and VEGFR2 signaling pathways 
are suggested as the critical factor of tumor survival in 
GBM [123]. Hypothetically, vascular normalization could 
increase tumor blood perfusion and help improve patient 
survival (NCT00035656) [124].

Bevacizumab, a humanized monoclonal antibody 
against the VEGF-A ligand, binds to endothelial cells and 
inhibits angiogenesis [125]. In Phase II clinical non-con-
trolled trials, Bevacizumab presents significant biological 
activity, anti-glioma activity, high radiation response rate 
(RR), high overall survival (OS) and 6 months PFS(PFS-6) 
in newly diagnosed and rGBM [126–128]. In Phase 
III clinical trials, Bevacizumab could also significantly 
improve PFS (NCT00884741) [129]. However, it did not 
improve OS even with the adjuvant chemoradiotherapy 
or lomustine and was reported with high frequency of 
adverse events (NCT00943826, NCT01290939) [23, 129, 
130], and the quality of life raised, declined or remained 
the same which reached opposite results in different 
trials [129, 130]. IDH1-wildtype GBM patients exhib-
ited prolonged OS after receiving Bevacizumab therapy 
(NCT00943826) [131]. Bevacizumab could develop 
drug resistance within months. The efficacy of multi-
kinase inhibitor Ponatinib in GBM patients is very lim-
ited in Bevacizumab-refractory GBM (NCT02478164) 
[132]. Also, patients who progress on VEGF R-TKi with 
Bevacizumab only benefit modestly [133]. The latest 
research showed that the response to Bevacizumab in 
some patients might correlate with antibody dependent 
cytotoxicity(ADCC) [134].

Bevacizumab plus Temozolomide exhibits great effi-
cacy and tolerance [135]. In some trials, Bevacizumab 

Fig. 3 Microenvironmental targets
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plus Trebananib had less effect than single agent 
(NCT01609790, NCT01609790) [136, 137]. Bevaci-
zumab plus erlotinib or metronomic Etoposide had 
a similar effect to Bevacizumab monotherapy and 
Etoposide showed a greater toxicity (NCT00671970, 
NCT00612430) [138, 139]. The efficacy of small dose 
Bevacizumab plus Lomustine was not improved [140]. 
Bevacizumab combined with CCNU radiotherapy sig-
nificantly improved PFS in IGS-18 GBM [141]. Although 
Bevacizumab plus Rilotumumab showed 3–4  months 
improvement in median OS over single agents in rGBM, 
PFS was not increased (NCT01113398) [142]. Adminis-
tration of concurrent Bevacizumab and Erlotinib pre-
sented significantly higher RR and PFS-6 [143].

Other VEGF inhibitor like Cediranib, a pan-VEGF 
receptor tyrosine kinase inhibitor, showed significant 
efficacy and PFS-6 in phase II clinical trial of rGBM 
(NCT00305656) [144]. In newly-diagnosed GBM 
patients, Cediranib promoted the blood perfusion and 
prolonged the OS (NCT00662506) [145]. Cediranib 
also declined the tumor-associated angiogenic brain 
edema (NCT00254943) [146]. However, it failed to 
prolong the PFS in phase III clinical trial of rGBM 
(NCT00777153) [147].

Pazopanib and Tivozanib have in  situ bioactiv-
ity and similar tolerance to other anti-VEGF drugs, 
but they failed to prolong PFS and OS in phase II trials 
((NCT00459381, NCT01846871, NCT00350727)) [148–
150]. Phase I trial of Aflibercept showed great toxic side 
effect to rGBM while the efficacy is very limited [151]. A 
phase II trial suggested that Aflibercept binds to VEGF 
with a greater affinity than Bevacizumab, whereas, with-
out greater efficacy [152]. Axitinib, a tyrosine kinase 
inhibitor (TKI) against VEGFR-1, 2 and 3, could be a 
potential combination partner with immunotherapy 
(NCT01562197) [153]. Other inhibitors like Aflibercept 
could also down-regulate the activity of VEGF and needs 
to be further studied (NCT00369590) [154].

Integrin
Integrins are a family of 24 heterodimeric cell surface 
receptors that participate in signal transduction involved 
in many cellular processes. They also mediate cellular 
communication within the extracellular matrix during 
adhesion, motility, migration, invasion and angiogenesis. 
Integrins αvβ3 and αvβ5 are highly expressed in endothe-
lial cells and identified as preclinical therapeutic targets 
in GBM [155, 156].

Cilengitide is a selective integrin inhibitor targeting 
αvβ3 and αvβ5, which its combination with Cediranib 
had a great tolerance to rGBM patients in a phase I trial 
(NCT00979862) [157]. In a phase II trial, Cilengitide 
has a moderate efficacy which could be transported and 

accumulated in rGBM cell through binding with avβ3 
and αvβ5 [158, 159]. TMZ/RT-TMZ plus Cilengitide 
with great tolerance and efficacy could not improve 
invasiveness or recurrent rate of newly-diagnosed GBM 
(NCT00813943) [160, 161]. In GBM patients with 
MGMT promoter methylation, Cilengitide had good 
performance as adjuvant administration with standard 
treatment (NCT00689221, NCT00689221) [162, 163]. 
But Cilengitide failed to reach the primary endpoint in 
non- methylated patients (NCT01124240) [164]. In phase 
I and II trials, Cilengitide was proved incapable of being 
the monotherapy in children with GBM [165, 166]. A 
phase III trial showed limitation on the efficacy of Cilen-
gitide (NCT00689221) [167]. Although Cilengitide has 
not exhibited remarkable potential as monotherapy, inte-
grins remain to be the important target.

Transforming growth factor (TGF)‑β
The TGF-β protein family has complex functions in a 
wide range of regulatory pathways [168, 169], among 
which TGFβ2 is a T cell suppressor in tumor microenvi-
ronment of GBM [170] and is expressed in about 90% of 
GBM tumor cells. However, although TGFβ1/2 inhibitors 
have been used in treatment of other cancers, they are 
still difficult to be used as GBM clinical treatment targets.

As a TGF-β receptor(R)1 kinase inhibitor, Gal-
unisertib was ineffective with combined Lumostine 
(NCT01582269) [171]. TGF-β2-specific antisense oligo-
nucleotides, Trabedersen was effective in particular to 
patients whose KPS are above 80% and age are under 55, 
but generally the therapy efficacy was far from expecta-
tions (NCT00431561) [172]. Similarly, antisense oligo-
nucleotides, namely ISTH1047 and ISTH0047, exhibit 
anti-tumor properties and can be further tested in clini-
cal trials [173].

Gene therapy focusing on hematopoietic stem cell 
(HSC) that expresses TGF-β blocking peptides enhanced 
the sensitivity of GBM to chemotherapy in animal model 
[174]. Given that, further clinical treatment can be con-
sidered. Recent trials have also pointed out that TGF-β is 
related to TMZ resistance and MGMT expression [175]. 
Therefore, the combination of TMZ and TGF-β inhibi-
tors are promising.

Immunotherapy
Programmed cell death protein (PD)‑1
One strategy of cancer immunotherapy is to prevent the 
interaction between PD-1 ligand (PD-L1) on tumor cells 
or host cells and PD-1 on T cells (Fig. 4). Pembrolizumab, 
an antibody that blocks PD-1, has poor efficacy in previ-
ous treatments of GBM [176], except in cases with spe-
cific mismatch repair defects [177–179]. Thus, mismatch 
repair defects are expected to be a novel biomarker of 
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targeting PD-1/PD-L1, with classic markers as TMB, 
tumor infiltrating lymphocyte (TIL) and microsatellite 
instability (MSI) [180–182]. However, standard therapy 
with neoadjuvant Pembrolizumab demonstrates signifi-
cant survival benefits [183].

In a randomized clinical trial, Nivolumab combined 
with Bevacizumab [184] and Nivolumab combined with 
chemoradiotherapy in newly-diagnosed GBM patients 
with MGMT promoter unmethylation (CHECKMATE 
498, NCT02617589) were both ineffective. Preclinic ani-
mal models confirmed that PD-1 blockade could reverse 
peripheral T cell exhaustion induced by TMZ but could 
not affect tumor infiltrating lymphocytes [185], which 
partly accounts for its ineffectiveness. The phase II trial 
of Nivolumab as neoadjuvant therapy also failed to show 
clinical benefits (NCT02550249) [186].

Lymphocyte activation gene 3 (LAG‑3)
LAG-3, mainly found on activated immune cells [187, 
188], leads to immune escape of tumor cells similar to 
that of PD-1 [189]. In tumor tissues, LAG-3 is usually 
expressed in T cells with lost functions, called exhausted 
T cells. Thus, inhibitor of LAG-3 become an attractive 
immune-modulating agent alone or in combination with 
other immune checkpoint inhibitors [190, 191].

In GBM, LAG-3 rather than PD-1 is co-expressed with 
CD8A [192], indicating that LAG-3 targeted therapy in 
GBM with abundant CD8 + T cells infiltration may be 

promising. A phase I trial (NCT02658981) of the LAG-3 
antibody BMS-986016 is ongoing.

Cytotoxic T‑lymphocyte–associated antigen 4 (CTLA‑4)
CTLA-4 shares common receptors CD80/CD86 with 
CD28, and binding of CTLA-4 to those receptors are 
antagonistic to T cell activation and proliferation [193, 
194]. CTLA-4 antibody Ipilimumab is the first clinically 
approved immune checkpoint inhibitor, in addition to 
Tremelimumab, etc. [182].

Combined anti-CTLA-4 and anti-PD-1/PD-L1 therapy 
is active in multiple kinds of cancers. Intracerebral injec-
tion of Ipilimumab plus Nivolumab is safe and feasible, 
and has a certain effect for rGBM (NCT03233152) [195]. 
Other trials for combined anti-PD-I and anti-CTLA-4 
therapy are ongoing (NCT04323046, NCT04606316). 
The effectiveness of CTLA-4/PD-1/IDO triple therapy is 
also confirmed in animal model [196], further ensuring 
the prospect of combined immune therapy. The clinical 
benefits of Ipilimumab combined with standard chemo-
radiotherapy are observed in a phase II clinical trial 
(ISRCTN84434175) [197]. Intratumorally injection of 
IL-12 combined with systemic administration of CTLA-4 
antibody is also effective in animal model [198], provid-
ing the robust basis for further clinical research.

Vaccination aimed at enhancing anti-glioma immu-
nity by injecting autologous glioma cells mixed with 
GM-K562 cells that are inactivated via irradiation 
has been proved safety and modestly feasible [199]. 

Fig. 4 Immunotherapy targets
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Meanwhile, CAR-T therapy combined with Ipilimumab 
for the treatment of rGBM is also in the preliminary stage 
(NCT04003649).

CD73
CD73, an extracellular nucleotidase, catalyzes the pro-
duction of adenosine from extracellular AMP [200], 
which exerts an immunosuppressive effect on GBM and 
induces drug resistance of vincristine presumedly via 
regulating multiple drug associated protein 1 (Mrp1) 
[201, 202].

Nasal administration of cationic nanoemulsion mixed 
with CD73-siRNA presented promising anti-CD73 effect 
in GBM model [203]. This anti-CD73 effect promotes, 
subsequently, alteration in tumor microenvironment 
and suppressing the tumor proliferation [204]. Whereas 
the feasibility of cationic nanoemulsion to clinic is under 
studied. Anti-PD-1 combined with anti-CTLA-4 showed 
a favorable effect in CD73-deficient GBM model [205]. 
Currently, there are still few clinical trials of CD73 inhibi-
tors with GBM. Although CD73 inhibitor AB680 is dis-
covered, it has not been used in treatment of GBM [206].

CD161
CD161, as the marker of GBM tumor infiltrating lym-
phocytes, is widely expressed on the plasma membrane 
surface of NK cells, CD8 + and CD4 + T cells [207], bind-
ing to the ligand CLEC2/Lectin like transcript-1(LLT1) 
mainly expressed in GBM myeloid cells [208]. Previous 
studies have confirmed that CD161 directly interacts 
with intracellular acid sphingomyelinase to regulate Akt 
signaling pathway and then inhibits activity of NK cell. 
Notably, CD161 simultaneously exerts the property of 
stimulating immunity and inhibiting immunity: when 
CD161 binds to LLT1 and is co-stimulated by CD3, 
the expression of TNF-α in T cells is promoted, when 
CD161 is stimulated on CD8 T cells alone, the expression 
of TNF-α in T cells is inhibited [209]. CD161 has been 
regarded as a critical regulator for immunosuppression 
in GBM [210]. So far, inhibition of CD161 is proved with 
enhanced anti-tumor effect of T cells in preclinic model.

IDO1
Indoleamine 2,3-dioxygenase 1 (IDO1), an Trp dioxyge-
nase extensively detected in mammalian tissues except 
the liver [211–213], usually degrades Trp into L- kynure-
nine that subsequently activates aryl hydrocarbon recep-
tor (AhR) via the Kyn–AhR–AQP4 signaling pathway, 
which promotes cell motility and increases malignancy of 
gliomas. Furthermore, IDO1 is regarded as a significant 
mediator in immunotolerance and immunosuppression 
of cancer via its non-enzyme activity, though the poten-
tial mechanisms remains to be fully elucidated [214]. 

Thus IDO1 is becoming an attractive target of immuno-
therapy in grade IV gliomas, especially GBM.

1-methyl-l-tryptophan (1-MT, also known as Indoxi-
mod), the inhibitor of IDO1, was effective with combined 
TMZ in animal models of malignant gliomas (exclusively 
corresponding to WHO grade IV gliomas) [215], hence 
several phase I/II trails exploring the safety and efficacy of 
combined 1-MT and chemotherapy in both pediatric and 
adult patients with gliomas are ongoing. (NCT02052648, 
NCT02502708, NCT04049669).

Given that some trials indicated inactivity of IDO1 
inhibitor as a single agent, combination of IDO1 inhibi-
tor and PD-1/PD-L1, CTLA-4 blockade [216], or other 
treatments such as anti-angiogenesis is proposed. Also, 
Erik Ladomersky et  al. discovered that older patients 
with GBM experienced an age-related immunosuppres-
sion hypothetically resulted from the increase of IDO 
accumulation in elderly brain [217]. Since immunosup-
pression could be induced by Trp depletion and Kyn 
activation that are initiated by three enzymes namely 
IDO1, IDO2 and TDO while IDO1 and TDO are more 
vital than IDO2 in pathologic grade of gliomas [214], the 
application of IDO1 and TDO inhibitors simultaneously, 
excluding IDO2, is advised. Additionally, according to the 
fact that compared to the physiological situation systemic 
Kyn decreases while intratumoral Kyn increases in GBM 
patients, exploration on Kyn pathway modulation is still 
in its infancy [218]. Nevertheless, recent study has found 
that IDO induces the expression of complement factor 
H (CFH) and its isoform, factor H like protein 1 (FHL-
1) independent of its enzymatic activity, which contrib-
utes to poor survival of GBM patients [219]. This finding 
would help explore the novel targets of IDO inhibition.

Hepatitis A virus cellular receptor 2 (HAVCR2)
HAVCR2 is a specific cell surface protein encoded by 
homonymous gene. It is also named T cell immunoglob-
ulin and mucin-domain containing-3 (TIM3) [220] that 
belongs to immunoglobulin superfamily. TIM3 partici-
pates in regulation of macrophage, induction of immu-
nological tolerance, inhibition of Th1-mediated auto- and 
alloimmune responses, which becomes a promising tar-
get for immunotherapy.

Generally, TIM3 interacts with HLA-B-associated 
transcript 3 (BAT3) and subsequently recruits kinase 
LCK to maintain T cell activation. However, Galectin 
9, mainly found in tumor cells and antigen-presenting 
cells, binds to TIM3 that phosphorylates intracellular 
domain of TIM3 and recruits kinase FYN, contributing 
to apoptotic and anergic T cells. So far, various ligands 
of TIM3 have been discovered, such as carcinoembryonic 
antigen-related cell adhesion molecule 1 (CEACAM1), 
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phosphatidylserine (PtdSer), and high mobility group 
protein B1 (HMGB1) [221].

Almost all anti-TIM3 antibodies presenting antitu-
mor activity are designed to interfere with the binding 
between TIM3 and CEACAM1, PtdSer [222]. In particu-
lar, TIM3 is widely expressed in GBM and IDH-WT glio-
mas, regulating  inflammatory activation especially after 
anti-PD-1 therapy [223, 224]. Thus, combined anti-TIM3 
inhibitor and other immunotherapy is getting promising. 
Combination of anti-TIM3 therapy, anti-PD-1 therapy, 
and radiotherapy in animal models has reported prom-
ising efficacy [225]. Besides, MBG-453 is an antibody 
against TIM3 in an ongoing phase I trial (NCT03961971).

V‑set domain containing T cell activation inhibitor 1 (VTCN1)
Commonly known as B7-H4, VTCN1 is a highly revo-
lutionarily conserved type-I transmembrane protein 
[226]. Interaction of B7-H4 with the unknown receptors 
has the capability of negatively regulating activity of T 
cells. Moreover, VTCN1 not only inhibits production of 
cytokines but also arrests cell cycle in G0/Gi phase [227]. 
B7-H4 is found in a wide range of lymphocytes, includ-
ing NK cells, T cells, and cancer cells, including partial 
glioma cells [228–230]

Previous study has declared that patient with high 
B7-H4 expression specifically experienced deficiency in 
tumor-infiltrating lymphocytes, suggesting its critical 
role in immunosuppression [230]. However, antibodies 
or inhibitors against B7-H4 remain to be developed for 
gliomas.

V‑domain immunoglobulin suppressor of T cell activation 
(VISTA)
VISTA has been initially recognized for its significant 
role in immunosuppression [231]. VISTA complicatedly 
and conversely functions as both ligand and receptor in 
the negative or positive regulation of cancer immunity. 
Notably, several recent studies using anti-VISTA meth-
ods, VISTA-deficient models or computer simulation 
have confirmed its suppressive role and upregulation of 
immune response [232, 233].

One of the known ligands of VITSA, the immuno-
globulin superfamily 11 gene (IgSF11), is found with ele-
vated expression particularly in high grade glioma (also 
named HGG) and correlates with worse prognosis [234], 
suggesting the potential prognostic value of VISTA and 
IgSF11. However, clinical trials on targeting VISTA alone 
or as adjuvant therapy with gliomas are still scarce to 
date。

CD27/CD70
As a member of the tumor necrosis factor receptor 
(TNFR) superfamily widely expressed on resting T 

cells [235], NK cells [236], and memory B cells [237], 
CD27 interacts with its ligand CD70 to stimulate T cell 
activity [238]. Nevertheless, early finding also showed 
that CD27 correlates with apoptosis of CD27-bearing 
cells [239], indicating its two-sided role in regulating 
immune response [240].

CD70 is overexpressed in primary and recurrent 
glioma cells in contrast to normal tissue and lympho-
cytes, and is associated with poor survival. Thus, CD70 
on tumor cells is proposed to induce T cell (especially 
CD8 + T cell) exhaustion or apoptosis and activate 
regulatory T cells (Tregs) to mediate immunosuppres-
sion [241–244]. Since CD27 stimulates T cell activity, 
and also induces cytotoxicity and then apoptosis of 
CD27-bearing lymphocytes under pathological cases, 
the combined CD27 agonist and CD70 inhibitor is 
promising.

Previous study has shown that agonist anti-CD27 
mAbis capable of recruiting CD8 + T cells and promot-
ing anti-tumor response in animal model [245]. CD27 
agonist, Varlilumab, has been tested in combination with 
anti-PD-1 therapy in a phase I/II trial (NCT02335918), 
with the results to be reported. Other trials explor-
ing anti-CD27 inhibitor as neoadjuvant or in combina-
tion with other immunotherapy options are ongoing 
(NCT02924038, NCT03688178). CAR-T cells target at 
CD70 alone or at both CD70 and B7-H3 present prom-
ising perspective, however not applied to clinical trials 
hitherto [244, 246].

B and T lymphocyte attenuator (BTLA)
As a member of CD28 superfamily, BTLA shares a simi-
lar molecule structure with PD-1 and CTLA-4. Function-
ally, as the only identified ligand of BTLA, herpes virus 
entry mediator (HVEM) [247, 248] interacts with BTLA 
to negatively regulate activity and proliferation of T cells.

It has been confirmed that BTLA influences T cell 
signaling through SHP1/2, similar to that of PD-1. But 
compared with PD-1 that prefers to recruit SHP2, BTLA 
mainly recruits SHP1. Surprisingly, under SHP1/2 defi-
cient condition, BTLA still presents inhibitory effect of 
cell proliferation and cytokine production in primary T 
cells. Thus, combination of PD-1 blockade and BTLA 
blockade is promising and attractive, with some potent 
signaling pathways by which BTLA and PD-1 inhibit 
activity of T cell remain to be further elucidated [249, 
250]. Preclinic model proved that anti-BTLA and anti-
PD-1 immunotherapy mainly promotes the activation of 
CD4 + T cells, CD8 + T cells and the secretion of IFN-γ 
that correlates with favorable survival [251]. However, 
there is still a long way to go before this combination 
therapy could be applied clinically.
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CD39
CD39 predicts worse survival for GBM and anaplastic 
astrocytoma patients [252]. As an ecto-enzyme hydro-
lyzing extracellular ATP (eATP) into AMP, CD39 and 
CD73 sequentially convert eATP to immunosuppres-
sive adenosine (ADO) in the tumor microenvironment 
(TME), as one portion of the ATP–adenosine axis [253]. 
In the TME, eATP is released and accumulated due to 
hypoxia, subsequentially to stimulate inflammation 
activity or be converted to ADO by CD39 and CD73. 
ADO could be also generated by sequential catabo-
lism of NAD + by CD38-CD203a-CD73 [253], and by 
alkaline phosphatase independently [254]. High level 
of extracellular ADO is beneficial to suppress immune 
response via ADO binding to low-affinity adenosine 
receptor namely  A2A and  A2B that are broadly expressed 
on lymphocytes and myeloid cells [255]. CD73 is proved 
to be preferentially expressed on glioma cells and has 
the synergetic effect with CD39 expressed on tumor-
infiltration T cells on inducing immunosuppression 
[256, 257].

Researchers have revealed that CD39 expressed on 
tumor-associated macrophage could contribute to dys-
function of CD8 + T cell [258]. However, inhibitor for the 
adenosine pathway failed in preclinic model, with pre-
sumed explanation such as irreversible exhaustion of T 
cells [257], or different affinity and distribution of aden-
osine receptors on glioma cells or lymphocytes. Given 
that, the specific mechanism involved in the modulation 
of ADO in tumor microenvironment of glioma needs to 
be further revealed.

CD276
CD276, also known as B7-H3, is one of the B7 ligand 
family. CD276 is believed to provide a negative costimu-
latory signal both on donor T cells and host cells during 
transplantation [259, 260]. CD276 expressed on antigen-
presenting cells also conveys an immunosuppression 
signal. Besides, CD276 is also detected on DCs, NK cells 
and epithelial cells.

CD276 is extensively overexpressed on tumor cells 
and tumor vasculature [261, 262], and serves as a haz-
ardous marker in GBM as it mediates immunosuppres-
sion via inhibiting activity of NK cells, inducing invasion 
and differentiation of tumor cells [263–265]. Consider-
ing its relatively low expression in normal tissues, bring-
ing potential safety and presumed tolerance in patients, 
thus CD276/B7-H3 becomes an attractive target for 
immunotherapy.

CAR-T therapy targeting CD276 both in vitro and in 
xenograft model demonstrated promising survival ben-
efits [266]. Using antibody–drug conjugates to ablate 

CD276 + glioma cells simultaneously impaired tumor 
vescular [262], indicating a novel insight on the com-
bination of anti-CD276 with anti-angiogenesis, which 
was supported when CD276 was confirmed to posi-
tively be related with VEGFA and MMP2 [267].

The immunotherapy value of CD276 has not been 
fully determined partially due to the un-defined iso-
forms, intracellular domain and ligands of CD276 [268]. 
Although such a type I transmembrane protein has 
almost 90% homologous amino acid sequence between 
human and murine [269], different and opposing out-
comes were sometimes reported in murine tumor 
model compared with human tumor model [270], mak-
ing the clinical trials in gliomas challenging.

CD47
CD47, also called integrin-associated protein (IAP) or 
MER6 [271], is ubiquitously expressed in astrocytoma 
cells as different isoforms [272, 273]. CD47 promotes 
GBM invasion and progression [274, 275], and also 
delivers a special “don’t eat me” signal by binding to 
signal-regulatory protein α (SIRPα or CD172a) on mac-
rophages or DCs. Thus, anti-CD47 is suggested effica-
cious by promoting immune response ablating tumor 
cells via macrophage and/or DCs [276, 277], even 
through microglia [278].

Apart from integrins and SIRPγ (CD172b) [279], 
expression of SIRPα is also observed in brain tissues 
[280], astrocytomas [281]. SIRPα, also called CD172a, 
is vital to the “CD47-SIRPα axis”, which is more sig-
nificant since SIRPα is only expressed on certain cells 
including myeloid cells and neurons leading to rela-
tively high safety and efficacy.

In vitro experiment and murine model proved 
that anti-CD47 induces the M1-polarization of mac-
rophages that promotes an immune active tumor 
microenvironment [282]. Hu5F9-G4, a humanized anti-
CD47 antibody, manifested efficacy both in pediatric 
GBM and diffuse intrinsic pontine glioma cells [283]. 
Anti-CD47 was also proved to increase tumor-infil-
trating CD8 + T cells that suppressed glioma cells and 
cancer stem cells [284]. SIRPα-Fc blocks CD47-SIRPα 
impressively, also triggering autophagy of glioma cells 
thus promoting survival in GBM models, and the prog-
nosis is better with chloroquine [285]. Given that TMZ 
induced ER stress response in GBM then beneficial to 
phagocytosis, studies found that combination of TMZ 
and anti-CD47 therapy was with drastically improved 
efficacy in GBM model [286]. Since SIRPα polymor-
phism has become the obstacle to anti-CD47 therapy, 
other studies are urgently needed to elucidate the entire 
mechanism of CD47-SIRPα axis.
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Cytokine therapy
Cytokines, produced by the immune microenvironment, 
could both be employed by tumors to suppress immune 
response and be employed by immune system to induce 
immune response [287]. Among the multiple cytokines, 
interleukins and interferons have been most widely used 
in cancer therapy with high efficiency.

IL-2 was first studied in glioma patients in 1986 [288], 
which the combined IL-2 and tumor vaccination was 
observed with remarkable side effects [289]. Notably, 
tumor responses were detected in 50% rGBM patients 
receiving the combined therapy of IL-2-encoding genes 
and herpes simplex virus type 1 thymidine kinase (HSV-
TK) genes. In a phase I trial, HGG patients receiving 
the glioma cell vaccine admixed with IL-4-encoding 
genes transfected fibroblasts showed favorable clinical 
responses [290]. The safety of recombinant protein IL-
13-PE38QQR was confirmed in a phase I trial [291]. 
In a subsequent phase III trial, IL-13-PE38QQR sig-
nificantly increased PFS but not OS in rGBM patients 
(NCT00076986) [292].

In two phase II trials, TMZ with combined IFN-α 
exhibited improved efficacy in rGBM patients [293]. 
IFN-β also enhanced sensitivity to TMZ by inhibiting 
MGMT transcription preclinically [294, 295]. Besides, 
the combined IFN-β and standard chemoradiotherapy 
prolonged the survival of GBM patients in a phase I trial 
[296]. However, the combined IFN-γ and standard chem-
oradiotherapy failed to demonstrate clinical benefits in 
GBM patients [297, 298].

TAM therapy
Tumor-associated macrophages (TAMs), a significant 
component of tumor microenvironment, in glioma, are 
commonly defined as macrophages of peripheral ori-
gin and microglia, to regulate immune response and 
promote tumor progression [299, 300]. A recent study 
demonstrated that despite of inducing T cell and DC acti-
vation, neoadjuvant PD-1 blockade failed to overcome 
the immunosuppressive TAMs in rGBM, indicating the 
important role of TAM in resistance to treatment [301].

Previous study revealed immunosuppressive M2 mac-
rophages populating TAM in glioma tissues, are asso-
ciated with histological grade of glioma. Researchers 
also suggested macrophage colony-stimulating factor 
(M-CSF) is vital to shift of microglia/macrophage to M2 
subtype, inducing tumor proliferation [302, 303]. Thus 
BLZ945, a CSF inhibitor, has been tested to target TAMs 
in mouse models of GBM with satisfactory survival with 
elimination of tumor cells and decrease of M2 in TAM 
[304]. Pyonteck et al. also pointed out GBM classification 
(proneural GBM in this case) and TAM phenotype rather 
than TAM number as a potential biomarker for anti-CSF 

therapy. Given that combination of PI3K and BLZ495 
showed better OS, further clinical trials are needed 
[305]. PLX3397 is another efficacious CSF inhibitor in 
GBM models [306], however, the result of a phase II trial 
showed PLX3397 barely presented therapeutic effect 
(NCT01349036). Moreover, biomimetic tumor-on-a-chip 
on GBM have predicted promising outcome of co-target-
ing M2-TAM combined with anti-PD-1 [307]. In epithe-
lioid GBM (with markers of the BRAF‐V600E and TERT 
C228T promoter mutations and the absence of IDH1 
and IDH2 mutations), CSF-1R is also detected broadly 
on epithelioid GBM cells and combination of inhibiting 
BRAF-V600E and BLZ945 reduces cell viabilities [308]. 
Those recent studies in vitro indicate potential efficacy of 
targeting TAM with other immunotherapies.

As a lipophilic molecule, antibiotic minocycline could 
suppress the expression of microglial MMPs and atten-
uate the invasion of glioma [309], which minocycline 
could also be safely combined with radiation and beva-
cizumab [310]. Besides, cyclosporine A displayed efficacy 
in attenuating the survival and angiogenesis of glioma by 
inhibiting the infiltration of microglia [311]. Propentofyl-
line was also proved to reduce tumor growth in GBM by 
directly targeting microglia [312].

Dendritic cell vaccine
DC vaccine (DCV), composed of powerful antigen-
presenting cells (APCs), could induce effective immune 
responses.

In most of the clinical studies on DCVs, autologous 
tumor lysate and tumor-associated peptides were chosen 
as the antigen [313]. In two phase I trials (NCT00068510 
NCT00612001), autologous tumor lysate (ATL)-pulsed 
DCV was proved with higher patient eligibility than 
glioma-associated antigen (GAA) peptide-pulsed DCV 
[314]. GBM6-AD/DC vaccine was well tolerated and 
induced immune response in rGBM patients [315]
(NCT01171469). In a phase I/II trial (NCT00766753), 
DVC with EphA2, IL-13Rα2, YKL-40, and gp100 as 
GAAs was also well tolerated and induced potent 
immune response, contributing to the progression free 
status in 9 out of 22 glioma patients [316]. In a phase I 
trial (NCT00576641), DVC with HER2, TRP-2, gp100, 
MAGE-1, IL-13Rα2, and AIM-2 as antigens significantly 
prolonged OS and PFS in newly diagnosed GBM patients 
[317]. In a subsequent phase II trial of the same DCV 
(NCT01280552), ICT-107, remarkable antitumor activ-
ity was observed and ICT-107-treated GBM patients 
presented improved PFS [318]. Immune responses and 
clinical benefits of GBM patients receiving DCV were 
reported in another phase II trial (NCT00576537) [319]. 
Tumor lysate-pulsed DCV in combination with stand-
ard chemoradiotherapy was proved feasible and safe 
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in newly diagnosed GBM patients in two phase II trials 
(NCT01006044, NCT00323115) [320, 321].

Other studies explored the feasibility of mRNA-
transfected DCV. The mRNA-transfected DCV 
was suggested to be safe, well-tolerated, and sig-
nificantly prolonged the PFS of GBM patients by 2.9 
times (NCT00846456) [322]. In addition, despite the 
increased Treg proportions, pp65-transfected DCV 
admixed with GM-CSF and TMZ significantly pro-
longed the PFS and OS of GBM patients [323].

Low‑grade glioma (LGG)
Notably, there was no significant difference in PFS and 
health-related quality of life of LGG patients receiv-
ing radiotherapy alone or temozolomide alone [16, 324]. 
Correspondingly, the combined radiotherapy and TMZ 
presented better clinical benefits [325, 326], with cer-
tain better prognosis when MGMT promoter meth-
ylation exists [327]. Hence, TMZ or radiotherapy as the 
single therapy for LGG is not recommended. Generally, 
most of the median overall survival of LGG patients are 
more than 10 years, only those with diffuse astrocytoma 
with IDH-WT are around 5 years [14, 328]. As discussed 
above, WHO grade I glioma, most of which is pilocytic 
astrocytoma, presents excellent prognosis, with reported 
10  years overall survival as high as 100% after standard 
gross total resection [1, 14]. To WHO grade II glioma, 
5  years survival rate of oligodendroglioma reaches 81%, 
while diffuse astrocytoma only reaches 50%.

Alkylating agent
IDH mutation and consequently increased D-2-hydrox-
yglutarate level inhibit the expression of some DNA 
repair genes and anti-apoptotic proteins, such as MGMT, 
MLH3, RAD21 and SMC4 [329], which downregulates 
the intracellular glutathione level, apoptosis threshold of 
LGG and upregulates the sensitivity of LGG to alkylating 
agent [330] (Fig. 5, Table 2). Similarly, 1p/19q codeletion 
also correlates with the sensitivity of LGG to alkylating 
agent [331].

Tyrosine kinase receptor pathway
tyrosine kinase receptor
Erlotinib, a kind of EGFR inhibitor, was mildly effective 
combined with rapamycin in pediatric LGG (pLGG), and 
disease stability was observed especially in patients with 
neurofibromatosis type 1 (NF1) [332]. Erdafitinib, a kind 
of FGFR inhibitor, was tested in LGG patients in a phase 
II clinical trial (NCT03210714).

Ras/Mek/Erk pathway
Abnormal activation of Ras/Mek/Erk pathway is the 
most common and major cause of genetic/epigenetic 

alterations in LGG. Different LGG subtypes activate this 
pathway in distinct ways, inducing carcinogenesis and 
tumor progression. Therefore, inhibiting this pathway is 
becoming a promising treatment option.

BRAF mutation BRAF–KIAA1549 fusion and 
BRAFV600E mutation are the most prevalent genetic 
alternation in pLGG that are being increasingly focused 
as the therapeutic targets.

Sorafenib is a multi-kinase inhibitor targeting BRAF, 
VEGFR, PDGFR, and c-kit, which unexpectedly pro-
motes the proliferation of the tumor cells in low grade 
astrocytoma [333]. Dabrafenib, a selectively robust inhibi-
tor of BRAFV600 was mildly effective in patients with 
BRAF V600–mutant pLGG (NCT01677741) [334]. MEK 
inhibitor, Selumetinib, prolonged the survival of LGG 
patients (NCT01089101) [335–337]. Another inhibitor 
of MEK, Trametinib, is still being tested in a phase II trial 
(NCT03363217) [338].

NF1 Neurofibromatosis type 1 is an essential autosomal 
dominant genetic disorder resulted from loss-of-function 
mutations in gene neurofibromatosis type 1 that encodes 
a negative regulator of Ras GTPases under physiological 
condition [339] and influences the MAPK signaling. The 
loss-of-function mutation is usually found in anaplas-
tic astrocytoma [340], which NF1 subsequently leads to 
the diffuse or pilocytic phenotype of pLGG [341]. When 
treated with carboplatin and vincristine, LGG patients 
with NF1 experienced prolonged PFS, OS and decreased 
toxicity [342]. Selumetinib was proved with high effec-
tiveness in pLGG patients with NF1 [336]. A phase II 
trial exploring double-strain RNA as Toll-like receptor-3 
agonist [343] to cure pLGG patients with NF1 is ongoing 
(NCT04544007). NCT03871257 and NCT04166409 are 
two simultaneous phase III studies investigating the effi-
cacy of Selumetinib in LGG patients with or without NF1.

PI3K/AKT/mTOR pathway
Everolimus, the mTOR inhibitor, is promising and effec-
tive in recurrent/progressive NF1-associated LGG [344]. 
Nevertheless, for most LGG patients, Everolimus was 
only associated with a high degree of disease stability and 
unexpected tumor vascular alternations [345].

IDH‑mutation
Compared with children, IDH-mutation is more com-
mon in adult LGG. IDH-mutation was first detected 
from the exome sequencing of GBM [346]. Many fol-
low-up studies proved that patients with IDH-mutation 
had better prognosis [347]. The mutant IDH1 with a 
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neo-enzymatic activity could produce D-2-hydroxy-
glutarate whose accumulation in cells facilitates tumor 
proliferation and growth, increases the ROS level, and 
promotes hypermethylation in certain DNA sequence. 
As an inhibitor of IDH1, AG5198 suppressed prolifera-
tion of IDH-mutant tumor cells in animal model [348]. 
Inhibitors of D-2-hydroxyglutaratethat is the pro-
duction of mutant IDH1 is under explored as a novel 
treatment for LGG (NCT03343197). Nevertheless, 
IDH-mutation as a significant early mutation site of 
glioma has also been proposed to no longer regulates 
tumor proliferation and invasion after tumor formation 
[349], So, the prospect of IDH-mutation as a therapeu-
tic target in LGG remains controversial.

PD‑1
PD-1 is widely detected among LGG patients, but most 
of their tumor tissue are positive with PD-1 in a small 

proportion (< 5%). In some cases, over 50% cells were 
detected with PD-1 positive [350], which may be related 
to the methylation of PD-1 promoter in patients with 
LGG [351]. The expression of PD-1 by immune infil-
trating cells in LGG indicates immune escape, while 
the methylation of PD-1 promoter indicates better 
prognosis of LGG. Besides, the expression of PD-1 may 
facilitate adjuvant therapy in patients with radiotherapy 
tolerance [352].

Conclusion
Due to its relatively lower tumor malignancy, better 
prognosis, and higher chemotherapy sensitivity brought 
by IDH-mutation, researches for therapy of LGG are lim-
ited. However, some high-risk LGGs incompletely cured 
by surgical resection are prone to relapse and turn into 
high-grade gliomas with malignant and aggressive char-
acteristics, which more postoperative adjuvant treatment 

Fig. 5 Candidate molecular targets amenable to targeted interventions in LGG



Page 19 of 32Yang et al. Molecular Cancer           (2022) 21:39  

Ta
bl

e 
2 

M
ol

ec
ul

ar
 ta

rg
et

ed
 th

er
ap

y 
of

 L
G

G

Re
fe

re
nc

e&
 s

el
ec

te
d 

tr
ia

ls
In

te
rv

en
tio

n
D

es
ig

n
Pr

im
ar

y 
en

dp
oi

nt
Re

sp
on

se
PF

S
O

S
Co

nc
lu

si
on

s

A
lk

yl
at

in
g 

ag
en

t

Ba
um

er
t e

t a
l. 

20
16

st
an

da
rd

 ra
di

ot
he

ra
py

/
pr

im
ar

y 
te

m
oz

ol
om

id
e

Ra
nd

om
iz

ed
 p

ha
se

 II
I,

O
pe

n 
la

be
l

PF
S

M
ed

ia
n 

PF
S 

(m
on

th
s)

ID
H

m
t/

co
de

l 6
2

ID
H

m
t/

no
n-

co
de

l 4
8

ID
H

w
t 2

0

Th
er

e 
is

 n
o 

si
gn

ifi
ca

nt
 

di
ffe

re
nc

e 
be

tw
ee

n 
ra

di
ot

he
ra

py
 a

lo
ne

 a
nd

 
TM

Z 
al

on
e

Re
ijn

ev
el

d 
et

 a
l. 

20
16

ra
di

ot
he

ra
py

/t
em

oz
o-

lo
m

id
e

Ra
nd

om
iz

ed
 p

ha
se

 II
I

O
pe

n 
la

be
l

PF
S

M
ed

ia
n 

PF
S 

(m
on

th
s)

RT
 a

lo
ne

 4
6

TM
Z 

al
on

e 
39

Th
e 

eff
ec

t o
f t

em
oz

ol
o-

m
id

e 
or

 ra
di

ot
he

ra
py

 o
n 

H
RQ

O
L 

or
 g

lo
ba

l c
og

ni
-

tiv
e 

fu
nc

tio
ni

ng
di

d 
no

t d
iff

er
 in

 L
G

G

W
ah

l e
t a

l. 
20

17
A

dj
uv

an
t T

M
Z

N
on

-r
an

do
m

iz
es

 
ph

as
e 

II
ra

di
og

ra
ph

ic
 re

sp
on

se
 

ra
te

7 
PR

M
ed

ia
n 

PF
S 

3.
8 

ye
ar

s
M

ed
ia

n 
O

S 
9.

7 
ye

ar
s

TM
Z 

is
 b

en
efi

ci
al

 a
s 

ad
ju

-
va

nt
 th

er
ap

y

Fi
sh

er
 e

t a
l. 

20
20

RT
, T

M
Z,

 p
os

t-
RT

 T
M

Z
Si

ng
le

 a
rm

Ph
as

e 
II

O
S

M
ed

ia
n 

PF
S 

4.
5 

ye
ar

s
3-

ye
ar

 O
S 

ra
te

 7
3.

5%
5-

ye
ar

 O
S 

ra
te

 6
0.

9%
Co

m
bi

na
tio

n 
of

 T
M

Z 
an

d 
RT

 is
 b

et
te

r t
ha

n 
RT

 
al

on
e

Ra
s/

M
ek

/E
rk

Ka
ra

ja
nn

is
 e

t a
l. 

20
14

So
ra

fe
ni

b
N

on
-r

an
do

m
iz

ed
Ph

as
e 

II
O

pe
n 

la
be

l

So
ra

fe
ni

b 
pr

od
uc

ed
 

un
ex

pe
ct

ed
 a

nd
 u

np
re

c-
ed

en
te

d 
ac

ce
le

ra
tio

n 
of

 
tu

m
or

 g
ro

w
th

Fa
ng

us
ar

o 
et

 a
l. 

20
19

se
lu

m
et

in
ib

N
on

-r
an

do
m

iz
ed

Ph
as

e 
II

O
pe

n 
la

be
l

O
RR

St
ra

tu
m

 1
: 9

 P
R 

an
d 

9 
SD

St
ra

tu
m

 2
: 1

0 
PR

 a
nd

 
15

 S
D

2-
ye

ar
 P

FS
St

ra
tu

m
 1

: 7
0%

St
ra

tu
m

 2
: 9

6%

Se
lu

m
et

in
ib

 is
 a

ct
iv

e 
ag

ai
ns

t B
RA

F 
ab

er
ra

tio
ns

 
an

d 
N

F-
1 

as
so

ci
at

ed
 

pL
G

G

H
ar

gr
av

e 
et

 a
l. 

20
19

D
ab

ra
fe

ni
b

Si
ng

le
 a

rm
 p

ha
se

 I/
IIa

O
pe

n 
la

be
l

O
RR

1 
C

R 
an

d 
13

 P
R

M
ed

ia
n 

PF
S 

35
.0

 m
on

th
s

D
ab

ra
fe

ni
b 

is
 a

ct
iv

e

Pe
rr

ea
ul

t e
t a

l. 
20

19
Tr

am
et

in
ib

N
on

-r
an

do
m

iz
ed

Ph
as

e 
II

O
pe

n 
la

be
l

O
RR

(p
rim

ar
y 

ob
je

ct
iv

e)

PI
3K

/A
KT

/m
TO

R

U
llr

ic
h 

et
 a

l. 
20

20
Ev

er
ol

im
us

N
on

-r
an

do
m

iz
ed

Ph
as

e 
II

PF
S 

at
 4

8 
w

ee
ks

1 
C

R 
an

d 
3 

PR
(3

D
/v

ol
u-

m
et

ric
 a

na
ly

si
s)

Ev
er

ol
im

us
 is

 a
ct

iv
e 

ag
ai

ns
t N

F-
1 

as
so

ci
at

ed
 

pa
tie

nt
s

W
ah

l e
t a

l. 
20

17
Ev

er
ol

im
us

N
on

-r
an

do
m

iz
ed

Ph
as

e 
II

PF
S-

6
PF

S-
6

G
ra

de
 II

 8
4%

G
ra

de
 II

I/I
V 

55
%

M
ed

ia
n 

PF
S 

(y
ea

rs
)

G
ra

de
 II

 1
.4

G
ra

de
 II

I/I
V 

0.
6

M
ed

ia
n 

O
S(

ye
ar

s)
G

ra
de

 II
 n

ot
 re

ac
he

d
G

ra
de

 II
I 2

.9

Ev
er

ol
im

us
 le

ad
s 

to
 

di
se

as
e 

st
ab

ili
ty



Page 20 of 32Yang et al. Molecular Cancer           (2022) 21:39 

modalities are necessary. The most common mutation 
in LGG is the abnormal activation of the Raf/MEK/Erk 
pathway. Therefore, there are many target inhibitors of 
this pathway and most of them are very effective. Differ-
ent LGG subtypes have different genetic/epigenetic alter-
ations, such as amplification and/or rearrangement of 
MYB/MYBL1, 1p/19q co-deletion, ATRX, and CDKN2A 
loss. These molecular changes are valuable progno-
sis signal and/or potential targets for the treatment of 
LGG. For instance, 1p/19q co-deletion is beneficial for 
LGG sensitivity to alkylating agent. Additionally, early 
enough resection combined with chemotherapy or adju-
vant around surgery if necessary is gradually advocated 
instead of MRI every 3–6  months and resection only 
after tumor progression. As a majority of chemotherapy 
of LGG are carried out after surgical operation, instant 
molecular diagnosis is necessary in order to provide 
prognostic evidence and more precise target therapy. 
Combination of alkylating agent and inhibitor against 
Ras/Mek/Erk pathway is worthy of attempting.

For newly diagnosed GBM, the current standard ther-
apy is alkylating agent chemotherapy combined with 
radiotherapy. Owing to the fact that standard therapy is 
limited to patients with MGMT promoter hypermeth-
ylation and there is no standard therapy for patients 
with rGBM, more effective target treatment modalities 
are urgently needed. In recent years, researchers have 
mostly adopted the scheme of combining therapies tar-
geting different pathways in GBM. However, the ther-
apy efficacy is often unsatisfactory mainly due to the 
existence of BBB, the complexity of tumor microenvi-
ronment, the heterogeneity of tumor tissues, and the 
tolerance of drugs. Therefore, some potential attempts 
could be made: 1) developing more effective drug 
delivery system to cross BBB, such as nanoemulsion 
for nasal administration or direct intracranial admin-
istration, 2) identifying and elucidating more compli-
cated pathways such as PI3K for development of novel 
drugs 3) more timely and precisely molecular diagno-
sis of tumor cells [353]. With the publishing of WHO 

Table 3 Outlook

Pathways or targets Limitations Hotspots

EGFR EGFR inhibitors or antibody appear inactive, partly due to the 
existence of BBB

Target on EGFR amplification and EGFRvIII

PI3K/AKT/mTOR Most of the drugs experience poorly tolerance, and the regu-
lation of this pathway is far too complex

combine PI3K/SKT/mTOR inhibitors with other drugs

MET There is still no effective kind of drugs Combination of c-MET inhibitor and PI3K inhibitors due to their 
cooperation to drug resistance

FGFR Population of patients that could gain benefit from this target 
is extraordinarily small

BRAF Mutations of this target are rare BRAFv600E in GBM needs to be further studied

NTRK The incidence of NTRK gene fusion seems to be very low in 
glioblastoma

NTRK fusion as a therapeutic target is active and molecular 
heterogeneity screening in the diagnosis of GBM is significant

pRB Regulation of cell cycle and apoptosis is complex

P53 Effort on promoting the refolding of mutant proteins into 
wild-type conformations meets failure

Inhibitors of MDM2/4 and Weel kinase

TERT Though TERT mutation is commonly identified in GBM, it has 
not yet become the main pharmacological target for tumor 
therapy

Novel inhibitors need to be developed

proteasome

TGF-β The function of TGF β protein family is complex and the regu-
latory pathways are widely crossed

Combine TMA and TGF inhibitors

PD-1 Combine PD-1 and other immunotherapy target

LAG-3 there are few trials about LAG-3 inhibitors or antibodies 
involved in GBM therapy

CTLA-4 CTLA-4 inhibitors combined with TMZ, anti-PD-1 or other drugs 
appear promising

IDO1 Enzymatic and non-enzymatic activity of IDO

CD73 and CD39 In tumor microenvironment, both CD73 and CD39 participate 
in regulation of ATP-adenosine axis

CD27-CD70 Combination of CD27 agonist and CD70 inhibitor

CD276 Un-defined isoforms and intracellular domain with unknown 
ligand

CD276 is correlated with angiogenesis

CD47 Polymorphism of SIRPα, ligand of CD47 Anti-CD47 promotes phagocytosis of glioma
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CNS5, gene and protein nomenclature is formally rec-
ommended and proved to be more effective and ben-
eficial to clinic. And CNS5 has listed newly-discovered 
types of gliomas recently, also with a method of grading 
within types and combining histological and molecu-
lar grading, pointing out a legible way to diagnosis and 
associated treatment. Additionally, studies have con-
firmed few prognostic or (and) predictive biomarkers 
remain steady between GBM at the time of diagno-
sis and relapse because of the evolution of tumor. For 
instance, loss of expression of MSH6, a mutation of 
mismatch repair gene, is more frequently found among 
relapsed GBM than newly diagnosed GBM as a result 
of standard chemoradiotherapy (Stupp protocol), with 
mild decrease of MGMT methylation in recurrence as 
well [8]. Thus combination of molecular diagnostics 
and precise therapy is supposed to be executed both 
before and after a defined course of treatment. Further-
more, since Shepherd et al. discovered the elimination 
of the NTRK2-fusion-harboring cells by Larotrectinib 
promoted the predominance of untargeted subclone 
at relapse [95], it is presumed this certain alteration of 
molecular target might occur much more commonly in 
recurrence GBM, no matter which treatment we imple-
ment, indicating potential obstacles on future glioma 
therapy. Therefore, targeted therapies are indeed ideal 
weapons for precision and personalized medicine 
based on the detection of biomarkers throughout the 
management of glioma patients.

Moreover, immunotherapy has been an emerging 
field of tumor therapy. Various immune checkpoints 
inhibitors have performed well in several cancers. PD-1/
PD-L1, CTLA4, TIM3 and other classic checkpoints 
have made remarkable progress in both pre-clinic and 
clinical trials. Given the complexity of tumor micro-
environment and regulation of immune response, 
combination therapy is proposed, especially when the 
combination of anti-PD-1 and anti-CTLA4 presents 
promising efficacy on rGBM. Classic anti-PD-1 could be 
combined with various targets such as TIM3 and BTLA. 
Based on the ATP-ADO axis discussed above, combi-
nation of CD39 and CD73 and further exploration on 
regulation of local ADO concentration are also worth 
pursuing. Similarly, it is appealing to combine immu-
notherapy and other targetable pathway. Since CD276/
B7-H3 is confirmed associated with angiogenesis, trials 
on anti-CD276 combined with Bevacizumab is attrac-
tive. EGFRvIII mutation leads to the unique extra-
cellular domain of EGFR, becoming an ideal specific 
antigen for both vaccine and CAR-T therapy. As dis-
cussed above, given that single-target therapy induces 
recurrence and subsequently resistance to original 

treatment due to molecular heterogeneity and evolution 
of tumor, implementation of targeting multiple antigens 
or with antagonism of immunosuppressive cytokines is 
recommended. In short, more laboratorial and clinical 
effort is required when it comes to combination therapy 
(Table 3).
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