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Abstract

Glial cells (astrocytes, oligodendrocytes and microglia) are critical for the central nervous system (CNS) in both physiological 

and pathological conditions. With this in mind, several studies have indicated that glial cells play key roles in the development 

and progression of CNS diseases. In this sense, gliotoxicity can be referred as the cellular, molecular, and neurochemical 

changes that can mediate toxic effects or ultimately lead to impairment of the ability of glial cells to protect neurons and/

or other glial cells. On the other hand, glioprotection is associated with specific responses of glial cells, by which they can 

protect themselves as well as neurons, resulting in an overall improvement of the CNS functioning. In addition, gliotoxic 

events, including metabolic stresses, inflammation, excitotoxicity, and oxidative stress, as well as their related mechanisms, 

are strongly associated with the pathogenesis of neurological, psychiatric and infectious diseases. However, glioprotective 

molecules can prevent or improve these glial dysfunctions, representing glial cells-targeting therapies. Therefore, this review 

will provide a brief summary of types and functions of glial cells and point out cellular and molecular mechanisms associ-

ated with gliotoxicity and glioprotection, potential glioprotective molecules and their mechanisms, as well as gliotherapy. 

In summary, we expect to address the relevance of gliotoxicity and glioprotection in the CNS homeostasis and diseases.
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Introduction

Rudolf Virchow first described neuroglia as a connective 

tissue surrounding neurons in the nineteenth century [1]. 

Afterwards, different types of cells that constitute the neu-

roglia, also known as glial cells, were identified and referred 

as macroglia, composed by astrocytes and oligodendrocytes, 

and microglia. Each of these cells display several versatile 

functions necessary to maintain and support neuronal net-

works [2].

Glial cells are critical for the central nervous system 

(CNS) homeostasis, in both physiological and pathological 

conditions. In fact, it has been increasingly reported that 

these cells can be involved in the development and progres-

sion of neurological diseases [3]. Since each type of glial 

cell is able to directly affect the functionality of the others, 

dysfunctions in any of them can generate self-amplifying 

detrimental processes and synergistically impair the neuron-

glia communication and/or neuronal function [4, 5]. In this 

sense, glial cells may represent important cellular thera-

peutic targets for CNS disorders. With this regard, cellular, 

molecular, and neurochemical changes in these cells, which 

enable them to mediate toxic effects or ultimately lead to an 

impairment of their ability to protect neurons and/or other 

glial cells, can be referred as gliotoxicity. On the other hand, 

glioprotection is associated with specific responses of glial 

cells, both in physiological and pathological conditions, by 

which they can protect themselves as well as neuronal cells, 
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resulting in an overall improvement of the CNS functioning 

[6].

Considering that our research group has studied the role 

of glial cells on toxic and protective outcomes, this review 

will provide a brief summary of types and functions of glial 

cells and thus address molecular and cellular mechanisms 

associated with gliotoxicity and glioprotection, potential 

glioprotective molecules, and perspectives on gliotherapies 

(e.g., therapies for CNS pathologies focused on glial cells).

Types and Functions of Glial Cells

Astrocytes

Astrocytes are the most abundant glial cells and are recog-

nized by a variety of homeostatic functions in the CNS. They 

have a refined cytoarchitecture with numerous stellate pro-

cesses that allows their interaction with blood vessels, neu-

rons, and other cell populations [7]. These morphological 

features of astrocytes make them important elements in the 

connection between peripheral and central systems, besides 

being associated with several of their functional roles, such 

as formation and maintenance of the blood–brain barrier 

(BBB); supply of oxygen and nutrients to the brain; regula-

tion of synaptic transmission; and plasticity at the tripartite 

synapse [8–10]. The close contacts of astrocytes with syn-

apses and blood vessels ensure their metabolic support to 

neurons through the coupling between synaptic activity and 

glucose utilization (neurometabolic coupling) [11].

Astrocytes participate in ionic homeostasis and metabo-

lism of neurotransmitters, particularly of the glutamate [12]. 

They also regulate the diffusion and response to circulat-

ing factors, such as peripheral hormones, metabolites, and 

inflammatory mediators [13–16], in addition to participating 

in the defense against oxidative stress and in the detoxifica-

tion of harmful molecules [17]. Moreover, astrocytes act as 

important secretory cells, releasing a wide range of signal-

ing molecules (trophic and growth factors, gliotransmitters, 

peptides, and proteins) that will impact the functions of 

the surrounding glial, neuronal, and endothelial cells [18]. 

Inflammatory and immune responses are also important 

functional properties of astrocytes [19]. Moreover, astro-

cytes can respond to abnormal events in the CNS through a 

morphological, physiological, metabolic, biochemical, and 

transcriptional remodeling, which can impair their homeo-

static functions and has been collectively called as reactive 

astrogliosis [20].

Oligodendrocytes

The major function of oligodendrocytes is synthesis of 

myelin sheath, a lipid-enriched specialized and compacted 

structure, which is extended in spirals around the axons 

of many neurons [21]. In an adult CNS, oligodendrocyte 

progenitor cells (OPCs) persist and can continuously 

proliferate and differentiate into mature and myelinating 

oligodendrocytes [22]. Both differentiation and myeli-

nation processes require a series of sequential steps and 

are orchestrated by several molecular and cellular sig-

nals, including those from neurons and other glial cells 

[23]. The rate of myelinating oligodendrocyte generation 

decreases throughout life, as the loss of myelin may result 

in cognitive disabilities and altered sensory and motor 

functions [21].

Recently, oligodendrocytes have been reported to pro-

vide metabolic support by transferring energy metabolites 

(particularly lactate and pyruvate) to neurons through mono-

carboxylate transporters (MCT) and cytoplasmic channels 

[24]. In addition, oligodendrocytes have been shown to per-

form immune functions by expressing both immune-related 

receptors and immunomodulatory molecules, which prob-

ably display pleiotropic roles in oligodendrocytes and other 

glial cells [25].

Microglia

Microglia are the resident immune cells of the CNS, dis-

tributed over the entire parenchyma and playing important 

roles to maintain brain homeostasis [26]. In response to 

brain damage or infections, they are usually the first cells to 

be activated to perform several well-established functions, 

among these, pathogen recognition, inflammatory responses, 

and phagocytosis [27, 28].

Under physiological conditions, microglia possess a spe-

cialized morphology with a small soma containing elon-

gated, branched, and highly dynamic processes, which 

allows scanning the surrounding area and surveillance of 

the CNS [29, 30]. Upon CNS disorders, microglia quickly 

responds and can assume different activation patterns, which 

are usually associated with morphological changes. Micro-

glial polarization may result in the neurotoxic M1-type 

or neuroprotective M2-type, based on the expression and 

release of cytokines, chemokines, and/or trophic factors 

[31, 32]. However, accumulating evidence has suggested 

that activation of microglia is heterogeneous and involves 

different but functionally overlapping phenotypes [33].

Besides their classical immune functions, microglia are 

implicated in several homeostatic processes, such as the 

release of trophic factors; promotion of neuronal survival, 

as well as the generation and maintenance of other neural 

cells; generation, maturation, regulation, and plasticity of 

synapses; synaptic pruning that redefines synapses and cir-

cuits; clearance of cells and debris; regulation of myelina-

tion; and memory formation and learning [26, 32].
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Neurochemical Changes and Molecular 
Mechanisms Associated with Gliotoxicity

Considering the versatile and dynamic roles played by 

the different types of glial cells described in the previous 

section, it is not surprising that dysfunctions of these cells 

may be related to several pathological conditions. Interest-

ingly, brain diseases may share many neurochemical, cel-

lular, and molecular mechanisms related to gliotoxicity 

(Fig. 1), which is addressed in this section.

Fig. 1  Gliotoxicity and glioprotection-associated mechanisms. Glio-

toxicity may be linked to several detrimental processes, including 

metabolic and oxidative stresses, inflammation, and excitotoxicity. On 

the other hand, antioxidant defenses, metabolic and trophic support, 

anti-inflammatory response, and glutamate homeostasis are mecha-

nisms associated with glioprotection. Changes in several signaling 

pathways in glial cells may result in both gliotoxic and glioprotective 

effects. The cells on the left represent reactive (dysfunctional) glial 

cells (astrocyte is represented in blue, microglia is represented in yel-

low, and oligodendrocyte is represented in purple); while the cells on 

the right represent functional glial cells (ramified astrocyte is repre-

sented in blue, ramified microglia is represented in yellow, and oligo-

dendrocyte is represented in blue)

6579Molecular Neurobiology (2021) 58:6577–6592
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Metabolic Stresses

Glucose is the essential energy substrate for the CNS; 

therefore, pathological conditions associated with altered 

availability of glucose and/or oxygen (hypoxia/ischemia, 

hypoglycemia and hyperglycemia), as well as impairments 

in the metabolic machinery of cells, can largely impact 

glial functioning, inducing gliotoxicity. Hypoglycemia/

glucose deprivation, hyperglycemia, and/or fluctuations in 

glucose concentration (hyperglycemia followed glucose 

deprivation) have been associated with several glial dys-

functions. In astroglial cells, metabolic stress alters glu-

tamate metabolism, mitochondrial activity/redox balance, 

inflammatory response, release of trophic factors, and dif-

ferent signaling pathways [34–36]. Glucose-related meta-

bolic stress also affects microglia and oligodendrocytes/

OPCs, promoting microglial activation and contributing to 

inflammatory and oxidative injuries to neurons [37, 38]. 

Hypoglycemia inhibits oligodendrocyte development and 

differentiation, in addition to trigger apoptosis in OPCs 

[39], while glucose-oxygen deprivation causes intracel-

lular lactate accumulation and acidosis [40]. However, 

hyperglycemia increased the expression of the pre-oligo-

dendrocyte marker O4 without affecting the expression of 

NG2, a marker of OPC that is downregulated during the 

process of cell differentiation. Although hyperglycemia 

can improve the differentiation rate of OPCs, the mecha-

nisms underlying this effect and its impacts are largely 

unknown [41].

Another important gliotoxicity condition associated with 

metabolic stress is caused by ammonia. Brain detoxification 

of ammonia occurs mainly via glutamine synthetase (GS) 

[42], a specific astrocytic enzyme, but hyperammonemia can 

exceed the metabolic capacity of cells. Ammonia-induced 

gliotoxicity is associated with cellular edema, energy deple-

tion, oxidative stress, impairment in glutamate clearance 

and inflammatory response [43–45]. Moreover, ammonia 

can upregulate the senescence marker p21, thus potentially 

causing a glial-inflammaging process [14]. Although astro-

cytes are the primary targets of ammonia toxicity, micro-

glia may also be affected. In a co-culture model of astro-

cyte and microglia, ammonia decreased cellular viability 

and promoted microglial activation, with an increase in the 

percentage of phagocytic type of microglia [46]. Addition-

ally, ammonia induced oxidative stress and up-regulated 

the microglial activation marker ionized calcium-binding 

adaptor molecule-1 (Iba-1) in cultured microglia and in post 

mortem brain tissue from patients with hepatic encephalopa-

thy, a neuropsychiatric syndrome associated with hyperam-

monemia [47]. Our group also have demonstrated that azide, 

an inhibitor of cytochrome c oxidase, induces gliotoxicity, 

promoting alterations in redox homeostasis, inflammatory 

response, and glutamate metabolism [6, 48].

Oxidative Stress, Inflammatory Response, 
and Excitotoxicity

Reactive oxygen/nitrogen species (ROS/RNS) can play 

neuromodulatory roles at physiological concentrations, 

including the regulation of neuronal polarity and neurite 

outgrowth, differentiation, cytoskeletal changes, synaptic 

plasticity, and activation of a wide range of signaling path-

ways and gene expression [49–51]. ROS provide a rapid and 

reversible mechanism for alter protein function by modulat-

ing the redox state of amino acid residues, particularly of 

cysteine, thus modifying the function of signaling proteins, 

ion channels, transporters, and transcription factors [52, 

53]. On the contrary, excessive production of ROS/RNS by 

activated astrocytes and microglia can induce gliotoxicity, 

contributing to the pathomechanisms of neuropathological 

conditions [54, 55]. Oxidative/nitrosative stress in the brain 

can also be associated with unsaturated lipid enrichment, 

the presence of redox active transition metals, the neuro-

transmitter auto-oxidation and metabolism, the excessive 

glutamatergic signaling, as well as the increased expression 

and/or activity of NADPH oxidase and inducible nitric oxide 

synthase (iNOS) [56].

Although brain cells are equipped with enzymatic anti-

oxidant enzymes such as superoxide dismutase (SOD), cata-

lase (CAT), glutathione peroxidase (GPx), and glutathione 

reductase (GR), the non-enzymatic antioxidant defense 

glutathione (GSH) plays a crucial role in maintaining brain 

redox homeostasis [54]. Furthermore, GSH depletion in glial 

cells is associated with oxidative stress, and the pathophysi-

ology of brain disorders [57] and both this depletion and oxi-

dative stress are closely related to inflammatory response in 

glial cells [58, 59]. Under pathological conditions, increased 

ROS production triggers inflammatory responses that, in 

turn, exacerbate the pro-oxidant status [53], thus establish-

ing a self-amplifying cycle that contribute to gliotoxicity. 

This interplay between oxidative stress and inflammation is 

importantly mediated by the nuclear factor kappa B (NFκB) 

signaling [53].

Among glial cells, inflammatory and immune responses 

are primarily associated with microglia and astrocytes [60], 

although oligodendrocytes can be also involved to a lesser 

extent [25]. A wide range of extracellular stimuli can elicit 

inflammatory responses in glial cells, including pathogen-

associated molecular pattern (PAMPs) and damage-asso-

ciated molecular pattern (DAMPs), cytokines, and other 

molecular insults [19, 27]. PAMPs are small-molecule 

motifs present in pathogenic bacteria, protozoa, and viruses; 

DAMPs are molecular motifs associated with cellular injury 

and tissue damage (e.g., misfolded and aggregated proteins, 

miss-localized nucleic acids and other alarmins originated 

from damaged cells). Both molecular motif types can be 

recognized by specific pattern recognition receptors, in 
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particular Toll-like receptors (TLRs), which are expressed 

by glial cells and can trigger innate immune responses [19, 

26]. Mainly under the control of NFκB, the master regula-

tor of inflammation, microglia, and astrocytes becomes an 

important source of several inflammatory mediators, includ-

ing tumor necrosis factor alpha (TNF-α), interleukins (IL-1β, 

IL-6, IL-18), chemokines, and prostaglandins, in addition to 

nitric oxide (NO) and ROS [32, 61]. This plethora of inflam-

matory mediators will impact the surrounding environment, 

importantly participating in the inflammatory activation of 

the other glial cells and in the recruitment of peripheral 

immune cells [32, 62]. Excessive and chronic inflammatory 

responses lead to neuronal death and are involved in several 

CNS disorders [63].

Glutamate is the predominant excitatory neurotransmit-

ter in the CNS and can be neurotoxic when inappropriately 

remaining at high levels in the synaptic cleft, a phenomenon 

referred as excitotoxicity [64]. Glial cells, particularly astro-

cytes, are responsible for the rapid removal of glutamate 

from synaptic cleft through excitatory amino acid transport-

ers, EAAT1 (or glutamate-aspartate transporter, GLAST), 

and EAAT2 (or glutamate transporter 1, GLT-1) [65]. With 

this regard, downregulation and/or hypofunction of gluta-

mate transporters may be associated with pathological con-

ditions [64, 66], and their activity can be impaired as conse-

quence of oxidative stress and/or inflammatory responses. 

It is well documented that glutamate transporters are highly 

susceptible to oxidation, which impairs their ability to take 

up extracellular glutamate [67]. Moreover, TNF-α has inhib-

itory effect on glutamate transport [68], probably associated 

with TNF-α-induced oxidative stress. Therefore, excitotoxic-

ity, oxidative stress, and inflammation are processes closely 

related and represent important gliotoxicity mechanisms.

Gliotoxicity and CNS Diseases

Neurochemical changes and processes related to glial cells 

previously discussed represent, individually or collectively, 

crucial points in the pathogenesis of several brain diseases, 

including Alzheimer’s and Parkinson’s diseases, amyo-

trophic lateral sclerosis (ALS), multiple sclerosis, psychiat-

ric disorders, stroke, diabetes mellitus, hepatic encephalopa-

thy, the aging process, and infectious diseases.

Neuropsychiatric Disorders and Aging Process

Alzheimer’s disease, Parkinson’s disease, and ALS are 

neurodegenerative diseases that present the accumula-

tion and aggregation of proteins, such as β-amyloid and 

tau, α-synuclein, and TAR DNA-binding protein 43 

(TDP-43), respectively, as a common hallmark [69]. The 

pathophysiology of psychiatric disorders including major 

depressive disorder, bipolar disorder, and schizophrenia 

pointed toward monoamine disturbances and glutamater-

gic hypothesis [70]. However, the mechanisms of cogni-

tive dysfunctions, neuronal degeneration, onset, and pro-

gression of these neuropsychiatric disorders have not yet 

been clearly elucidated. Interestingly, although they affect 

different CNS areas, producing different outcomes and 

symptoms, neuropsychiatric disorders share deleterious 

processes that may involve glial cells, including neuro-

inflammation, glutamate excitotoxicity, oxidative stress, 

and metabolic/trophic support [71–74]. Moreover, astro-

cyte reactivity can contribute to the pathomechanisms of 

the above-referred diseases. By definition, astrocyte reac-

tivity involves morphological, molecular, and functional 

changes in response to pathological situations in surround-

ing tissue, such as CNS disease or injury, which may be 

reversible or chronic. When astrocytes undergo a reactive 

state, loss of homeostatic functions and gain of detrimental 

functions may occur, including some involved in glutamate 

and ionic homeostasis, glucose metabolism, production of 

inflammatory mediators and ROS/RNS, proliferation, BBB 

integrity, and  Ca2+ signaling [20]. These astrocyte dys-

functions potentially lead to a transition from physiologic 

to pathologic roles that, without being the sole or primary 

initiators of pathology, may affect disease outcomes/pro-

gression [20]. With this regard, glial cells are the basis 

of many biomarkers of CNS diseases and, consequently, 

have emerged as important therapeutic targets for these 

pathological conditions. In addition, changes in several 

signaling pathways in glial cells corroborate their role in 

the pathomechanisms of neuropsychiatric disorders and 

neurodegenerative diseases [75–77].

Aging is a complex process characterized by an intrin-

sic physiological and functional decline of an organism. 

Although brain aging increases the risk of neurodegenera-

tive diseases, it is not pathological and may be related to 

adaptive mechanisms of cell physiology over time [78]. 

Aged human brains display only mild and heterogeneous 

changes in astrocyte morphology or GFAP levels [79]. How-

ever, other cellular and molecular hallmarks of aging have 

been studied in glial cells. Aging has been associated with 

decreased glucose and glycogen metabolism, as well as with 

decreased ATP production, decreasing astrocytic fuel provi-

sion of neurons [80–82]. Glutamate transporter downregula-

tion and/or hypofunction has been also observed with aging 

[81, 83], which impair glutamate uptake and favor excitotox-

icity. In addition, aged astrocytes and microglia have been 

shown to accumulate ROS and produce increased amounts 

of pro-inflammatory mediators, which may be exacerbated 

in response to harmful stimuli [84, 85]. Considering both 

senescence and inflammation in particular, the phenomenon 

of inflammaging has emerged as a mechanism shared by 

age-related diseases [86], notably involving astrocytes and 

microglia.

6581Molecular Neurobiology (2021) 58:6577–6592
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Neurological Dysfunctions Associated with Infectious 

Diseases

Despite the protective barriers, such as BBB, CNS can be 

directly and/or indirectly affected by bacterial and viral 

infections. In the context of bacterial infections, lipopoly-

saccharide (LPS), a toxin present in the outer membrane of 

gram-negative bacteria, has been widely used as a model 

of peripheral and central inflammatory responses and their 

related cognitive decline [87]. A large body of evidence has 

demonstrated that LPS peripherally administrated is able 

to induce inflammatory responses within CNS [88, 89]. 

Due to the position of astrocytes, they can serve as a bridge 

between systemic inflammation and neuroinflammation [15]. 

Although LPS classically activates microglia and astrocytes, 

oligodendroglial cells can also respond to this bacterial 

inflammogen [90]. Of note, glial cells can be major respon-

sible for LPS-induced neuronal damage [91, 92]. Therefore, 

LPS has exhaustively used as an in vivo and in vitro experi-

mental model of brain diseases, such as Alzheimer’s disease 

and schizophrenia, among others.

With regard to viral infections, glial cells can be primary 

targets of neurotropic viruses, such as the human immu-

nodeficiency virus type 1 (HIV-1) and zika virus (ZIKV). 

Microglia and astrocytes constitute CNS reservoirs of HIV-1 

[93, 94], promoting neuroinflammation, which can explain 

neuronal damage and neurocognitive disorders in a number 

of patients, considering the relative incapacity of HIV-1 to 

directly infect neurons [95]. Due to the presence of AXL 

receptor, astrocytes and microglia are potentially the pri-

mary cells targeted by ZIKV in the CNS [96]. In both astro-

cytes and microglia, ZIKV elicited classical inflammatory 

responses [96], while, for astrocytes, it induced oxidative 

stress, mitochondrial failure, and DNA damage in astrocytes 

[97]. Our group have demonstrated that an acute hippocam-

pus exposure to ZIKV is also able to induce neuroinflam-

mation and oxidative stress, affecting neuron-glia commu-

nication [98].

COVID-19 has been also recently associated with neu-

rological dysfunctions, yet it is unclear whether they are 

consequence of direct CNS infection by SARS-CoV-2 or 

whether they result from peripheral cytokine storm and 

metabolic dysfunctions, although investigators have found 

that neurons and astrocytes are susceptible to SARS-CoV-2 

infection [99, 100]. Anosmia and ageusia are common neu-

rologic symptoms in COVID-19 patients, which can be 

associated with dysfunction in the olfactory bulb [101]. In 

addition, this brain structure can mediate direct viral inva-

sion [102]. Interestingly, olfactory impairment is a common 

and early (preclinical) sign of neurodegenerative diseases, 

including Alzheimer’s and Parkinson’s diseases, in addition 

to be associated with depression and other neuropsychiatric 

disorders [103, 104]. The precise mechanisms that connect 

these diseases with olfactory loss are also still unclear but 

potentially involve neuroinflammation [103, 104]. Therefore, 

infectious diseases mainly target glial cells and might gen-

erate long-term consequences including cognitive deficits, 

neurodegenerative diseases, psychiatric disorders, and others 

that are currently unknown.

Mechanisms Underlying Glioprotection

Glioprotection can be achieved by endogenous homeostatic 

and protective functions of glial cells, which in turn may be 

positively modulated by a wide range of exogenous mol-

ecules, named as glioprotective molecules. They can pro-

mote protection to the CNS by improving glial functions 

and avoiding gliotoxicity. This section will discuss the main 

points associated with glioprotection (Fig. 1).

Metabolic Support

Astrocytes are recognized as energy substrate suppliers, 

since they are responsible for glucose uptake and its dis-

tribution to other neural cells, besides being able to store 

it as glycogen [9]. Moreover, astrocytes largely metabolize 

glucose glycolytically to produce ATP, generating lactate, 

which can be later transferred to neurons to be fully oxidized 

under conditions of high energy demands or when glucose 

supply is low [9, 105]. More recently, it has been demon-

strated a metabolic coupling between oligodendrocytes and 

neurons, in which lactate derived from the glucose metabo-

lism of these glial cells can also be transferred to the axon, 

contributing to ATP synthesis in neurons [106]. Of note, 

besides its metabolic function, signaling roles of extracel-

lular lactate have been also recently investigated particularly 

in neurons, associated with neuronal excitability, synaptic 

plasticity, memory consolidation, and expression of trophic 

factors. Such signaling effects can be mediated either by the 

G protein-coupled receptor GPR81, extracellular acidifica-

tion, changes in redox state, or depolarization of target cells 

[107, 108]. In addition to lactate, astrocytes can also transfer 

healthy mitochondria to neurons, replacing damaged orga-

nelles of these cells and thus providing a protection against 

neuronal mitochondrial dysfunction [109].

Another important metabolic cooperation between astro-

cytes and neurons comprises the glutamate-glutamine cycle 

[11]. Once taken up by astrocytes, glutamate can be con-

verted into glutamine by the enzyme GS, which participates 

both in glutamate metabolism and in ammonia detoxifica-

tion [42]. Glutamine is then exported to neurons, allowing 

recycling of glutamate. Since glutamate is also the precur-

sor of gamma aminobutyric acid (GABA), the glutamate-

glutamine cycle is crucial for maintaining glutamate and 

GABA-based neurotransmission [110]. Moreover, de novo 
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synthesis of glutamate in the brain occurs in astrocytes via 

the pyruvate carboxylase pathway and thus also depends on 

glucose [111].

Concerning the lipid metabolism, astrocytes are an 

important cholesterol source to mature neurons, since these 

glial cells express the enzymes for cholesterol synthesis and 

the apolipoproteins necessary to export it [112]. Moreover, 

although oligodendrocytes are able to synthesize choles-

terol, a critical component of the myelin structure, they also 

depend on the supply from astrocytes [112]. In addition, 

there is a metabolic coupling between astrocytes and neu-

rons regarding detoxification of neuronal-derived toxic fatty 

acids, which are transferred to astrocytes and metabolized 

via mitochondrial β-oxidation [113].

Trophic Support

Synthesis and release of a wide range of trophic factors 

by glial cells, especially by astrocytes, constitute another 

important mechanism of glioprotection. These trophic fac-

tors include brain-derived neurotrophic factor (BDNF), 

glial cell line-derived neurotrophic factor (GDNF), S100B, 

transforming growth factor-β (TGF-β), vascular endothelial 

growth factor (VEGF), insulin-like growth factor-1 (IGF-

1), nerve growth factor (NGF), and neurotrophins 3 and 4. 

These multifunctional molecules can mostly act on nearby 

neurons, regulating neuronal survival, differentiation, func-

tion, plasticity and regeneration, as well as neurogenesis 

[32, 114, 115]. In addition, trophic factors can also target 

other glial and even endothelial cells, regulating several pro-

cesses, such as oligodendrocyte differentiation, survival and 

remyelination; microglial activation; astrocyte proliferation, 

function and metabolism; angiogenesis; and BBB integrity 

[116–118].

Modulation of Triad Oxidative Stress, Excitotoxicity, 
and Inflammatory Response

Glial cells display efficient antioxidant defense mechanisms 

that allow their functions in the defense and repair of the 

brain. In particular, astrocytes are able to maintain their pro-

tective roles even after surviving intense oxidative stress, 

thus playing a crucial role for providing antioxidant support 

to neurons [119]. In light of this, neuron-astrocyte interac-

tions mediate an essential mechanism for recycling of ascor-

bic acid, an important neuronal antioxidant defense [120]. In 

addition, GSH, a tripeptide consisting of glutamate, cysteine, 

and glycine that is synthesized by the enzymes γ-glutamyl 

cysteine ligase (GCL) and GSH synthase [121], is an impor-

tant antioxidant molecule able to react with free radicals 

or participate in enzymatic reactions, such as those cata-

lyzed by GPx and glutathione-S-transferase (GST). While 

microglia and oligodendrocytes synthetize GSH for their 

self-protection, astrocytes are also able to readily release it 

[121, 122]. This is particularly important because neurons 

are dependent on astrocytic GSH for providing extracellu-

lar cysteine for their synthesis of GSH, since they are less 

capable of importing cystine [122, 123]. Extracellular GSH, 

in turn, can be protected from oxidation by other “guardian” 

molecules, including the SOD, secreted by astrocytes [124].

GSH metabolism and glutamatergic neurotransmission/

homeostasis are processes closely interconnected in several 

ways. Besides astrocytes, microglia and oligodendrocytes 

also express glutamate transporters and uptake glutamate, 

but they are probably associated with the GSH demands 

of these cells [125, 126]. Thus, glial glutamate transport-

ers can provide intracellular glutamate for GSH synthesis, 

as well as for Cys-Glu exchanger (system  xc−) operation. 

This transporter, present in glial cells, plays a crucial role 

for GSH synthesis, since it mediates the uptake of cystine, 

the bioavailable form of cysteine, in exchange for glutamate 

[127]. Maintenance of adequate GSH levels, therefore, is 

important to protect glutamate transporters from oxidation 

and avoid excitotoxicity. Moreover, and interestingly, it has 

been recently hypothesized that GSH is a relevant glutamate 

reservoir and could supply it for synaptic transmission when 

the glutamate-glutamine cycle is impaired [128].

Additionally, both microglia and astrocytes can be 

involved in suppression of inflammation and immune 

responses [129, 130]. Alternative activation patterns adopted 

by these glial cells are related to production and release of 

several anti-inflammatory molecules, such as IL-4, IL-10, 

IL-11, and IL-27, as well as TGF-β, that function mainly by 

suppressing the pro-inflammatory milieu [131, 132]. Thus, 

they establish a bidirectional crosstalk for a reciprocal anti-

inflammatory modulation of microglia and astrocytes. To 

illustrate this relationship, activated M2-like microglia pro-

duce anti-inflammatory cytokine IL-10 that stimulate astro-

cytes to secrete TGF-β, which in turn reduces microglial 

pro-inflammatory activation, ultimately preserving neuronal 

and oligodendroglial functioning [132].

Signaling Pathways associated with Glioprotection

The nuclear factor erythroid-derived 2-like 2 (Nrf2) is a 

stress-responsive transcription factor that acts as a key reg-

ulator of redox, metabolic, and inflammatory homeostasis 

[133–135]. Upon activation, Nrf2 is translocated into the 

nucleus and controls the expression of genes that encode 

antioxidant enzymes, including SOD, GPx, and GST [133, 

135]. It also stimulates the expression of proteins that 

contribute to GSH biosynthesis and homeostasis, such as 

system  xc−, GCL, GSH synthase, and the NADPH-gener-

ating enzyme glucose-6-phosphate dehydrogenase [133]. 

Moreover, Nrf2 may directly or indirectly influence inter-

mediary metabolism and mitochondrial function. It directly 
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regulates the expression of important enzymatic steps of 

metabolic pathways related to synthesis of carbohydrates, 

nucleic acids, lipids, and amino acids. Indirectly, Nrf2 can 

affect its own expression [136] and the other transcription 

factors [e.g., peroxisome proliferator-activated receptor γ 

(PPARγ) and retinoid X receptor α (RXRα)] [137] that in 

turn regulate metabolic genes, in addition to influence the 

activity of metabolic enzymes that are susceptible to thiol 

modifications [e.g., pyruvate dehydrogenase kinase 2, pyru-

vate kinase, AMP-activated protein kinase (AMPK)], since 

Nrf2-mediated expression of antioxidant genes can prevent 

or reverse oxidation of cysteine residues [133].

Heme oxygenase 1 (HO-1) is one of the classical genes 

regulated by Nrf2, which is associated with responses 

against oxidative challenges. This enzyme catalyzes the deg-

radation of heme into biliverdin, bilirubin, carbon monoxide, 

and free iron. Products of HO-1, in particular bilirubin and 

CO, mediate protective effects since they have antioxidant 

and anti-inflammatory properties [138]. Of note, they can 

inhibit iNOS activity and NFκB activation [135]; thus HO-1 

is an important element in the connection between Nrf2 and 

NFκB signaling pathways. In fact, Nrf2 signaling negatively 

regulates NFκB-driven inflammatory and oxidative stress 

responses [135]. In the context of glioprotection, although 

microglia and oligodendrocytes exhibit functional Nrf2/

HO-1 signaling, astrocytes may be the predominant neural 

cell type for activation of Nrf2 [139].

Other signaling pathways that act as key regulators of cell 

survival, responses to stressful conditions, and metabolic 

effectors can mediate glioprotective effects, including sirtuin 

1 (SIRT1), AMPK, phosphoinositide3-kinase (PI3K)/Akt, 

and protein kinase C (PKC) [35, 140, 141].

Glioprotective Molecules

A wide range of molecules has been investigated as candi-

dates to mediate protective effects on the CNS by target-

ing glial cells (Table 1). Resveratrol, a polyphenol stilbene 

found in grapes and wine, is one of these promising mol-

ecules. Several studies have shown that resveratrol regulates 

diverse astroglial functions, including antioxidant defenses, 

inflammatory response, trophic factor release, and glutamate 

homeostasis, both at basal conditions and against harmful 

stimuli [43, 48, 140, 142–147]. Additionally, resveratrol is 

able to prevent age-related functional alterations of astro-

cytes [148]. These effects are associated with different sign-

aling pathways, including Nrf2/HO-1, SIRT1, PI3K/Akt, 

AMPK, adenosine receptors, and NFκB [48, 140, 144, 149]. 

Moreover, resveratrol also exhibits glioprotective effects on 

microglial and oligodendroglial cells [90, 145, 150] and in 

different in vivo experimental models [151–153].

Besides resveratrol, other naturally occurring molecules 

of plant origin can promote glioprotection, such as curcumin 

(polyphenolic compound found in the rhizome of Curcuma 

longa Linn) [154–163], isoflavones (flavonoid polyphenols 

present in leguminous plants) [164–174], and sulforaphane 

(isothiocyanate found in cruciferous vegetables) [175–179]. 

Endogenous mammalian compounds including lipoic acid 

(an essential cofactor for different mitochondrial enzymes) 

[141, 180–185] and guanosine (a guanine-based purine) 

have been also investigated as potential glioprotective agents 

[6, 35, 83, 186–190]. The mechanisms underlying the pro-

tective effects of these molecules in glial cells involve anti-

oxidant and anti-inflammatory activities, improvement of 

mitochondrial function, Nrf2/HO-1 activation and NFκB 

inhibition, glutamate clearance and metabolism, regulation 

of microglial activation, survival of oligodendrocytes, and 

delay of demyelination (Table 1).

Perspectives on Gliotherapies

A wide variety of medications currently used to treat psychi-

atric disorders and neurodegenerative diseases are shown to 

have beneficial effects on glial cells, which may participate 

in their therapeutic effects. Antipsychotics, such as risp-

eridone, haloperidol, clozapine and quetiapine are able to 

regulate inflammatory responses in astrocytes and/or micro-

glia [191–193]. Risperidone, in particular, modulate gluta-

mate uptake, GS activity, GSH content, and S100B release 

in astroglial cells [191, 194, 195]. Major antidepressants 

(serotonin-specific reuptake inhibitors, tricyclic antidepres-

sants) also demonstrate anti-inflammatory properties [196], 

as well as improving the release of trophic factors by glial 

cells [196, 197]. In addition, riluzole, the only drug approved 

for ALS, mainly target glutamate excitotoxicity, at least in 

part, by improving astroglial glutamate uptake [198], and 

it may also increase synthesis of trophic factors and induce 

Nrf2/HO-1 signaling [199].

In line with this, many studies strive to develop specific 

gliotherapies for treatment of neurological diseases [200, 

201], demonstrating that glial cells can represent a novel 

basis for understanding, preventing, and treating these condi-

tions, such as Alzheimer’s disease and schizophrenia. More-

over, characterizing the role of glial cells in the pathophysi-

ology of CNS diseases as well as identifying gliotherapeutic 

targets can improve future gliotherapies [202].

Concluding Remarks

The last 25  years have brought significant progress in 

the understanding of glial functionality, since these cells 

play a critical role in CNS homeostasis, as well as in 
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Table 1  Potential glioprotective molecules and their effects

AP-1, activator protein-1; COX-2, cyclooxygenase-2; ERK, extracellular signal-regulated kinases; GS, glutamine synthetase; GSH, glutathione; 

GSK-3β, glycogen synthase kinase-3 beta; HO-1, heme-oxigenase 1; IL-1β, interleukin-1β; IL-6, interleukin-6; iNOS, inducible nitric oxide 

synthase; JNK, c-Jun N-terminal kinases; LPS, lipopolysaccharide; MEK, mitogen-activated protein kinase kinase; NFκB, nuclear factor kappa 

B; NO, nitric oxide; Nrf2, nuclear factor erythroid-derived 2-like 2; OPC, oligodendrocyte precursor cells; p38 MAPK, p38 mitogen-activated 

protein kinases; PGC-1α, peroxisome proliferator-activated receptor gamma coactivator 1-alpha; PGE2, Prostaglandin E2; PI3K, phosphoi-

nositide3-kinase; PKC, protein kinase C; PKR, protein kinase R; PPARγ, peroxisome proliferator-activated receptor gamma; ROS, reactive oxy-

gen species; TLR3, toll-like receptor 3; TLR4, toll-like receptor 4; TNF-α, tumor necrosis factor alpha

Molecule Glioprotective functions References

Curcumin Improvement of mitochondrial functioning in astrocytes [157, 158]

Antioxidant and anti-inflammatory effects through Nrf2 and HO-1 expressions in microglial cells [156, 159]

Anti-inflammatory effects in microglia through downregulation of TLR4, NFκB, p38 MAPK, and PI3K/Akt signaling path-

ways

[160, 161]

Reduction of NO and PGE2 production by inhibiting iNOS and COX-2 expression in microglial cells [162]

Inhibition of cytoskeletal disruption in astroglial cells [158]

Reduction of apoptosis, glial activation, and glial scar formation [154, 163]

Promotion of OPC differentiation [155]

Guanosine Regulation of astroglial oxidative and inflammatory responses through HO-1 [6, 188]

Modulation of glutamatergic parameters and oxidative/nitrosative damages in astroglial cells with involvement of adenosine 

receptors, PI3K, MEK, and PKC pathways

[35, 189]

Antiapoptotic effect in astrocytes through PI3K/Akt pathway [190]

Anti-aging effects in astrocytes in an HO-1 dependent manner [83]

Prevention of oxidative stress and excitotoxicity in focal ischemia [186]

Promotion of myelinogenesis and remyelination [187]

Isoflavones Anti-inflammatory effects in astrocytes through suppression of NFκB and increase of PPARγ expression [164, 165]

Induction of synthesis and secretion of neurotrophic factors in astrocytes [168]

Anti-inflammatory and immunomodulatory properties in microglia by inhibiting TLR4/NFκB signaling and expression of 

COX-2, iNOS, TNF-α, IL-1β and IL-6

[166, 169–171]

Regulation of glutamate uptake in rat brain [172]

Increased glial cell migration [173]

Prevention of oxidative stress and decreased monoamine oxidase enzyme activity in brain tissue [174]

Alleviation of demyelination in mouse hippocampus [167]

Lipoic acid Antioxidant and anti-inflammatory effects in astroglial cells through HO-1 [141, 180, 182]

Regulation of glutamate uptake, glutamate transporter expression, GS activity, and GSH content in astroglial cells [141, 180, 183]

Reduction of hyperammonemia-induced damage by regulating ERK and HO-1 pathways [141, 182]

Prevention of inflammation and dysfunction caused by TLR3 and PKR in viral pathologies in glial cells [183]

Inhibition of GSK-3β with anti-inflammatory effects in microglial cells [184]

Induction of M2 phenotype in microglia, reduction of ROS and NFκB signaling, improved cell survival, autophagy, and 

inhibition of apoptosis

[185]

Prevention of demyelination via oligodendrocyte survival and promotion of regenerative mechanisms [181]

Resveratrol Improved glutamate uptake, GS activity, S100B secretion, and GSH system in astroglial cells [59, 142]

Antioxidant, anti-inflammatory, and genoprotective effects in astroglial cells [48, 144, 147]

Prevention of ammonia toxicity in astroglial cells by modulating glutamate metabolism, redox status, and inflammatory 

response

[43–45]

Anti-inflammatory effects in astrocytes and microglia through NFκB, HO-1, adenosine receptors, ERK, and p38 MAPK [140, 143, 145]

Enhancement of astroglia-derived trophic factor release [140, 146]

Increased antioxidant defenses and decreased pro-inflammatory cytokines in astrocytes during aging [148]

Regulation of microglia M1/M2 polarization via PGC-1α [150]

Modulation of inflammation, oxidative stress, and release of trophic factors in OPC through Nrf2/HO-1 pathway [90]

Sulforaphane Modulation of inflammatory response, antioxidant defenses, glutamatergic system, and trophic factor release in astroglial cells 

challenged with LPS

[175]

Prevention of oxidative stress associated with oxygen and glucose deprivation by Nrf2 induction [176]

Anti-inflammatory effect through inhibition of JNK/AP-1/NFκB and activation of Nrf2/HO-1 in activated microglia [178, 179]

Activation of microglial processes via Akt signaling [177]
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pathogenesis and progression of CNS diseases. With these 

concept changes, it is believed that we will be able to make 

rapid progress in the findings, as well as in a broader and 

more efficient way to demonstrate that glial cells can be tar-

gets to drug development. Currently, it is well established 

that under oxidative and inflammatory challenges, glial cells 

can switch from having a protective role to a harmful pheno-

type. In addition, triad oxidative stress, neuroinflammation, 

and excitotoxicity are strongly associated with several neuro-

logical and psychiatric disorders. Considering the relevance 

of glial cells for physio/pathological processes, our Lab has 

studied these cells in different models of gliotoxicity to pro-

pose glioprotective strategies in the future, as well as to char-

acterize the mechanisms of glioprotection. By understand-

ing gliotoxicity, glial-based preventive/therapeutic strategies 

might emerge to delay and to prevent the development of 

CNS diseases and their consequences.

Finally, this review represents an overview of gliotoxicity 

and glioprotection and was wrote by researchers from the 

Neurotoxicity and Glioprotection Lab of Federal University 

of Rio Grande do Sul, as a remote activity during COVID-

19 pandemic.
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