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Abstract

Background: The sperm protein IZUMO1 (Izumo sperm-egg fusion 1) and its recently identified binding partner on

the oolemma, IZUMO1R, are among the first ligand-receptor pairs shown to be essential for gamete recognition

and adhesion. However, the IZUMO1-IZUMO1R interaction does not appear to be directly responsible for

promoting the fusion of the gamete membranes, suggesting that this critical phase of the fertilization cascade

requires the concerted action of alternative fusogenic machinery. It has therefore been proposed that IZUMO1 may

play a secondary role in the organization and/or stabilization of higher-order heteromeric complexes in

spermatozoa that are required for membrane fusion.

Results: Here, we show that fertilization-competent (acrosome reacted) mouse spermatozoa harbor several high

molecular weight protein complexes, a subset of which are readily able to adhere to solubilized oolemmal proteins.

At least two of these complexes contain IZUMO1 in partnership with GLI pathogenesis-related 1 like 1 (GLIPR1L1).

This interaction is associated with lipid rafts and is dynamically remodeled upon the induction of acrosomal

exocytosis in preparation for sperm adhesion to the oolemma. Accordingly, the selective ablation of GLIPR1L1 leads

to compromised sperm function characterized by a reduced ability to undergo the acrosome reaction and a failure

of IZUMO1 redistribution.

Conclusions: Collectively, this study characterizes multimeric protein complexes on the sperm surface and

identifies GLIPRL1L1 as a physiologically relevant regulator of IZUMO1 function and the fertilization process.
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Background
Mammalian fertilization is underpinned by a number of

sequential interactions between sperm and oocytes that

culminate in a complex process of membrane adhesion

and fusion [1]. The understanding of the molecular basis

of gamete interactions has been advanced by an elegant

series of transgenic and biochemical studies focusing on the

sperm protein IZUMO1, and its oolemmal binding partner,

IZUMO1R (sperm-egg fusion protein Juno) [2]. IZUMO1

is a type 1 transmembrane protein [3] that localizes to both

the inner and outer acrosomal membranes of spermatozoa

before undergoing dynamic relocalization to the cell surface

upon completion of an acrosome reaction [4]. From this

latter position, IZUMO1 directs gamete recognition and

adhesion via multiple low-affinity interactions with IZU-

MO1R, a GPI-linked receptor that resides on the surface of

the oolemma [5]. The indispensable nature of this

interaction has been confirmed through complemen-

tary in vitro antibody inhibition and in vivo knockout

studies targeting Izumo1 and Izumo1r, all of which

effectively block the fertilization cascade at the level of

gamete adhesion/fusion [2]. Bianchi and colleagues [6]

have, however, shown that the IZUMO1-IZUMO1R inter-

action does not directly promote membrane fusion. Indeed,

while the ectopic expression of IZUMO1R in HEK293 cells
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is successful in promoting their adhesion, it fails to induce

the formation of syncytia among these cells [6, 7]. Similarly,

cultured cells expressing mouse IZUMO1 can bind to oo-

cytes, but fail to fuse with them [8–10]. Such findings are

seemingly at odds with the demonstration that sperm from

Izumo1 null males are capable of binding to but not fusing

with the oolemma [3].

These apparently contradictory results may be recon-

ciled by the existence of alternative IZUMO1 receptor(s)

that mediate gamete membrane fusion [7] or by the pro-

pensity of IZUMO1 to associate with other, as yet uniden-

tified sperm surface proteins, leading to the formation of

several higher-order multiprotein complexes [11]. Thus,

in addition to its direct binding to IZUMO1R, it has been

suggested that IZUMO1 may play a secondary role in

gamete fusion by virtue of its ability to organize and/or

stabilize fusogenic proteins within the sperm membrane

[12]. Alternatively, and as explored herein, IZUMO1 may

be associated with other key regulators of sperm receptor

organization and fusion. Such models of gamete fusion

share analogy with the mechanisms that underpin mem-

brane fusion in many other biological systems where the

concerted action of multiprotein complexes is a well-

established paradigm. For instance, it is widely accepted

that a majority of enveloped viruses use protein complexes

to regulate their progression through the sequential

phases of fusion with a suitable target cell membrane, i.e.,

receptor recognition, triggering of fusion, and fusion

execution [13, 14]. The complexity of this membrane fu-

sion machinery ranges from the use of multiple copies of

a single glycoprotein for the entire fusion reaction [15],

through to the segregation of the activities responsible for

membrane attachment and membrane fusion into differ-

ent proteins and separate multimeric complexes [16].

Analysis of the protein domains that are required for

IZUMO1 complex formation has identified two distinct re-

gions, each putatively involved in the formation of unique

complexes [11]. It is proposed that the N-terminal IZUMO

domain participates in formation of smaller complexes,

whereas the transmembrane domain and/or the cytoplas-

mic tail direct the formation of larger complexes. The ex-

istence of unique pools of IZUMO1 complexes is further

supported by the demonstration that different IZUMO1

antibodies localize the protein either exclusively within the

equatorial segment [17] or, alternatively, on the entire/an-

terior acrosomal region of acrosome-reacted sperm [3, 11].

While the identity of the putative IZUMO1-interacting

proteins has yet to be established, the use of genomic and

proteomic techniques has uncovered several candidate

molecules with putative roles in sperm-oocyte interaction

[18], including various members of the ADAM (a disinte-

grin and metalloprotease domain) [19] and CAP (cysteine-

rich secretory proteins, antigen 5, and pathogenesis-related

1 proteins) superfamily of enzymes [20].

The aim of the current study was to investigate whether

mouse spermatozoa harbor multimeric complexes that

participate in oolemma interactions and, if so, identify

some of the key proteins in these complexes. Using the

combined techniques of blue native PAGE and far-western

blotting, we successfully demonstrated that mouse sperm-

atozoa do possess multimeric protein complexes that read-

ily bind solubilized oolemmal proteins. A subset of these

complexes contain IZUMO1 and the CAP proteins GLI

pathogenesis-related 1 like 1 (GLIPR1L1). Indeed, the ana-

lysis of a knockout mouse model revealed that GLIPR1L1

is required for optimal fertilization, with the loss of this

protein leading to the dysregulation of acrosomal exocy-

tosis, a failure of IZUMO1 relocalization and poor in vitro

fertilization rates.

Results
Identification of oolemmal binding complexes in mouse

spermatozoa

Mouse spermatozoa harbor at least four putative solubi-

lized oolemmal protein-binding complexes that range in

molecular weight from 260 to 750 kDa (complexes I–IV;

Fig. 1a). Of note, a similar profile of labeled complexes

was observed irrespective of whether lysates were pre-

pared from non-capacitated, capacitated, or capacitated

sperm that were treated with the calcium ionophore,

A23187, under conditions that robustly stimulate acro-

somal exocytosis in approximately 70% of the cells.

However, lysates from the latter two samples appeared

to bind more oolemmal proteins than that of non-

capacitated spermatozoa.

Mass spectrometry analysis of the predominant

oolemma protein binding band at ~ 750 kDa (complex I)

identified several peptides corresponding to IZUMO1

and GLIPR1L1 (Table 1). To validate these findings,

IZUMO1 and GLIPR1L1 antibodies were used to probe

extracts of mouse spermatozoa under reducing and native

conditions. Consistent with our previous work [21], under

reducing conditions, the GLIPR1L1 antibody bound to a

predominant band with a molecular weight of 37 kDa,

while the IZUMO1 antibody bound to a protein with a

mass of ~ 56 kDa (Fig. 1b). Further, immunoblot analysis of

native sperm lysates with these antibodies revealed strong

binding with several very high molecular weight protein

bands, raising the possibility that both IZUMO1 and

GLIPR1L1 associate with additional sperm proteins to

form multimeric complexes (Fig. 1c). Specifically, prob-

ing with IZUMO1 antibodies labeled at least six protein

bands of ~ 150–750 kDa, supporting previous work that

IZUMO1 associates with other proteins to form multi-

meric complexes on the surface of mouse spermatozoa

[11]. GLIPR1L1 was detected in association with six

predominant complexes of ~ 200–1000 kDa. The num-

ber of complexes recognized by both antibodies did not
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Fig. 1 (See legend on next page.)
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appear to change between non-capacitated, capacitated,

or capacitated and A23187-treated sperm, although

quantitative changes were observed wherein there ap-

peared to be some loss of each complex in the latter

sample. Importantly, both IZUMO1 and GLIPR1L1

were localized with a band consistent with oolemmal

protein-binding complex I (~ 750 kDa). They also colo-

calized to complex IV (Fig. 1a, c, complexes I and IV,

marked in red arrowheads). Given that the combined

molecular weight of IZUMO1 and GLIPR1L1 is, how-

ever, below that of complexes I and IV, it is likely that

they contain additional components that were not

identified in our mass spectrometry (MS) analysis.

IZUMO1 and GLIPR1L1 form stable complex(es) in mouse

spermatozoa

In order to assess if the protein bands recognized by

IZUMO1 and GLIPR1L1 antibodies were multimeric en-

tities, 2D blue native-polyacrylamide gel electrophoresis

(BN-PAGE) was performed to separate individual constitu-

ents within the complexes (Fig. 2a, b). Immunoblotting of

2D BN-PAGE membranes confirmed the presence of

IZUMO1 and GLIPR1L1 in complexes I and IV (Fig. 2c).

Interestingly, unique isoforms of GLIPR1L1 resolved within

each of the complexes, such that the 47-kDa GLIPR1L1

isoform was detected in complex I and the 37- and 32-

kDa GLIPR1L1 isoforms were predominantly detected

in complex IV.

In view of the novelty of our findings, a number of

strategies were employed to further examine the inter-

action between IZUMO1 and GLIPR1L1 in oolemmal

adhesion complex(es). Firstly, co-immunoprecipitation

using the IZUMO1 antibody from lysates of acrosome-

reacted spermatozoa pulled down GLIPR1L1, and a

reciprocal co-immunoprecipitation with the GLIPR1L1

antibody successfully isolated IZUMO1 (Fig. 3).

An investigation of the ontogeny of protein expression

also revealed overlapping patterns of labeling in develop-

ing male germ cells and mature spermatozoa. Both pro-

teins displayed a similar diffuse labeling of pachytene

spermatocytes and round spermatids (Fig. 4a, b) but

were clearly represented in the head of mature sperm-

atozoa where they were primarily localized to the peri-

acrosomal region. Consistent with our previous findings

[21], additional GLIPR1L1 labeling was detected in a

discrete spot at the posterior aspect of the sperm head

corresponding to the connecting piece (Fig. 4c). Follow-

ing the induction of the acrosome reaction, detected by

(See figure on previous page.)

Fig. 1 Identification of mouse sperm multimeric protein complexes with affinity for homologous oolemmal proteins. a Mouse spermatozoa were

purified under non-capacitating (Non-Cap) or capacitating (Cap) conditions. A portion of the latter population was also challenged with A23187

to induce the acrosome reaction (AR). To detect native protein complexes with affinity for oolemmal proteins, far-western blotting with biotin-

labeled preparations of oocyte lysates (Far-Western) was undertaken. Four predominant oolemmal protein-binding complexes (arrowheads, I–IV)

were identified. Each experiment was replicated a minimum of three times and representative gels and blots are shown. The numbers on the left

correspond to the molecular weight (kDa) of native PAGE protein standards. b Validation of GLIPR1L1 and IZUMO1 antibodies. The specificity of

the antibodies used in this study was confirmed by immunoblotting against sperm protein extracts. This experiment was replicated three times

and immunoblots are shown. The numbers on the left correspond to the molecular weight of the protein standards. c Identification of mouse

sperm protein complexes comprising IZUMO1 and GLIPR1L1. Populations of non-capacitated (Non-Cap), capacitated (Cap), and acrosome-reacted

(AR) mouse spermatozoa were solubilized in blue native lysis buffer. The extracted proteins were resolved on BN-PAGE gels before being

prepared for immunoblotting with either IZUMO1 or GLIPR1L1 antibodies. Arrowheads indicate the predominant complexes recognized by each

antibody. Red arrowheads correspond to complexes (I and IV) that co-migrated with those that bound oolemmal proteins (see Fig. 1a). Each

experiment was replicated a minimum of three times and representative images are shown. The numbers on the left correspond to the

molecular weight (kDa) of native PAGE protein standards

Table 1 Mass spectrometry identification of proteins resolving in complex I

Accession Description # Unique peptides Coverage (%) # Amino acids Molecular weight (kDa) pI Mascot Score

Q9D9J7 Izumo sperm-egg fusion
protein 1 (IZUMO1)

5 13.9 397 44.9 6.3 106

DIFNNLAR

SMVGPEDAGNYR

SEDLVLDCLLSWHR

YDVTVLPPK

SDQSLSQQMGLK

Q9DAG6 GLI pathogenesis-related
1-like 1 (GLIPR1L1)

3 14.0 236 27.1 8.6 52

FIDAFLNIHNELR

LAHNPCIK

IGCAVSNCPNLK
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loss of PNA labeling of the acrosomal domain, both

IZUMO1 and GLIPR1L1 were detected throughout the

sperm head (Fig. 4d), although the overall intensity of

GLIPR1L1 labeling was diminished within acrosome-

reacted spermatozoa.

In order to assess the topology of interactions, a proxim-

ity ligation assay (PLA) was performed. Despite similar im-

munocytochemical labeling patterns, the use of PLA

revealed that IZUMO1 and GLIPR1L1 complexes were

not universally distributed through the cytoplasm of devel-

oping pachytene spermatocytes and round spermatids

(Fig. 5a). Rather, a relatively large number of discrete foci

of colocalization were observed, few of which were present

in the developing acrosomal domain. Unexpectedly, PLA

staining for the complex was virtually absent in epididymal

spermatozoa before re-emerging within the head of > 90%

of acrosome-reacted spermatozoa (Fig. 5b, c). Importantly,

a suite of controls utilizing antibodies against proteins that

should not interact with IZUMO1, such as acrosin and α-

tubulin, as well as single antibody only controls, failed to

demonstrate the presence of any fluorescent signals (Add-

itional file 1: Figure S1) indicating that the interaction ob-

served between IZUMO1 and GLIPR1L1 was specific.

Collectively, these results confirm that IZUMO1 and

GLIPR1L1 form a protein complex within male germ cells,

but that this assemblage is influenced by the maturation

status of the cell.

The observed changes in protein localization prompted

us to investigate whether the interaction between IZUMO1

and GLIPR1L1 is influenced by their partitioning into lipid

rafts; microdomains that undergo dynamic repositioning

during sperm maturation [22]. The rationale for this ex-

periment is strengthened by previous independent evi-

dence that IZUMO1 and GLIPR1L1 are components of

Fig. 2 IZUMO1 and GLIPR1L1 reside in multimeric protein complexes. a Native protein complexes were extracted from acrosome-reacted mouse

spermatozoa and resolved by BN-PAGE. b A single lane of the BN-PAGE gel was then placed atop an SDS-PAGE gel and the individual proteins

within each complex resolved according to their molecular weight. c Gels were then used for immunoblotting with IZUMO1 or GLIPR1L1

antibodies. Each of these experiments was repeated three times and representative images are shown. The boxed section indicates the position

of labeled proteins vertically aligned with complexes I and IV
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mouse [23] and bovine [24] sperm lipid rafts, respectively.

Consistent with the hypothesis, both proteins displayed

strong colocalization with GM1 gangliosides in the peri-

acrosomal region of the head of capacitated spermatozoa

(Fig. 6). Consistent with previous data, upon the induction

of acrosomal exocytosis, GM1 became more widely distrib-

uted throughout the anterior region of the sperm head

(Fig. 6). Both IZUMO1 and GLIPR1L1 were characterized

by a pattern of labeling that closely mirrored that of GM1

in the acrosome-reacted cells, thus supporting the hypoth-

esis that IZUMO1 and GLIPR1L1 are found within lipid

rafts in mouse sperm.

GLIPR1L1 is required for optimal fertilization

To assess the role of GLIPR1L1 in IZUMO1 function

and male fertility broadly, a Glipr1l1−/− mouse line was

produced. This mouse line contains a 7-bp deletion

which was predicted to result in a premature stop codon

in exon 1, resulting in a frame-shift mutation and ultimately

a 4-kDa fragment of GLIPR1L1 protein (Additional file 2:

Figure S2A-B). The mutation resulted in a 92% reduction

in Glipr1l1 testis mRNA expression compared to its corre-

sponding wild type (WT) littermates (Fig. 7a), and an

absence of GLIPR1L1 protein, as determined by immuno-

fluorescent labeling (Fig. 7b), thus confirming the successful

production of a Glipr1l1 null mouse line.

In order to define the absolute effect of Glipr1l1 deletion

on male fertility, mice were examined at a histological and

functional level in comparison to WT litter mates. Testicu-

lar histology was comparable between WT and Glipr1l1−/−

mice (Fig. 8a). Similarly, no significant differences were seen

in the number of pups per litter, body weight, testis weight,

or daily sperm production between genotypes (Add-

itional file 3: Figure S3A-C, Fig. 8b). Sperm motility was

assessed using a computer-assisted sperm analyzer, reveal-

ing no significant differences in total or progressive motility

and other sperm velocity parameters between genotypes

(Fig. 8c–e). Similarly, sperm appeared to capacitate nor-

mally as assessed by the time-dependent increase in tyro-

sine phosphorylation in capacitation permissive media

(Fig. 8f, Additional file 4: Figure S4). By contrast, sperm

from Glipr1l1−/− mice had a significantly reduced ability to

undergo the progesterone-induced acrosome reaction com-

pared to wild type (54% in WT, 17% in knockout sperm,

P < 0.0001) (Fig. 8g). Collectively, these data illustrate that

although GLIPR1L1 is not absolutely required for male fer-

tility, it is required for optimal acrosomal function in vitro

and, thus, of likely physiological relevance during the

processes of fertilization.

To test the role of GLIPR1L1 in fertilization more pre-

cisely, we assessed the ability of WT and Glipr1l1−/−

sperm to bind to the zona pellucida of the oocyte and

fertilize in vitro. As shown in Fig. 9, the loss of Glipr1l1

did not affect the ability of sperm to bind to the zona pel-

lucida, but did significantly reduced their ability to fertilize

oocytes, as reflected in two-cell embryos, compared to

wild type litter mates (P < 0.0200). These findings confirm

that GLIPR1L1 is required for optimal fertilization at the

stage of sperm-oocyte fusion.

GLIPR1L1 is required for redistribution of IZUMO1 in

acrosome-reacted spermatozoa

To investigate the mechanism underpinning this deficit,

we tested the effect of Glipr1l1 deletion on IZUMO1

Fig. 3 Interaction between IZUMO1 and GLIPR1L1 using reciprocal co-immunoprecipitation (IP). Acrosome-reacted mouse spermatozoa were

subjected to immunoprecipitation using IZUMO1 or GLIPR1L1 antibodies as described in the “Methods” section. Membranes were probed with the

target antibody, to confirm the efficacy of immunoprecipitation, before being stripped and re-probed with the alterative antibody to confirm the

target protein interaction. Whole sperm lysate was included to confirm the identity of the co-precipitated proteins, as was the material recovered after

washing the beads to confirm the specificity of the elution. This experiment was replicated three times and representative blots are depicted

Gaikwad et al. BMC Biology           (2019) 17:86 Page 6 of 18



localization. No significant difference was observed between

IZUMO1 localization in acrosome intact WT and

Glipr1l1−/− sperm (Fig. 10a). The relocation of IZUMO1

following the acrosome reaction was, however, qualitatively

and quantitatively severely attenuated in Glipr1l1−/− sperm

(Fig. 10b). Specifically, in WT sperm following the acro-

some reaction, IZUMO1 was relocated throughout the

sperm head in 85% of sperm, compared to 21% of

acrosome-reacted Glipr1l1−/− sperm (P < 0.0001). Collect-

ively, these data reveal that GLIPR1L1 has a role in opti-

mizing acrosome function, the translocation of IZUMO1

during the acrosome reaction, and the fertilization process.

Discussion
In previous studies, we have isolated biologically active,

native protein complexes from mouse and human

spermatozoa and demonstrated that several of these mul-

timeric entities possess affinity for homologous zona pel-

lucidae [25, 26]. Herein, we have extended the analysis to

focus on complexes that are present in acrosome-reacted

mouse spermatozoa, which may participate in down-

stream interactions with the oolemma. These studies re-

vealed that sperm do indeed possess multimeric protein

complexes with the potential to adhere to solubilized

oolemmal proteins. Furthermore, in agreement with inde-

pendent data [11], we were able to identify the sperm

adhesion molecule, IZUMO1, as a key constituent of

some, but not all, of these complexes. IZUMO1 has been

the subject of intense interest since it was identified as

being essential for fertilization [2, 3, 27, 28]. Interest-

ingly, the protein lacks a fusogenic domain and proper-

ties commensurate with those expected of a membrane

fusion-inducing molecule. Additionally, while the ec-

topic expression of IZUMO1, or its complementary

oolemmal receptor IZUMO1R, in model cell lines is suffi-

cient to support their adhesion, it fails to promote cell fu-

sion [6–10]. Taken together, these data raise the prospect

that IZUMO1 may either bind other receptor(s) or it may

bind to other ancillary proteins with roles involved in

oolemma adhesion and fusion. The data presented here

indicated that GLIPR1L1 is one such protein and that it is

required for optimal fertilization. The latter model is

analogous with the concerted action of the multimeric

fusogenic complexes that have been implicated in

membrane fusion events as diverse as viral envelope and

synaptic vesicle fusion [14, 29–32].

In regard to potential IZUMO1-interacting proteins in

spermatozoa, we identified GLIPR1L1 as a key candidate

in at least two high molecular weight complexes. Mouse

GLIPR1L1 has a testis-enriched expression profile and

undergoes extensive post-translational modifications dur-

ing spermatogenesis before becoming localized to the

post-acrosomal region and connecting piece of elongated

spermatids and spermatozoa [21]. GLIPR1L1 is also

present on the plasma membrane of at least rat, bovine,

and macaque sperm and depending on species, variably

anchored by a GPI linkage within lipid rafts within the

membrane [24, 33]. In the bovine, GLIPR1L1 surface asso-

ciation appears to result from the uptake of this protein

from the microvesicles that spermatozoa encounter during

their maturation in the epididymis [34]. By contrast, the

mouse GLIPR1L1 orthologue is acquired during sperm-

atogenesis. It does not contain a consensus GPI anchor

site and cannot be released from the sperm surface by

GPI-specific phospholipase C [21], confirming that the

mechanism of GLIPR1L1 association with the sperm sur-

face varies between species. Nevertheless, as an interesting

example of evolutionary divergence in the means by which

a protein becomes localized to an orthologous domain

within sperm, our data suggest that mouse GLIPR1L1

Fig. 4 IZUMO1 and GLIPR1L1 localization in developing mouse

germ cells. a Enriched populations of pachytene spermatocytes and

b round spermatids were purified and sequentially labeled with

IZUMO1 or GLIPR1L1 and appropriate Alexa Fluor 488-conjugated

secondary antibodies (green) followed by Alexa Fluor 594-

conjugated PNA (red). Labeling was also conducted on capacitated

spermatozoa that were either c acrosome intact or d acrosome

reacted. This experiment was replicated three times, and

representative images are shown. Scale bar = 10 μm

Gaikwad et al. BMC Biology           (2019) 17:86 Page 7 of 18



does partition into lipid rafts on the surface of sperm; a

finding that is of importance owing to the ability of rafts

to serve as platforms for the assembly of multimeric com-

plexes that coordinate a variety of specialized functions,

including fertilization [22]. While we have yet to defini-

tively demonstrate that lipid rafts facilitate the formation

and/or repositioning of GLIPR1L1-IZUMO1 complexes in

mouse spermatozoa, it is noteworthy that IZUMO1 has

also been independently identified as a constituent of

mouse sperm lipid rafts [17, 35].

GLIPR1L1 is a member of the CAP superfamily which

has putative roles in processes as diverse as carcinogen-

esis, immune tolerance, and potentially cell adhesion

[20]. Of note, several additional members of the CAP

family play roles in mammalian male fertility, including

roles in spermatogenesis, epididymal sperm maturation,

and potentially at the site of fertilization [36–39]. How-

ever, despite previous findings implicating GLIPR1L1 in

sperm binding to the zona pellucida in both mouse and

bovine models [21, 24], we noted only a relatively

modest, non-statistically significant reduction in the abil-

ity of Glipr1l1−/− spermatozoa to participate in this cel-

lular interaction. These data raise the prospect that

deficits in sperm-zona pellucida adhesion may, at least

in part, be attributed to GLIPR1L1 antibodies eliciting

non-specific steric hindrance and/or masking of zona

pellucida receptors. While the precise molecular func-

tion of GLIPR1L1 therefore remains to be established,

data from other CAP proteins supports a putative fuso-

genic role and indicates that this role is most likely asso-

ciated with the evolutionarily conserved CAP domain at

the N-terminal half of the protein [20, 40]; potentially

involving the first 101 amino acids, which have been im-

plicated previously in cell-cell adhesion [41]. Consistent

with this hypothesis, the ability of GLIPR1L1 to regulate

the acrosome reaction, an event in which the plasma

membrane and outer acrosomal membranes fuse, is

analogous to the membrane fusion processes required at

the time of fertilization. Our data is also consistent with

the identification of the sea squirt sperm plasma

Fig. 5 Co-localization of IZUMO1 and GLIPR1L1 in developing mouse germ cells using an in situ proximity ligation assay. a The cells were

counterstained with DAPI (blue) and PNA (green). This experiment was replicated three times, and representative images are shown. b In the

case of capacitated spermatozoa, a lower magnification image is also included to highlight the differences in PLA labeling between acrosome

intact and acrosome-reacted (arrowhead) spermatozoa. Scale bar = 10 μm. c The percentage of cells displaying PLA positive labeling was

recorded. Each experiment was replicated three times and the data are expressed as the mean ± S.E.M. *P < 0.05, compared with spermatocytes.

Individual data points for each replicate are provided in Additional file 6: Raw data
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membrane CAP proteins, HrUrabin and CiUrabin, as

sperm receptors for the vitelline coat in two species of

these marine invertebrates [42, 43], and with the ability

of the mammalian CAPs, CRISP1, CRISP2, and CRISP4,

to promote acrosome exocytosis in the mouse. The

latter also raises the possibility that CAP domains, from

a number of individual proteins, may act redundantly in

acrosome function and/or fertilization [36–38, 40].

While the data demonstrates a role for GLIPR1L1 in

the translocation of IZUMO1 to the post-acrosomal re-

gion prior to fertilization, the lack of co-complex forma-

tion, as illustrated by the PLA data, does not support

that the IZUMO1 and GLIPR1L1 remain in association

within “the” IZUMO1-containing sperm-oocyte recep-

tor. Specifically, sperm fusion to the oocyte is known to

occur at the equatorial segment. By contrast, IZUMO1-

GLIPR1L1 complexes are localized within the post-

acrosomal region. The possibility remains however that

the binding and movement of IZUMO1 with GLIPR1L1

during the acrosome reaction acts to spatially restrain

and coordinate both sperm binding to the oocytes and

fusion between their membranes.

Importantly, the findings within this paper support the

notion that the complexes we describe contain add-

itional, as yet unidentified constituents. They also sug-

gest that such complexes are dynamically remodeled as

part of the mechanism that primes spermatozoa for their

adhesion and fusion of the oolemma. This is consistent

with the hypothesis that the acrosome reaction promotes

extensive remodeling of the sperm architecture and cul-

minates in the exposure of a novel set of surface proteins

[12]. Although we have yet to determine how the reposi-

tioning of IZUMO1 and GLIPR1L1 is achieved, our data

show that the movement of IZUMO1 is dependent on

GLIPR1L1 function. These data also suggest that the

sub-fertility observed in Glipr1l1 knockout male mice is,

at least in part, due to the restrained distribution of

IZUMO1 in knockout mice.

As an important caveat, however, despite compromis-

ing the in vitro fertilization potential of spermatozoa, the

disruption of Glipr1l1 expression failed to elicit an

equivalent suppression of the fertility of Glipr1l1 null

males following natural mating. Indeed, Glipr1l1 knock-

out males sired litters of equivalent size to that of WT

control males, indicating that GLIPR1L1 is not essential

for male fertility. Such findings mirror those of previous

studies in which numerous gene-manipulated mouse

models have been shown to retain normal fertility des-

pite the selective ablation of sperm proteins that were

originally proposed as essential for fertilization based on

in vitro experiments (reviewed in [44, 45]). In seeking to

reconcile this apparent dichotomy, it is conceivable that

Fig. 6 IZUMO1 and GLIPR1L1 are present within the membrane raft in live capacitated spermatozoa. The presence of IZUMO1 and GLIPR1L1 was

confirmed by colocalization with the raft marker, GM1. Membrane rafts were visualized in live cells by staining with Alexa Fluor 555-labeled

cholera toxin B subunit (red). The cells were then fixed and labeled with the appropriate primary and Alexa Fluor 488-conjugated secondary

antibodies (green). This experiment was replicated three times with a minimum of 200 spermatozoa being examined in each. Representative

images are shown. Scale bar = 10 μm
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knockout mice experience a genetic compensation re-

sponse whereby the transcription of gene(s) related to

the inactivated target is upregulated [46, 47]. Alterna-

tively, it is possible that spermatozoa harbor multiple

intrinsic oocyte receptors that work synergistically and

thus impart some level of functional redundancy to

key aspects of the fertilization cascade [48]. Thus,

while subtle defects in sperm function may result in

sub-optimal fertilization rates in an in vitro setting,

these do not necessarily directly translate to reduced

fertilization in vivo. Alternatively, it is possible that

differences exist in the mechanistic basis by which ag-

onists, such as the steroidal hormone progesterone,

stimulate acrosomal exocytosis versus that of the

physiological stimuli sperm encounter upon inter-

action with the oocyte vestments [49]. In any case, we

noted that ~ 17% of the spermatozoa from Glipr1l1

knockout males retained their ability to undergo an

acrosome reaction (compared to 54% WT spermato-

zoa), thus contributing a sufficient population of

fertilization-competent spermatozoa to achieve normal

rates of fertilization after natural mating.

Fig. 7 Glipr1l1 expression and immunofluorescent localization in mouse sperm from wild type and Glipr1l1−/− mice. a qPCR analysis of Glipr1l1

mRNA levels in isolated testis and germ cells from Glipr1l1−/− mice relative to wild type (WT) mice. mRNA expression levels were normalized to

the housekeeping gene Ppia. This experiment was replicated three times and data is shown as mean ± S.D., **** P < 0.0001. Individual data points

for each replicate are provided in Additional file 6: Raw data. b Localization of GLIPR1L1 at the sperm head and at the connecting piece.

GLIPR1L1 staining (red, marked with white arrows) was observed in WT sperm and no staining was observed in the Glipr1l1−/− sperm. In all the

images, nuclear DNA was stained with DAPI (blue). This experiment was replicated three times and representative images are shown.

Scale bar = 20 μm
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Fig. 8 Fertility assessment of Glipr1l1−/− mice. a Testicular morphology was assessed by periodic acid-Schiff (PAS) staining of the testis sections

from WT and Glipr1l1−/− mice as described in the “Methods” section. This experiment was replicated in a minimum of three mice per genotype

and representative PAS staining is shown. Data are expressed as the mean ± S.D. Scale bar = 50 μm. b Daily sperm production (DSP) within testis

from WT and Glipr1l1−/− mice. This experiment was replicated in a minimum of five mice per genotype, and the data are expressed as the

mean ± S.D. Genotypes are shown on the X-axis, and data were shown as mean ± S.D. c–e Computer-assisted sperm analysis demonstrates no

significant difference in the motility, progressively motility, or other sperm velocity parameters between WT and Glipr1l1−/− mice. This experiment

was replicated in a minimum of five mice per genotype, and the data are expressed as the mean ± S.D. f As a marker of capacitation, the level of

global tyrosine phosphorylation in the whole sperm population was measured. The X-axis depicts the length of time sperm were exposed to

capacitation permissive media, as described in the “Methods” section. The relative intensity of the 70-kDa (p70) band was measured. This

experiment was replicated in a minimum of six mice per genotype and the data are expressed as the mean ± S.D. g, h Assessment of the ability

of Glipr1l1−/− sperm to undergo the acrosome reaction. AR indicates acrosome-reacted spermatozoa in which the entire acrosomal contents had

been released from the sperm head (i.e., no PNA labeling). Partial AR indicates spermatozoa in which the acrosomal contents were incompletely

shed from the sperm head (i.e., partial PNA labeling). No AR indicates spermatozoa in which the acrosomal contents are retained (i.e., complete

PNA labeling). + or – indicates exposure to progesterone for the final 15 min of capacitation. This experiment was replicated in a minimum of

four mice per genotype with a minimum of 200 spermatozoa being examined in each replicate. Data are expressed as the mean ± S.D. *P < 0.05,

**P < 0.01, ***P < 0.001. Individual data points for each replicate are provided in Additional file 6: Raw data
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Conclusion
In conclusion, the present study supports a growing body

of evidence that mammalian spermatozoa are reliant on

multimeric protein complexes to engage in several critical

aspects of the fertilization cascade, including that of oolem-

mal adhesion and fusion [50]. At least some of these

complexes contain IZUMO1 and GLIPR1L1 and identify

CAP proteins as evolutionary conserved plasma membrane

receptors with roles in sperm function and fertilization.

Methods
Reagents

Unless specified, chemical reagents were obtained

from Sigma (St. Louis, Mo, USA). Antibodies used

are outlined in Additional file 5: Table S1 as online

in the supplemental material.

Isolation and preparation of mouse spermatozoa

All experimental procedures were carried out with the ap-

proval of the University of Newcastle Animal Care and

Ethics Committee (A-2013-322) or the Monash University

Biological Sciences Animal Ethics Committee (BSCI/

2017/30) and conformed to the National Health and Med-

ical Research guidelines for animal handling. Inbred Swiss

mice were obtained from the Newcastle Universities

Central Animal House. Mice at the Newcastle University

location were housed under a controlled lighting regime

(16L:8D) at 21–22 °C. Mice at Monash University site

were housed under a controlled lighting regime (12L:12D)

at 18–22 °C. All mice were supplied with food and water

ad libitum.

For the oocyte receptor complex identification, adult

male mice (> 8 weeks old) were euthanized, and their

epididymides and testes were removed and dissected free

of fat and overlying connective tissue. Caudal spermato-

zoa were collected by backflushing [51] after which the

perfusate was deposited into modified Biggers, Whitten,

and Whittingham media (BWW [52];) or Modified Tyr-

ode 6 media (MT6 [53];). Where indicated, negative con-

trol (non-capacitated) incubations were conducted using

non-capacitation medium prepared without NaHCO3

but with additional NaCl incorporated to maintain an

osmolarity of 300 mOsm/kg. The formation of bicarbon-

ate in these samples was prevented by capping the tubes

throughout the incubation at 37 °C in 5% CO2: 95% air.

Positive control (capacitated) incubations were con-

ducted in media supplemented with 1mM pentoxifylline

(ptx) and 1mM dibutyryl cyclic adenosine monopho-

sphate (dbcAMP). These treatments have been demon-

strated to suppress and promote sperm capacitation,

respectively, the latter being defined by tyrosine phos-

phorylation, hyperactivation, and zona binding [54].

Following sperm collection, the sperm concentration

was determined and the cells were diluted as required.

Spermatozoa were then assessed for motility (see below)

and the non-capacitated samples used immediately.

Alternatively, capacitated spermatozoa were prepared by

incubation for up to 60min at 37 °C in 5% CO2: 95% air.

At regular intervals throughout the incubation, sperm

suspensions were gently mixed to prevent settling, and

at the end of the incubation, sperm vitality and motility

were again assessed. Neither parameter was adversely

affected by any of the treatments reported in this study.

To prepare caput and corpus spermatozoa, the appro-

priate epididymal segment was dissected and placed in a

500-μl droplet of BWW medium. Multiple incisions

were then made in the tissue with a razor blade and

spermatozoa gently washed into the medium with mild

agitation. The resultant cell suspension was layered over

27% Percoll and centrifuged (400×g for 15 min) [55, 56].

The pellet, consisting of > 95% pure spermatozoa, was

Fig. 9 Reduced fertilization potential of male Glipr1l1−/− mice. a The

absence of GLIPR1L1 did not significantly affect the number of

sperm that could bind to the zona pellucida in an IVF assay. b The

percentage of two-cell embryos observed following IVF using sperm

from Glipr1l1−/− mice compared to sperm from WT controls. Both

experiments were replicated in five mice per genotype and the data

are expressed as the mean ± S.D. *P < 0.05. Individual data points for

each replicate are provided in Additional file 6: Raw data
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Fig. 10 GLIPR1L1 loss disrupts IZUMO1 redistribution during the acrosome reaction. a Sperm were stained for IZUMO1 localization and the

acrosome was labeled with PNA (green), while DNA was stained with DAPI (blue). Scale bar = 20 μm. b The percentage of sperm that displayed

IZUMO1 relocalization was scored in non-acrosome-reacted (Non-AR) and acrosome-reacted (AR) sperm from WT and Glipr1l1−/− mice. This

experiment was replicated five times with a minimum of 200 spermatozoa being examined in each. Representative images are shown. *P < 0.05,

**P < 0.01, ***P < 0.001. Individual data points for each replicate are provided in Additional file 6: Raw data
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washed by gentle centrifugation (400×g for 2 min) to

remove excess Percoll and then resuspended in fresh

BWW medium and counted as described above. Testicu-

lar spermatozoa were prepared by decapsulating testes,

making multiple incisions in the tissue and allowing the

cells to gently disperse into the medium with mild agita-

tion. They were then isolated by Percoll gradient centri-

fugation as described above.

Knockout mouse model production

The Glipr1l1 knockout mouse line (Glipr1l1−/−) was gen-

erated by the Australian Phenomics Network Monash

University Node by modifying Glipr1l1 using CRISPR/

Cas9 technology. Briefly, Glipr1l1 was modified at exon 1

(ENSMUSE00000640359) by the guide RNA (gRNA) se-

quence: forward-TCCTAGGGTGCCAACTATCA and

reverse-TGATAGTGCCTAGGCTTTAA, which includes

the scaffolding required to form a complex with the

CRISPR-associated nuclease Cas9. The resulting Cas9/

gRNA complex bound to the protospacer adjacent motif

(PAM) and cleaved the double-stranded DNA three nu-

cleotides upstream of the PAM site leaving blunt ends.

This break in the DNA stimulated an imprecise non-

homologous end joining repair which resulted in a 7-bp

(ACTATCA) deletion in exon 1 of the Glipr1l1 gene. This

resulted in a truncated mRNA containing exon 1, which

encoded the first 39N-terminal amino acids of the

GLIPR1L1 protein (Additional file 2: Figure S2A-B). Gene

ablation was assessed using qPCR and immunohisto-

chemistry as outlined below.

Total RNA from the testis and isolated germ cells were

extracted using TRIzol reagent (Life Technologies, USA)

and converted to cDNA using SuperScriptIII reverse tran-

scriptase and oligo dT (Life Technologies) (n = 3 per geno-

type). The Glipr1l1 transcript levels in testis of Glipr1l1−/−

mice were assessed relative to wild-type littermates by

qPCR in SYBR Select Master Mix (Applied Biosystems,

USA). All PCRs were performed in the Quant Studio 3

(Applied Biosystems, USA) qPCR system: 95 °C, 10min

for one cycle; 95 °C, 15 s; 60 °C for 1min for 40 cycles. Dif-

ferent expression data was analyzed using the 2ΔΔCT

method and normalized against the housekeeping gene

Ppia (Mm02342429). The following primers for Glipr1l1

were used: forward 5′-CCAAGGCATTCGGCAAAGAT-

3′ and reverse 5′-ATTCATATCAGCTGCCGGGG-3′.

The expected size of the PCR product was 150 base pairs.

Statistical analysis was performed using two-tailed

unpaired Student’s t test.

Induction of acrosomal exocytosis

To assess whether protein localization was influenced by

the acrosomal status of spermatozoa, acrosomal exocytosis

was induced either by incubation of capacitated cells in

2.5 μM calcium ionophore A23187 or 15 μM progesterone

as previously described [57]. To identify live sperm, the

sperm suspensions were then washed, resuspended in

hypo-osmotic swelling (HOS) medium [58], and incubated

for an additional 1 h. Following incubation, the cells were

sequentially labeled with the appropriate primary and Alexa

Fluor 488-conjugated secondary antibodies as indicated

below. Spermatozoa were then labeled with either 1 μg/ml

PNA-TRITC (Sigma, L3766) or PNA-FITC (Sigma, L7381)

and prepared for microscopy as outlined below.

Immunolocalization of target proteins

Sperm suspensions were fixed in 4% paraformaldehyde

(PFA) and prepared for immunolocalization of candidate

proteins using standard protocols [59]. Alternatively, tar-

get proteins were colocalized with lipid rafts via dual la-

beling with Alexa Fluor 555-labeled B subunit of cholera

toxin (CTB), which labels the raft marker GM1 ganglio-

sides, as previously described [23, 60]. Protein colocaliza-

tion was also assessed via in situ primary ligation assays

(PLA) in accordance with the manufacturers’ instruc-

tions (OLINK Biosciences, Uppsala, Sweden). Briefly,

male germ cells and spermatozoa were fixed in 4% PFA

and coated onto poly-L-lysine slides overnight at 4 °C.

These cells were then blocked before target proteins

were sequentially labeled with IZUMO1 and GLIPR1L1

primary antibodies followed by appropriate secondary

antibodies conjugated to complementary synthetic oligo-

nucleotides (PLA probes). After enzymatic ligation and

amplification, target proteins residing within a maximum

of 30–40 nm were identified by the production of discrete

fluorescent foci [25, 61]. In all cases, fluorescent labeling of

cells was visualized with an Axio Imager A1 fluorescence

microscope (Carl Zeiss Microimaging Inc., Thornwood,

NY, USA) and pictures were taken using an Olympus BX-

53 microscope (Olympus America, Center Valley, PA,

USA) equipped with an Olympus DP80 camera mounted

with a 40×/0.95 UPlanSApo Olympus objective.

Blue native polyacrylamide gel electrophoresis

Populations of non-capacitated, capacitated, and acrosome-

reacted spermatozoa (1 × 106 cells/ml) were gently pelleted

(300×g for 5min) and resuspended in native protein lysis

buffer consisting in preparation for resolution of protein

complexes via one-dimensional blue native PAGE (1D BN-

PAGE) [25, 26]. After completion of electrophoresis, gels

were stained sequentially with Coomassie G250 then silver

stained (to detect less abundant proteins). Alternatively, the

gels were prepared for either western blotting or two-

dimensional BN-PAGE (2D BN-PAGE) [19, 25, 62, 63].

To verify protein interactions, a reciprocal co-

immunoprecipitation strategy was employed [19],

whereby protein G magnetic beads (Millipore, Billerica,

MA, USA) were conjugated with 5 μg of the appropriate

antibody at 4 °C overnight with constant mixing.
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Following conjugation, the antibody-bead complexes were

washed before being covalently cross-linked by incubation

in DTSSP (Thermo Fisher Scientific; 15mM, 2 h at 4 °C).

The cross-linking reaction was quenched using 1M Tris,

and the conjugated beads were washed before being incu-

bated with approximately 100 μg of sperm lysates that had

been pre-cleared with non-conjugated beads to limit non-

specific interactions. After an overnight incubation at 4 °C

with constant mixing, the beads were washed three times

prior to elution of bound proteins by incubation in SDS

loading buffer for 5min. Precipitated proteins were

resolved on 4–20% polyacrylamide gels and prepared for

either silver staining or immunoblotting.

Western and far-western blotting

Proteins resolved by either 1D or 2D BN-PAGE were

transferred onto nitrocellulose membranes using con-

ventional western blotting techniques [64]. To detect

proteins of interest, membranes were blocked then se-

quentially probed with appropriate primary and second-

ary antibodies using standard protocols [65] before

being visualized using an enhanced chemiluminescence

(ECL) kit (GE Healthcare) according to the manufac-

turer’s instructions. To detect native protein complexes

with affinity for oolemmal proteins, 1D BN-PAGE gels

were transferred to nitrocellulose membranes, blocked,

and prepared for far-western blotting with biotin-labeled

preparations of oocyte lysates using protocols modified

from [25, 26]. Briefly, oocyte proteins were biotinylated

by incubation of denuded mouse oocytes (approximately

100/experiment) in 1 mg/ml sulfo-NHS-LC-biotin at

37 °C for 30 min. The biotin reaction was quenched by

washing the oocytes in 100mM glycine. Oocytes were

lysed by incubation in 10mM CHAPS for 1 h at 4 °C. This

preparation was then incubated with the BN-PAGE west-

ern blots overnight at 4 °C on an orbital rotator. Mem-

branes were then washed three times in TBST before

incubation with HRP-conjugated streptavidin (diluted 1:

4000 in 1% w/v BSA/TBST) for 1 h. Labeled complexes

were then detected using ECL as described above.

Protein identification from BN-PAGE

Protein complexes with affinity for homologous oolem-

mal proteins were carefully excised and prepared for

mass spectrometry (MS) analysis at the Australian Prote-

ome Analysis Facility using a one-dimensional nano-

liquid chromatography electrospray ionization MS/MS

interface, as previously described [26, 65]. Peptide data

were searched using Mascot (Matrix Science Ltd.,

London, UK). Peaklists were searched against Mus mus-

culus in the SwissProt database with the following search

parameters: maximum of one missed trypsin cleavage,

cysteine carbamidomethylation, methionine oxidation,

and a maximum 0.2-Da error tolerance in both the MS

and MS/MS data. High-confidence positive identifica-

tions were based on a minimum of two matching pep-

tides and were confirmed or qualified by operator

inspection of the spectra and search results.

Knockout mouse fertility analysis

The effect of Glipr1l1 ablation on male mouse fertility

was assessed using our previously published strategy

[66]. All assays, including breeding trials, were con-

ducted using 10–12-week-old mice (n = 5 per genotype),

a time at which male fertility should be maximal. Briefly,

the daily sperm production (DSP) within the testis and

total epididymal sperm content were assessed in WT

and KO males as previously described (n = 5 per geno-

type) [36]. Sperm motility parameters, including total

sperm motility, progressive motility, and sperm velocity

distribution (rapid, medium, slow, and static) parameters,

were measured using a Hamilton-Thorne (MouseTraxx,

USA) computer-assisted sperm analyzer (CASA) as de-

scribed previously [67]. Sperm from cauda epididymis and

vas deferens were collected using the backflushing

technique. The spermatozoa suspension was equilibrated

in vitro for 15min and loaded into a CASA chamber

(80 μm depth) for analysis. Sperm motility was classified as

rapid motility (> 35 μm/s), medium motility (10–35 μm/s),

slow motility (< 10 μm/s), and static (0 μm/s) [67]. A

minimum of 1000 sperm were measured in triplicate.

The ability of sperm to undergo the acrosome reaction

was assessed and scored using PNA staining of the acro-

some [37] following incubation with 15 μM progesterone.

A spontaneous acrosome reaction control (buffer only)

was included to monitor baseline reactivity.

The ability of sperm to capacitate was assessed

using global tyrosine phosphorylation as a biomarker

using the method outlined in Hu et al. [36] (n = 6 per

genotype). For western blotting, sample loading was

normalized using the endogenously phosphorylated

hexokinase band (130 kDa).

The ability of sperm to interact with oocytes was mea-

sured using zona binding and IVF assays as described previ-

ously [36, 68] (n= 5 per genotype). For IVF, cumulus-oocyte

complexes collected from super-ovulated females were

placed in human tubal fluid (HTF) medium (Merck) under

mineral oil at 37 °C for 15–30min. A sample of 2 × 105 ca-

pacitated sperm from each male were incubated with a

separate clutch of cumulus-oocyte complexes. Gametes

were left to achieve fertilization for 4 h at 37 °C in an

atmosphere of 5% CO2. Potential zygotes were then

washed three times in HTF medium and transferred to

a drop of pre-warmed potassium-supplemented simplex

optimized medium (KSOM) to mature to the two-cell

stage overnight. Successful fertilization was assessed 24

h post-fertilization by counting the percentage of two-

cell embryos relative to total oocytes used. For the zona
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binding assay, cumulus-oocyte complexes isolated as above

were treated with hyaluronidase for 1min to remove cu-

mulus cells and stored in high salt storage medium at 4 °C

until use [68]. After three washes in PBS, salt stored oo-

cytes were transferred to BWW medium and co-incubated

with a sample of 2 × 105 capacitated sperm for 20min at

37 °C. Oocytes were washed in PBS and transferred to

slides to count the number of sperm bound. A total of 4–8

oocytes were used per replicate.

Statistical analysis

Data were analyzed using GraphPad Prism Version 7.0

(GraphPad Software). Statistical differences between

groups were evaluated using two-way ANOVA, Tukey–

Kramer HSD, and unpaired Student’s t tests. Significant

differences were indicated with *P < 0.05, **P < 0.01,

***P < 0.001, and ****P < 0.0001. Densitometry analysis

was carried from western blot band intensity in ImageJ

software v1.52i (National Institutes of Health, USA) and

then analyzed by two-way ANOVA.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.

1186/s12915-019-0701-1.

Additional file 1: Figure S1. Proximity ligation assays (PLA) were used

to assess the interaction of IZUMO1 and GLIPR1L1. Shown are

representative images of negative controls, which included the labeling

of spermatozoa with paired antibodies against proteins that would not

be expected to interact with IZUMO1; (A) IZUMO1 and tubulin, and (B)

IZUMO1 and acrosin. (C) Additional controls included the substitution of

one of the primary antibodies for buffer alone (IZUMO1 only). After PLA

labeling, spermatozoa were counterstained with PNA (green) and DAPI

(blue). Scale bar = 10 μm.

Additional file 2: Figure S2. Glipr1l1 CRISPR/Cas9 genome editing

strategy. (A) Schematic representation of exons 1-5 of mouse Glipr1l1 gene.

The guide RNA sequence (highlighted in red) followed by protospacer

adjacent motif (PAM) sequence (highlighted in blue) is represented in the

dotted box. (B) The 7 bp (ACTATCA) deletion (highlighted in the red box) in

the wild-type Glipr1l1 results in a frame-shift (marked in red dotted line)

mutation and a subsequent premature stop codon (highlighted in red)

which generates a 4 kDa truncated GLIPR1L1 protein.

Additional file 3: Figure S3. Fecundity and morphometry in WT and

Glipr1l1-/- mice. (A) Average litter size from WT mice mated with WT

female mice and Glipr1l1-/- male mice mated with WT female mice. (B)

Comparable body weight (g) and (C) testis weight (g) were observed

between WT and Glipr1l1-/- mice. This experiment was replicated in a

minimum of 4-5 mice per genotype and the data are expressed as the

mean ± S.D.

Additional file 4: Figure S4. The loss of GLIPR1L1 does not impact

sperm capacitation. The level of total tyrosine phosphorylation was

assessed by measuring a band with molecular weight of 110 kDa (p110).

Representative western blotting results are depicted on the bottom row.

The most intense band towards the top of each blot is the constitutively

phosphorylated protein hexokinase (130 kDa) which acted as a loading

control. This experiment was replicated in a minimum of six mice per

genotype and the data are expressed as the mean ± S.D.

Additional file 5: Table S1. List of antibodies used.

Additional file 6. Raw data. This file contains raw data with individual

data points or replicates for Figures 5c; 7a; 8a-g; 9a,b; 10b (i.e. those

experiments in which n < 6).
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